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EXISTENCE OF SOLUTIONS TO REACTION CROSS DIFFUSION

SYSTEMS

MATT JACOBS

Abstract. Reaction cross diffusion systems are a two species generalization of the porous media
equation. These systems play an important role in the mechanical modelling of living tissues and
tumor growth. Due to their mixed parabolic-hyperbolic structure, even proving the existence of
solutions to these equations is challenging. In this paper, we exploit the parabolic structure of
the system to prove the strong compactness of the pressure gradient in L

2. The key ingredient
is the energy dissipation relation, which along with some compensated compactness arguments,
allows us to upgrade weak convergence to strong convergence. As a consequence of the pressure
compactness, we are able to prove the existence of solutions in a very general setting and pass
to the Hele-Shaw/incompressible limit in any dimension.

1. Introduction

In this paper, we consider the following two species reaction cross diffusion system

(1.1)



















∂tρ1 −∇ · (ρ1(∇p − V )) = ρ1F1,1(p, n) + ρ2F1,2(p, n),

∂tρ2 −∇ · (ρ2(∇p − V )) = ρ1F2,1(p, n) + ρ2F2,2(p, n),

ρp = z(ρ) + z∗(p),

∂tn− α∆n = −n(c1ρ1 + c2ρ2),

on the spacetime domain Q∞ := [0,∞)×R
d. The study of these systems has become extremely

important in the modelling of tissue growth and cancer [BKMP03, PT08, RBE+10] and has

drawn substantial interest from the mathematical community [PQV14, PV15, GPŚG19, KT20,
BCP20, BPPS19, JKT21, AKY14, BM14]. The equations models the growth and death of two
populations of cells whose densities are given by ρ1, ρ2. The densities are linked through a
convex energy z (and its convex dual z∗), which opposes the concentration of the total density
ρ = ρ1 + ρ2. The energy induces a pressure function p, which dissipates energy by pushing the
densities down ∇p. In addition, the densities flow along an external vector field V . The source
terms that control the growth/death of the two populations depend on both the pressure and
a nutrient variable n. The nutrient evolves through a coupled equation that accounts for both
diffusion and consumption.

Throughout the paper, we assume that V ∈ L2
loc([0,∞);L2(Rd)) and ∇ · V ∈ L∞(Q∞). We

will also have the following assumptions on the energy z:

(z1) z : R → R ∪ {+∞} is proper, lower semicontinuous, and convex,
(z2) z(a) = +∞ if a < 0 and z(0) = 0,
(z3) there exists a > 0 such that z is differentiable at a and sup ∂z(0) < z′(a),

as well as the following assumptions on the source terms:

(F1) the Fi,j are continuous on R× [0,∞) and uniformly bounded,
(F2) the cross terms F1,2, F2,1 are nonnegative.

In certain cases, we will need the additional assumption:

(F3) for n fixed, p 7→ (F1,1(p, n) + F2,1(p, n)) and p 7→ (F1,2(p, n) + F2,2(p, n)) are decreasing.
1
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Constructing weak solutions to the system (1.1) is challenging due to the highest order non-
linear terms ρ1∇p, ρ2∇p. Given a sequence of approximate solutions, one needs either strong
convergence of the densities or of the pressure gradient to pass to the limit. Due to the hyperbolic
character of the first two equations, the regularity of the individual densities need not improve
over time. Furthermore, it is not clear if densities with BV initial data will remain BV in di-
mensions d > 1 (see [CFSS18] and [BPPS19] for results in one dimension). On the other hand,
summing the first two equations, one sees that the pressure p and the total density ρ satisfy the
parabolic equation

(1.2) ∂tρ−∇ · (ρ(∇p− V )) = ρ1
(

F1,1(p, n) + F2,1(p, n)
)

+ ρ2
(

F1,2(p, n) + F2,2(p, n)
)

,

(note (1.2) needs to be coupled with the duality relation ρp = z(ρ) + z∗(p) in order to fully
appreciate the parabolic structure). Hence, attacking the problem through the pressure appears
to be more promising.

Indeed, recently, several authors have been able to construct solutions to certain cases of (1.1)

by exploiting (1.2) to obtain strong convergence of the pressure gradient [GPŚG19, BCP20].
The strategy of these approaches is to use the parabolic structure to obtain a priori estimates
on the pressure that are strong enough to guarantee compactness. In particular, following these
approaches, one tries to bound the pressure Laplacian in at least L1 and then obtain some
additional (arbitrarily weak) time regularity. As it turns out, both space and time regularity
can be problematic. It is not clear whether spatial regularity can hold without some structural
assumptions on the sources terms Fi,j or in the presence of a non-zero vector field V . Time
regularity also becomes problematic in the (important) special case where the energy z enforces
the incompressibility constraint ρ ≤ 1. Indeed, in the incompressible case, the coupling between
the total density ρ and the pressure p is degenerate and it is not clear how to convert time
regularity for ρ (easy) into time regularity for p (hard).

In this paper, rather than establish the strong convergence of the pressure gradient through
regularity, we instead prove it directly by exploiting the energy dissipation relation associated to
(1.2). In order to explain our strategy more fully, we need to introduce a change of variables that
will make our subsequent analysis easier. Thanks to the duality relation ρp = z(ρ) + z∗(p), the
term ρ∇p is equivalent to ∇z∗(p). This suggests the natural change of variables q = z∗(p). Since
the pressure is only relevant on the set ρ > 0, we can essentially treat z∗ as a strictly increasing
function. As a result, we can completely rewrite the system (1.1) and the parabolic equation
(1.2) in terms of q instead of p (c.f. Section 2 and 5 for the rigorous justification). Doing so, we
get the equivalent system

(1.3)



















∂tρ1 −∇ · (ρ1ρ ∇q) +∇ · (ρ1V ) = ρ1F1,1

(

(z∗)−1(q), n
)

+ ρ2F1,2

(

(z∗)−1(q), n
)

,

∂tρ2 −∇ · (ρ2ρ ∇q) +∇ · (ρ2V ) = ρ1F2,1

(

(z∗)−1(q), n
)

+ ρ2F2,2

(

(z∗)−1(q), n
)

,

ρq = e(ρ) + e∗(q),

∂tn− α∆n = −n(c1ρ1 + c2ρ2),

where e is the unique convex function such that

e(a) =

{

az(a)− 2
∫ a
0 z(s) ds if z(a) 6= +∞,

+∞ otherwise.

