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Regularisation and separation for evolving surface Cahn-Hilliard

equations

Diogo Caetano∗ Charles M. Elliott∗ Maurizio Grasselli† Andrea Poiatti†

February 7, 2023

Abstract

We consider the Cahn-Hilliard equation with constant mobility and logarithmic potential on a two-
dimensional evolving closed surface embedded in R

3, as well as a related weighted model. The well-posedness
of weak solutions for the corresponding initial value problems on a given time interval [0, T ] have already
been established by the first two authors. Here we first prove some regularisation properties of weak solutions
in finite time. Then, we show the validity of the strict separation property for both the problems. This
means that the solutions stay uniformly away from the pure phases ±1 from any positive time on. This
property plays an essential role to achieve higher-order regularity for the solutions. Also, it is a rigorous
validation of the standard double-well approximation. The present results are a twofold extension of the
well-known ones for the classical equation in planar domains.

1 Introduction

The Cahn-Hilliard equation in an evolving surface setting has recently been studied in [13]. More precisely,
having fixed T > 0, considering a family of closed, connected, oriented surfaces Γ(t) ⊂ R

3 such that its evolution
is given a priori as a flow determined by the (sufficiently smooth) velocity field V, the evolving surface Cahn-
Hilliard equation reads

{
u̇+ u∇Γ ·V −∇Γ · (uVτ

a) + ∆2
Γu−∆ΓF

′(u) = 0, in GT ,

u(0) = u0, in Γ(0),
(1.1)

where GT :=
⋃

t∈[0,T ]{t} × Γ(t). Here Vτ
a corresponds to the difference between the tangential component of

V and an advective velocity Va on the surface. The quantity u can be interpreted as the difference between
the concentration of two immiscible substances which are present on the surface. In the same contribution, the
following related weighted Cahn-Hilliard system has also been analysed





ρ̇+ ρ∇Γ ·V = 0, in GT ,

ρċ−∇Γ ·
(
ρ∇Γ

(
−1

ρ
∆Γc+ F ′(c)

))
= 0, in GT ,

c(0) = c0, ρ(0) ≡ 1, in Γ(0),

(1.2)

where ρ is a suitable weight function transported by the surface evolution (in particular, it can be interpreted as
the total mass density) and c can be seen as the relative (i.e., dimensionless) concentration difference between
the two substances on the surface. In the equations above, equipped with suitable initial conditions, ∇Γ denotes
the tangential gradient on the surface Γ(·), ∆Γ is the Laplace-Beltrami operator and u̇ denotes the material
time derivative of u (see Section 2 for more details). The functional framework in this work is the same as in
[13]. Model (1.2) is a simplified version of the one presented in [49, 56], which also includes a coupling with an
equation for the surface deformation, i.e., the Kirchhoff-Love thin shell equation. We decided to concentrate on
the single Cahn-Hilliard equation in the same formulation arising from the model in [56], so that this analysis,
although being interesting per se, could also be exploited (and extended) to take the evolution of the surface
into account as in [49, 56]; in our case, this evolution is given a priori. In both models, the main physical
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property is the conservation of total mass. In particular (see also Remark 4.1 for more details), in the case of
model (1.1) this implies, u denoting the difference density, that we have

∫

Γ(t)

u ≡
∫

Γ0

u0, (1.3)

whereas, for model (1.2), it holds
∫

Γ(t)

ρc ≡
∫

Γ0

c0, (1.4)

ρc being this time the difference density between the two substances and having assumed ρ(0) ≡ 1.
This work aims at proving that weak solutions to equations (1.1) and (1.2) regularise in finite time and

enjoy the instantaneous strict separation property from the pure phases, i.e., for each τ > 0, there exists δ > 0
depending on τ, T and the data such that

‖u(t)‖L∞(Γ(t)) ≤ 1− δ, for a.a. t ∈ [τ, T ]. (1.5)

The present results answer to some regularity issues left open (see [13, 5.1.3]).
The classical Cahn-Hilliard equation was introduced in [15] (see also [14]) for the study of spinodal decom-

position in binary alloys. More precisely, it models the phenomenon of phase separation of an alloy of two
components when the temperature of the system is quenched to a critical temperature, resulting on a spatially
separated two-phase structure. On a smooth bounded domain Ω ⊂ R

d, where d = 1, 2, 3, it reads as
{
u̇ = ∆w, in Ω× (0, T ),

w = −∆u+ F ′(u), in Ω× (0, T ),
(1.6)

where w is the so called chemical potential and is complemented with the (no-flux) boundary and initial
conditions

∂nu = ∂nw = 0 on ∂Ω× (0, T ) and u(0) = u0 in Ω.

Note that we have assumed constant mobility and set it equal to 1. It has since then inspired numerous works in
other areas of science; to name a few, versions of the Cahn-Hilliard equation have been used to study population
dynamics [18], tumour growth models [38] and they have been exploited in image processing analysis [11, 12]
(see also the recent book [42] for other examples). It is also worth recalling that phase separation has recently
become a paradigm in cell biology (see, for instance, [21, 22]). For example, Cahn-Hilliard equations have been
used to model solid tumour growth (see, e.g., [17, 52, 53] and the book [20, Part I, Chap. 5]), dynamics of
plasma membranes and multicomponent vesicles [8–10, 16, 39, 41, 50, 54]. In some of these cases, such as sorting
in biological membranes, phase separation and coarsening take place in a thin, evolving layer of self-organising
molecules, which in continuum-based approach can be modelled as a material surface. This justifies the recent
interest in the Cahn-Hilliard equation posed on evolving surfaces. In particular, one of the most interesting
phenomenon which has been modelled by evolving-surface Cahn-Hilliard equations (see, e.g., [31, 56]) is the lipid
rafts formation on cell membranes, which are composed of lipids, proteins, and cholesterol. Whereas proteins
mediate traffic and serve as signalling devices, lipids provide a fluid matrix within which transmembrane proteins
are free to move. The separation of lipids into two immiscible liquid phases is often linked to the formation
of rafts in cell membranes. These rafts are heterogeneous, highly dynamic, sterol, and sphingolipid-enriched
domains that compartmentalise cellular processes and they are thought to be in the liquid-ordered phase. Rafts
are believed to play an important role in regulating protein activity ([37]) that may in turn affect biological
processes such as trafficking and signalling and are known to be central to the replication of viruses ([48]). All
of the above phenomena involve elastic bending of cell membranes being fully coupled with the irreversible
processes of lipid flow, the diffusion of lipids and proteins, and the surface binding of proteins. Comprehensive
membrane models which include these effects are needed to fully understand the complex physical behavior of
biological membranes. In our work we make a first stride in the direction of the analysis of these highly complex
models. In particular, as already noticed, taking inspiration from such models (see, e.g., [49, 56]), we do not
consider the elasticity of the surface, that would determine an evolution equation for the surface itself, which
we assume to be given, but we only study the Cahn-Hilliard equation arising from such models. The natural
direction for future work is then to consider the fully coupled system, where the evolution of the surface is itself
part of problem, see for instance [1, 2, 49, 56]. In equation (1.6), u is again to be thought of as the difference
between the concentrations of the two components in the mixture. The function F is the homogeneous free
energy (potential) of the system, and is defined as follows

F (r) =
θ

2
((1 + r) ln(1 + r) + (1− r) ln(1 − r))− θ0

2
r2, r ∈ [−1, 1], (1.7)
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where θ, θ0 are absolute temperatures and satisfy 0 < θ < θ0. This ensures that F has a double-well shape.
From the modelling point of view, the logarithmic terms are related to the entropy of the system, while the
quadratic term accounts for demixing effects. It is the competition between the two terms that gives rise to
the spatially distributed phase separation. The potential defined in this way is called singular, whereas many
authors considered a proper approximation, which avoids the fact that F ′ is unbounded at the pure phases ±1.
The most common choice is a polynomial of fourth degree, typically of the form F (r) = 1

4 (r
2 − u2

θ)
2, where

uθ > 0 and −uθ < 0 are the minima of (1.7); this guarantees that F has a symmetric double-well shape also
with minima at ±uθ. This is usually referred as a regular potential. This case was also taken into account
in [13]. However, the polynomial approximation does not ensure the existence of physical solutions, that is,
solutions whose values are in [−1, 1], due to the lack of comparison principles for the Cahn-Hilliard equation.
We refer to the original proof of well-posedness with (1.7) in [27], as well as the survey articles [26, 45] and the
recent book [42] for an overview of the mathematical results for (1.6).

As far as the evolving surface version is concerned, both systems (1.1) and (1.2) are treated in [13], where
the authors establish existence, uniqueness and stability of solutions for the different cases where F is a smooth,
logarithmic or double obstacle potential, respectively. Some regularity results are also proved. We refer also
to [28, 47, 55] for different derivations of the equation and some numerical results, and to [56] for a rigorous
modelling source for the weighted system (1.2). Nevertheless, for the sake of completeness we will give a short
derivation of each model in Sections 3.1 and 4.1, respectively. Interest in these equations is part of the more
general problem of considering partial differential equations on domains or surfaces that evolve in time which
is presently being vastly studied, since these have been seen to provide more realistic models for physical and
biological phenomena. Some examples are [7, 25, 30, 32, 35, 51]. Not only are these relevant for applications, but
they also raise interesting modelling, numerical and computational questions, as well as challenging problems
from the point of view of mathematical analysis. We refer in particular to [29] for a detailed exposition of
the numerical analysis of such problems and to [4–6] for an abstract functional framework well-suited for the
treatment of such problems.

The importance of establishing the strict separation property is twofold.

• First it is essential when one considers higher-order regularity of weak solutions, due to the behaviour of
F and its derivatives close to ±1. Indeed, note that

F ′(r) =
θ

2
ln

1 + r

1− r
− θ0r and F ′′(r) =

θ

2

(
1

1 + r
+

1

1− r

)
− θ0

are both singular when r → ±1, and even though the structure of F ′ can be exploited in order to obtain
some estimates, it is more challenging to do so for F ′′. As noted in, e.g., [36], we have

F ′′(r) ≤ CeC|F ′(r)|, (1.8)

which precludes us from controlling F ′′ in Lp-spaces in terms of the Lp-norms of F ′. It is then important
to study conditions that ensure the integrability of F ′′. It is clear that establishing strict separation from
the pure phases as in (1.5) is crucial to achieve this. Furthermore, the strict separation property is a
fundamental ingredient in the study of longtime behavior of solutions (see [36, 43]).

• Secondly, if the strict separation property holds then, being the solution away from ±1, the logarithmic
potential F is smooth and can be dominated by a polynomial. Therefore, this result can be viewed as a
rigorous justification of the usual aforementioned polynomial double-well approximation.

Separation from the pure phases for dimensions d ≥ 3 is unknown even in the fixed domain setting, in the
case of constant mobility. This apparently technical restriction is related to the growth condition (1.8) (see [34]
for a detailed analysis). As a consequence, our results are restricted to two-dimensional surfaces. The strict
separation for d = 2 was first established for (1.1) in [43]. Then, a more general argument was introduced
in [36]. For an up-to-date picture of the state-of-the-art, the reader is referred to [34], where new proofs and
further generalizations are given.

Here, not only we extend the result for two-dimensional planar domains for equation (1.1), but we also prove
the first separation result for the weighted model (1.2).

This article on one hand complements [13] by proving instantaneous regularisation of the weak solutions and
on the other hand extends the validity of the strict separation property for the local Cahn-Hilliard equation
with constant mobility to the setting of evolving surfaces in R

3 in two cases. It is also worth observing that our
approach to the estimates for solutions to the approximate problems allows us to forgo some of the assumptions
made in [13] (see, e.g., [13, Assumption AP ]), generalising the results therein. For the sake of completeness,
here we also include the proof of continuous dependence on the initial data, entailing uniqueness for the general
system (1.2), which was omitted in [13].
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The paper is structured as follows. In Section 2 we briefly recall the setting from [13] on the evolution
of the surfaces and state some additional regularity assumptions. Section 3 is devoted to the analysis of the
first system (1.1) and we establish higher-order regularity for the solution u and prove that it satisfies the
strict separation property. Finally, in Section 4 we introduce a better suited Galerkin approximation for the
alternative weighted model (1.2) and prove analogous regularity results as well as the strict separation property.
We also include three appendices for the sake of completeness: in Appendix A we present the proofs of some
propositions which are only stated in the main body of the paper. Appendix B collects some preliminary results
essential to obtain the control of higher-order derivatives of the logarithmic potential (in particular, we report a
Moser-Trudinger type inequality valid on compact Riemannian manifolds and a generalized Young’s inequality),
whereas in Appendix C we show the validity of a well-known embedding result for Bochner spaces also in the
evolving space setting.

2 Surface motion: assumptions

We refer to the setting and the notation of [23]. To be more precise, we consider T > 0 and a C2-evolving
surface {Γ(t)}t∈[0,T ] in R

3, i.e. a closed, connected, orientable C2-surface Γ0 in R
3 together with a smooth flow

map

Φ: [0, T ]× Γ0 → R
3

such that

(i) denoting Γ(t) := Φ0
t (Γ0), the map

Φ0
t := Φ(t, ·) : Γ0 → Γ(t)

is a C2-diffeomorphism, with inverse map

Φt
0 : Γ(t) → Γ0;

(ii) Φ0
0 = idΓ0 .

It follows from the definition above that, for each t ∈ [0, T ], Γ(t) is also a closed, connected, orientable C2-
surface. In addition to the assumptions on the surface motion, we first recall the same hypothesis as [13,
AΦ]:

Assumption AΦ: There exists a velocity field V : [0, T ]× R
3 → R

3 with regularity

V ∈ C0([0, T ];C2(R3;R3)),

such that, for any t ∈ [0, T ] and every x ∈ Γ0,

d

dt
Φ0

t (x) = V
(
t,Φ0

t (x)
)
, in [0, T ] (2.1)

Φ0
0(x) = x. (2.2)

In addition to AΦ we will also suppose, where necessary, that the velocity field V : [0, T ]×R
3 → R

3 satisfies

Assumptions BΦ:

1. V is such that

V ∈ C1([0, T ];C2(R3,R3)); (2.3)

2. The advective tangential velocity Va is such that

Va ∈ C1([0, T ];C1(R3,R3)). (2.4)

Note that the above assumptions BΦ require more regularity in time for the map Φ
(·)
0 than AΦ. Denoting

by Vτ and Vν the tangential and normal components of V, respectively, Assumptions BΦ imply, in particular,
for t ∈ [0, T ],

‖Vτ (t)‖C2(Γ(t)), ‖Vν(t)‖C2(Γ(t)) ≤ ‖V(t)‖C2(Γ(t)) ≤ CV,

‖Va(t)‖C0(Γ(t)), ‖∂•Vτ
a(t)‖C0(Γ(t)) ≤ CV, (2.5)
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for t ∈ [0, T ] and for some CV > 0 independent of time, where (see [13]) Vτ
a := Vτ −Va. whereas the single

extra Assumption BΦ.2. implies

‖∂•Va(t)‖C0(Γ(t)) ≤ CV, (2.6)

for t ∈ [0, T ] and for some CV > 0 independent of time.
In this setting we can define the normal material time derivative of a scalar quantity u on Γ(t) by

∂◦u := ût +∇û ·Vν ,

where û denotes any extension of u to a (space-time) neighbourhood of Γ(t), and its full material time derivative,
or strong time derivative, as

∂•u := ∂◦u+∇Γu ·Vτ = ût +∇û ·V, (2.7)

These definitions take into account not only the evolution of the quantity u but also the movement of points in
the surface. The definition in (2.7) can be abstracted to a weaker sense as follows. Let u ∈ L2

H1 . A functional
v ∈ L2

H−1 is said to be the weak time derivative of u, and we write v = ∂•u, if, for any η ∈ DH1(0, T ), we have

∫ T

0

〈v(t), η(t)〉H−1×H1 = −
∫ T

0

(u(t), ∂•η(t))L2 −
∫ T

0

∫

Γ(t)

u(t)η(t)∇Γ(t) ·V(t). (2.8)

Observe that ∂•η is the strong material derivative of η. We will use ∂•u for both the strong and weak material
derivatives.

Thanks to [24, Lemma 2.6], we observe that, for a sufficiently regular vector field f , there holds

∂•(∇Γ · f) = ∂•D
Γ(t)
l fl = D

Γ(t)
l ∂•fl −Alr(V)DΓ(t)

r fl, l, r = 1, 2, 3.

Here D
Γ(t)
i , i = 1, 2, 3, is the ith component of the tangential gradient and

Alr(V) = D
Γ(t)
l Vr − νsνlD

Γ(t)
r Vs, s = 1, 2, 3,

with ν standing for the normal vector field to the surface. Therefore, by (2.3) we can set f = V in the previous
equality and deduce that, due to the regularity of Γ(t), we also have

‖∂•∇Γ ·V(t)‖C0(Γ(t)) ≤ CV, for any t ∈ [0, T ]. (2.9)

Moreover, denoting by J0
t and J t

0, the change of area element from Γ0 to Γ(t) and the one from Γ(t) to Γ0,
respectively, we have, for any η : Γ(t) → R,

∫

Γ(t)

ηdΓ =

∫

Γ0

η̃J0
t dΓ0,

with η̃(p) = η(Φ0
t (p)), for any p ∈ Γ0. Note that J

0
t (·) =

∣∣detDΓ0Φ
0
t (·)
∣∣. Then, due to the previous assumptions,

we deduce

1

CJ
≤ ‖J0

t ‖C0(Γ(t)) ≤ CJ , for any t ∈ [0, T ], (2.10)

where CJ can be chosen to be independent of t. This also implies that there exists a constant CΓ > 0,
independent of t, such that

|Γ0|
CΓ

≤ |Γ(t)| ≤ CΓ|Γ0|, (2.11)

for any t ∈ [0, T ]. Here |Γ0| stands for the Lebesgue surface measure. For any integrable function v over a
surface Γ of positive measure, we set

(v)Γ =
1

|Γ|

∫

Γ

v.

General agreement. The symbol C > 0 will denote a generic constant, depending only on the structural
parameters of the problem and T , but independent of time t and of the approximating indices δ,M (unless
otherwise specified).

3 The first model

In this section we consider system (1.1), which is a model proposed, e.g., in [46] and [13, Problem 4.1]. We start
by briefly recalling its derivation.
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3.1 Derivation

Fix t ∈ [0, T ] and consider a scalar quantity u = u(t) : Γ(t) → R, to be thought of, in our context, as the
concentration difference between two immiscible substances present in a mixture on the surface. The main
property for u is that its total mass is conserved, so that (1.3) holds. Starting from the balance law

d

dt

∫

P (t)

u = −
∫

∂P (t)

q · µ,

on every portion P (t) ⊂ Γ(t) evolving under the purely normal velocity Vν , where q is a flux to be defined later
on, we are led to

∫

P (t)

∂◦u+ u divΓVν + divΓq = 0.

Since this holds for every region we obtain the equation

∂◦u+ u divΓVν + divΓq = 0 on Γ(t).