It is worth noting that the change of variables from p to q is essentially the reverse direction
of Otto’s celebrated interpretation of the porous media equation as a W 2 gradient flow [Ott01].
Indeed, the p variable can be interpreted as a Kantorovich potential for the quadratic optimal
transport distance, while the q variable is instead the dual potential for an H−1 distance. While
the optimal transport interpretation of the system is more physically natural, the linearity of the
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H−1 structure is advantageous for our arguments. Indeed, summing the first two equations of
(1.3), we get a more linear analogue of (1.2):

(1.4) ∂tρ−∆q +∇ · (ρV ) = µ,

where we have defined µ := ρ1
(

F1,1

(

(z∗)−1(q), n
)

+ F2,1

(

(z∗)−1(q), n
))

+ ρ2
(

F1,2

(

(z∗)−1(q), n
)

+

F2,2

(

(z∗)−1(q), n
))

for convenience.
Now we are ready to give an outline of our strategy. As we mentioned earlier, the key idea is to

exploit the energy dissipation relation associated to (1.4). Given any nonnegative test function

ω ∈W 1,∞
c ([0,∞)) depending on time only, the dissipation relation states that

(1.5)

∫

Q∞

ω|∇q|2 − e(ρ)∂tω + ωe∗(q)∇ · V − ωµq =

∫

Rd

ω(0)e(ρ0)

where ρ0 is the initial total density and we recall that Q∞ = [0,∞) × R
d is the full space-time

domain. Suppose we have a sequence (ρk, qk, µk) of solutions to equation (1.4) with the same
initial data ρ0 that converges weakly to a limit point (ρ̄, q̄, µ̄). Thanks to the linearity of (1.4),
the limit point (ρ̄, q̄, µ̄) will also be a solution of (1.4). As a result, we can expect that both
(ρk, qk, µk) and (ρ̄, q̄, µ̄) satisfy the dissipation relation (1.5). Hence, we can conclude that
∫

Q∞

ω|∇qk|
2 − e(ρk)∂tω + ωe∗(qk)∇ · V − ωµkqk =

∫

Q∞

ω|∇q̄|2 − e(ρ̄)∂tω + ωe∗(q̄)∇ · V − ωµ̄q̄,

If we can prove that e(ρk), e
∗(qk) converge weakly to e(ρ̄), e∗(q̄) respectively and

(1.6) lim sup
k→∞

∫

Q∞

ωµkqk ≤

∫

Q∞

ωµ̄q̄,

then we have the upper semicontinuity property

(1.7) lim sup
k→∞

∫

Q∞

ω|∇qk|
2 ≤

∫

Q∞

ω|∇q|2,

which automatically implies that ∇qk converges strongly in L2
loc([0,∞);L2(Rd)) to ∇q̄. Thus,

the energy dissipation relation gives us a way to upgrade some weak convergence properties into
strong gradient convergence.

Of course, in order to exploit this idea, we need:

(i) enough regularity to ensure that the dissipation relation (1.5) is valid,
(ii) enough compactness to prove the weak convergence of the energies e(ρk), e

∗(qk),
(iii) enough compactness to verify the nonlinear limit (1.6).

The amount of a priori regularity needed for (i) is very low, thus, this point does not pose
much of a problem. However, obtaining the compactness needed for points (ii) and (iii) is
more delicate. Exploiting convex duality, the weak convergence of the energies e(ρk), e

∗(qk) is
essentially equivalent to the weak convergence of the product ρkqk (c.f. Proposition 3.2). While
we may not know strong convergence of either ρk or qk separately, we can still obtain the weak
convergence of the product through compensated compactness arguments (c.f. Lemma 3.3).
When e∗ is strictly convex, the weak convergence of the energy e∗(qk) to e

∗(q) actually implies
that qk converges to q locally in measure. Thus, in this case, verifying the limit (1.6) becomes
trivial. When the strict convexity of e∗ fails, we will still be able to verify the limit (1.6) as long
as we add the additional structural assumption (F3) on the source terms.

Once we have obtained the strong convergence of the pressure gradient, constructing solutions
to the system (1.3) (and hence the system (1.1)) is straightforward via a vanishing viscosity
approach (note adding viscosity to the system is compatible with our energy dissipation based
argument). Furthermore, the above strategy works even when the energy is allowed to change
along the approximating sequence. Hence, we can also use the above arguments to show that
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solutions to the system (1.1) with the porous media energy zm(a) = 1
m−1a

m converge to the

incompressible limit system with the energy z∞(a) = 0 if a ∈ [0, 1] and +∞ otherwise.

1.1. Main results. For the reader’s convenience, in this subsection, we collect some of our
main results. To prevent the introduction from becoming too bloated, we shall state our results
somewhat informally. The rigorous analogues of these results can be found in Section 5.

Our first result concerns the case where the density-pressure coupling is non-degenerate i.e. z
is differentiable on (0,∞).

Theorem 1.1. Suppose that z is an energy satisfying assumptions (z1-z3) such that ∂z(a) is a
singleton for all a > 0 and suppose that the source terms satisfy assumptions (F1-F2). Given
initial data ρ01, ρ

0
2, n

0 such that e(ρ01 + ρ02) ∈ L1(Rd), there exists a weak solution (ρ1, ρ2, p, n) to
the system (1.1).

When the density-pressure coupling becomes degenerate, we need to add the additional as-
sumption (F3) on the source terms.

Theorem 1.2. Suppose that z is an energy satisfying assumptions (z1-z3) and suppose that the
source terms satisfy assumptions (F1-F3). Given initial data ρ01, ρ

0
2, n

0 such that e(ρ01 + ρ02) ∈
L1(Rd), there exists a weak solution (ρ1, ρ2, p, n) to the system (1.1).

In addition to our existence results, we also show that solutions of the system with the porous
media energy zm(a) := 1

m−1a
m converge to a solution of the system with the incompressible

energy

z∞(a) :=

{

0 if a ∈ [0, 1]

+∞ otherwise

as m→ ∞.

Theorem 1.3. Let ρ01, ρ
0
2, n

0 be initial data such that ρ01 + ρ02 ≤ 1 almost everywhere. Suppose
that the source terms satisfy (F1-F3). If (ρ1,m, ρ2,m, pm, nm) is a sequence of solutions to the
system (1.1) with the energy zm and the fixed initial data (ρ01, ρ

0
2, n

0), then there exists a limit
point of the sequence (ρ1,∞, ρ2,∞, p∞, n∞) that solves the system (1.1) with the incompressible
energy z∞.

Theorem 1.3 is just a special case of our more general convergence result, Theorem 5.5, which
shows that one can extract limit solutions for essentially any reasonable sequence of energies.
Nonetheless, the statement of Theorem 5.5 is a bit too complicated to be cleanly summarized in
the introduction, so we leave it to be stated for the first time in Section 5.

1.2. Limitations and other directions. Unfortunately, our approach cannot handle the more
challenging case where ρ1, ρ2 have different mobilities or where ρ1, ρ2 flow along different vector
fields V1, V2. These cases are known to be extremely difficult, however see [KM18] and [KT20]
for some partial results. When the mobilities are different, the analogue of (1.4) is a nonlinear
parabolic equation with potentially discontinuous coefficients. As a result, one cannot do much
with the limiting variables ρ̄, q̄. When the densities flow along different vector fields, verifying the
upper semicontinuity property (1.7) requires proving the weak convergence of the terms ρ1,k∇qk
and ρ2,k∇qk. Since this essentially requires knowing strong compactness for ∇qk in the first
place, it completely defeats the purpose of the argument.

Nonetheless, it would be interesting to see if this strategy could be applied to other systems
of equations that have some parabolic structure. For instance, if {Wi,j}i,j∈{1,2} are convolution

kernels whose symbols are dominated by (−∆)1/2 i.e. lim sup|ξ|→∞
|Ŵi,j(ξ)|

|ξ| = 0, then it should
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be possible to extend our arguments to the more general system
(1.8)


















∂tρ1 −∇ · (ρ1ρ ∇q) +∇ · (ρ1V ) +W1,1 ∗ ρ1 +W1,2 ∗ ρ2 = ρ1F1,1

(

(z∗)−1(q), n
)

+ ρ2F1,2

(

(z∗)−1(q), n
)

,

∂tρ2 −∇ · (ρ2ρ ∇q) +∇ · (ρ2V ) +W2,1 ∗ ρ1 +W2,2 ∗ ρ2 = ρ1F2,1

(

(z∗)−1(q), n
)

+ ρ2F2,2

(

(z∗)−1(q), n
)

,

ρq = e(ρ) + e∗(q),

∂tn− α∆n = −n(c1ρ1 + c2ρ2),

(perhaps with some other mild requirements on the Wi,j), however, we will not pursue this line
of inquiry further in this work.

1.3. Paper outline. The rest of the paper is organized as follows. In Section 2, we explore some
of the consequences of the change of variables q = z∗(p). After this Section, we will focus only
on the transformed system (1.3) until Section 5. In Section 3, we provide some generic convex
analysis and compensated compactness arguments needed for the weak convergence of the primal
and dual energies. In Section 4, we analyze parabolic PDEs, establishing basic estimates and the
energy dissipation relation. Finally, in Section 5, we combine our work to prove the main results
of the paper.

2. The transformation q = z∗(p)

In this section, we will explore some of the consequences of the transformation q = z∗(p).
Note that the full verification of the equivalence between the systems (1.1) and (1.3) will not
occur until the final section, Section 5. Before we begin our work in this section, let us give a
bit more motivation for introducing this change of variables. First of all, the spatial derivative
in the parabolic equation (1.4) is linear with respect to q, whereas the spatial derivative in
parabolic equation for the p variable (1.2) is not. As a result, establishing the strong L2 gradient
compactness for q is simpler than for p. Furthermore, the q variable is always nonnegative, while
certain choices of z will lead to a p variable that is not bounded from below. The lack of lower
bounds on p leads to some very annoying integrability issues that are completely absent when
one works with q instead.

We begin by establishing the fundamental properties of the transformation q = z∗(p). In
particular, we will show that the transformation is essentially invertible.

Lemma 2.1. If z is an energy satisfying (z1-z3), then z∗ is nonnegative, nondecreasing, and
(z∗)−1 is well defined and Lipschitz on z∗(R) ∩ (0,∞).

Proof. Given any b ∈ R, we have

z∗(b) = sup
a∈R

ab− z(a) ≥ 0− z(0) = 0.

It is also clear that inf ∂z∗(b) ≥ 0 since z(a) = +∞ for any a < 0. If b1 < b2, then z∗(b2) −
z∗(b1) ≥ a1(b2 − b1) ≥ 0 where a1 is any element of ∂z∗(b1). Thus, z∗ is both nonnegative and
nondecreasing.

Since z is proper, we know that z(a) 6= −∞ for all a. Thus given some a0 > 0, there must

exist some b0 ∈ R such that b0 ≤
z(a0)
a0

. It then follows that for all a ≥ a0

ab0 − z(a) ≤ ab0 − z(a0)− (a− a0)
z(a0)

a0
= a(b0 −

z(a0)

a0
) ≤ 0.

Therefore, for all b ≤ b0
sup
a∈R

ab− z(a) = sup
a∈[0,a0]

ab− z(a).
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Fix ǫ > 0 and let an ∈ [0, a0] be a decreasing sequence such that z∗(−n) ≤ ǫ − nan − z(an)
(note that from the above logic such choices of an must exist once n is sufficiently large). Since
an is decreasing and bounded from below, it must converge to a limit point ā as n→ ∞. Thus,

0 ≤ lim inf
n→∞

z∗(−n) ≤ ǫ− z(ā)− lim sup
n→∞

nan,

which immediately implies that ā = 0. We can then rewrite the above as

lim inf
n→∞

z∗(−n) ≤ ǫ− lim sup
n→∞

nan ≤ ǫ.

Therefore, lim infn→∞ z∗(−n) = 0.
It now follows that if z∗(b) ∈ (0,∞), then there must exist some b0 < b such that 2z∗(b0) ≤

z∗(b). We then have

inf ∂z∗(b) ≥
z∗(b)

2(b− b0)
> 0.

Thus, z∗ is strictly increasing at b whenever z∗(b) ∈ (0,∞). Hence (z∗)−1 is well defined and
Lipschitz on z∗(R) ∩ (0,∞). �

While the invertibility of q = z∗(p) can fail when z∗(p) = 0, this will not cause a problem for
our study of the systems (1.1) and (1.3), as the failure cannot happen on the support of ρ.

Lemma 2.2. Suppose that z satisfies assumptions (z1-z3). If (z∗)−1 cannot be extended to a
continuous function on [0,∞) ∩ z∗(R), then ∂z∗(p) = {0} whenever z∗(p) = 0.

Proof. Let p0 = sup{p ∈ R : z∗(p) = 0}. If p0 = −∞, then the statement is vacuously true.
Otherwise, we define (z∗)−1(0) = p0. If z

∗(R)∩[0,∞) = {0}, then (z∗)−1 is trivially continuous
on [0,∞) ∩ z∗(R). Thus, we only need to worry about the case where z∗(R) ∩ (0,∞) 6= ∅ and
there exists a0 ∈ ∂z∗(p0) such that a0 > 0. Convexity then implies that for any p > p0 with
z∗(p) 6= +∞ we have inf ∂z∗(p) ≥ a0. Thus, the Lipschitz constant of (z∗)−1 must be bounded
in a neighborhood of zero and therefore the extension (z∗)−1(0) = p0 must be continuous. �

Perhaps the most significant aspect of the change of variables q = z∗(p) is the change in the
energy controlling the primal and dual coupling. Recall that we defined the new energy e through
the formula

(2.1) e(a) =

{

az(a)− 2
∫ a
0 z(s) ds if z(a) 6= +∞,

+∞ otherwise.

While this formula appears somewhat mysterious, e is the unique (up to an irrelevant constant
factor) convex function such that ∂e(a) = z∗ ◦ ∂z(a) when ∂z(a) 6= ∅. Thus, when p ∈ ∂z(ρ) we
will know that q ∈ ∂e(ρ). Note that the monotonicity of z∗ is key, otherwise e would fail to be
convex. The following Lemma records the properties that e inherits from z.

Lemma 2.3. Suppose that z is an energy satisfying (z1-z3). If we define e : R → R ∪ {+∞}
according to (2.1), then e satisfies the following properties

(e1) e : R → R ∪ {+∞} is proper, convex, and lower semicontinuous.
(e2) e(a) = +∞ if a < 0, e(0) = 0, and e is increasing on e−1(R).

(e3) lim supa→0+
e(a)
a = 0, and lim infb→∞

e∗(b)
b > 0.

Furthermore, if a 6= 0, we have

∂e(a) = {ab− z(a) : b ∈ ∂z(a)} = {z∗(b) : b ∈ ∂z(a)},

and so ∂e(a) is a singleton if and only if ∂z(a) is a singleton.