Now, the flux q consists of an advective term qa = uVa, where Va is tangential and represents the particle
velocity in the fluid, and a diffusive part qd = −∇Γ(−∆Γu + F ′(u)). Substituting in the equation above leads
to

∂◦u+ u divΓVν + divΓ(uVa) = ∆Γ (−∆Γu+ F ′(u)) . (3.1)

This is the physical equation that we wish to consider. In order to apply the functional framework developed
in [4], we work under Assumption AΦ. To incorporate the tangential component Vτ , which is to be interpreted
as an arbitrary parametrisation of the surface Γ(t), we add and subtract a term divΓ(uVτ ) to (3.1), resulting in

∂•u+ u divΓV + divΓ(u(Va −Vτ )) = ∆Γ (−∆Γu+ F ′(u)) , (3.2)

or equivalently

∂•u+ u divΓV + divΓ(u(Va −Vτ )) = ∆Γw,

−∆Γu+ F ′(u) = w.

3.2 Weak formulation

In order to introduce the variational formulation of the Cahn-Hilliard systems we need to introduce the abstract
framework of [4, 5] for the definition of the time-dependent function spaces. We do it in a summarised way and
refer the reader to [4, 5] for a more rigorous and detailed explanation of how these are constructed and how
they can be abstracted to a more generalised setting.

We use the flow map Φ0
t to define pullback and pushforward operators

φ−tu = u ◦ Φ0
t : Γ0 → R for u : Γ(t) → R,

φtv = v ◦ Φt
0 : Γ(t) → R for v : Γ0 → R

and suppose, for t ∈ [0, T ], X(t) to be a Banach space of functions over Γ(t); typically L2(Γ(t)) or some higher-
order Sobolev space Hk(Γ(t)), but also other Lp(Γ(t)) or even the dual space H−1(Γ(t)) := (H1(Γ(t))∗. We
consider functions of the form

u : [0, T ] →
⋃

t∈[0,T ]

X(t)× {t}, t 7→ (u(t), t)

and identify u(t) ≡ u(t); in practice, we want to see u(t) as an element of the space X(t). The function spaces
are defined as follows.

(i) For p ∈ [1,∞], u ∈ Lp
X if t 7→ φ−(·)u(·) ∈ Lp(0, T ;X0) with the norm

‖u‖Lp
X
:=





(∫ T

0 ‖u(t)‖pX(t)

)1/p
if p < ∞

ess supt∈[0,T ] ‖u(t)‖X(t) if p = ∞
;

if X(t) = H(t) are Hilbert spaces, then so is L2
H with the inner product

(u, v)L2
H
:=

∫ T

0

(u(t), v(t))H(t).

6



(ii) For k ∈ N ∪ {0}, u ∈ Ck
X if t 7→ φ−tu(t) ∈ Ck([0, T ];X0) and we define its time derivatives as

∂•,su(t) = φt
ds

dts
φ−tu(t), s = 1, . . . , k.

We will denote ∂•,1 = ∂•; it is easy to see that the latter produces the same definition as in (2.7). These
spaces are endowed with the norm

‖u‖Ck
X
:= sup

t∈[0,T ]

‖u(t)‖X(t) +

k∑

s=1

sup
t∈[0,T ]

‖∂•,su(t)‖X(t).

(iii) A test function u ∈ DX(0, T ) if t 7→ φ−tu(t) ∈ C∞
c ((0, T );X0).

(iv) We define the Banach space

H1
H−1 :=

{
u ∈ L2

H1 : ∂•u ∈ L2
H−1

}
with ‖u‖H1

H−1
:= ‖u‖L2

H1
+ ‖∂•u‖L2

H−1
.

(v) Similarly, H1
L2 denotes the space of those u ∈ L2

H1 which have a more regular weak time derivative
∂•u ∈ L2

L2.

Remark 3.1. We point out that in order to define the spaces Lp
X we are implicitly assuming that the family

(φt, X(t))t∈[0,T ] is compatible in the sense of [13, Assumption 3.1]. Moreover, in the cases where X(t) is a space
of functions with some regularity, it is also assumed that the differentiation makes sense on Γ(t). In our setting,
these assumptions require appropriate regularity of the flow map Φ and the velocity field V. More precisely, if
for some k ∈ N we have

Φ0
(·),Φ

(·)
0 ∈ C1([0, T ];Ck(R3,R3)) and V ∈ C0([0, T ];Ck(R3,R3)),

then:

(i) Γ(t) is a Ck-surface, and it makes sense to define strong and weak derivatives up to order k for functions
on Γ(t) (in our case we have k = 2);

(ii) the pair (φt, X(t))t is compatible where X = Lp, C0, H−1, W r,p, Cr for p ∈ [1,∞] and 1 ≤ r ≤ k (see
e.g. [13, Section 7] for examples).

Notice that the assumptions in Sec.2 are enough to guarantee that all the function spaces involved are well
defined, as well as to ensure compatibility with the evolution.

Let us now explicitly recall some notation introduced in [13, Section 3.2]. In particular, for t ∈ [0, T ], we
define the following bilinear forms:

1. for η, φ ∈ L2(Γ(t)), the zero order terms

m(t; η, φ) :=

∫

Γ(t)

ηφ, g(t; η, φ) :=

∫

Γ(t)

ηφ∇Γ ·V(t);

2. for η ∈ L2(Γ(t)), φ ∈ H1(Γ(t)), the first order term

aN (t; η, φ) :=

∫

Γ(t)

ηVτ
a(t) · ∇Γφ;

3. for η, φ ∈ H1(Γ(t)), the second order terms

aS(t; η, φ) :=

∫

Γ(t)

∇Γη · ∇Γφ, b(t; η, φ) :=

∫

Γ(t)

B(V(t))∇Γη · ∇Γφ,

with B(V) = (∇Γ ·V)I− 2D(V), where D(V) stands for the symmetrized rate tensor;

4. for η ∈ H−1(Γ(t)), φ ∈ H1(Γ(t)), the duality pairing

m⋆(t; η, φ) := 〈η, φ〉H−1(Γ(t)),H1(Γ(t)).

For the sake of simplicity, from now on we will omit the explicit dependence on time and we will denote
‖ · ‖L2(Γ(t)) only by ‖ · ‖. In conclusion, we recall [13, Prop.2.8], see also [23, Sec.8.2]) in
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Proposition 3.2. The following transport formulas hold:

(a) For η, φ ∈ H1
H−1 ,

d

dt
m(η, φ) = m∗(∂

•η, φ) +m∗(∂
•φ, η) + g(η, φ).

(b) If additionally ∇Γ∂
•η,∇Γ∂

•φ ∈ L2
L2, then

d

dt
aS(η, φ) = aS(∂

•η, φ) + aS(η, ∂
•φ) + b(η, φ).

(c) For η, φ ∈ H1
L2 , with ∇Γ∂

•φ ∈ L2
L2, the following identity holds

d

dt
aN (η, φ) = aN (∂•η, φ) + aN (η, ∂•φ)

+

∫

Γ(t)

Badv(V
τ
a(t),V(t))η · ∇Γφ, (3.3)

for almost any t ∈ [0, T ], where Badv is a vector field given by

Badv(V
τ
a ,V)i := (∂•Vτ

a)i + (∇Γ ·V)(Vτ
a)i −

3∑

j=1

(Vτ
a)jD

Γ(t)
j Vi, i = 1, 2, 3.

In the above we use the same notation as in [29]. We postpone the proof of this result to Appendix A.
Let us now recall the compatibility condition on the initial datum u0 in order to obtain the existence of a

(weak) solution to the Cahn-Hilliard equation with logarithmic potential. As noted in [13], there is an interplay
between the evolution of the surfaces Γ(t) and the admissible initial conditions. In effect, setting

mη(t) :=
1

|Γ(t)|

∣∣∣∣
∫

Γ0

η

∣∣∣∣ ,

we require that the initial datum u0 satisfies

max
t∈[0,T ]

mu0(t) < 1. (3.4)

Although it might seem unnatural to prescribe a condition involving the initial data and the area of the surfaces
at all future times, this assumption has an interesting physical meaning. Let us introduce the maximum
shrinkage ratio SR on [0, T ], which is a priori prescribed by the evolution of the surfaces Γ(t), as:

SR := max
t∈[0,T ]

|Γ0|
|Γ(t)| .

Condition (3.4) then means that

|(u0)Γ0 |SR < 1. (3.5)

Since at time t = 0 we already assume |(u0)Γ0 | < 1 for the initial mass (meaning that we do not start with a
one-phase mixture), condition (3.5) shows that the absolute value of the initial mass, |(u0)Γ0 |, compensates for
the maximum shrinkage ratio SR of the evolving surface Γ(t) on [0, T ]. Therefore, the higher the value of SR

(i.e., the smaller the surface Γ(t) becomes over [0, T ]), the further u0 must be from the pure phases ±1 in Γ0.
Moreover, recalling that the Cahn-Hilliard dynamics implies that the total mass of the solution is preserved,

namely, ∫

Γ(t)

u(t) ≡
∫

Γ0

u0, for all t ∈ [0, T ],

we can write
|(u(t))Γ(t)| = mu0(t)

and thus the condition mu0(t) < 1 for every t ∈ [0, T ] is the dynamic counterpart of

|(u(t))Ω| =
∣∣∣∣
1

|Ω|

∫

Ω

u(t) dx

∣∣∣∣ =
∣∣∣∣
1

|Ω|

∫

Ω

u0 dx

∣∣∣∣ = |(u0)Ω| < 1

which holds in the case of a static bounded domain Ω.
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For future use, let us then define the set I0 of admissible initial conditions as

I0 :=
{
η ∈ H1(Γ0) : |η| ≤ 1 a.e. on Γ0, and |(η)Γ0 |SR < 1

}
.

We recall that the free energy is given by

ECH [u] =

∫

Γ(t)

( |∇u|2
2

+ F (u)

)
,

with F logarithmic potential. Note that, if u0 ∈ I0, then u0 has finite energy. Indeed ‖u0‖L∞(Γ0) ≤ 1 implies
F (u0) ∈ L1(Γ0). We can now recall the result obtained in [13, Theorems 5.14, 5.15] for

F (s) =
θ

2
((1 + r) ln(1 + r) + (1− r) ln(1 − r)) +

1− r2

2
, r ∈ (−1, 1), (3.6)

where 0 < θ < 1 (F is extended by continuity at r = ±1). We set Fln(r) := (1 + r) ln(1 + r) + (1− r) ln(1− r)
for the sake of simplicity and denote ϕ(s) = F ′

ln(s). Note that this choice corresponds to the singular potential
(1.7) with θ0 = 1, up to a translation to get directly F ≥ 0 in [−1, 1].

Remark 3.3. Concerning the logarithmic potential, there exists a constant C > 0 such that

θ

2
ϕ′(s) ≤ eC| θ2ϕ(s)|+C , ∀s ∈ (−1, 1). (3.7)

We now let Assumption AΦ hold: we have (see [13])

Theorem 3.4. Let u0 ∈ I0 and F : [−1, 1] → R be given by (3.6). Then there exists a unique pair (u,w) with

u ∈ L∞
H1 ∩H1

H−1 and w ∈ L2
H1 ,

such that, for almost any t ∈ (0, T ], |u(t)| < 1 almost everywhere on Γ(t) and u satisfies, for all η ∈ L2
H1 and

almost any t ∈ [0, T ],

m⋆(∂
•u, η) + g(u, η) + aN (u, η) + aS(w, η) = 0, (3.8)

aS(u, η) +
θ

2
m(ϕ(u), η)−m(u, η)−m(w, η) = 0, (3.9)

where u(0) = u0 almost everywhere in Γ0. The solution u also satisfies the additional regularity

u ∈ C0
L2 ∩ L∞

Lp ∩ L2
H2 ,

for all p ∈ [1,+∞). Furthermore, if u0, v0 ∈ I0 are such that (u0)Γ0 = (v0)Γ0 , and u, v are the solutions of the
system with u(0) = u0 and v(0) = v0, then there exists a constant C > 0 independent of t, such that, for almost
any t ∈ [0, T ],

‖u(t)− v(t)‖H−1(Γ(t)) ≤ eCt‖u0 − v0‖H−1(Γ(t)).

Remark 3.5. We notice that the regularity stated in Theorem 3.4 can be slightly improved. In particular, since
u ∈ L2

H2 solves the problem, for almost all t ∈ [0, T ],

−∆Γu(t) = w(t) − F ′(u(t)) ∈ L2(Γ(t)),

we are allowed to multiply by −∆Γu ∈ L2(Γ(t)) for almost any t ∈ [0, T ]. Recalling that ϕ′ > 0, after an
integration by parts, being Γ(t) closed and u ∈ L∞

H1 , we obtain

‖∆Γu‖2 ≤ ‖∆Γu‖2 +
θ

2
m(ϕ′(u), |∇Γu|2) ≤ ‖∇Γw‖‖∇Γu‖+ ‖∇Γu‖2 ≤ C(1 + ‖∇Γw‖),

and knowing that w ∈ L2
H1 , we infer u ∈ L4

H2 .

3.3 Regularisation and strict separation property

In this subsection we need Assumptions BΦ. We first show that the approximating solution given by the
Galerkin scheme is consequently more regular. This allows us to perform higher-order regularisation estimates
and to establish the strict separation property.
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3.3.1 Galerkin approximation

Motivated by the approach in [13], we start by considering the Galerkin approximation with the approximated
potential F δ ∈ C2(R) defined by

F δ(r) := F δ
ln(r) +

1− r2

2
, ∀r ∈ R,

where

F δ
ln(r) =

θ

2





(1− r) ln(δ) + (1 + r) ln(2− δ) + (1−r)2

2δ + (1+r)2

2(2−δ) − 1, r ≥ 1− δ

(1 + r) ln(1 + r) + (1 − r) ln(1− r), |r| ≤ 1− δ

(1 + r) ln(δ) + (1− r) ln(2− δ) + (1+r)2

2δ + (1−r)2

2(2−δ) − 1, r ≤ −1 + δ

and denote ϕδ = (F δ
ln)

′. Let us recall [13, Sec.4.1] and consider a basis {χ0
j : j ∈ N} orthonormal in L2(Γ0)

and orthogonal in H1(Γ0) consisting of smooth functions such that χ0
1 is constant (for example consider the

eigenfunctions of the Laplace-Beltrami operator). We then transport this basis using the flow map. This gives
{χt

j := φt(χ
0
j ) : j ∈ N} ⊂ H1(Γ(t)) and we define the finite-dimensional spaces

VM (t) := {χt
j : j = 1, . . . ,M}. (3.10)

The goal in this section is to find an approximating solution pair (uM , wM ) in these spaces; more precisely, for
each M ∈ N, we aim to find functions uM , wM ∈ L2

VM
with ∂•uM ∈ L2

VM
such that, for any η ∈ L2

VM
and all

t ∈ [0, T ],

m(∂•uM , η) + g(uM , η) + aN (uM , η) + aS(w
M , η) = 0, (3.11)

aS(u
M , η) +m((F δ)′(uM ), η)−m(wM , η) = 0, (3.12)

and uM (0) = P 0
Mu0 almost everywhere in Γ0 (P 0

M is the L2 orthogonal projector operator at t = 0 (see [13,
Sec.4.1]). We first prove a refinement of [13, Prop.4.4], namely,

Proposition 3.6. Let Assumptions BΦ hold. Then there exists a unique local solution pair to (3.11)-(3.12).
In particular there exist functions (uM , wM ) satisfying (3.11)-(3.12) on an interval [0, t⋆), 0 ≤ t⋆ ≤ T , together
with the initial condition uM (0) = P 0

Mu0. The functions are of the form

uM (t) =
M∑

i=1

uM
i (t)χt

i, wM (t) =
M∑

i=1

wM
i (t)χt

i, t ∈ [0, t⋆),

with uM
i ∈ C2([0, t⋆)) and wM

i ∈ C2([0, t⋆)), for every i ∈ {1, . . . ,M}.

Proof. We consider the matrix form of the equations, where we denote uM (t) = (uM
1 (t), . . . , uM

M (t)) andwM (t) =
(wM

1 (t), . . . , wM
M (t)),

M(t)u̇M (t) +G(t)uM (t) +AN (t)uM (t) +AS(t)w
M (t) = 0,

AS(t)u
M (t) + (Fδ)′(uM (t))−M(t)wM (t) = 0.

Here

(M(t))ij = m(t;χt
i, χ

t
j), (G(t))ij = g(t;χt

j , χ
t
i),

(AS(t))ij = aS(t;χ
t
i, χ

t
j), (AN (t))ij = aN (t;χt

j , χ
t
i),

and
(Fδ)′(uM (t))j = m(t; (F δ)′(uM (t)), χt

j).

We now observe that actually these matrices enjoy more regularity than noted in [13]. Indeed, let us consider
for example Mij . By [13, Prop. 2.8], recalling that ∂•χt

i ≡ 0 for any i = 1, . . . ,M , we have

d

dt
Mij = g(χt

i, χ
t
j) ∈ C0([0, T ]),

due to the regularity assumptions on Γ(t), on the corresponding flow map and on the velocity field. We also
have

d

dt
(M−1)ij = −

(
M−1

(
d

dt
M

)
M−1

)

ij

∈ C0([0, T ]).
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Similarly, we get
d

dt
(AS(t))ij = b(χt

i, χ
t
j) ∈ C0([0, T ]),

and, by (3.3),
d

dt
(AN (t))ij =

∫

Γ(t)

Badv(V
τ
a(t),V(t))χt

j · ∇Γχ
t
i ∈ C0([0, T ]).

Moreover, by Proposition 3.2 point (a),

d

dt
(G(t))ij = m(χt

i∂
•(∇Γ ·V), χt

j) + g
(
χt
i∇Γ ·V, χt

j

)
∈ C0([0, T ]),

thanks to (2.9). Furthermore, we get

d

dt
(Fδ)′(y)j = g

(
(F δ)′

(
M∑

i=1

yiχ
t
i

)
, χt

j

)
∈ C0([0, T ]).

Recalling then that (F δ)′ is C1,1(R), ensuring the spatial C1,1-continuity of the y-Jacobian of y 7→ (Fδ)′(y),
the result follows from the general ODE theory.

We now obtain the energy estimate for the Galerkin approximation, without letting M → ∞ (cf. [13]). This
is essential in order to maintain the necessary regularity to perform higher-order estimates.

Proposition 3.7. Denoting by (uM
δ , wM

δ ) the solution pair to (3.11)-(3.12), we have the energy estimate

sup
t∈[0,T ]

ẼCH [t;uM
δ (t)] +

∫ T

0

‖∇Γw
M
δ ‖2dt ≤ Cδ(T ), (3.13)

for some Cδ(T ) depending on δ and T , but not on M , where ẼCH := ECH + C̃ for some C̃ > 0 chosen so that
ẼCH ≥ 0. Moreover, it holds

sup
t∈[0,T ]

ẼCH [uM
δ (t)] +

1

4

∫ T

0

‖∇Γw
M
δ ‖2 ≤ C(T )

(
1 +

∫ T

0

|m(wM
δ , 1)|2dt

)
, (3.14)

for some C(T ) > 0 independent of M, δ but possibly depending on T .