EXISTENCE OF SOLUTIONS TO REACTION CROSS DIFFUSION SYSTEMS 7

Proof. It is clear that e(0) = 0 and e(a) = +∞ if z(a) = +∞.
Given any two points a0, a1 ∈ z−1(R), convexity implies that

(2.2) 2(a1 − a0)z(
a1 + a0

2
) ≤ 2

∫ a1

a0

z(s) ds ≤ (a1 − a0)(z(a0) + z(a1)).

Thus, if z(a) 6= +∞, then

0 ≤ e(a) ≤ az(a) − 2az(
a

2
) <∞.

Therefore e(a) = +∞ if and only if z(a) = +∞. Thus, the set e−1(R) is an interval. Furthermore,

the above inequalities combined with (z3) clearly imply that lim supa→0+
e(a)
a = 0.

Again using (2.2),

e(a1)−e(a0) = a0(z(a1)−z(a0))+(a1−a0)z(a1)−2

∫ a1

a0

z(s) ds ≥ a0(z(a1)−z(a0))−(a1−a0)z(a0)

If b0 ∈ ∂z(a0), then

e(a1)− e(a0) ≥ (a1 − a0)
(

a0b0 − z(a0)).

Thus, b ∈ ∂z(a) implies that ab−z(a) ∈ ∂e(a) whenever a ∈ e−1(R). Thus, the subdifferential of
e is nonempty whenever the subdifferential of z is nonempty. Combining this with the equality
z−1(R) = e−1(R), it follows that e is convex, lower semicontinuous and proper.

Note that b ∈ ∂z(a) implies that z∗(b) = ab − z(a). Therefore, {ab − z(a) : a ∈ ∂z(a)} =
{z∗(b) : b ∈ ∂z(a)}. Since

∫ a
0 z(s) ds is everywhere differentiable on the interior of z−1(R),

every element of ∂e(a) must have the form ab − z(a) for b ∈ ∂z(a). Convexity implies that
ab− z(a) ≥ −z(0) = 0, thus e is increasing on the interior e−1(R).

It remains to show that limb→∞
e∗(b)
b > 0. Since lim supa→0+

e(a)
a = 0, there must exist some

a0 > 0 such that e(a0) <∞. Thus,

lim inf
b→∞

e∗(b)

b
≥ lim inf

b→∞
a0 −

e(a0)

b
= a0.

�

Parameter z energy a ∈ [0,∞) z∗ energy b ∈ R e energy a ∈ [0,∞) e∗ energy b ∈ R

m ∈ (0,∞] \ {1} 1
m−1 (a

m − a) max( (m−1)b+1
m , 0)m/(m−1) 1

m+1a
m+1 m

m+1 max(b, 0)
m+1
m

m→ 1 a log(a)− a exp(b) 1
2a

2 1
2 max(b, 0)2

Table 1. Some examples of the transformation from z to e.

Now that we have established properties of the transformation q = z∗(p) we can temporarily
forget about the original system (1.1) and focus on (1.3). We will eventually return to (1.1)
in the final section, where we show that solutions to (1.3) can be transformed into solutions to
(1.1). Until then, our efforts will be concentrated on establishing the energy dissipation strategy
described in the introduction.

3. Convex analysis and compensated compactness

In this section, we collect some results that we will need to establish the weak convergence of
the primal and dual energy terms. We begin by defining some convex spaces that we will work
with throughout the paper.
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Definition 3.1. Given an energy e satisfying (e1-e3), we define

X(e) := {ρ ∈ L1
loc(Q∞) : e(ρ) ∈ L∞

loc([0,∞);L1(Rd))},

Y (e∗) := {q ∈ L1
loc(Q∞) : e∗(q) ∈ L1

loc([0,∞);L1(Rd))}.

We are now ready to introduce a result that is one of the cornerstones of our argument.

Proposition 3.2. Let e : R → R∪{+∞} be an energy satisfying (e1−e3). Let ek : R → R∪{+∞}
be a sequence of energies satisfying (e1-e3) such that ek converges pointwise everywhere to e.
Suppose we have a sequence of nonnegative density and pressure functions ρk ∈ X(ek), qk ∈ Y (e∗k)
such that ρkqk = ek(ρk) + e∗k(qk) almost everywhere and ρk, qk converge weakly in L1

loc(Q∞)

to limits ρ, q ∈ L1
loc(Q∞) respectively. If ρq ∈ L1

loc([0,∞);L1(Rd)) and for every nonnegative
ϕ ∈ C∞

c (Q∞)

lim sup
k→∞

∫

Q∞

ϕρkqk ≤

∫

Q∞

ϕρq,

then ρ ∈ X(e), q ∈ Y (e∗), ρq = e(ρ) + e∗(q) almost everywhere, and ρkqk, ek(ρk), e
∗
k(qk) converge

weakly in L1
loc([0,∞);L1(Rd)) to ρq, e(ρ), e∗(q) respectively.

Proof. Given some nonnegative ϕ ∈ C∞
c (Q∞), let D be a compact set containing the support of

ϕ. From our assumptions, we have
∫

Q∞

ϕρq ≥ lim sup
k→∞

∫

Q∞

ϕρkqk = lim sup
k→∞

∫

Q∞

ϕek(ρk) + ϕe∗k(qk).

Fix some simple functions g1, g2 ∈ L∞(D) such that every value of g1 is a value where e
∗
k converges

to e∗ (c.f. Lemma A.1). It then follows that

lim sup
k→∞

∫

Q∞

ϕ
(

ek(ρk)+e
∗
k(qk)

)

≥ lim sup
k→∞

∫

Q∞

ϕ
(

g1ρk−e
∗
k(g1)+g2qk−ek(g2)

)

=

∫

Q∞

ϕ
(

g1ρ−e
∗(g1)+g2q−e(g2)

)

.

Taking a supremum over g1, g2, we can conclude that
∫

Q∞

ϕρq ≥ lim sup
k→∞

∫

Q∞

ϕ
(

ek(ρk) + e∗k(qk)
)

≥

∫

Q∞

ϕ
(

e(ρ) + e∗(q)
)

.

On the other hand, Young’s inequality immediately implies that

ρq ≤ e(ρ) + e∗(q)

almost everywhere. Thus, ρq = e(ρ) + e∗(q) almost everywhere. This also now implies that
ρ ∈ X(e) and q ∈ Y (e∗).

The previous calculation shows that ek(ρk)+e
∗
k(qk) is uniformly bounded in L1

loc([0,∞);L1(Rd)).
Thus, for any time T > 0, there exists w1, w2 ∈ C(QT )

∗ such that ek(ρk), e
∗
k(qk) converge (along

a subsequence that we will not relabel) to w1, w2 respectively. Arguing as in the first paragraph,
it follows that
∫

QT

ϕw1 = lim inf
k→∞

∫

QT

ϕek(ρk) ≥

∫

QT

ϕe(ρ),

∫

QT

ϕw2 = lim inf
k→∞

∫

QT

ϕe∗k(qk) ≥

∫

QT

ϕe∗(q).

Hence,
∫

QT

ϕ|w1 − e(ρ)|+ ϕ|w2 − e∗(q)| =

∫

QT

ϕ
(

w1 − e(ρ) + w2 − e∗(q)
)

=

lim sup
k→∞

∫

QT

ϕ
(

ek(ρk) + e∗k(qk)− e(ρ)− e∗(q)
)

= lim sup
k→∞

∫

QT

ϕ
(

ρkqk − ρq
)

≤ 0.