Remark 3.8. We observe that, even though the energy ECH is not necessarily non-negative, it is bounded from
below. Indeed, there exists C = C(θ) such that F ≥ C(θ), and therefore

ECH [u] ≥ C(θ)|Γ(t)| ≥ C(θ)

CΓ
|Γ0|, (3.15)

where CΓ is defined in (2.11). Note that C̃ (see the previous statement) depends on T , Γ0 and θ, as well as on
an upper bound for the C1-norm of the flow map Φ.

Proof. Keep M, δ fixed and denote by C a generic positive constant independent of M and δ. We consider the
Galerkin approximation and the results given by Proposition 3.6. Here we denote the solution by (uM

δ , wM
δ ) to

emphasize the dependence on δ. We then note that the total mass of uM
δ is preserved in time, since η ≡ 1 ∈ VM

for any M ∈ N. We then come back to the energy estimate as in the proof of [13, Prop.5.7, a)]:

d

dt
ẼCH [uM

δ ] +
1

2
‖∇Γw

M
δ ‖2 ≤ −g(uM

δ , wM
δ ) + C0 + C1Ẽ

CH [uM
δ ], (3.16)

where ẼCH := ECH + C̃, with C̃ > 0 a suitable constant so that ẼCH ≥ 0. Thanks to the bound on V, by
Young and Poincaré’s inequalities we have

−g(uM
δ , wM

δ ) ≤ C‖uM
δ ‖‖wM

δ ‖ ≤ C‖uM
δ ‖(|m(wM

δ , 1)|+ ‖∇Γw
M
δ ‖)

≤ 1

4
‖∇Γw

M
δ ‖2 + C(‖uM

δ ‖2 + |m(wM
δ , 1)|2)

≤ 1

4
‖∇Γw

M
δ ‖2 + C(1 + ‖∇Γu

M
δ ‖2 + |m(wM

δ , 1)|2),

where we exploited the fact that, by mass conservation, Poincaré’s inequality and (2.11),

‖uM
δ ‖ ≤ 1

|Γ(t)| |m(uM
δ , 1)|+ ‖∇Γu

M
δ ‖ ≤ C(|m(P 0

Mu0, 1)|+ ‖∇Γu
M
δ ‖) ≤ C(1 + ‖∇Γu

M
δ ‖), (3.17)
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recalling that ‖P 0
Mu0‖ ≤ ‖u0‖ ≤ C. For further use, this gives

d

dt
ẼCH [uM

δ ] +
1

4
‖∇Γw

M
δ ‖2 ≤ C0 + C1Ẽ

CH [uM
δ ] + C2|m(wM

δ , 1)|2, (3.18)

with C0, C1, C2 > 0 independent of M, δ. Since estimate (3.46) cannot be performed in the Galerkin context
(note that, differently from the static domain case, here it is not ensured that ∆Γu

M
δ ∈ L2

VM
), we now first

obtain an estimate depending on δ but not on M , and in a second time, after passing to limit as M → ∞, we
obtain estimates uniform in δ, thanks to (3.46). Therefore, we now exploit |F ′

δ(u
M
δ )| ≤ Cδ|uM

δ |, being |F ′′
δ | ≤ Cδ

and F ′
δ(0) = F ′(0) = 0, to deduce

|m(wM
δ , 1)| ≤ |m(F ′

δ(u
M
δ ), 1)| ≤ Cδ‖uM

δ ‖L1(Γ(t)) ≤ Cδ‖uM
δ ‖ (3.19)

with Cδ > 0 depending on δ, so that, by Young and Poincaré’s inequalities, we find

−g(uM
δ , wM

δ ) ≤ C‖uM
δ ‖‖wM

δ ‖ ≤ Cδ

(
1 + ‖uM

δ ‖2
)
+

3

8
‖∇Γw

M
δ ‖2,

and thus, from (3.16) and (3.17),

d

dt
ẼCH [uM

δ ] +
1

8
‖∇Γw

M
δ ‖2 ≤ CδẼ

CH [uM
δ ] + Cδ.

Therefore Gronwall’s Lemma, together with (3.17) and [13, Lemma 5.6] give

sup
t∈[0,T ]

ẼCH [t;uM
δ (t)] + sup

t∈[0,T ]

‖uM
δ (t)‖2 +

∫ T

0

‖∇Γw
M
δ ‖2dt ≤ Cδ, (3.20)

independently of M . Moreover, by Gronwall’s Lemma and [13, Lemma 5.6], applied to (3.18), we also get
(3.14).

3.3.2 Regularisation and strict separation property

The main result of this section is the following, letting Assumptions BΦ hold.

Theorem 3.9. Let the assumptions of Theorem 3.4 and Assumptions BΦ hold. Denote by (u,w) the (unique)
weak solution to (3.8)-(3.9) with u(0) = u0.

(i) There exists a constant C = C(T,ECH(u0)) > 0 such that, for almost any t ∈ [0, T ],

t‖w‖2H1(Γ(t)) +

∫ t

0

s‖∂•u‖2H1(Γ(s))ds ≤ C(T,ECH(u0)). (3.21)

(ii) For any 0 < τ ≤ T , there exist constants C = C(T, τ, ECH(u0)) > 0 and Cp = Cp(T, τ, p, E
CH(u0)) > 0

such that, for almost any t ∈ [τ, T ],

‖w‖H1(Γ(t)) ≤ C(T, τ, ECH(u0)), (3.22)

‖ϕ(u)‖Lp(Γ(t)) + ‖ϕ′(u)‖Lp(Γ(t)) ≤ Cp(T, τ, p, E
CH(u0)), ∀p ∈ [2,∞),

‖u‖H2(Γ(t)) ≤ C(T, τ, ECH(u0)).

(iii) There exists ξ = ξ(T, τ, ECH(u0)) > 0 such that

‖u‖L∞(Γ(t)) ≤ 1− ξ, for a.a. t ∈ [τ, T ].

Remark 3.10. Notice that actually we could say more about the separation property, if we assume the regularity
on the flow map and the velocity field as in Lemma C.1. Indeed, for any τ > 0, we have u ∈ L∞

H2(τ, T ) and
∂•u ∈ L2

H1(τ, T ) (we use the symbol Lq
X(τ, T ) to mean that the set of times is [τ, T ] instead of [0, T ], typical

of Lq
X). By the embedding result shown in Appendix C, we infer that u ∈ C0

H3/2(τ, T ), thus by the embedding

H3/2(Γ(t)) →֒ C0(Γ(t)), u ∈ C0
C0(τ, T ), implying

sup
t∈[τ,T ]

‖u‖C0(Γ(t)) ≤ 1− ξ.
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Proof. From now on, we will omit the dependence on ECH(u0), since it is considered understood due to Prop.
3.7.

Part (i). Step 1. Limit as M → ∞. We test (3.11) with η = ∂•wM
δ ∈ L2

VM
, obtaining

m(∂•uM
δ , ∂•wM

δ ) + g(uM
δ , ∂•wM

δ ) + aN (uM
δ , ∂•wM

δ ) + aS(w
M
δ , ∂•wM

δ ) = 0. (3.23)

Observe now that, by Proposition 3.2, for η ∈ L2
VM

such that ∂•η ∈ L2
VM

, we have

d

dt
m(wM

δ , η) = m(∂•wM
δ , η) +m(wM

δ , ∂•η) + g(wM
δ , η), (3.24)

but also (see (3.12))

d

dt
m(wM

δ , η) =
d

dt

(
aS(u

M
δ , η) +m((F δ)′(uM

δ ), η)
)

(3.25)

Moreover, again by Proposition 3.2, we infer

d

dt
aS(u

M
δ , η) = aS(∂

•uM
δ , η) + aS(u

M
δ , ∂•η) + b(uM

δ , η).

On the other hand, exploiting the chain rule, we get

d

dt
m((F δ)′(uM

δ ), η) = m((F δ)′′(uM
δ )∂•uM

δ , η) +m((F δ)′(uM
δ ), ∂•η) + g((F δ)′(uM

δ ), η).

Therefore, comparing (3.24) with (3.25), we obtain

m(∂•wM
δ , η) +m(wM

δ , ∂•η) + g(wM
δ , η) = m((F δ)′′(uM

δ )∂•uM
δ , η)

+m((F δ)′(uM
δ ), ∂•η) + g((F δ)′(uM

δ ), η) + aS(∂
•uM

δ , η) + aS(u
M
δ , ∂•η) + b(uM

δ , η),

but since ∂•η is still an admissible function in (3.12), we infer

m(∂•wM
δ , η) = −g(wM

δ , η) +m((F δ)′′(uM
δ )∂•uM

δ , η) + g((F δ)′(uM
δ ), η) + aS(∂

•uM
δ , η) + b(uM

δ , η).

Thus, setting η = ∂•uM
δ ∈ L2

VM
(note that ∂•,2uM

δ ∈ L2
VM

by Proposition 3.6), we get

m(∂•wM
δ , ∂•uM

δ ) = −g(wM
δ , ∂•uM

δ ) +m((F δ)′′(uM
δ )∂•uM

δ , ∂•uM
δ )

+ g((F δ)′(uM
δ ), ∂•uM

δ ) + aS(∂
•uM

δ , ∂•uM
δ ) + b(uM

δ , ∂•uM
δ ). (3.26)

Using once more Proposition 3.2, on account of the regularity given by Proposition 3.6, we obtain

1

2

d

dt
‖∇Γw

M
δ ‖2 = aS(w

M
δ , ∂•wM

δ ) +
1

2
b(wM

δ , wM
δ ). (3.27)

Furthermore, consider the term g in (3.23). By Proposition 3.2, we have

d

dt
g(uM

δ , wM
δ ) = g(uM

δ , ∂•wM
δ ) +m(∂•(uM

δ ∇Γ ·V), wM
δ ) + g(uM

δ ∇Γ ·V, wM
δ )

= g(uM
δ , ∂•wM

δ ) +m(∂•uM
δ ∇Γ ·V, wM

δ ) +m(uM
δ ∂•∇Γ ·V, wM

δ ) + g(uM
δ ∇Γ ·V, wM

δ ).

Therefore we get

g(uM
δ , ∂•wM

δ ) =
d

dt
g(uM

δ , wM
δ )−m(∂•uM

δ ∇Γ ·V, wM
δ )−m(uM

δ ∂•∇Γ ·V, wM
δ )− g(uM

δ ∇Γ ·V, wM
δ ). (3.28)

Recalling (3.3), we have

d

dt
aN (uM

δ , wM
δ ) = aN (∂•uM

δ ,wM
δ ) + aN (uM

δ , ∂•wM
δ ) +

∫

Γ(t)

Badv(V
τ
a(t),V(t))uM

δ · ∇Γw
M
δ ,

that is,

aN (uM
δ , ∂•wM

δ ) =
d

dt
aN (uM

δ ,wM
δ )− aN(∂•uM

δ , wM
δ )−

∫

Γ(t)

Badv(V
τ
a(t),V(t))uM

δ · ∇Γw
M
δ . (3.29)
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Thanks to Proposition 3.2, we deduce

d

dt

θ

2
g(F δ

ln(u
M
δ ), 1) =

θ

2
g(ϕδ(u

M
δ ), ∂•uM

δ ) +
θ

2

∫

Γ(t)

F δ
ln(u

M
δ )∂•∇Γ ·V +

θ

2
g(F δ

ln(u
M
δ ),∇Γ ·V). (3.30)

This last equality is necessary, since in the Galerkin setting we are not able to retrieve a uniform estimate for
‖ϕδ(u

M
δ )‖L2

L2
but only for its L2-orthogonal projection over VM (t), whereas, thanks to (3.20), we are able to

uniformly estimate supt∈[0,T ] ‖F δ
ln(u

M
δ )‖L1(Γ(t)). Collecting (3.23)-(3.29), we obtain

d

dt

(
1

2
‖∇Γw

M
δ ‖2 + aN (uM

δ , wM
δ ) + g(uM

δ , wM
δ )

)
+ ‖∇Γ∂

•uM
δ ‖2

+m((F δ)′′(uM
δ )∂•uM

δ , ∂•uM
δ )

= g(wM
δ , ∂•uM

δ )− g((F δ)′(uM
δ ), ∂•uM

δ )− b(uM
δ , ∂•uM

δ ) +
1

2
b(wM

δ , wM
δ )

+m(∂•uM
δ ∇Γ ·V, wM

δ ) +m(uM
δ ∂•∇Γ ·V, wM

δ )

+ g(uM
δ ∇Γ ·V, wM

δ ) + aN (∂•uM
δ , wM

δ )

+

∫

Γ(t)

Badv(V
τ
a(t),V(t))uM

δ · ∇Γw
M
δ .

In particular, substituting the explicit value of F δ, setting ϕδ := (F δ
ln)

′, and exploiting (3.30), we find

d

dt

(
1

2
‖∇Γw

M
δ ‖2 + aN (uM

δ , wM
δ ) + g(uM

δ , wM
δ ) +

θ

2
g(F δ

ln(u
M
δ ), 1)

)

+ ‖∇Γ∂
•uM

δ ‖2 + θ

2
m(ϕ′

δ(u
M
δ )∂•uM

δ , ∂•uM
δ )

= g(wM
δ , ∂•uM

δ ) +m(∂•uM
δ , ∂•uM

δ ) + g(uM
δ , ∂•uM

δ )− b(uM
δ , ∂•uM

δ )

+
1

2
b(wM

δ , wM
δ ) +m(∂•uM

δ ∇Γ ·V, wM
δ ) +m(uM

δ ∂•∇Γ ·V, wM
δ )

+ g(uM
δ ∇Γ ·V, wM

δ ) + aN (∂•uM
δ , wM

δ ) +

∫

Γ(t)

Badv(V
τ
a(t),V(t))uM

δ · ∇Γw
M
δ

+
θ

2

∫

Γ(t)

F δ
ln(u

M
δ )∂•∇Γ ·V +

θ

2
g(F δ

ln(u
M
δ ),∇Γ ·V).

Recalling that ϕ′
δ = (F δ

ln)
′′ ≥ 0, we have θ

2m(ϕ′
δ(u

M
δ )∂•uM

δ , ∂•uM
δ ) ≥ 0. Therefore, setting

QM
δ :=

1

2
‖∇Γw

M
δ ‖2 + aN (uM

δ , wM
δ ) + g(uM

δ , wM
δ ) +

θ

2
g(F δ

ln(u
M
δ ), 1), (3.31)

and multiplying by t ∈ (0, T ] the above inequality, we get

d

dt

(
tQM

δ (t)
)
+ t‖∇Γ∂

•uM
δ ‖2 + t

θ

2
m(ϕ′

δ(u
M
δ )∂•uM

δ , ∂•uM
δ )

= QM
δ (t) + g(wM

δ , t∂•uM
δ ) + tm(∂•uM

δ , ∂•uM
δ )

+ g(uM
δ , t∂•uM

δ )− b(uM
δ , t∂•uM

δ ) +
t

2
b(wM

δ , wM
δ )

+m(∂•uM
δ ∇Γ ·V, twM

δ ) +m(uM
δ ∂•∇Γ ·V, twM

δ )

+ g(uM
δ ∇Γ ·V, twM

δ ) + aN (∂•uM
δ , twM

δ ) + t

∫

Γ(t)

Badv(V
τ
a(t),V(t))uM

δ · ∇Γw
M
δ

+
θt

2

∫

Γ(t)

F δ
ln(u

M
δ )∂•∇Γ ·V +

θt

2
g(F δ

ln(u
M
δ ),∇Γ ·V).

We now recall that, by Poincaré’s inequality,

‖wM
δ ‖ ≤ C(‖∇Γw

M
δ ‖+ |m(wM

δ , 1)|). (3.32)

Then, on account of (2.3) and using Hölder’s and Young’s inequalities, we deduce

g(wM
δ , t∂•uM

δ ) +m(∂•uM
δ , t∂•uM

δ )

+ g(uM
δ , t∂•uM

δ )− b(uM
δ , t∂•uM

δ ) +
t

2
b(wM

δ , wM
δ )
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+
θt

2

∫

Γ(t)

F δ
ln(u

M
δ )∂•∇Γ ·V +

θt

2
g(F δ

ln(u
M
δ ),∇Γ ·V)

≤ Ct‖wM
δ ‖‖∂•uM

δ ‖+ t‖∂•uM
δ ‖2

+ t‖uM
δ ‖‖∂•uM

δ ‖+ Ct‖∇Γu
M
δ ‖‖∇Γ∂

•uM
δ ‖+ Ct‖∇Γw

M
δ ‖2

+ Ct‖F δ
ln(u

M
δ )‖L1(Γ(t)) + Ct‖F δ

ln(u
M
δ )‖L1(Γ(t))

≤ Ct‖∂•uM
δ ‖2 + Ct‖∇Γw

M
δ ‖2 + t

2
‖∇Γ∂

•uM
δ ‖2

+ Ct(‖uM
δ ‖2 + |m(wM

δ , 1)|2 + ‖F δ
ln(u

M
δ )‖L1(Γ(t))),

where we exploited (2.9) and (3.32). Analogously, recalling (2.5), (2.9) and (3.32), thanks to Cauchy-Schwarz
and Young’s inequalities, we find

m(∂•uM
δ ∇Γ ·V, twM

δ ) +m(uM
δ ∂•∇Γ ·V, twM

δ )

+ g(uM
δ ∇Γ ·V, twM

δ ) + aN (∂•uM
δ , twM

δ ) + t

∫

Γ(t)

Badv(V
τ
a(t),V(t))uM

δ · ∇Γw
M
δ

≤ Ct‖∂•uM
δ ‖(|m(wM

δ , 1)|+ ‖∇Γw
M
δ ‖) + Ct‖uM

δ ‖(|m(wM
δ , 1)|+ ‖∇Γw

M
δ ‖)

+ Ct‖uM
δ ‖(|m(wM

δ , 1)|+ ‖∇Γw
M
δ ‖) + Ct‖∂•uM

δ ‖‖∇Γw
M
δ ‖+ Ct‖uM

δ ‖‖∇Γw
M
δ ‖

≤ Ct‖∇Γw
M
δ ‖2 + Ct‖∂•uM

δ ‖2 + Ct(1 + |m(wM
δ , 1)|2 + ‖uM

δ ‖2)

Collecting the above inequalities, we eventually obtain

d

dt

(
tQM

δ (t)
)
+

t

2
‖∇Γ∂

•uM
δ ‖2 ≤ QM

δ (t) + Ct‖∇Γw
M
δ ‖2 +Kt‖∂•uM

δ ‖2

+Ct(‖uM
δ ‖2 + |m(wM

δ , 1)|2 + ‖F δ
ln(u

M
δ )‖L1(Γ(t))), (3.33)

where we explicitly denoted byK > 0, for further use, the constant in front of ‖∂•uM
δ ‖, which has to be controlled

in a uniform way. Since in the Galerkin setting we are not able to find a uniform estimate for ‖∂•uM
δ ‖L2

H−1
, we

cannot exploit the classical interpolation inequality ‖∂•uM
δ ‖ ≤ C‖∂•uM

δ ‖1/2H−1(Γ(t))‖∂•uM
δ ‖1/2H1(Γ(t)) as in the case

of nonevolving surfaces. Therefore, we test (3.11) with η = t∂•uM
δ ∈ L2

VM
, obtaining

t‖∂•uM
δ ‖2 + tg(uM

δ , ∂•uM
δ ) + taN (uM

δ , ∂•uM
δ ) + taS(w

M
δ , ∂•uM

δ ) = 0,

from which, by standard estimates, for some κ sufficiently small to be chosen later on, we obtain

t‖∂•uM
δ ‖2 ≤ t

2
‖∂•uM

δ ‖2 + tκ‖∇Γ∂
•uM

δ ‖2 + Ct‖∇Γw
M
δ ‖2 + Ct‖uM

δ ‖2,

that is,
t

2
‖∂•uM

δ ‖2 ≤ tκ‖∇Γ∂
•uM

δ ‖2 + Ct‖∇Γw
M
δ ‖2 + Ct‖uM

δ ‖2.