Thus, w1 = e(ρ) and w2 = e∗(q). Since w1, w2 and T > 0 were arbitrary, it follows that e(ρ), e∗(q)
are the only weak limit points of ek(ρk), e

∗
k(qk) in L

1
loc([0,∞);L1(Rd)). Thus, the full sequences
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ek(ρk), e
∗
k(qk) must converge weakly in L1

loc([0,∞);L1(Rd)) to e(ρ) and e∗(q) respectively. The

weak L1
loc([0,∞);L1(Rd)) convergence of ρkqk to ρq is an immediate consequence.

�

Of course, to even be able to use Proposition 3.2, we somehow need to know an upper semi-
continuity type property for the product ρkqk. In practice, this seems to require establishing the
weak convergence of ρkqk to ρq. Luckily, the following “compensated compactness”-type Lemma
shows that the weak convergence of the product can hold even when the strong convergence of
both ρk and qk is unknown. Unlike typical compensated compactness arguments that decompose
the codomain of the function, the following compensated compactness argument is based on a
decomposition of the domain of the functions. Indeed, we show that if ρk has some time regu-
larity and qk has some space regularity then their product weakly converges. This argument was
inspired by the proof of the main Theorem in [MRCS10], although we would not be surprised if
this result was already established in an earlier work.

Lemma 3.3. Fix some r ∈ (1,∞) and let r′ be the Holder conjugate of r. Let Zr = Lr
loc(Q∞)×

Lr′

loc(Q∞) and let η be a spatial mollifier. Suppose that (uk, vk) ∈ Zr is a sequence that converges
weakly in Zr to a limit point (u, v) ∈ Zr. If uk is equicontinuous with respect to space in Lr

loc(Q∞)

and for any ǫ > 0, ηǫ ∗ vk is equicontinuous with respect to space and time in Lr′

loc(Q∞), then
ukvk converges weakly in (Cc(Q∞))∗ to uv.

Proof. Define vk,ǫ := ηǫ ∗ vk and vǫ := ηǫ ∗ v. For ǫ > 0 fixed and any compact set D ⊂ Q∞, the

Riesz-Frechet-Kolmogorov compactness theorem implies that vk,ǫ converges strongly in Lr′(D)
to vǫ as k → ∞.

Given ϕ ∈ C∞
c (Q∞), we must have

lim
ǫ→0

∫

Q∞

ϕ(v − vǫ)u = 0,

and

lim
k→∞

∫

Q∞

ϕ(vk,ǫ − vǫ)uk + vǫ(u− uk) = 0.

Thus, to prove the weak convergence of ukvk to uv, it will suffice to show that

lim
ǫ→0

lim
k→∞

∫

Q∞

ϕ(vk − vk,ǫ)uk = 0.

Rearranging the convolution, this is equivalent to showing

lim
ǫ→0

lim
k→∞

∫

Q∞

vk
(

ηǫ ∗ ϕuk − ϕuk
)

= 0.

Choose some compact set D ⊂ Q∞ such that for any ǫ sufficiently small, the support of ϕ, ηǫ∗ϕ
is contained in D. We then have the estimate
∣

∣

∣

∫

Q∞

vk
(

ηǫ ∗ϕuk−ϕuk
)

∣

∣

∣
. ‖vk‖Lr′(D)

(

‖ϕ‖L∞(Q∞)‖uk−ηǫ ∗uk‖Lr(D)+ǫ‖uk‖Lr(D)‖∇ϕ‖L∞(Q∞)

)

.

The weak convergence of (uk, vk) to (u, v) in Zr implies that ‖uk‖Lr(D) + ‖vk‖Lr′(D) is bounded

with respect to k. Spatial equicontinuity gives us

lim
ǫ→0

sup
k
‖uk − ηǫ ∗ uk‖Lr(D) = 0.

Thus, it follows that

lim
ǫ→0

sup
k

∣

∣

∣

∫

Q∞

vk
(

ηǫ ∗ ϕuk − ϕuk
)

∣

∣

∣
= 0,

and so we can conclude that ukvk converges in (Cc(Q∞))∗ to uv. �
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4. Energy dissipation and estimates

We will now begin to analyze the parabolic structure of the equation (1.4). In order to do
this, we will need to upgrade the spaces X(e), Y (e∗) into spaces that are more appropriate for
solving PDEs

Definition 4.1. Given an energy e satisfying (e1-e3), we define

X (e) := {ρ ∈ X(e) : ρ ∈ L∞
loc([0,∞);L1(Rd) ∩ L∞(Rd)) ∩H1

loc([0,∞);H−1(Rd))},

Y(e∗) := {q ∈ Y (e∗) : q ∈ L
2d+4
d+4

loc ([0,∞);L2
loc(R

d)) ∩ L2
loc([0,∞); Ḣ1(Rd))}.

Note that the seemingly strange choice of time integrability for Y will become clear later.

Proposition 4.2. Given an energy e : R → R ∪ {+∞} satisfying (e1-e3), suppose that e(ρ0) ∈
L1(Rd)∩L∞(Rd) and ρ0 ∈ L1(Rd). Let ρ ∈ X (e) be a density function and q ∈ Y(e∗) a pressure
function that satisfy the duality relation ρq = e(ρ) + e∗(q) almost everywhere. Suppose that µ ∈
L∞(1ρ ) is a growth rate and V ∈ L2

loc([0,∞);L2(Rd)) is a vector field such that ∇·V ∈ L∞(Q∞).

If for every ψ ∈W 1,1
c ([0,∞);Y(e∗)), ρ, q are weak solutions of the parabolic equation

(4.1)

∫

Rd

ψ(0, x)ρ0(x) dx =

∫

Q∞

∇q · ∇ψ − ρ∂tψ − ρV · ∇ψ − µψ,

then for any nonnegative ω ∈ W 1,∞
c ([0,∞)) that depends only on time, we have the dissipation

relation

(4.2)

∫

Rd

ω(0)e(ρ0(x)) dx =

∫

Q∞

−e(ρ)∂tω + ω|∇q|2 + ωe∗(q)∇ · V − ωµq.

Proof. Let q̃ ∈ C∞
c (Rd) such that e∗(q̃) ∈ L1(Rd). Extend q backwards in time by defining

q(−t, x) = q̃(x) for all t ∈ (0,∞). Fix ǫ > 0, and define

qǫ(t, x) :=
1

ǫ

∫ t

t−ǫ
q(s, x) ds

for all (t, x) ∈ R× R
d.

By Jensen’s inequality, qǫ ∈ Y(e∗) and a direct computation shows that ∂tqǫ is the linear

combination of two Y(e∗) functions for any ǫ > 0. Given any nonnegative ω ∈W 1,∞
c ([0,∞)) that

is a function of time only, it now follows that qǫω is a valid test function for the weak equation
(4.1). Thus, we have

(4.3)

∫

Rd

qǫ(0, x)ω(0)ρ
0(x) dx =

∫

Q∞

−ρ∂t(ωqǫ) + (∇q − ρV ) · ∇(qǫω)− µωqǫ,

Note that for almost every (t, x) ∈ Q∞

ρ∂t(ωqǫ) = ρ(t, x)qǫ(t, x)∂tω(t, x) + ω(t, x)
q(t, x) − q(t− ǫ, x)

ǫ
ρ(t, x).