We can now add this inequality multiplied by ω = 4K to (3.33), choosing κ = 1
16K . This gives, for all t ∈ [0, T ],

d

dt

(
tQM

δ (t)
)
+

t

4
‖∇Γ∂

•uM
δ ‖2 +Kt‖∂•uM

δ ‖2 ≤ QM
δ (t) + Ct‖∇Γw

M
δ ‖2 + Ct(‖uM

δ ‖2

+ |m(wM
δ , 1)|2 + ‖F δ

ln(u
M
δ )‖L1(Γ(t))). (3.34)

Recalling Proposition 3.7 and (3.19), from (3.34) we get, for all t ∈ [0, T ]

d

dt

(
tQM

δ (t)
)
+

t

4
‖∇Γ∂

•uM
δ ‖2 +Kt‖∂•uM

δ ‖2 ≤ QM
δ (t) + Ct‖∇Γw

M
δ ‖2 + Cδt, (3.35)

where Cδ > 0 depends on δ. Observe now that

|aN(uM
δ , wM

δ )| ≤ C‖uM
δ ‖‖∇Γw

M
δ ‖ ≤ C‖uM

δ ‖2 + 1

8
‖∇Γw

M
δ ‖2, (3.36)

and, by Poincaré’s inequality,

|g(uM
δ , wM

δ )| ≤ C‖uM
δ ‖‖wM

δ ‖ ≤ C(‖uM
δ ‖2 + |m(wM

δ , 1)|2) + 1

8
‖∇Γw

M
δ ‖2, (3.37)
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so that (see Proposition 3.7, (3.19) and (3.32))

|g(uM
δ , wM

δ )| ≤ Cδ +
1

8
‖∇Γw

M
δ ‖2,

Moreover, owing to (3.20), we have

θ

2
|g(F δ

ln(u
M
δ ), 1)| ≤ C‖F δ

ln(u
M
δ )‖L1(Γ(t)) ≤ Cδ.

implying that there exists Ĉδ > 0, depending on δ, such that

1

4
‖∇Γw

M
δ ‖2 − Ĉδ ≤ QM

δ (t) ≤ Cδ(1 + ‖∇Γw
M
δ ‖2), ∀ t ∈ [0, T ].

Note now that, due to the energy estimate (3.20), we have that QM
δ is uniformly bounded in L1(0, T ). Thus,

defining Q̃M
δ := QM

δ + Ĉδ ≥ 0, we obtain from (3.35)

d

dt

(
tQ̃M

δ (t)
)
+Kt‖∂•uM

δ ‖2 + t

4
‖∇Γ∂

•uM
δ ‖2 ≤ Q̃M

δ (t) + CδtQ̃M
δ (t) + Cδt. (3.38)

Therefore, by Gronwall’s Lemma applied to y(t) = tQ̃M
δ (t), recalling that Q̃M

δ is uniformly (in M) bounded in
L1(0, T ), we infer

tQ̃M
δ (t) ≤ Cδ(T ), ∀ t ∈ [0, T ],

entailing, recalling (3.32),

t‖wM
δ ‖2H1(Γ(t)) +

∫ t

0

s‖∂•uM
δ ‖2H1(Γ(s))ds ≤ Cδ(T ), ∀ t ∈ [0, T ], (3.39)

where Cδ(T ) > 0 depends on δ but is independent of M . For further use we also integrate in time (3.34), to
get, for all t ∈ [0, T ],

tQM
δ (t) +

∫ t

0

s

4
‖∇Γ∂

•uM
δ ‖2ds+

∫ t

0

Ks‖∂•uM
δ ‖2ds

≤
∫ t

0

QM
δ (s)ds+ C

∫ t

0

s‖∇Γw
M
δ ‖2ds

+ C

∫ t

0

s(‖uM
δ ‖2 + |m(wM

δ , 1)|2 + ‖F δ
ln(u

M
δ )‖L1(Γ(t)))ds. (3.40)

Then by the definition (3.31) of QM
δ , (3.36) and (3.37), we also deduce that, for any t ∈ [0, T ],

∫ t

0

QM
δ (s)ds ≤ C(T )

∫ T

0

(
ẼCH [t;uM

δ (t)] + ‖uM
δ ‖2

)
dt+ C(T )

∫ T

0

‖∇Γw
M
δ ‖2dt

≤ C(T )

(
1 +

∫ T

0

|m(wM
δ , 1)|2dt

)
,

having applied (3.14), (3.17) and the conservation of mass. This, together with (3.40), gives

tQM
δ (t) +

∫ t

0

s

4
‖∇Γ∂

•uM
δ ‖2ds+

∫ t

0

Ks‖∂•uM
δ ‖2ds ≤ C(T )

(
1 +

∫ T

0

|m(wM
δ , 1)|2dt

)
, (3.41)

where again we applied (3.14) and (3.17) for the last summands in the right-hand side of (3.40). Note also that,
by the definition (3.31) of QM

δ , from (3.41) we infer

t

2
‖∇Γw

M
δ ‖2 +

∫ t

0

s

4
‖∇Γ∂

•uM
δ ‖2ds+

∫ t

0

Ks‖∂•uM
δ ‖2ds

≤ C(T )

(
1 +

∫ T

0

|m(wM
δ , 1)|2dt

)

− taN (uM
δ , wM

δ )− tg(uM
δ , wM

δ )− θt

2
g(F δ

ln(u
M
δ ), 1)
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≤ C(T )

(
1 +

∫ T

0

|m(wM
δ , 1)|2dt

)
+

t

4
‖∇Γw

M
δ ‖2 + C(T )(1 + ẼCH [t;uM

δ ]),

due to (3.17), (3.36) and (3.37). This implies, by (3.14),

t

4
‖∇Γw

M
δ ‖2 +

∫ t

0

s

4
‖∇Γ∂

•uM
δ ‖2ds+

∫ t

0

Ks‖∂•uM
δ ‖2ds ≤ C(T )

(
1 +

∫ T

0

|m(wM
δ , 1)|2dt

)
, (3.42)

for any t ∈ [0, T ], where C(T ) is independent of M, δ. By standard compactness arguments, exploiting the
regularity we have just obtained, arguing as in [13, Sec.4.2], we can pass to the limit as M → ∞ and obtain the
existence of a couple (uδ, wδ) satisfying for any η ∈ L2

H1 and all t ∈ [0, T ],

m⋆(∂
•uδ, η) + g(uδ, η) + aN (uδ, η) + aS(wδ, η) = 0, (3.43)

aS(uδ, η) +m((F δ)′(uδ), η)−m(wδ , η) = 0, (3.44)

and uδ(0) = u0 almost everywhere in Γ0. Moreover, it holds

sup
t∈[0,T ]

ẼCH [t;uδ(t)] + sup
t∈[0,T ]

‖uδ(t)‖2 +
∫ T

0

‖wδ‖2H1(Γ(t))dt ≤ Cδ(T ),

t‖wδ‖2H1(Γ(t)) +

∫ t

0

s‖∂•uδ‖2H1(Γ(s))ds ≤ Cδ(T ), ∀ t ∈ [0, T ],

for some Cδ(T ) > 0 possibly depending on δ. Now note that, since clearly (see [13, Sec.4.2]) we have uM
δ → uδ

in L2
L2 as M → ∞, and being |F ′

δ(c
M
δ )| ≤ Cδ|cMδ | and |F ′′

δ | ≤ Cδ, we have, since m(wM
δ , 1) = m(F ′(uM

δ ), 1) and
m(wδ, 1) = m(F ′(uδ), 1),

∣∣∣∣∣

∫ T

0

(
|m(wM

δ , 1)|2 − |m(wδ, 1)|2
)
dt

∣∣∣∣∣ ≤
∫ T

0

(
|m(F ′(uδ

M ), 1)|+ |m(F ′(uδ), 1)|
) ∣∣m(F ′(uδ

M )− F ′(uδ), 1)
∣∣ dt

≤ Cδ(T )‖uM
δ − uδ‖L2

L2
→ 0 as M → ∞,

having also exploited the uniform controls on uM
δ and uδ in L∞

L2 . Therefore, these result, together with the
bound (3.39) (which gives weak lower sequential semicontinuity of the norms on the left-hand side of (3.42)), is
enough to pass to the limit as M → ∞ in (3.42), so that it holds

ess sup
t∈[0,T ]

(
t

4
‖∇Γwδ‖2

)
+

∫ T

0

s

4
‖∇Γ∂

•uδ‖2ds+
∫ T

0

Ks‖∂•uδ‖2ds ≤ C(T )

(
1 +

∫ T

0

|m(wδ, 1)|2ds
)
, (3.45)

where this time C(T ) > 0 is a constant independent of δ.
Step 2. Limit as δ → 0. In order to pass to the limit in δ we need to find a more refined energy estimate.

In particular, let us first observe that again, from (3.43), it holds the conservation of total mass, by choosing
η ≡ 1. Then we test (3.43) by η = uδ, inferring

1

2

d

dt
‖uδ‖2 = m⋆(∂tuδ, uδ) +

1

2
g(uδ, uδ) = −1

2
g(uδ, uδ)− aN (uδ, uδ)− aS(wδ, uδ).

Integrating by parts, exploiting also (3.44), we get, by the definition of F ′′
δ ,

aS(wδ , uδ) = −
∫

Γ(t)

wδ∆Γuδ = ‖∆Γuδ‖2 +
∫

Γ(t)

F ′′
δ (uδ)|∇Γuδ|2

= ‖∆Γuδ‖2 +
∫

Γ(t)

ϕ′
δ(uδ)|∇Γuδ|2 − ‖∇Γuδ‖2. (3.46)

Notice that by [13, Prop. 4.12] the solution to (3.43)-(3.44) is unique and thus it enjoys the regularity L2
H2 as in

[13, Thm. 4.14]. As a consequence, the second equation (i.e. the one for wδ) holds pointwise almost everywhere,
and therefore the regularity of uδ is sufficient to perform rigorously the calculation above. Recalling now that
ϕ′
δ ≥ 0 and by the regularity of V, we end up with

1

2

d

dt
‖uδ‖2 + ‖∆Γuδ‖2 ≤ −1

2
g(uδ, uδ)− aN (uδ, uδ) + ‖∇Γuδ‖2 ≤ C(‖uδ‖2 + ‖∇Γuδ‖2).
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We can now apply the following basic interpolation inequality, which can be obtained after an integration by
parts and an application of Cauchy-Schwarz and Young’s inequalities:

‖∇Γuδ‖2 = −
∫

Γ(t)

uδ∆Γuδ ≤
1

2
‖uδ‖2 +

1

2
‖∆Γuδ‖2,

allowing to infer, by Young’s inequality,

1

2

d

dt
‖uδ‖2 +

1

2
‖∆Γuδ‖2 ≤ C‖uδ‖2,

so that, in the end, by Gronwall’s Lemma, we deduce

sup
t∈[0,T ]

‖uδ‖2 +
∫ T

0

‖∆Γuδ‖2ds ≤ C(T ), (3.47)

uniformly in δ. Concerning the energy estimate, by the same arguments as for (3.16) we get:

d

dt
ẼCH [uδ] +

1

2
‖∇Γw

M
δ ‖2 ≤ −g(uδ, wδ) + C0 + C1Ẽ

CH [uδ]. (3.48)

Thanks to (3.47) and the bound on V, by Poincaré’s inequality we have

−g(uδ, wδ) ≤ C‖uδ‖‖wδ‖ ≤ C‖wδ‖ ≤ C̃(|m(wδ, 1)|+ ‖∇Γwδ‖), (3.49)

with C̃ > 0 a suitable constant independent of δ. Then, using known arguments together with the conservation
of total mass (see also the proof of [13, Prop.5.7, a)]) we deduce, from [13, (5.1.7)],

|m(wδ, uδ)| ≤
1− α

8C̃
‖∇Γwδ‖2 + C‖∇Γuδ‖2 + α|m(wδ , 1)|, (3.50)

where α ∈ [0, 1) is a constant such that

0 ≤ mu0(t) ≤ α < 1, (3.51)

for any t ∈ [0, T ], whose existence is guaranteed being sup[0,T ]mu0(t) < 1 by assumption. Now, from [13,
(5.1.5)],

|m(wδ, 1)| ≤ C
(
1 + ‖∇Γuδ‖2

)
+ |m(wδ, uδ)|, (3.52)

thus by (3.50) we infer

|m(wδ, 1)| ≤ C
(
1 + ‖∇Γuδ‖2

)
+

1

8C̃
‖∇Γwδ‖2, (3.53)

so that, together with (3.48) and (3.49), we deduce

d

dt
ẼCH [uδ] +

3

8
‖∇Γw

M
δ ‖2 ≤ C(1 + ẼCH [uδ]),

entailing, by Gronwall’s Lemma,

ess sup
t∈[0,T ]

ẼCH [uδ] +

∫ T

0

‖∇Γwδ‖2dt ≤ C(T ), (3.54)

uniformly in δ. Observe now that by (3.54) we can deduce a better estimate of |m(wδ, uδ)|. In particular, from
[13, (5.1.6)], (3.54) and the conservation of mass, by Poincaré’s inequality we infer

|m(wδ, uδ)| ≤ C‖∇Γwδ‖‖uδ − (uδ)Γ(t)‖+mu0(t)|m(wδ, 1)|
≤ C‖∇Γwδ‖+ α|m(wδ, 1)|,

for α already defined in (3.51). On account of (3.47), (3.54), we have ‖uδ‖H1(Γ(t)) ≤ C(T ) for almost any
t ∈ [0, T ], so that, since |ϕδ(r)| ≤ ϕδ(r)r + 1 and m(wδ, 1) = −m(uδ, 1) +m(ϕδ(uδ), 1),

|m(wδ, 1)| ≤ |m(uδ, 1)|+ |m(ϕδ(uδ), 1)|
≤ |m(uδ, 1)|+ |m(ϕδ(uδ), uδ)|+ |Γ(t)|
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≤ C + ‖uδ‖2 + ‖∇Γuδ‖2 + |m(wδ, uδ)|
≤ C(1 + ‖∇Γwδ‖) + α|m(wδ, 1)|,

recalling m(ϕδ(uδ), uδ) = m(wδ, uδ)− ‖∇uδ‖2. This implies, being α < 1, by Poincaré’s inequality,

|m(wδ , 1)| ≤ C(1 + ‖∇Γwδ‖), (3.55)

from which we infer, together with (3.54),

∫ T

0

|m(wδ, 1)|2 ≤ C(T ),

entailing, by (3.45),

ess sup
t∈[0,T ]

(
t

4
‖∇Γwδ‖2

)
+

∫ T

0

s

4
‖∇Γ∂

•uδ‖2ds+
∫ T

0

Ks‖∂•uδ‖2ds ≤ C(T ). (3.56)

Following [13, Sec.4.2], [13, Propositions 5.8-5.10] and [13, Lemma 5.11], the uniform estimates (3.47), (3.54)
and (3.56) are then enough, by standard compactness arguments, to pass to the limit as δ → 0, obtaining a
weak solution with the same properties as the one of Theorem 3.4. Therefore, this solution coincides with the
one of Theorem 3.4 by uniqueness, and it also enjoys (3.21) and (3.22). This concludes the proof of Part (i).

Part (ii). Let us fix τ > 0. We clearly have that ‖w‖H1(Γ(t)) ≤ C for almost any t ≥ τ . Let then introduce
the cutoff function

hk(r) =





1− 1
k , r > 1− 1

k ,

r, −1 + 1
k ≤ r ≤ 1− 1

k ,

−1 + 1
k , r < −1 + 1

k ,

(3.57)

which is Lipschitz continuous. Then we set uk = hk(u). Being u in L∞
H1 , we have that the chain rule holds

giving
∇Γuk = χ[−1+ 1

k ,1− 1
k ](u)∇Γu.

Accordingly, for any k > 1 and p ≥ 2, fk =
∣∣ θ
2ϕ(uk)

∣∣p−2 θ
2ϕ(uk) is well defined and belongs to L∞

H1 and satisfies

∇Γ

(∣∣∣∣
θ

2
ϕ(uk)

∣∣∣∣
p−2

θ

2
ϕ(uk)

)
= (p− 1)

∣∣∣∣
θ

2
ϕ(uk)

∣∣∣∣
p−2

θ

2
ϕ′(uk)∇Γuk.

If we now set η = fk in (3.9), we infer that

(p− 1)

∫

Γ(t)

∣∣∣∣
θ

2
ϕ(uk)

∣∣∣∣
p−2

θ

2
ϕ′(uk)∇Γu · ∇Γuk +

∫

Γ(t)

∣∣∣∣
θ

2
ϕ(uk)

∣∣∣∣
p−2

θ

2
ϕ(uk)

θ

2
ϕ(u) =

∫

Γ(t)

ŵ

∣∣∣∣
θ

2
ϕ(uk)

∣∣∣∣
p−2

θ

2
ϕ(uk),

where ŵ = w+ u. Being Fln strictly convex, the first term in the left-hand side is nonnegative. Moreover, since
ϕ is increasing, by the definition of uk, we immediately infer

ϕ(uk)
2 ≤ ϕ(u)ϕ(uk), ∀k > 1 (3.58)

and thus for the second term we have

∫

Γ(t)

∣∣∣∣
θ

2
ϕ(uk)

∣∣∣∣
p−2

θ

2
ϕ(uk)

θ

2
ϕ(u) ≥

∫

Γ(t)

∣∣∣∣
θ

2
ϕ(uk)

∣∣∣∣
p

Regarding the right-hand side, we easily get, by the Sobolev embedding H1(Γ(t)) →֒ Lp(Γ(t)),

∫

Γ(t)

ŵ

∣∣∣∣
θ

2
ϕ(uk)

∣∣∣∣
p−2

θ

2
ϕ(uk) ≤

1

2

∥∥∥∥
θ

2
ϕ(uk)

∥∥∥∥
p

Lp(Γ(t))

+ C‖ŵ‖pLp(Γ(t))

≤ 1

2

∥∥∥∥
θ

2
ϕ(uk)

∥∥∥∥
p

Lp(Γ(t))

+ Cp‖ŵ‖pH1(Γ(t)),

with Cp > 0 depending on p. Collecting the above estimates, being u ∈ L∞
H1 and ‖w‖H1(Γ(t)) ≤ C for almost

any t ≥ τ , we immediately deduce

‖ϕ(uk)‖Lp(Γ(t)) ≤ Cp(T, τ, p), ∀p ∈ [2,∞), (3.59)
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for almost any t ∈ [τ, T ]. Therefore, there exists ζ ∈ L∞
Lp(τ, T ) such that, up to subsequences ϕ(uk)

∗
⇀ ζ in

L∞
Lp(τ, T ) as k → ∞. Now observe that, being |u| < 1 almost everywhere on Γ(t) (for almost any t ∈ (0, T )),

and since, for almost any t ∈ (0, T ), uk → u as k → ∞ almost everywhere on Γ(t), we get ϕ(uk) → ϕ(u) almost
everywhere. It is now immediate to deduce by (3.59) that, for p = 2, ‖ϕ(uk)‖L2

L2
≤ C(τ, T ), therefore we can

apply [13, Thm.B.2] on [τ, T ] to infer ϕ(uk) ⇀ ϕ(u) in L2
L2(τ, T ). By uniqueness of the weak limit we therefore

infer ζ = ϕ(u). Then, by weak⋆ sequential lower semicontinuity we get

ess sup
t∈[τ,T ]

‖ϕ(u)‖Lp(Γ(t)) ≤ Cp(T, τ, p), ∀p ∈ [2,∞). (3.60)

Concerning ϕ′, we consider gk = θ
2ϕ(uk)e

L θ
2 |ϕ(uk)| ∈ L∞

H1 , for some arbitrary L > 0, and we observe that

∇Γ

(
θ

2
ϕ(uk)e

L θ
2 |ϕ(uk)|

)
=

θ

2
ϕ′(uk)

(
1 + L

θ

2
|ϕ(uk)|

)
eL

θ
2 |ϕ(uk)|∇Γuk.

Therefore, considering again (3.9) with η = gk, we get

∫

Γ(t)

∇Γu · ∇Γuk
θ

2
ϕ′(uk)

(
1 + L

θ

2
|ϕ(uk)|

)
eL

θ
2 |ϕ(uk)| +

∫

Γ(t)

θ

2
ϕ(u)

θ

2
ϕ(uk)e

L θ
2 |ϕ(uk)|

=

∫

Γ(t)

ŵ
θ

2
ϕ(uk)e

L θ
2 |ϕ(uk)|.

Again the first term in the left-hand side is nonnegative, whereas, exploiting again (3.58), we obtain in the
end

∫

Γ(t)

(
θ

2
ϕ(uk)

)2

eL
θ
2 |ϕ(uk)| ≤

∫

Γ(t)

ŵ
θ

2
ϕ(uk)e

L θ
2 |ϕ(uk)|

By Lemma B.4, we get

∫

Γ(t)

|ŵ|
∣∣∣∣
θ

2
ϕ(uk)

∣∣∣∣ e
L| θ2ϕ(uk)| ≤ 1

2

∫

Γ(t)

∣∣∣∣
θ

2
ϕ(uk)

∣∣∣∣
2

eL| θ2ϕ(uk)| +
∫

Γ(t)

eN |ŵ|, (3.61)

implying

1

2

∫

Γ(t)

∣∣∣∣
θ

2
ϕ(uk)

∣∣∣∣
2

eL| θ2ϕ(uk)| ≤
∫

Γ(t)

eN |ŵ| (3.62)

for any L > 0 and some N = N(L). Now we exploit (2.10), and then apply Lemma B.3 with u = N ˜̂w and the
manifold M = Γ0 (with the corresponding metric) to infer

∫

Γ(t)

eN |ŵ| =

∫

Γ0

eN | ˜̂w|J0
t dΓ0 ≤ C

∫

Γ0

eN | ˜̂w|dΓ0 ≤ Ce
CN2‖ ˜̂w‖2

H1(Γ0) ≤ Ce
CN2‖ŵ‖2

H1(Γ(t)) ,

where in the last estimate we exploited the property that (H1(Γ(t)), φt)t∈[0,T ] is a compatible space, where

φ−tv = ṽ. Recalling now property (3.7), we infer that, for some C̃ > 0 sufficiently large,

(
θ

2
ϕ′(s)

)p

≤ epC

(
C̃ +

∣∣∣∣
θ

2
ϕ(s)

∣∣∣∣
2

epC| θ2ϕ(s)|
)
, ∀s ∈ (−1, 1), (3.63)

thus, taking L = pC in (3.62) and recalling that ‖ŵ‖H1(Γ(t)) ≤ C for almost any t ≥ τ , we end up with

‖ϕ′(uk)‖Lp(Γ(t)) ≤ Cp(T, τ, p),

implying, by the same arguments used for ϕ(uk), applied in this case to ϕ′(uk), that

ess sup
t∈[τ,T ]

‖ϕ′(u)‖Lp(Γ(t)) ≤ Cp(T, τ, p), ∀p ∈ [2,∞). (3.64)

Therefore, exploiting elliptic regularity and recalling that u ∈ L∞
H1 , we obtain

‖u‖H2(Γ(t)) ≤
(
C + ‖∆Γ(t)u‖

)
≤ C (1 + ‖w‖+ ‖ϕ(u)‖) ≤ C(T, τ),

for almost any t ∈ [τ, T ].
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Part (iii). If we now apply the chain rule to ϕ(u) (which is possible, e.g., by approximation with the truncated
functions uk and then passing to the limit as k → ∞) we obtain

∇Γϕ(u) = ϕ′(u)∇Γu, for a.a. t ∈ [τ, T ].

Then, for almost any t ∈ [τ, T ], we have that

‖∇Γϕ(u)‖Lp(Γ(t)) ≤ ‖ϕ′(u)‖L2p(Γ(t))‖∇Γu‖L2p(Γ(t)) ≤ Cp(T, τ, p),

by the Sobolev embedding H2(Γ(t)) →֒ W 1,q(Γ(t)) for every q ≥ 2. Therefore we get

‖ϕ(u)‖W 1,p(Γ(t)) ≤ Cp(T, τ, p),

for every p ≥ 2. This implies, choosing, e.g., p = 3, that

‖ϕ(u)‖L∞(Γ(t)) ≤ C(T, τ), for a.a. t ∈ [τ, T ], (3.65)

by the embedding W 1,3(Γ(t)) →֒ L∞(Γ(t)). Therefore, being u(t) ∈ H2(Γ(t)) →֒ C0(Γ(t)) for almost any
t ∈ [0, T ], it follows from the singularities of ϕ at ±1 and the estimate (3.65) that we can find ξ = ξ(T, τ) > 0
such that

‖u‖L∞(Γ(t)) ≤ 1− ξ, for a.a. t ∈ [τ, T ],

that is, the strict separation property holds. This concludes the proof.

4 The second model

We now consider the alternative weighted model (1.2), which is analysed in [13, Sec.6] (and references therein).
In particular, as noticed in the Introduction, this is a simplified version of the model presented in [49, 56],
in which the problem is governed by two coupled fourth-order nonlinear PDEs that live on an evolving two-
dimensional manifold. For the phase transitions, the PDE is the Cahn-Hilliard equation for curved surfaces,
which can be derived from surface mass balance in the framework of irreversible thermodynamics. For the
surface deformation, the PDE is the (vector-valued) Kirchhoff–Love thin shell equation. In our work, we study
only the Cahn-Hilliard equation in the same formulation arising from the model in [56], so that this analysis
could, in a future work, be extended to consider the complete model as [49, 56], in which the evolution of the
surface is part of the model itself. We now show a sketch of the derivation of our model (1.2), taken directly
from [56].

4.1 Derivation

For consistency with the literature, see e.g. [49, 56], to derive this system we start with a description of the
surfaces {Γ(t)}t given by the flow Φ0

t : Γ0 → Γ(t) as in AΦ. Assume that the surface Γ(t) consists of two species
with the mass densities per unit area ρ1 and ρ2. The total mass of each species is assumed to be conserved.
This entails, for the total density ρ := ρ1 + ρ2, the balance law

d

dt

∫

P (t)

ρ ≡ 0,

for any surface patch P (t) ⊂ Γ(t) evolving under the full velocity V. By the Reynolds transport theorem, see
also Proposition 3.2, and the arbitrariness of P (t) we easily deduce

∂•ρ+ ρ∇Γ ·V = 0, ρ(0) = ρ̂,

where ρ̂ is the initial density. This equation shows in particular that we have the identity

ρ(t,Φ0
t (p)) =

ρ̂

J0
t (p)

, ∀p ∈ Γ0, (4.1)

where J0
t is the area change defined in (2.10).

For the process on the surface we now introduce the dimensionless concentrations ci = ρi/ρ, for i = 1, 2.
Since c1+ c2 = 1, it is sufficient to consider c1 to model the local density fractions of the two species. The mass
of species 1 in the membrane patch P (t), evolving under V, may only change due to a diffusive mass flux qd at
the boundary, so that

∫

P (t)

ρ∂•c1 =
d

dt

∫

P (t)

ρc1 = −
∫

∂P (t)

qd · µµµ = −
∫

P (t)

∇Γ · qd, (4.2)
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where µµµ denotes the outer unit conormal of ∂P (t). The last identity comes from the fact that we can directly
consider, without loss of generality, qd to be purely tangential to Γ(t). The diffusive flux qd is related to
the chemical potential in the following sense. In analogy to 3D problems ([15]), the Cahn-Hillard energy per
reference area takes the form

ΨCH = Ψmix(c1, T ) + Ψi(J
0
t ,∇Γc1),

where T is the absolute temperature and, up to setting some constants to 1 for simplicity,

Ψmix(c1, T ) = T (c1 ln(c1) + (1− c1) ln(1 − c1)) + c1(1− c1),

Ψi(J
0
t ,∇Γc1) =

λ

2
J0
t |∇Γc1|2,

with λ > 0 a coefficient related to the width of the phase interface. As noted in [56, (35)], the area change J0
t

is included in Ψi, since ΨCH is postulated to be an energy w.r.t. the reference configuration Γ0, while ∇Γc1
refers to the current configuration (it can be viewed as having units of 1/(current length)). If we then want a
Cahn-Hilliard energy per current area instead of one per reference area we simply need to multiply ΨCH by
J t
0 = (J0

t )
−1; in effect, we have (current area)/(reference area)= J0

t , thus, heuristically,

energy

current area
=

reference area

current area

energy

reference area
=

1

J0
t

energy

reference area
,

so that the total energy on the current configuration Γ(t) can be defined as

Eρ
CH(c1) :=

∫

Γ(t)

J t
0ΨCH =

∫

Γ(t)

J t
0Ψmix +

λ

2

∫

Γ(t)

|∇Γc1|2. (4.3)

Then, following the thermodynamical derivation in [56, Appendix A] one can obtain that the chemical potential
w is defined by 1

w = J0
t

δEρ
CH

δc1
= −J0

t λ∆Γc1 +Ψ′
mix(c1), (4.4)

and the diffusive flux is (see [56, (121)])

qd = −M

J0
t

∇Γw,

where M > 0 is a mobility coefficient. The presence of the term 1/J0
t in qd can again be heuristically explained

by the fact that w is defined per reference area, whereas qd is defined per current area. All in all, by setting for
simplicity M = 1, λ = 1 and ρ̂ ≡ 1, so that J0

t = 1/ρ, from (4.2) we are led to

ρċ1 −∇Γ ·
(
ρ∇Γ

(
−1

ρ
∆Γc1 +Ψ′

mix(c1)

))
= 0.

Problem (1.2) can be retrieved by rewriting the equation for the dimensionless concentration difference c :=
ρ1−ρ2

ρ = 2c1 − 1 and making a proper rescaling on Ψmix so that it coincides with the potential F defined in

(1.7).

Remark 4.1. Two observations are timely regarding the relation between models (1.1) and (1.2).

1. As observed in [55], model (1.2) is similar to model (1.1), but neither is a particular case of the other. In
model (1.1), the equation is written for the conserved variable u = ρc and under the assumption that the
free energy functional depends on the concentration difference u rather than on the relative concentration
difference c as in model (1.2). Formally, systems (1.1) and (1.2) are the same problem for inextensible
membranes (i.e., ∇Γ · V ≡ 0) and if one assumes ρ = const. Here the situation partially resembles the
coupling of a two-component compressible fluid flow with dissipative Ginzburg–Landau interface dynamics
discussed in [40], where, depending on the choice of the variables to define the energy functional, the
effects of compressibility have to be considered in the definition of the chemical potential. These differences
between the two models explain why the conserved quantities (1.3)-(1.4) are in principle different.

2. In the derivation of (1.2), we think of the tangential component Vτ as fixing a parametrisation of Γ(t), as
well as describing advection on the surface; note that the balance laws are considered on portions evolving
under the full velocity V. This is consistent with the framework of the physics literature, namely [49, 56],
in which this tangential component Vτ is part of the unknowns. We can also see this model in the light of
(1.1) by heuristically taking Vτ = Va, so that the term involving both velocities vanishes and the notion
of a material time derivative coincides with both the one in our analytical framework, i.e. involving the
parametrisation, and the usual physical notion of including the advection of material points on the surface.

1As already noticed, this is performed in [56, Appendix A] in the case of an elastic surface, but we keep the same derivation as
a first step in the analysis of the more complex model.
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4.2 Weak formulation

Let Assumption AΦ hold. Then the problem reads: find a pair (c, w) such that, for all η ∈ L2
H1 ,

m⋆(ρ∂
•c, η) +

∫

Γ(t)

ρ∇Γw · ∇Γη = 0, (4.5)

∫

Γ(t)

∇Γc · ∇Γη +

∫

Γ(t)

ρF ′(c)η =

∫

Γ(t)

ρwη, (4.6)

c(0) = c0, a.e. on Γ0. (4.7)

Here the weight function ρ, i.e., the total density, is determined by the transport equation

∂•ρ+ ρ∇Γ ·V = 0, (4.8)

with ρ(0) ≡ 1 on Γ0. As noticed in Section 4.1, we have an interesting characterisation of ρ:

ρ(t,Φ(t, p)) = (J0
t (p))

−1, ∀p ∈ Γ0. (4.9)

In particular, we also have the bounds

0 <
1

Cρ
≤ ρ ≤ Cρ, |∇Γρ| ≤ Cρ, (4.10)

with Cρ > 1. Note that the total energy of the system reads (see also (4.3), but with respect to the relative
concentration difference c)

Eρ
CH(c) :=

∫

Γ(t)

( |∇Γc|2
2

+ ρF (c)

)
.

We recall the following result (see [13, Thm.6.2]). The statement below and its proof involve the weighted
inverse Laplacian operator, which we denote as A−1

ρ , define to be, for any

f ∈ H−1(Γ(t)) such that m⋆(ρf, 1) = 0,

the unique solution ζ := A−1
ρ f to the problem

∫

Γ(t)

ρ∇Γζ · ∇Γη = m⋆(ρf, η) with

∫

Γ(t)

ζ = 0. (4.11)

We define also, for such elements f , the weighted norm

‖f‖ρ,−1 := ‖√ρ∇Γζ‖ = 〈ρf, ζ〉. (4.12)

Note that there exist C1, C2 > 0 such that C1‖∇Γζ‖ ≤ ‖f‖ρ,−1 ≤ C2‖∇Γζ‖.

Theorem 4.2. Let c0 ∈ H1(Γ0), |c0| ≤ 1, |(c0)Γ0 | < 1 and F : [−1, 1] → R be given by (3.6). Then there exists
a unique pair (c, w) with

c ∈ L∞
H1 ∩H1

H−1 , w ∈ L2
H1 ,

such that, for almost any t ∈ [0, T ], |c(t)| < 1 almost everywhere in Γ(t) and (c, w) satisfies, for almost any
t ∈ [0, T ], (4.5)-(4.6), with c(0) = c0 almost everywhere in Γ0. The solution c also satisfies the additional
regularity

c ∈ C0
L2 ∩ L∞

Lp ∩ L2
H2 ,

for all p ∈ [1,+∞). Furthermore, if c0,1, c0,2 ∈ H1(Γ0), satisfying the existence assumptions, are such that
(c0,1)Γ0 = (c0,2)Γ0 , and c1, c2 are the solutions of the system with c1(0) = c0,1 and c2(0) = c0,2, then there exists
a constant C > 0 independent of t, such that, for almost any t ∈ [0, T ],

‖c1(t)− c2(t)‖ρ,−1 ≤ eCt‖c0,1 − c0,2‖ρ,−1. (4.13)

Remark 4.3. The assumption |(c0)Γ0 | < 1 is necessary and standard when dealing with Cahn-Hilliard equations,
since it simply excludes that the initial datum is a pure phase, i.e, c0 ≡ 1 or c0 ≡ −1. Indeed, in these cases,
the phase separation phenomenon would not take place, due to the presence of one single substance.

The proof of existence follows from the uniform estimates obtained in the proof of Theorem 4.6 below. For
completeness, we now include a proof of continuous dependence on the initial data, entailing uniqueness, which
was omitted in [13].
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Proof. (Stability of weak solutions to (4.5)-(4.7)) The density ρ is determined by a single ordinary differential
equation which can be solved explicitly, and it is thus unique. Now suppose (c1, w1) and (c2, w2) both solve (4.5),
(4.6), with initial conditions c1(0) = c0,1 and c2(0) = c0,2, such that (c0,1)Γ0 = (c0,2)Γ0 . Denote ξc = c1 − c2,
ξw = w1 − w2. Subtracting the corresponding equations leads to

m⋆(ρ∂
•ξc, η) +

∫

Γ(t)

ρ∇Γξ
w · ∇Γη = 0 (4.14)

∫

Γ(t)

∇Γξ
c · ∇Γη +

∫

Γ(t)

ρ(F ′(c1)− F ′(c2))η =

∫

Γ(t)

ρξwη. (4.15)

Using the ODE (4.8) for ρ and (4.5), noting that ξc(0) = c0,1 − c0,2, we obtain

d

dt

∫

Γ(t)

ρξc = m⋆(ρ∂
•ξc, 1) = 0 =⇒

∫

Γ(t)

ρξc =

∫

Γ0

c0,1 − c0,2 ≡ 0.