Hence, we can apply Young’s inequality to deduce that

(4.4) (
q(t, x)− q(t− ǫ, x)

ǫ
)ρ(t, x) ≥

e∗(q(t, x))− e∗(q(t− ǫ, x))

ǫ
By defining

(e∗(q))ǫ :=
1

ǫ

∫ t

t−ǫ
e∗(q(s, x)) ds

we can write the above inequality in the more compact form

ρ∂tqǫ ≥ ∂t(e
∗(q))ǫ
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Plugging this into (4.3), we get the inequality
∫

Rd

qǫ(0, x)ω(0)ρ
0(x) dx ≤

∫

Q∞

−ρqǫ∂tω − ω∂t(e
∗(q))ǫ + (∇q − ρV ) · ∇(qǫω)− µωqǫ,

Moving time derivatives back on to ω, we get the equivalent inequality

(4.5)

∫

Rd

ω(0)
(

qǫ(0, x)ρ
0(x)− e∗

(

qǫ(0, x)
)

)

dx

≤

∫

Q∞

∂tω((e
∗(q))ǫ − ρqǫ) + (∇q − ρV ) · ∇(qǫω)− µωqǫ.

Note that we also have
∫

Rd

ω(0)
(

qǫ(0, x)ρ
0(x)− e∗

(

qǫ(0, x)
)

)

dx =

∫

Rd

ω(0)
(

q̃(x)ρ0(x)− e∗
(

q̃(x)
)

)

dx

thanks to our construction of qǫ.
Since all of the time derivatives are now on ω, we can safely send ǫ→ 0. Thus, it follows that

∫

Rd

ω(0)
(

q̃(x)ρ0(x)− e∗
(

q̃(x)
)

)

dx

≤

∫

Q∞

∂tω(e
∗(q)− ρq) + ω|∇q|2 + ωe∗(q)∇ · V − µωq

where we have used the fact that ∇e∗(q) = ρ∇q (note that this is just a consequence of the chain
rule for Sobolev functions). Exploiting the duality relation ρq = e(ρ) + e∗(q), we have arrived at
the inequality

(4.6)

∫

Rd

ω(0)
(

q̃(x)ρ0(x)− e∗
(

q̃(x)
)

)

≤

∫

Q∞

−e(ρ)∂tω + ω|∇q|2 + ωe∗(q)∇ · V − ωµq.

q̃ was arbitrary, thus, taking a supremum over q̃ we obtain one direction of the dissipation
relation.

To get the other direction, we instead smooth q forwards in time by defining

q̄ǫ :=
1

ǫ

∫ t+ǫ

t
q(s, x).

The argument will then proceed identically to the above except that the forward-in-time smooth-
ing does not allow us to conclude that qǫ(0, x) = q̃. Luckily, Young’s inequality is now in our
favor and so we just use

∫

Rd

ω(0)
(

qǫ(0, x)ρ
0(x)− e∗

(

qǫ(0, x)
)

)

dx ≤

∫

Rd

ω(0)e(ρ0(x))dx.

�

In the next proposition we collect some a priori estimates for solutions to (1.4). In fact, we
will consider a slightly more general equation where we add an additional viscosity term −γ∆ρ
where the constant γ is possibly zero. As we will see, the estimates will give us uniform control
when we consider sequences of solutions.

Proposition 4.3. Let e be an energy function satisfying (e1-e3), let V ∈ L2
loc(Q∞) be a vector

field such that ∇ · V ∈ L∞(Q∞), let µ
ρ ∈ L∞(Q∞) and let γ be a positive constant. Suppose that

ρ ∈ X (e) ∩ L2
loc([0,∞);H1(Rd)), q ∈ Y(e∗) satisfy the duality relation ρq = e(ρ) + e∗(q) almost

everywhere. If e(ρ0) ∈ L1(Rd) and the variables satisfy the weak equation

(4.7)

∫

Rd

ψ(0, x)ρ0(x) dx =

∫

Q∞

γ∇ρ · ∇ψ +∇q · ∇ψ − ρ∂tψ − ρV · ∇ψ − µψ,
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for every test function ψ ∈W 1,1
c ([0,∞);L1(ρ)∩Ḣ1(Rd)), then for any nonnegative ω ∈W 1,∞

c ([0,∞))
that depends only on time and for every m ∈ (1,∞), we have the dissipation inequalities

(4.8)

∫

Q∞

−e(ρ)∂tω + ω|∇q|2 + ωe∗(q)∇ · V − ωµq ≤

∫

Rd

ω(0)e(ρ0(x)) dx

(4.9)

∫

Q∞

ωγ(m− 1)ρm−2|∇ρ|2 − ρm
( 1

m
∂tω + ω(

µ

ρ
−
m− 1

m
∇ · V )

)

≤

∫

Rd

ω(0)

m
(ρ0)m dx

and if we set β = inf{b ∈ R : e∗(b) ≥ 1} then the following estimates hold for almost all
T ∈ [0,∞):

(4.10) γ‖∇ρ‖2L2(QT ) ≤ ‖ρ0‖2L2(Rd) + ‖ρ‖2L2(QT )

(

‖
µ

ρ
‖L∞(QT ) + ‖∇ · V ‖L∞(Q∞)),

(4.11) ‖ρ(T ·)‖L1(Rd) ≤ ‖ρ0‖L1(Rd) exp(T‖
µ

ρ
‖L∞(QT ))

(4.12) ‖∂tρ‖L2([0,T ];H−1(Rd)) ≤ γ‖∇ρ‖L2(QT ) + ‖∇q‖L2(QT ) + ‖µ‖L2(QT ) + ‖ρV ‖L2(QT )

(4.13) ‖ρ(T, ·)‖L∞(Rd) ≤ ‖ρ0‖L∞(Rd) exp
(

2T (‖∇ · V ‖L∞(QT ) + ‖
µ

ρ
‖L∞(QT ))

)

,

(4.14)

‖∇q‖2L2(QT ) .d

∫

Rd

e(ρ0) dx+max(β, 1)
(

‖ρ‖L1(QT )+‖ρ‖
2
d

L∞[0,T ];L1(Rd)
‖ρ‖2L2(QT )

)

(

1+‖
µ

ρ
‖L∞(QT )+‖∇·V ‖L∞(QT )

)2
,

(4.15)

‖e∗(q)‖L1(QT ) + ‖e(ρ)‖L1(QT ) .d β‖ρ‖L1(QT ) + (β‖ρ‖L∞ [0,T ];L1(Rd))
1
d

(

‖ρ‖L2(QT )‖∇q‖L2(QT )

)

,

(4.16) ‖e∗(q)‖
L

2d+4
d+4 ([0,T ];L2(Rd))

.d ‖e∗(q)‖
2

d+2

L1(QT )
‖∇q‖

d
d+2

L2(QT )
‖ρ‖

d
d+2

L∞(QT ).

and for any compact set K ⊂ R
d,

(4.17) ‖q‖
L

2d+4
d+4 ([0,T ];L2(K))

.d βT |K|+ β‖e∗(q)‖
2

d+2

L1(QT )
‖∇q‖

d
d+2

L2(QT )
‖ρ‖

d
d+2

L∞(QT ).