Therefore the weighted inverse Laplacian (∆−1
Γ,ρ)ξ

c is well defined, and taking η = (∆−1
Γ,ρ)ξ

c in (4.14) we get

m⋆(ρ∂
•ξc, (∆−1

Γ,ρ)ξ
c) +

∫

Γ(t)

ρ∇Γξ
w · ∇Γ(∆

−1
Γ,ρ)ξ

c = 0. (4.16)

Now note:

m⋆(ρ∂
•ξc, (∆−1

Γ,ρ)ξ
c) =

d

dt

[∫

Γ(t)

ρξc(∆−1
Γ,ρ)ξ

c

]
−
∫

Γ(t)

ρξc∂•(∆−1
Γ,ρ)ξ

c

=
d

dt

[∫

Γ(t)

ρ|∇Γ(∆
−1
Γ,ρ)ξ

c|2
]
−
∫

Γ(t)

ρ∇Γ(∆
−1
Γ,ρ)ξ

c · ∇Γ∂
•(∆−1

Γ,ρ)ξ
c

=
d

dt
‖ξc‖2ρ,−1 −

∫

Γ(t)

ρ∇Γ(∆
−1
Γ,ρ)ξ

c · ∇Γ∂
•(∆−1

Γ,ρ)ξ
c

and
∫

Γ(t)

ρ∇Γξ
w · ∇Γ(∆

−1
Γ,ρ)ξ

c =

∫

Γ(t)

ρξwξc

so that (4.16) becomes

d

dt
‖ξc‖2ρ,−1 +

∫

Γ(t)

ρξwξc =

∫

Γ(t)

ρ∇Γ(∆
−1
Γ,ρ)ξ

c · ∇Γ∂
•(∆−1

Γ,ρ)ξ
c. (4.17)

We now also test (4.15) with η = ξc to obtain

‖∇Γξ
c‖2 +

∫

Γ(t)

ρ(F ′(c1)− F ′(c2))ξ
c =

∫

Γ(t)

ρξwξc. (4.18)

Due to the structure of the logarithmic potential F , being Fln strictly convex, we have the estimate

∫

Γ(t)

ρ(F ′(c1)− F ′(c2))ξ
c ≥ −C‖√ρξc‖2

from where (4.18) becomes

‖∇Γξ
c‖2 ≤

∫

Γ(t)

ρξwξc + C‖√ρξc‖2. (4.19)

Adding (4.17) and (4.19) the terms involving the product ξwξc cancel out and we are led to

d

dt
‖ξc‖2ρ,−1 + ‖∇Γξ

c‖2 ≤ C‖√ρξc‖2 +
∫

Γ(t)

ρ∇Γ(∆
−1
Γ,ρ)ξ

c · ∇Γ∂
•(∆−1

Γ,ρ)ξ
c. (4.20)

We now estimate the first term on the right-hand side as

C‖√ρξc‖2 = C

∫

Γ(t)

ρ|ξc|2 = C

∫

Γ(t)

ρ∇Γξ
c · ∇Γ(∆

−1
Γ,ρ)ξ

c ≤ 1

4
‖∇Γξ

c‖2 + C‖ξc‖2ρ,−1.
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For the second term, we note that
∫

Γ(t)

ρ∇Γ(∆
−1
Γ,ρ)ξ

c · ∇Γ∂
•(∆−1

Γ,ρ)ξ
c ≤ 1

2

d

dt

∫

Γ(t)

ρ|∇Γ(∆
−1
Γ,ρ)ξ

c|2 + C

∫

Γ(t)

ρ|∇Γ(∆
−1
Γ,ρ)ξ

c|2

≤ 1

2

d

dt
‖ξc‖2ρ,−1 + C‖ξc‖2ρ,−1.

All in all, we obtain from (4.20) the estimate

d

dt
‖ξc‖2ρ,−1 + ‖∇Γξ

c‖2 ≤ C‖ξc‖2ρ,−1,

and an application of Gronwall’s Lemma implies the continuous dependence estimate stated in (4.13). Then
uniqueness follows by setting c0,1 ≡ c0,2.

Remark 4.4. Notice that the regularity stated in Theorem 4.2 can be slightly improved as in the case of the
first model (see Remark 3.5). In particular, since c ∈ L2

H2 solves the problem, for almost all t ∈ [0, T ],

−1

ρ
∆Γc(t) = w(t)− F ′(c(t)) ∈ L2(Γ(t)),

we are allowed to multiply by −∆Γc ∈ L2(Γ(t)) for almost any t ∈ [0, T ]. Recalling that ϕ′ > 0, after an
integration by parts, being Γ(t) closed and c ∈ L∞

H1 , we obtain, by (4.10),

C‖∆Γc‖2 ≤ m(
1

ρ
∆Γc,∆Γc) +

θ

2
m(ϕ′(c), |∇Γc|2) ≤ ‖∇Γw‖‖∇Γc‖+ ‖∇Γc‖2 ≤ C(1 + ‖∇Γw‖),

and knowing that w ∈ L2
H1 , we infer c ∈ L4

H2 .

We make use of the following weighted L2 and H1 products, whose induced norms are equivalent norms on
L2(Γ(t)) and H1(Γ(t)), respectively:

(f, g)ρ := m(ρf, g), (f, g)1,ρ := (f, g)ρ +

∫

Γ(t)

ρ∇Γf · ∇Γg. (4.21)

Notice that for t = 0 these definitions coincide with the natural norms on these spaces, being ρ(0, x) ≡ 1 for
any x ∈ Γ0. We now give an extension of Proposition 3.2, whose proof is shown in Appendix A:

Proposition 4.5. For η, φ ∈ H1
L2 , with ∇Γ∂

•φ ∈ L2
L2 and ∇Γ∂

•η ∈ L2
L2 , the following identity holds

d

dt
(∇Γη,∇Γφ)ρ = m(∂•ρ∇Γη,∇Γφ) + (∇Γ∂

•η,∇Γφ)ρ + (∇Γη,∇Γ∂
•φ)ρ +

∫

Γ(t)

ρB(V)∇Γη · ∇Γφ

= (∇Γ∂
•η,∇Γφ)ρ + (∇Γη,∇Γ∂

•φ)ρ +

∫

Γ(t)

ρB̃(V)∇Γη · ∇Γφ, (4.22)

for almost any t ∈ [0, T ], where B is the vector field given in Section 3.2 and B̃(V) := −2D(V).

In conclusion, being ∂•ρ = −ρ∇Γ ·V, we infer by Proposition 3.2

d

dt
(η, φ)ρ = (∂•η, φ)ρ + (η, ∂•φ)ρ, ∀ η, φ ∈ H1

L2 , (4.23)

retrieving the classical integration by parts formula as in the case of a fixed manifold. This is not surprising, in
the sense that the term ρ accounts for local stretching or compressing of the surfaces and somehow annihilates
the effects of the evolving surface.

4.3 Regularisation and strict separation property

For this model we only need to assume AΦ, without any extra regularity hypothesis. Our main result is the
following

Theorem 4.6. Let the assumptions of Theorem 4.2 hold. Denote by (c, w) the (unique) weak solution to
(4.5)-(4.7).

(i) There exists a constant C = C(T,Eρ
CH(u0)) > 0 such that, for almost any t ∈ [0, T ],

t‖w‖2H1(Γ(t)) +

∫ t

0

s‖∂•c‖2H1(Γ(s))ds ≤ C(T,Eρ
CH(u0)). (4.24)
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(ii) For any 0 < τ ≤ T , there exist constants C = C(T, τ, Eρ
CH(u0)) > 0 and Cp = Cp(T, τ, p, E

ρ
CH(u0)) > 0

such that, for almost any t ∈ [τ, T ]

‖w‖H1(Γ(t)) ≤ C(T, τ, Eρ
CH(u0)), (4.25)

‖ϕ(c)‖Lp(Γ(t)) + ‖ϕ′(c)‖Lp(Γ(t)) ≤ Cp(T, τ, p, E
ρ
CH(u0)), ∀p ∈ [2,∞),

‖c‖H2(Γ(t)) ≤ C(T, τ, Eρ
CH(u0)).

(iii) There exists ξ = ξ(T, τ, Eρ
CH(u0)) > 0, such that

‖c‖L∞(Γ(t)) ≤ 1− ξ, for almost any t ∈ [τ, T ].

Remark 4.7. For this second model the simple assumption AΦ is enough. Indeed, due to the presence of ρ we
do not need, e.g., (2.9). For this reason, it is our belief that the second model seems more natural in the context
of evolving surfaces.

Remark 4.8. As in Remark 3.10, assuming the regularity stated in Lemma C.1, also in this case we actually
obtain that, for any τ > 0, c ∈ C0

C0(τ, T ) and thus

sup
t∈[τ,T ]

‖c‖C0(Γ(t)) ≤ 1− ξ.

4.3.1 Galerkin approximation

We need a slight revision of the Galerkin approximation scheme. Let us recall [13, Sec.4.1] and consider a basis
{χ0

j : j ∈ N} orthonormal in L2(Γ0) and orthogonal in H1(Γ0) consisting of smooth functions such that χ0
1 is

constant (for example consider the eigenfunctions of the Laplace-Beltrami operator). We then transport this
basis using the flow map. This gives {χt

j := φt(χ
0
j ) : j ∈ N} ⊂ H1(Γ(t)). Observe that this basis is still an

orthonormal basis in L2(Γ(t)) endowed with the norm induced by (4.21). Indeed, thanks to (4.9), we have

(χt
i, χ

t
j)ρ = m(ρχt

i, χ
t
j) =

∫

Γ0

χ0
iχ

0
j = δij , ∀ i, j ∈ N.

Notice that the same basis is such that span{χt
j : j ∈ N}H

1(Γ(t))
= H1(Γ(t)), but we are not able to show any

orthogonality property in this space, even endowing the space with the norm induced by (4.21). We can then
introduce the finite dimensional spaces

VM (t) = span{χt
j : 1 ≤ j ≤ M} ⊂ H1(Γ(t)),

and, exploiting the orthogonality with respect to the equivalent L2 inner product (4.21)1, we can give an explicit
expression to the L2-orthogonal projector P ρ

M (t) : L2(Γ(t)) → VM (t) as

P ρ
M (t)f :=

M∑

j=1

(f, χt
j)ρχ

t
j =

M∑

j=1

(∫

Γ0

f̃χ0
j

)
χt
j = φt(P

0
M f̃),

where P 0
M = P ρ

M (0) is the orthogonal projector over VM (0) (endowed with the canonical L2-norm). Clearly this
implies ‖P ρ

M (t)f‖ρ ≤ ‖f‖ρ uniformly in M , for any t > 0. Following [4, Sec.7], we now introduce the matrix

A0
t := (DΦ0

t )
TDΦ0

t + ν0 ⊗ ν0,

where ν0 is the normal to Γ0. This matrix is invertible in R
3 thanks to the extension in the normal direction.

We then have that (see [4, (7.5)])

φ−t(∇Γh) = DΦ0
t (A

0
t )

−1∇Γ0(φ−t(h)) = DΦ0
t (A

0
t )

−1∇Γ0 h̃. (4.26)

Note also that, for any t ∈ [0, T ],

‖DΦ0
t (A

0
t )

−1‖C0(Γ(t)) ≤ C, (4.27)

being, thanks to assumption AΦ, Φ
0
(·) ∈ C1([0, T ];C2(R3;R3)). Therefore, again by (4.9), the properties of the

orthogonal basis {χ0
j : j ∈ N} in H1(Γ0), and the compatibility of the space (H1(Γ(t)), φt)t∈[0,T ],

∫

Γ(t)

ρ∇Γw · ∇ΓP
ρ
M (t)f =

∫

Γ0

∇Γ0w̃(DΦ0
t )

T (A0
t )

−TDΦ0
t (A

0
t )

−1∇Γ0P
0
M f̃

26



≤ C‖∇Γ0w̃‖L2(Γ0)‖∇Γ0P
0
M f̃‖L2(Γ0)

≤ C‖∇Γ0w̃‖L2(Γ0)‖∇Γ0 f̃‖L2(Γ0)

≤ C‖∇Γw‖‖∇Γf‖, (4.28)

for any w, f ∈ H1(Γ(t)). We can also prove that the time derivative ∂• commutes with the projector P ρ
M (t).

Indeed, since ∂•χt
j ≡ 0 for any j ∈ N, we have

∂•(P ρ
M (t)f) =

M∑

i=1

∂•(f, χt
i)ρχ

t
i

=

M∑

i=1

(
(∂•f, χt

i)ρ +m(f∂•ρ, χt
i) + g(ρf, χt

i)
)
χt
i

=
M∑

i=1

(∂•f, χt
i)ρχ

t
i

= P ρ
M (t)∂•f, ∀f ∈ H1

L2 ,

(4.29)

where we exploited the fact that ∂•ρ = −ρ∇Γ ·V.
We then consider the Galerkin approximation with the approximated potential F δ (ϕδ = (F δ

ln)
′) of the

original problem. More precisely, given the spaces VM as in (3.10), for eachM ∈ N, find functions cMδ , wM
δ ∈ L2

VM

with ∂•cMδ ∈ L2
VM

such that, for any η ∈ L2
VM

and all t ∈ [0, T ],

(∂•cMδ , η)ρ + (∇Γw
M
δ ,∇Γη)ρ = 0, (4.30)

wM
δ = P ρ

M (t)(−1

ρ
∆Γ(t)c

M
δ + (F δ)′(cMδ )), (4.31)

cMδ (0) = P 0
Mc0, a.e. on Γ0. (4.32)

Notice that this formulation, written with respect to the ρ inner product, is very similar the classical weak
formulation of CH equation in bounded domains of R2 (or R3). For this problem we then have

Proposition 4.9. Let Assumption AΦ hold. Then there exists a unique local solution (cMδ , wM
δ ) to (4.30)-

(4.32). In particular there exist functions (cM , wM ) satisfying (4.30)-(4.31) on an interval [0, t⋆), 0 ≤ t⋆ ≤ T ,
together with (4.32). The functions are of the form (omitting for simplicity the dependence on δ)

cMδ (t) =

M∑

i=1

cMi (t)χt
i, wM

δ (t) =

M∑

i=1

wM
i (t)χt

i, t ∈ [0, t⋆),

with cMi ∈ C2([0, t⋆)) and wM
i ∈ C2([0, t⋆)), for every i ∈ {1, . . . ,M}.

Proof. We consider the matrix form of the equations, where, as before, we set cM (t) = (cM1 (t), . . . , cMM (t)) and
wM (t) = (wM

1 (t), . . . , wM
M (t)),

Mρ(t)ċM (t) +Aρ
S(t)w

M (t) = 0,

AS(t)c
M (t) + (Fδ

ρ)
′(cM (t))−Mρ(t)wM (t) = 0.

Here

(Mρ(t))ij = (χt
i, χ

t
j)ρ = δij ,

(AS(t))ij = aS(t;χ
t
i, χ

t
j),

(Aρ
S(t))ij = (∇Γχ

t
i,∇Γχ

t
j)ρ,

(Fδ
ρ)

′(cM (t))j = ((F δ)′(cM (t)), χt
j)ρ.

We now observe that again these matrices are more regular. Indeed, Mρ
ij is actually the identity matrix.

Similarly, we get
d

dt
(AS(t))ij = b(χt

i, χ
t
j) ∈ C0([0, T ]),

and the same goes for Aρ
S , by (4.22). Recalling then that (F δ)′ is C1,1(R), the result follows from the general

theory of ODEs.

We establish some a priori estimates for the solutions of the Galerkin approximation.
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Proposition 4.10. For the approximating solution pair (uM
δ , wM

δ ) we have:

sup
t∈[0,T ]

Ẽρ
CH(cMδ ) +

1

2

∫ T

0

∫

Γ(t)

|∇Γw
M
δ |2dt ≤ C(T ) (4.33)

‖∂•cMδ ‖L2
H−1

≤ C(T ), and ‖wM
δ ‖L2

H1
≤ Cδ, (4.34)

where as before Ẽρ
CH := Eρ

CH + C̃ for some C̃ > 0 chosen so that Ẽρ
CH ≥ 0.

Proof. We consider the Galerkin approximation of Proposition 4.9. First notice that we have the conservation
of the total mass, by choosing η ≡ 1:

d

dt

∫

Γ(t)

ρcMδ =

∫

Γ(t)

ρ∂•cMδ ≡ 0. (4.35)

Arguing as in [13, (6.2.1)] we can obtain

d

dt
Eρ

CH(cMδ ) +

∫

Γ(t)

ρ|∇Γw
M
δ |2dt = b(cMδ , cMδ ). (4.36)

Observe also that, by the conservation of total mass, see (1.4) and (4.35),

(c̃Mδ )Γ0 ≡
∫
Γ(t) ρc

M
δ

|Γ0|
≡ (c0)Γ0 .

In the end we easily get

d

dt
Ẽρ

CH(cMδ ) +
1

2

∫

Γ(t)

ρ|∇Γw
M
δ |2dt ≤ CẼρ

CH(cMδ ), (4.37)

where Ẽρ
CH(cMδ ) := Eρ

CH(cMδ )+C, so that Ẽρ
CH(cMδ ) ≥ 0. Therefore, an application of Gronwall’s Lemma gives

sup
t∈[0,T ]

Ẽρ
CH(cMδ ) +

1

2

∫ T

0

∫

Γ(t)

|∇Γw
M
δ |2dt ≤ C(T )Ẽρ

CH(P 0
Mc0), (4.38)

and, recalling the properties of P 0
M (see, e.g., [13, Lemma 5.6]), we have

Ẽρ
CH(P 0

Mc0) ≤ CT. (4.39)

This clearly allows us to extend the maximal time from t⋆ to T . Concerning the estimate of the mean value of
c, since in this model this quantity is not conserved, being conserved the product ρc, we can observe, as in [13],
that

d

dt

∫

Γ(t)

cMδ =

∫

Γ(t)

∂•cMδ +

∫

Γ(t)

cMδ ∇Γ ·V.

If we now take η = P ρ
M (t) 1ρ in (4.30), we have, being ∂•cMδ ∈ L2

VM
and P ρ

M (t) self-adjoint,

(
∂•cMδ , P ρ

M (t)
1

ρ

)

ρ

= m(∂•cMδ , 1) = −
(
∇Γw

M
δ ,∇ΓP

ρ
M (t)

1

ρ

)

ρ

.

Therefore, integrating by parts
∫
Γ(t)

cMδ ∇Γ ·V, recalling that Γ(t) is closed, we get

d

dt

∫

Γ(t)

cMδ = −
(
∇Γw

M
δ ,∇ΓP

ρ
M (t)

1

ρ

)

ρ

−
∫

Γ(t)

∇Γc
M
δ ·V,

so that
∫

Γ(t)

cMδ =

∫

Γ0

P 0
Mc0 −

∫ t

0

(
∇Γ(s)w

M
δ ,∇Γ(s)P

ρ
M (s)

1

ρ

)

ρ

ds−
∫ t

0

∫

Γ(s)

∇Γc
M
δ ·Vds.

Thus, by (4.10), (4.39), the properties of P 0
M , and (4.28), we deduce

∣∣∣∣∣

∫

Γ(t)

cMδ

∣∣∣∣∣ ≤ C + C

∫ t

0

∥∥∇Γ(s)w
M
δ

∥∥
∥∥∥∥∇Γ(s)

1

ρ

∥∥∥∥ ds+ C(T )
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≤ C

(
1 +

∫ t

0

‖∇Γw
M
δ ‖ds

)
+ C(T ) ≤ C(T ).

Combining this result with (4.38) and Poincaré’s inequality, we infer that

‖cMδ ‖L∞

H1
≤ C(T ), (4.40)

independently of M and δ. Observe now that, by (4.28), we can find a uniform estimate for ∂•cMδ . Indeed we
can write, for any η ∈ L2

H1 , being P ρ
M (t) self-adjoint (with respect to (4.21)1) and by (4.28) and (4.40),

m⋆(∂
•cMδ , η) = (P ρ

M (t)∂•cMδ , η) =

(
P ρ
M (t)∂•cMδ ,

1

ρ
η

)

ρ

=

(
∂•cMδ , P ρ

M (t)

(
1

ρ
η

))

ρ

= −
(
∇Γw

M
δ ,∇ΓP

ρ
M (t)

(
1

ρ
η

))

ρ

≤ C‖∇Γw
M
δ ‖

∥∥∥∥∇Γ
η

ρ

∥∥∥∥+ C‖cMδ ‖
∥∥∥∥∇Γ

η

ρ

∥∥∥∥

≤ C
(
‖∇Γw

M
δ ‖+ 1

)
‖η‖H1(Γ(t)),

which implies, by (4.38),

‖∂•cMδ ‖L2
H−1

≤ C(T ), (4.41)

independently of M and δ. We now need a control over the mean value of wM
δ . This can be obtained by testing

(4.31) with η = P ρ
M (t) 1ρ being w ∈ L2

VM
. On account of (4.28), we have

(
wM

δ ,
1

ρ

)

ρ

=

(
wM

δ , P ρ
M (t)

1

ρ

)

ρ

=

(
−1

ρ
∆cMδ , P ρ

M (t)
1

ρ

)

ρ

+

(
F ′
δ(c

M
δ ), P ρ

M (t)
1

ρ

)

ρ

= m

(
∇Γc

M
δ ,∇ΓP

ρ
M (t)

1

ρ

)
+

(
F ′
δ(c

M
δ ), P ρ

M (t)
1

ρ

)

ρ

≤ C‖∇Γc
M
δ ‖
∥∥∥∥∇Γ

(
P ρ
M (t)

1

ρ

)∥∥∥∥+ C‖F ′
δ(c

M
δ )‖

∥∥∥∥P
ρ
M (t)

1

ρ

∥∥∥∥

≤ C‖∇Γc
M
δ ‖
∥∥∥∥∇Γ

1

ρ

∥∥∥∥+ Cδ‖cMδ ‖ ≤ Cδ,

by (4.10) and (4.38). Here we have also applied the fact that |F ′
δ(c

M
δ )| ≤ Cδ|cMδ |, being |F ′′

δ | ≤ Cδ and
F ′
δ(0) = F ′(0) = 0. In the Galerkin scheme we are not able to retrieve a uniform-in-δ estimate for the mean

value of wM
δ . Indeed, we should be able to control the L∞(Γ(t)) norm of ρP ρ

M (t) 1ρ and then control
∫
Γ(t)

|F ′
δ(c

M
δ )|,

but this does not seem feasible. Therefore, we will need to pass to the limit in M first. Then this control will be
obtained independently of δ. The above bound entails, thanks to Poincaré’s inequality combined with (4.33),

‖wM
δ ‖L2

H1
≤ Cδ. (4.42)

4.3.2 Proof of Theorem 4.6

Part (i). We now need to find higher-order estimates. In particular, we set η = ∂•wM
δ ∈ L2

VM
in (4.30), to get

(∂•cδM , ∂•wM
δ )ρ + (∇Γw

δ
M ,∇Γ∂

•wδ
M )ρ = 0. (4.43)

Observe that, by (4.22),

1

2

d

dt
(∇Γw

M
δ ,∇Γw

M
δ )ρ = (∇Γw

δ
M ,∇Γ∂

•wδ
M )ρ +

∫

Γ(t)

ρB̃(V)∇Γw
M
δ · ∇Γw

M
δ . (4.44)

On the other hand, by Proposition 3.2, we have, for any η ∈ L2
VM

such that ∂•η ∈ L2
VM

,

d

dt
m(∇Γc

M
δ ,∇Γη) = m(∇Γ∂

•cMδ ,∇Γη) +m(∇Γc
M
δ ,∇Γ∂

•η) +

∫

Γ(t)

B(V)∇Γc
M
δ · ∇Γη
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and, by (4.23),

d

dt
(wM

δ , η)ρ = (∂•wM
δ , η)ρ + (w, ∂•η)ρ.

Furthermore, we have, using again (4.23),

d

dt
(F ′

δ(c
M
δ ), η)ρ = (F ′′

δ (c
M
δ ), ∂•cMδ η)ρ + (F ′

δ(c
M
δ ), ∂•η)ρ.

We now recall that

d

dt
(wM

δ , η)ρ =
d

dt
m(∇Γc

M
δ ,∇Γη) +

d

dt
(F ′

δ(c
M
δ ), η)ρ,

thus

(∂•wM
δ , η)ρ + (w, ∂•η)ρ = m(∇Γ∂

•cMδ ,∇Γη) +m(∇Γc
M
δ ,∇Γ∂

•η)

+

∫

Γ(t)

B(V)∇Γc
M
δ · ∇Γη

+ (F ′′
δ (c

M
δ ), ∂•cMδ η)ρ + (F ′

δ(c
M
δ ), ∂•η)ρ.

By noticing that, being ∂•η ∈ L2
VM

,

(w, ∂•η)ρ = m(∇Γc
M
δ ,∇Γ∂

•η) + (F ′
δ(c

M
δ ), ∂•η)ρ,

we infer, choosing η = ∂•cMδ (which is sufficiently regular thanks to Proposition 4.9),

(∂•cMδ , ∂•wM
δ )ρ = (F ′′

δ (c
M
δ )∂•cMδ , ∂•cMδ )ρ + ‖∇Γ∂

•cMδ ‖2 + b(V; cMδ , ∂•cMδ )

From these results, together with (4.43) and (4.44), we eventually get

1

2

d

dt
(∇Γw

M
δ ,∇Γw

M
δ )ρ + (F ′′

δ (c
M
δ )∂•cMδ , ∂•cMδ )ρ + ‖∇Γ∂

•cMδ ‖2

= −
∫

Γ(t)

B(V)∇Γc
M
δ · ∇Γ∂

•cMδ +

∫

Γ(t)

ρB̃(V)∇Γw
M
δ · ∇Γw

M
δ ,

and, recalling the definition of F ′′
δ and ϕ′

δ ≥ 0, we infer

1

2

d

dt
(∇Γw

M
δ ,∇Γw

M
δ )ρ + ‖∇Γ∂

•cMδ ‖2 ≤ 1

2

d

dt
(∇Γw

M
δ ,∇Γw

M
δ )ρ +

θ

2
(ϕ′

δ(c
M
δ ), ∂•cMδ ∂•cMδ )ρ + ‖∇Γ∂

•cMδ ‖2

= (∂•cMδ , ∂•cMδ )ρ −
∫

Γ(t)

B(V)∇Γc
M
δ · ∇Γ∂

•cMδ

+

∫

Γ(t)

ρB̃(V)∇Γw
M
δ · ∇Γw

M
δ . (4.45)

By (4.10), (4.38), interpolation and standard inequalities, we then have

(∂•cMδ , ∂•cMδ )ρ −
∫

Γ(t)

B(V)∇Γc
M
δ · ∇Γ∂

•cMδ +

∫

Γ(t)

ρB̃(V)∇Γw
M
δ · ∇Γw

M
δ

≤ C1‖∂•cMδ ‖2 + C +
1

4
‖∇Γ∂

•cMδ ‖2 + C‖∇Γw
M
δ ‖2.

Notice that we have only exploited assumption AΦ (see also Remark 4.7). Here C1 > 0 is a positive constant
independent of δ,M . We now test (4.30) by η = ∂•cMδ , obtaining, for κ suitably small to be chosen later on,

C2‖∂•cMδ ‖2 ≤ κ‖∇Γ∂
•cMδ ‖2 + C(1 + ‖∇Γw

M
δ ‖2),

where C2 > 0 is independent of δ,M . Adding this inequality, multiplied by ω = 2C1

C2
, and (4.45) together,

choosing κ = C2

8C1
, and recalling (4.10), we find

d

dt
Qρ +

1

2
‖∇Γ∂

•cMδ ‖2 + C1‖∂•cMδ ‖2 ≤ C(1 + (∇Γw
M
δ ,∇Γw

M
δ )ρ), (4.46)
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where C and C1 in this estimate do not depend on δ (they rely only on (4.38)), and

Qρ :=
1

2
(∇Γw

M
δ ,∇Γw

M
δ )ρ≥ 0.

We then multiply (4.46) by t. This gives

d

dt
(tQρ) +

t

2
‖∇Γ∂

•cMδ ‖2 + C1t‖∂•cMδ ‖2 ≤ C(t+ tQρ(t)) +Qρ(t). (4.47)

Then, thanks to (4.38), we have Qρ ∈ L1(0, T ), so that we can apply Gronwall’s Lemma and infer

‖
√
t∇Γw

M
δ ‖L∞

L2
+ ‖

√
t∂•uM

δ ‖L2
H1

≤ C(T ). (4.48)

It is crucial to stress again that also the above constant does not depend on δ.
Having this uniform (in M) regularity, we can easily pass to the limit as M → ∞ and obtain, by compactness

arguments, the existence of a solution (cδ, wδ) such that, for any η ∈ L2
H1 ,

(∂•cδ, η)ρ + (∇Γwδ,∇Γη)ρ = 0, (4.49)

(wδ, η)ρ = m(∇Γcδ,∇Γη) + ((F δ)′(cδ), η)ρ, (4.50)

and cδ(0) = c0 almost everywhere in Γ0. In particular, we have the following convergences (see (4.38), (4.41),
and (4.42))

cMδ
∗
⇀ cδ, in L∞

H1 ,

∂•cMδ ⇀∂•cδ, in L2
H−1 ,

wM
δ ⇀wδ, in L2

H1 ,

which also imply, by (4.48),
√
t∂•cMδ ⇀

√
t∂•cδ, in L2

H1 ,
√
t∇Γw

M
δ

∗
⇀

√
t∇Γwδ, in L∞

L2 .

As a consequence, from (4.38), (4.40), (4.41), and (4.48) we can obtain the following bounds, which are still
independent of δ,

‖cδ‖L∞

H1
+ ‖∇Γwδ‖L2

L2
+ ‖∂•cδ‖L2

H−1
+ ‖

√
twδ‖L∞

L2
+ ‖

√
t∂•cδ‖L2

H1
≤ C(T ). (4.51)

We are left to find an estimate for (wδ)Γ0 which is independent of δ. Being now η = 1
ρ ∈ L2

H1 , we can use it as

a test function in (4.49), to get
∫

Γ(t)

wδ =

(
wδ,

1

ρ

)

ρ

=

(
∇Γcδ,∇Γ

1

ρ

)
+

(
F ′
δ(cδ),

1

ρ

)

ρ

.

At this point we can repeat word by word the proof in [13, Sec.1.6], exploiting the fact that (c̃)Γ0 = (c0)Γ0 and
|(c0)Γ0 | < 1, and obtaining ∣∣∣∣∣

∫

Γ(t)

wδ

∣∣∣∣∣ ≤ C(1 + ‖∇Γwδ‖).

This result finally allows, by Poincaré’s inequality, to infer

‖wδ‖L2
H1

+ ‖
√
twδ‖L∞

H1
≤ C(T ). (4.52)

Therefore, we can pass to the limit with respect to δ. Again by standard compactness arguments, we obtain
a solution (c, w) to (4.5)-(4.7). In particular, we can retrieve, exactly as done for the first model in the proof
of [13, Thm.5.14], the bound |c| < 1 almost everywhere on Γ(t), for almost any t ∈ [0, T ]. Clearly, again by
sequential lower semicontinuity, we have the following bounds on the final solution (which is also unique by
Theorem 4.2):

‖c‖L∞

H1
+ ‖w‖L2

H1
+ ‖∂•c‖L2

H−1
+ ‖

√
tw‖L∞

H1
+ ‖

√
t∂•c‖L2

H1
≤ C(T ). (4.53)

Part (ii). Concerning the strict separation property, we use an argument similar to the one used in the proof
of Theorem 3.9. Let us fix τ > 0. We have that ‖w‖H1(Γ(t)) ≤ C for almost any t ≥ τ . Then we set ck = hk(c),
where hk is defined in (3.57). Being c in L∞

H1 , we have

∇Γck = χ[−1+ 1
k ,1− 1

k ](c)∇Γc.

31



Accordingly, for any k > 1 and p ≥ 2, fk =
∣∣θ
2ϕ(ck)

∣∣p−2 θ
2ϕ(ck) is well defined and belongs to L∞

H1 and satisfies

∇Γ

(∣∣∣∣
θ

2
ϕ(ck)

∣∣∣∣
p−2

θ

2
ϕ(ck)

)
= (p− 1)

∣∣∣∣
θ

2
ϕ(ck)

∣∣∣∣
p−2

θ

2
ϕ′(ck)∇Γck.

If we now set η =
∣∣ θ
2ϕ(ck)

∣∣p−2 θ
2ϕ(ck) in (4.6) then we infer that

(p− 1)

∫

Γ(t)

∣∣∣∣
θ

2
ϕ(ck)

∣∣∣∣
p−2

θ

2
ϕ′(ck)∇Γc · ∇Γck +

∫

Γ(t)

ρ

∣∣∣∣
θ

2
ϕ(ck)

∣∣∣∣
p−2

θ

2
ϕ(ck)

θ

2
ϕ(c) =

∫

Γ(t)

ρŵ

∣∣∣∣
θ

2
ϕ(ck)

∣∣∣∣
p−2

θ

2
ϕ(ck),

where ŵ = w + c. Being Fln strictly convex, the first term in the left-hand side is nonnegative. Since ϕ is
increasing we infer

ϕ(ck)
2 ≤ ϕ(c)ϕ(ck), ∀k > 1. (4.54)

Regarding the right-hand side, by the Sobolev embedding H1(Γ(t)) →֒ Lp(Γ(t)) and (4.10), we easily get

∫

Γ(t)

ρŵ

∣∣∣∣
θ

2
ϕ(ck)

∣∣∣∣
p−2

θ

2
ϕ(ck) ≤

1

2Cρ

∥∥∥∥
θ

2
ϕ(ck)

∥∥∥∥
p

Lp(Γ(t))

+ C‖ŵ‖pLp(Γ(t)) ≤
1

2Cρ

∥∥∥∥
θ

2
ϕ(ck)

∥∥∥∥
p

Lp(Γ(t))

+ Cp‖ŵ‖pH1(Γ(t)),

with Cp > 0 depending on p. Now, collecting the above estimates, being c ∈ L∞
H1 and ‖w‖H1(Γ(t)) ≤ C for

almost any t ≥ τ , and recalling, by (4.10), that 0 < 1
Cρ

≤ ρ, we immediately deduce (see (3.59))

ess sup
t∈[τ,T ]

‖ϕ(ck)‖Lp(Γ(t)) ≤ Cp(T, τ, p), ∀p ∈ [2,∞). (4.55)

Consider now gk = θ
2ϕ(ck)e

L θ
2 |ϕ(ck)|, for some arbitrary L > 0, and observe that

∇Γ

(
θ

2
ϕ(ck)e

L θ
2 |ϕ(ck)|

)
=

θ

2
ϕ′(ck)

(
1 + L

θ

2
|ϕ(ck)|

)
eL

θ
2 |ϕ(ck)|∇Γck.

Therefore, using (4.6) with η = gk, we find

∫

Γ(t)

∇Γc · ∇Γck
θ

2
ϕ′(ck)

(
1 + L

θ

2
|ϕ(ck)|

)
eL

θ
2 |ϕ(ck)| +

∫

Γ(t)

ρ
θ

2
ϕ(c)

θ

2
ϕ(ck)e

L θ
2 |ϕ(ck)| =

∫

Γ(t)

ρŵ
θ

2
ϕ(ck)e

L θ
2 |ϕ(ck)|.

Observe that the first term on the left-hand side is nonnegative. Hence, exploiting again (4.54) and (4.10), we
obtain in the end

1

Cρ

∫

Γ(t)

(
θ

2
ϕ(ck)

)2

eL
θ
2 |ϕ(ck)| ≤

∫

Γ(t)

ρŵ
θ

2
ϕ(ck)e

L θ
2 |ϕ(ck)|

By Lemma B.4, with ρ⋆ = 1
Cρ

, we get

∫

Γ(t)

ρ|ŵ|
∣∣∣∣
θ

2
ϕ(ck)

∣∣∣∣ e
L| θ2ϕ(ck)| ≤ 1

2Cρ

∫

Γ(t)

∣∣∣∣
θ

2
ϕ(ck)

∣∣∣∣
2

eL| θ2ϕ(ck)| +
∫

Γ(t)

eNρ|ŵ|, (4.56)

implying

1

2Cρ

∫

Γ(t)

∣∣∣∣
θ

2
ϕ(ck)

∣∣∣∣
2

eL| θ2ϕ(ck)| ≤
∫

Γ(t)

eρN |ŵ|, (4.57)

for any L > 0 and some N = N(L,Cρ). Exploiting (4.10), the control over J0
t and then applying Lemma B.3

with u = CρN ˜̂w and the manifold M = Γ0 (with the corresponding metric) we deduce

∫

Γ(t)

eρN |ŵ| ≤
∫

Γ(t)

eCρN |ŵ| =

∫

Γ0

eCρN | ˜̂w|J0
t dΓ0 ≤ C

∫

Γ0

eCρN | ˜̂w|dΓ0 ≤ Ce
CN2‖ ˜̂w‖2

H1(Γ0) ≤ Ce
CN2‖ŵ‖2

H1(Γ(t)) ,

being (H1(Γ(t)), φt)t∈[0,T ] a compatible space. On account of (3.63), taking L = pC in (4.57) and recalling that
‖ŵ‖H1(Γ(t)) ≤ C for almost any t ≥ τ , we end up with

‖ϕ′(ck)‖Lp(Γ(t)) ≤ Cp(T, τ, p),

32



which implies (see proof of Theorem 3.9)

ess sup
t∈[τ,T ]

‖ϕ′(c)‖Lp(Γ(t)) ≤ Cp(T, τ, p), ∀p ∈ [2,∞). (4.58)

Therefore, thanks to elliptic regularity, being c ∈ L∞
H1 we get (see also (4.10))

‖c‖H2(Γ(t)) ≤
(
C + ‖∆Γ(t)c‖

)
≤ C (1 + ‖w‖+ ‖ϕ(c)‖) ≤ C(T, τ),

for almost any t ∈ [τ, T ].

Part (iii). If we now apply the chain rule to ϕ(c) (again we can obtain this by a truncation argument) we
obtain

∇Γϕ(c) = ϕ′(c)∇Γc, for a.a. t ∈ [τ, T ].

Then, for almost any t ∈ [τ, T ], we have that

‖∇Γϕ(c)‖Lp(Γ(t)) ≤ ‖ϕ′(c)‖L2p(Γ(t))‖∇Γc‖L2p(Γ(t)) ≤ Cp(T, τ, p),

by the Sobolev embedding H2(Γ(t)) →֒ W 1,q(Γ(t)) which holds for every q ≥ 2. Therefore we infer

‖ϕ(c)‖W 1,p(Γ(t)) ≤ Cp(T, τ, p), ∀ p ≥ 2,

so that, choosing, e.g. p = 3,

‖ϕ(c)‖L∞(Γ(t)) ≤ C(T, τ), for a.a. t ∈ [τ, T ].