Proof. The dissipation inequalities (4.8) and (4.9) follow from choosing the test functions q and
ρm−1 respectively. These test functions do not have the required time regularity, however, by
following an identical argument to Proposition 4.2, this technicality can be overcome. In addition,
note that in both inequalities we have dropped a term involving ∇ρ · ∇q, which is nonnegative
thanks to the duality relation.

Estimates (4.11) and (4.12) are straightforward consequences of the weak equation (4.7). Es-
timate (4.10) follows from (4.9) with m = 2. Estimate (4.13) follows from applying a Gronwall
argument to (4.9) and then sending m→ ∞.

The estimates (4.14-4.17), are all linked. We begin by fixing a time T ∈ [0,∞) and considering
‖ρq‖L1(QT ). Define q̃ := max(q, β)− β. It is then clear that

‖ρq‖L1(QT ) ≤ β‖ρ‖L1(QT ) + ‖ρq̃‖L1(QT ), ‖∇q̃‖L2(QT ) ≤ ‖∇q‖L2(QT ).

Working in Fourier space, we have

‖ρq̃‖L1(QT ) ≤

∫ T

0

∫

Rd

|ρ̂(t, ξ)ˆ̃q(t, ξ)| dξ dt ≤

∫ T

0
|BR|‖ρ(t, ·)‖L1(Rd)‖q̃(t, ·)‖L1(Rd)+

∫

|ξ|>R
|ρ̂(t, ξ)ˆ̃q(t, ξ)| dξ dt

≤ T |BR|‖ρ‖L∞([0,T ];L1(Rd))‖q̃‖L1(QT ) +R−1‖ρ‖L2(QT )‖∇q̃‖L2(QT )
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where R > 0 and BR is the ball of radius R. Optimizing over R and dropping dimensional
constants, it follows that

∫

QT

ρq̃ .d

(

‖ρ‖L∞([0,T ];L1(Rd))‖q̃‖L1(QT )

)
1

d+1
(

‖ρ‖L2(QT )‖∇q‖L2(QT )

)
d

d+1 .

If b > β and e∗(b) 6= +∞, then it follows from the definition of β that β−1 = lim infǫ→0+
e∗(β+ǫ)−e∗(0)

β+ǫ ≤

inf ∂e∗(b). Therefore,

max(e∗(q)− e∗(β), 0) ≥ β−1q̃

It then follows that
‖q̃‖L1(QT ) ≤ β‖e∗(q)‖L1(QT ) ≤ β‖ρq‖L1(QT ).

As a result,

‖ρq‖L1(QT ) .d β‖ρ‖L1(QT ) +
(

β‖ρ‖L∞([0,T ];L1(Rd))‖ρq‖L1(QT )

)
1

d+1
(

‖ρ‖L2(QT )‖∇q‖L2(QT )

)
d

d+1

Now using Young’s inequality (suboptimally), it follows that

‖ρq‖L1(QT ) .d β‖ρ‖L1(QT ) + (β‖ρ‖L∞[0,T ];L1(Rd))
1
d

(

‖ρ‖L2(QT )‖∇q‖L2(QT )

)

.

Since
‖e(ρ)‖L1(QT ) + ‖e∗(q)‖L1(QT ) = ‖ρq‖L1(QT )

we have obtained the bound in (4.15).
Now we turn to estimating ‖∇q‖L2(QT ). From the dissipation relation (4.8), we have

∫

Q∞

ω|∇q|2 − e(ρ)(∂tω +
µ

ρ
ω) + ωe∗(p)(∇ · V −

µ

ρ
) ≤

∫

Rd

ω(0)e(ρ0) dx

for any nonnegative ω ∈ W 1,∞
c ((0,∞)). Fix a time T > 0 that is a Lebesgue point for the

mapping T 7→ ‖∇q‖L2(QT ). Assume that ω is a decreasing function supported on [0, T ] and
ω ≤ 1 everywhere. We can then eliminate the term −e(ρ)∂tω. Thus, it follows from our previous
work that

∫

Q∞

ω|∇q|2 ≤

∫

Rd

e(ρ0) dx+ ‖ρq‖L1(QT )

(

‖
µ

ρ
‖L∞(QT ) + ‖∇ · V ‖L∞(QT )

)

.d

∫

Rd

e(ρ0) dx+max(β, 1)
(

‖ρ‖L1(QT )+‖ρ‖
1
d

L∞[0,T ];L1(Rd)

(

‖ρ‖L2(QT )‖∇q‖L2(QT )

)

)

(

‖
µ

ρ
‖L∞(QT )+‖∇·V ‖L∞(QT )

)

If we let ω approach the characteristic function of [0, T ], then we deduce that ‖∇q‖2L2(QT ) is

.d

∫

Rd

e(ρ0) dx+
(

β‖ρ‖L1(QT )+(β‖ρ‖L∞[0,T ];L1(Rd))
1
d ‖ρ‖L2(QT )‖∇q‖L2(QT )

)

(

‖
µ

ρ
‖L∞(QT )+‖∇·V ‖L∞(QT )

)

.

Now we can use Young’s inequality (suboptimally again) to get (4.14)

‖∇q‖2L2(QT ) .d

∫

Rd

e(ρ0) dx+max(β, 1)
(

‖ρ‖L1(QT )+‖ρ‖
2
d

L∞[0,T ];L1(Rd)
‖ρ‖2L2(QT )

)

(

1+‖
µ

ρ
‖L∞(QT )+‖∇·V ‖L∞(QT )

)2
.

Finally, working in Fourier space again, it follows that for any exponent r ∈ [1, d+2
2 ) and radius

R > 0,

‖e∗(q)‖rLr([0,T ];L2(Rd)) .d

∫ T

0

(

Rd‖e∗(q(t, ·))‖2L1(Rd) +R−2‖∇e∗(q(t, ·))‖2L2(Rd)

)r/2
dt.

Once again optimizing over R, we have

‖e∗(q)‖rLr([0,T ];L2(Rd)) .d

∫ T

0
‖e∗(q(t, ·)‖

2r
(d+2)

L1(Rd)
‖∇e∗(q(t, ·))‖

dr
(d+2)

L2(Rd)
dt
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.d ‖e
∗(q)‖

2r
d+2

L1(QT )
‖∇e∗(q)‖

dr
d+2

L
dr

d+2−2r ([0,T ];L2(Rd))
.

Thus,

‖e∗(q)‖Lr([0,T ];L2(Rd)) .d ‖e
∗(q)‖

2
d+2

L1(QT )
‖∇e∗(q)‖

d
d+2

L
dr

d+2−2r ([0,T ];L2(Rd))
.

If we choose r = 2d+4
d+4 we get

‖e∗(q)‖
L

2d+4
d+4 ([0,T ];L2(Rd))

.d ‖e
∗(q)‖

2
d+2

L1(QT )
‖∇e∗(q)‖

d
d+2

L2(QT )
.