Therefore, being c(t) ∈ H2(Γ(t)) →֒ C0(Γ(t)) for almost any t ∈ [0, T ], we can find ξ = ξ(T, τ) > 0 such that

‖c‖L∞(Γ(t)) ≤ 1− ξ, for a.a. t ∈ [τ, T ],

that is, the strict separation property holds. This concludes the proof.

A Proofs of some technical results

In this Appendix, we present the proofs of some results which were only stated in the main body of the paper.

A.1 Proof of Proposition 3.2

Even though it is a straightforward result, we give here a short proof of the formula (3.3). We consider only
sufficiently smooth functions η, φ, since the general result can be obtained by a density argument. It is enough
to prove this relation locally. Let Ω ⊂ R

2 be an open set and let X = X(θ, t), θ ∈ Ω, X(·, t) : Ω → U ∩ Γ(t)
be a local regular parametrization of the open set U ∩ Γ(t) (w.r.t. the induced metric) of the surface Γ(t)
which evolves so that Xt = V(X(θ, t), t). The induced metric (gij), i, j = 1, 2, is given by gij = Xθi ·Xθj with
g = det(gij). Note that, as usual, gij = (gij)

−1. Define then f = Vτ
aη and set

F (θ, t) = f(X(θ, t), t), Φ(θ, t) = φ(X(θ, t), t), V(θ, t) = V(X(θ, t), t).

For the sake of simplicity we will omit the dependence on θ, t. We have

d

dt

∫

U∩Γ(t)

f · ∇Γφ =
d

dt

∫

Ω

Flg
ijΦθjX

l
θi

√
gdθ

=

∫

Ω

Fl,tg
ijΦθjX

l
θi

√
gdθ +

∫

Ω

Flg
ij
t ΦθjX

l
θi

√
gdθ

+

∫

Ω

Flg
ijΦθj ,tX

l
θi

√
gdθ +

∫

Ω

Flg
ijΦθjV l

θi

√
gdθ

+

∫

Ω

Flg
ijΦθjX

l
θi∂t

√
gdθ.

Recalling that gijt = −gikgjl(Vθk ·Xθl +Xθk · Vθl) and

∂t
√
g =

√
ggijXθi · Vθj ,
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we obtain
∫

Ω

Flg
ij
t ΦθjX

l
θi

√
g = −

∫

Ω

FlΦθjX
l
θig

ikgjlVr
θkX

r
θl

√
g −

∫

Ω

FlΦθjX
l
θig

ikgjlVr
θlX

r
θk

√
g

= −
∫

Ω

Fl(g
ikX l

θiVr
θk)(g

jlXr
θlΦθj )

√
g −

∫

Ω

Fl(g
ikX l

θiX
r
θk)(g

jlΦθjVr
θl)

√
g

= −
∫

U∩Γ(t)

flD
Γ(t)
l VrD

Γ(t)
r φ−

∫

U∩Γ(t)

fl(δlr − νlνr)∇Γφ · ∇ΓVr,

exploiting D
Γ(t)
l xr = δlr − νlνr and

gjlΦθjVr
θl
= gjlgjkg

kmΦθmVr
θl
= (gkmΦθmXn

θk
)(gjlVr

θl
Xn

θj ). (A.1)

Then, on account of gijXθi · Vθj = (∇Γ ·V)(X, ·), we obtain

∫

Ω

Flg
ijΦθjX

l
θi∂t

√
g =

∫

U∩Γ(t)

f · ∇Γφ(∇Γ ·V).

Moreover, again by (A.1), we have

∫

Ω

Flg
ijΦθjV l

θi

√
g =

∫

U∩Γ(t)

fl∇Γφ · ∇ΓVl. (A.2)

In conclusion, we obtain

d

dt

∫

U∩Γ(t)

f · ∇Γφ =

∫

U∩Γ(t)

∂•f · ∇Γφ+

∫

U∩Γ(t)

f · ∇Γ∂
•φ

+

∫

U∩Γ(t)

f · ∇Γφ(∇Γ ·V)−
∫

U∩Γ(t)

flD
Γ(t)
l VrD

Γ(t)
r φ,

where we have exploited the fact that f · ν = 0, being a tangential vector. Indeed, setting Gr := ∇Γφ · ∇ΓVr,
then Gτ,l := (δlr − νlνr)Gr is the projection of G on the tangent space to Γ(t). This entails that f ·G = f ·Gτ .
Therefore, we deduce

−
∫

U∩Γ(t)

fl(δlr − νlνr)∇Γφ · ∇ΓVr = −
∫

U∩Γ(t)

fl∇Γφ · ∇ΓVl,

and this term simplifies with (A.2). To conclude the proof it suffices to note that

∂•f = ∂•ηVτ
a + η∂•Vτ

a .

A.2 Proof of Proposition 4.5

Exploiting the same notation as in the proof of Proposition 3.3 (Section A.1) and considering, for simplicity,

the case
∫
Γ(t)

ρ |∇Γf |2, for f sufficiently regular, we can obtain

ρ̂|∇F |2 = ρ̂gijFθjFθi ,

with ρ̂(θ, t) = ρ(X(θ, t), t). Therefore, we find

d

dt

∫

U∩Γ(t)

ρ|∇Γf |2 =
d

dt

∫

Ω

ρ̂Flg
ijΦθjX

l
θi

√
gdθ

=

∫

Ω

ρ̂,tFlg
ijΦθjX

l
θi

√
gdθ +

∫

Ω

ρ̂(Flg
ijΦθjX

l
θi

√
g),tdθ

=

∫

U∩Γ(t)

∂•ρ |∇Γf |2 +
∫

U∩Γ(t)

ρDiVjDifDjf

+ 2

∫

U∩Γ(t)

ρ∇Γf · ∇Γ∂
•f +

∫

U∩Γ(t)

ρ∇Γ ·V|∇Γf |2,

where we have argued as in the proof of Proposition 3.2 (see, e.g., [23, Sec.5.1]). In conclusion, to obtain the
last identity in (4.22), it is enough to recall that ∂•ρ = −ρ∇Γ ·V. The general case follows by polarization with
respect to the inner product (4.21). The proof is ended.
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B Two basic inequalities

B.1 Moser-Trudinger inequality

The Moser-Trudinger inequality for manifolds is given by (see [33])

Lemma B.1. Let (M, r) be a compact n− dimensional Riemannian manifold, with n ≥ 2 and r as a metric.
Then there exists a constant C depending only on (M, r) and β0 = β0(n) > 0 such that

sup∫
M

udV=0,
∫
M

|∇Mu|ndV≤1

∫

M

eβ0|u|
p

dV ≤ C,

where p = n
n−1 .

Remark B.2. Notice that the constant C depends not only on the volume of M, V ol(M), but also on its
metric r. Therefore, in the case of M = Γ(t) it does not seem easy to find a constant C independent of time.

Adapting the proof proposed in [44], we can easily obtain the following

Lemma B.3. Let (M, r) be a compact n − dimensional Riemannian manifold with metric r and n ≥ 2. Let
u ∈ W 1,n(M). Then ∫

M

e|u|dV ≤ C1e
C2‖u‖

n
W1,n(M) ,

where the constant C1 > 0 does not depend on u, but depends on n and on (M, r), whereas C2 > 0 depends
only on n.

Proof. Let us first consider u ∈ W 1,n(M) with
∫
M udV = 0. We then define v = u

‖∇u‖n
. Clearly ‖∇v‖n = 1,

therefore by Lemma B.1 we get, for p = n
n−1 ,

∫

M

eβ0|v|
p

dV ≤ C. (B.1)

Now, recalling (B.1), by Young’s inequality we obtain

∫

M

e|u|dV =

∫

M

e(pβ0)
1/p|v|(pβ0)

−1/p‖∇u‖ndV ≤
∫

M

eβ0|v|
p+ 1

n (pβ0)
−n/p‖∇u‖n

ndV ≤ Ce
1

βn
‖∇u‖n

n ,

having set βn =
(
1
n (pβ0)

−n/p
)−1

= n
(

nβ0

n−1

)(n−1)

. To conclude the proof, let us fix u ∈ W 1,n(M). Then,

setting w = u− (u)M, so that (w)M = 0, we can apply the result we have just proved, to infer

∫

M

e|u|dV ≤ e|(u)M|

∫

M

e|w|dV ≤ Ce|(u)M|+ 1
βn

‖∇u‖n
n ≤ C1e

C2‖u‖
n
W1,n(M) ,

concluding the proof.

B.2 Generalized Young’s inequality

We will use the following version of Young’s inequality (see [19, Appendix A] and [36]).

Lemma B.4. Let L > 0 and ρ⋆ > 0 be given. Then, there exists N = N(L, ρ⋆) > 0 such that

xyeLy ≤ eNx +
ρ⋆
2
y2eLy, ∀x, y ≥ 0.

Proof. We recall the generalized Young’s inequality (see, e.g., [3, Sec.8.2]): for any a, b ≥ 0,

ab ≤ Φ(a) + Ψ(b),

with, given s ≥ 0,
Φ(s) = es − s− 1, Ψ(s) = (1 + s)ln(1 + s)− s.

Then, we choose a = Nx and b = N−1yeLy. We obtain, recalling that ln(1 + s) ≤ s for any s ≥ 0,

xyeLy ≤ eNx −Nx− 1 + (1 +N−1yeLy)ln(1 +N−1yeLy)−N−1yeLy
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= eNx −Nx− 1 + ln(1 +N−1yeLy)−N−1yeLy +N−1yeLyln(1 +N−1yeLy)

≤ eNx +N−1yeLy[ln(eLy) + ln(e−Ly +N−1y)]

≤ eNx +N−1yeLy[Ly + ln(1 +N−1y)]

≤ eNx +N−1(L+N−1)y2eLy,

and if we choose N = N(L, ρ⋆) >
L+

√
L2 + 2ρ⋆
ρ⋆

we finally obtain

xyeLy ≤ eNx +
ρ⋆
2
y2eLy,

concluding the proof.

C The embedding W
∞,2(H2, H1) →֒ C0

H3/2

In this Appendix we aim to sketch a proof of the following result, which we make use of to obtain the extra
regularity in Remark 3.10.

Lemma C.1. Assuming the following extra regularity for V and Φ (with respect to Assumption AΦ)

V ∈ C0([0, T ];C3(Rn+1,Rn+1)) and Φ
(·)
0 ∈ C1([0, T ];C3(Rn+1,Rn+1)) :

(i) The families (H2(Γ(t)), φt)t, (H
1(Γ(t)), φt)t and (H3/2(Γ(t)), φt)t are compatible.

(ii) The spaces W
∞,2(H2, H1) and W∞,2(H2(Γ0), H

1(Γ0)) satisfy the evolving space equivalence.

(iii) We have the embedding W
∞,2(H2, H1) →֒ C0

H3/2 .

Before showing the proof we briefly recall some definitions. We denote

H3/2(Γ(t)) =




u ∈ H1(Γ(t)) :

∫

Γ(t)

∫

Γ(t)

(
D

Γ(t)
i u(x)−D

Γ(t)
i u(y)

)2

|x− y|n+1
< ∞, ∀i





with the norm

‖u‖2H3/2 = ‖u‖2L2 + ‖∇Γu‖2L2 +

n+1∑

i=1

∫

Γ(t)

∫

Γ(t)

(Diu(x)−Diu(y))
2

|x− y|n+1

= ‖u‖2L2 + ‖∇Γu‖2L2 +

∫

Γ(t)

∫

Γ(t)

|∇Γu(x)|2 − 2∇Γu(x) · ∇Γu(y) + |∇Γu(y)|2
|x− y|n+1

.

Denote

[u]3/2 :=

∫

Γ(t)

∫

Γ(t)

|∇Γu(x)|2 − 2∇Γu(x) · ∇Γu(y) + |∇Γu(y)|2
|x− y|n+1

.

Proof. (i). Compatibility of the first two pairs is established in [4, Lemmas 7.2, 7.5]. For the third pair, we need
to show:

a) φt : H
3/2(Γ0) → H3/2(Γ(t)) and its inverse φ−t : H

3/2(Γ(t)) → H3/2(Γ0) are linear maps satisfying φ0 = Id
and are also bounded: there exists a constant CX > 0 s.t.

‖φtu‖H3/2 ≤ CX‖u‖H3/2 , ‖φ−tu‖H3/2 ≤ CX‖u‖H3/2 .

Proof. Linearity and the initial condition φ0 = Id are immediate. Let u ∈ H3/2(Γ0), then since u ∈ H1(Γ0) we have
from [4, Lemma 7.2] that φtu ∈ H1(Γ(t)) as well as the bounds

‖φtu‖
2
L2 ≤ C‖u‖2L2 and ‖φtu‖

2
H1 ≤ C‖u‖2H1

where the constant C depends only on an upper bound for the C1([0, T ]× Γ0)-norm of Φ
(·)
0 . Now we aim to

estimate

[φtu]3/2 =

∫

Γ(t)

∫

Γ(t)

|∇Γφtu(x)|
2 − 2∇Γφtu(x) · ∇Γφtu(y) + |∇Γφtu(y)|

2

|x− y|n+1
.
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We treat each term separately. Below M > 0 is a general constant depending only on an upper bound on
the C1([0, T ]× Γ0)-norm of Φ

(·)
0 . We have by (4.26)

∫

Γ(t)

∫

Γ(t)

|∇Γφtu(x)|
2

|x− y|n+1
=

∫

Γ0

∫

Γ0

|(DΓΦ
0
t )(p)(A

0
t )

−1(p)∇Γ0u(p)|
2

|Φ0
t (p)− Φ0

t (s)|
n+1

J
0
t (p)J

0
t (s)

≤ M

∫

Γ0

∫

Γ0

|∇Γ0u(p)|
2

|p− s|n+1
,

in which we applied the bi-Lipschitz property of Φ0
t , which is ensured by its regularity, so that

|Φ0
t (p)− Φ0

t (s)| ≥ CL|p− s|, (C.1)

with CL > 0 a constant independent of time. Similarly

∫

Γ(t)

∫

Γ(t)

|∇Γφtu(y)|
2

|x− y|n+1
≤ M

∫

Γ0

∫

Γ0

|∇Γ0u(s)|
2

|p− s|n+1
,

and for the remaining term

∫

Γ(t)

∫

Γ(t)

∇Γφtu(x) · ∇Γφtu(y)

|x− y|n+1

=

∫

Γ0

∫

Γ0

(DΓΦ
0
t )(p)(A

0
t )

−1(p)∇Γ0u(p) · (DΓΦ
0
t )(s)(A

0
t )

−1(s)∇Γ0u(s)

|Φ0
t (p)− Φ0

t (s)|
n+1

J
0
t (p)J

0
t (s)

≤ M

∫

Γ0

∫

Γ0

|∇Γ0u(p)| |∇Γ0u(s)|

|p− s|
n+1
2 |p− s|

n+1
2

≤
M

2

∫

Γ0

∫

Γ0

|∇Γ0u(p)|
2

|p− s|n+1
dΓ(p) dΓ(s) +

M

2

∫

Γ0

∫

Γ0

|∇Γ0u(s)|
2

|p− s|n+1

Combining the above leads to [φtu]3/2 ≤ M [u]3/2, proving that φt indeed maps H3/2(Γ0) into H3/2(Γ(t))
and is bounded. The calculations for φ

−t are analogous, since all the properties exploited are shared by Φt
0

as well.

b) for all u ∈ H3/2(Γ0), the map t 7→ ‖φtu‖H3/2 is measurable.

Proof. It remains to show that t 7→ [φtu]H3/2 is measurable. From the calculations above it follows that the seminorm
[φtu]H3/2 is the sum of three components:

• The first term is the integral of

g1(t, p, s) :=
|(DΓΦ

0
t )(p)(A

0
t )

−1(p)∇Γ0u(p)|
2

|Φ0
t (p)− Φ0

t (s)|
n+1

J
0
t (p)J

0
t (s)

which is a continuous function of t ∈ [0, T ] for almost every (p, s) ∈ Γ0 × Γ0 and can be (uniformly in
time) dominated, thanks to (C.1), as

|g1(t, p, s)| ≤ M
|∇Γ0u(p)|

2

|p− s|n+1
∈ L

1(Γ0 × Γ0).

Therefore, by Lebesgue’s dominated convergence Theorem,

t 7→

∫

Γ0

∫

Γ0

g1(t, p, s)

is continuous and thus measurable.

• Similarly for the last term, the function

g3(t, p, s) :=
|(DΓΦ

0
t )(p)(A

0
t )

−1(p)∇Γ0u(s)|
2

|Φ0
t (p)− Φ0

t (s)|
n+1

J
0
t (p)J

0
t (s)

is continuous for almost every (p, s) ∈ Γ0 × Γ0 and can be (uniformly in time) dominated, thanks again
to (C.1), as

|g3(t, p, s)| ≤ M
|∇Γ0u(s)|

2

|p− s|n+1
∈ L

1(Γ0 × Γ0),

giving that

t 7→

∫

Γ0

∫

Γ0

g3(t, p, s)

is continuous and then measurable.
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• Finally, the integrand in the middle term, say g2(t, p, s), is also a continuous function of t ∈ [0, T ] for
almost every (p, s) ∈ Γ0 × Γ0 and can now be (uniformly in time) dominated, again by (C.1), as

|g2(t, p, s)| ≤
M

2

(

|∇Γ0u(p)|
2

|p− s|n+1
+

|∇Γ0u(s)|
2

|p− s|n+1

)

∈ L
1(Γ0 × Γ0),

therefore

t 7→

∫

Γ0

∫

Γ0

g2(t, p, s)

is continuous and hence measurable.

This proves that also (H3/2(Γ(t)), φt)t is compatible.

(ii). The conditions verified in [4, Proposition 7.7] show that the improved result in [4, Theorem 5.10] holds

true, giving the evolving space equivalence between the spaces W∞,2(H2, H1) and W∞,2(H2(Γ0), H
1(Γ0)).

(iii). This follows from the previous result together with the classical embedding

W∞,2(H2(Γ0), H
1(Γ0)) →֒ C0([0, T ];H3/2(Γ0)).

Indeed, if u ∈ W∞,2(H2, H1), then by the evolving space equivalence in (ii) we obtain

φ−(·)u ∈ W∞,2(H2(Γ0), H
1(Γ0)) →֒ C0([0, T ];H3/2(Γ0)),

and since (H3/2(Γ(t)), φt)t is compatible we deduce by definition u ∈ C0
H3/2 , which concludes the proof.

Acknowledgements. The authors are grateful to the anonymous referee for the careful reading of the
manuscript as well as for the valuable comments, particularly the second referee who pointed out the value
of expanding on the modelling aspects. We would also like to thank Thomas Sales (University of Warwick) for
detecting a mistake in one of our original proofs. M. Grasselli and A. Poiatti have been partially funded by
MIUR-PRIN Grant 2020F3NCPX ”Mathematics for Industry 4.0 (Math4I4)”. M. Grasselli and A. Poiatti are
also members of Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA),
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