Finally, since ∇e∗(q) = ρ∇q by the chain rule for Sobolev functions, we have

‖e∗(q)‖
L

2d+4
d+4 ([0,T ];L2(Rd))

.d ‖ρ‖
d

d+2

L∞(QT )‖e
∗(q)‖

2
d+2

L1(QT )
‖∇q‖

d
d+2

L2(QT )
.

Fixing a compact set K ⊂ R
d, we also have

‖q‖
L

2d+4
d+4 ([0,T ];L2(K))

≤ βT |K|+ ‖q̄‖
L

2d+4
d+4 ([0,T ];L2(QT ))

≤ βT |K|+ β‖e∗(q)‖
L

2d+4
d+4 ([0,T ];L2(Rd))

�

5. Main results

At last, we are ready to combine our work to prove the main results of this paper. We will
begin by constructing solutions to the system (1.3) and then we will show that these can be
converted into solutions to the original system (1.1).

The construction of solutions to (1.3) is based on a vanishing viscosity approach. To that end,
we consider a viscous analogue of system (1.3) where we add viscosity to both of the species
ρ1, ρ2. Given a viscosity parameter γ ≥ 0, we introduce the system:

(5.1)



















∂tρ1 − γ∆ρ1 −∇ · (ρ1ρ ∇q) +∇ · (ρ1V ) = ρ1F1,1

(

(z∗)−1(q), n
)

+ ρ2F1,2

(

(z∗)−1(q), n
)

,

∂tρ2 − γ∆ρ2 −∇ · (ρ2ρ ∇q) +∇ · (ρ2V ) = ρ1F2,1

(

(z∗)−1(q), n
)

+ ρ2F2,2

(

(z∗)−1(q), n
)

,

ρq = e(ρ) + e∗(q),

∂tn− α∆n = −n(c1ρ1 + c2ρ2).

We define weak solutions to this system as follows.

Definition 5.1. Given a viscosity parameter γ ≥ 0 and initial data ρ01, ρ
0
2 ∈ X(e) and n0 ∈

L2(Rd), we say that (ρ1, ρ2, q, n) ∈ X (e) × X (e) × Y(e∗) × L2
loc([0,∞);H1(Rd)) is a weak solu-

tion to the system (5.1) with initial data (ρ01, ρ
0
2, n

0), if ρq = e(ρ) + e∗(q) almost everywhere,
γ∇ρ1, γ∇ρ2 ∈ L2

loc([0,∞);L2(Rd)), and for every test function ψ ∈ H1
c ([0,∞);H1(Rd))

(5.2)
∫

Rd

ψ(0, x)ρ01 =

∫

Q∞

∇ψ·
(ρ1
ρ
∇q+γ∇ρ1−ρ1V

)

−ρ1∂tψ−ψ
(

ρ1F1,1

(

(z∗)−1(q), n
)

+ρ2F1,2

(

(z∗)−1(q), n
))

,

(5.3)
∫

Rd

ψ(0, x)ρ02 =

∫

Q∞

∇ψ·
(ρ2
ρ
∇q+γ∇ρ2−ρ2V

)

−ρ2∂tψ−ψ
(

ρ1F2,1

(

(z∗)−1(q), n
)

+ρ2F2,2

(

(z∗)−1(q), n
))

,

(5.4)

∫

Rd

ψ(0, x)n0 =

∫

Q∞

α∇ψ · ∇n− n∂tψ + n(c1ρ1 + c2ρ2)ψ

where ρ = ρ1 + ρ2.
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When γ > 0, the existence of weak solutions to (5.1) is straightforward, as the individual
densities will be bounded in L2

loc([0,∞);H1(Rd)) ∩ H1
loc([0,∞);H−1(Rd)). Since this space is

compact in L2
loc([0,∞);L2(Rd)), one can construct the solutions as limits of an even more regu-

larized system (with enough regularity existence of solutions can be shown with a standard but
tedious Picard iteration). Thus, we can assume the existence of a sequence (ρ1,k, ρ2,k, qk, nk) such
that for each k the variables are a weak solution to (5.1) with viscosity parameter γk > 0. We
will then use our efforts from the past two sections to show that when γk → 0 we can still pass
to the limit in equations (5.2-5.4) to obtain a solution to (1.3). In fact, we will show that we can
pass to the limit even when the underlying energy function ek is changing along the sequence.

We begin with the strong precompactness for the pressure gradient.

Proposition 5.2. Let ek be a sequence of energy functions satisfying (e1-e3) and suppose there
exists an energy e satisfying (e1-e3) such that ek converges pointwise everywhere to e. Let
ρk ∈ X (ek), qk ∈ Y(e∗k), and µk ∈ L∞( 1

ρk
) be sequences of densities, pressure, and growth terms

that converge weakly in L1
loc(Q∞) to limits ρ ∈ X (e), q ∈ Y(e∗), µ ∈ L∞(1ρ ). If ρkqk converges

weakly in L1
loc(Q∞) to ρq and for every ω ∈W 1,∞

c ([0,∞))

(5.5)

∫

Q∞

−ek(ρk)∂tω + ω|∇qk|
2 + ωe∗k(qk)∇ · V − ωµkqk ≤

∫

Rd

ω(0)ek(ρk(0, x)) dx,

(5.6)

∫

Rd

ω(0)e(ρ(0, x)) dx ≤

∫

Q∞

−e(ρ)∂tω + ω|∇q|2 + ωe∗(q)∇ · V − ωµq,

and

(5.7) lim sup
k→∞

∫

Rd

ω(0)ek(ρk(0, x)) +

∫

Q∞

ωqkµk ≤

∫

Rd

ω(0)e(ρ(0, x)) +

∫

Q∞

ωqµ,

then ∇qk converges strongly in L2
loc([0,∞);L2(Rd)) to ∇q.

Proof. If we combine (5.5), (5.7) and (5.6), we get the string of inequalities

lim sup
k→∞

∫

Q∞

−ek(ρk)∂tω + ω|∇qk|
2 + ωe∗k(qk)∇ · V

≤ lim sup
k→∞

∫

Rd

ω(0)e(ρk(0, x)) +

∫

Q∞

ωqkµk ≤

∫

Rd

ω(0)e(ρ(0, x)) +

∫

Q∞

ωµq

≤

∫

Q∞

−e(ρ)∂tω + ω|∇q|2 + ωe∗(q)∇ · V

Thanks to Prop 3.2, the weak convergence of ρkqk to ρq implies that ek(ρk), e
∗
k(qk) converge

weakly in L1
loc(Q∞) to e(ρ), e∗(q) respectively. Therefore,

(5.8) lim sup
k→∞

∫

Q∞

ω|∇qk|
2 ≤

∫

Q∞

ω|∇q|2 <∞.

The L2
loc([0,∞);L2(Rd)) boundedness of ∇qk along with the weak L1

loc(Q∞) convergence of qk
to q implies that ∇qk converges weakly in L2

loc([0,∞);L2(Rd)) to ∇q. Combining the weak
convergence with the upper semicontinuity property (5.8), it now follows that ∇qk converges
strongly in L2

loc([0,∞);L2(Rd)) to ∇q. �

The next two Lemmas are technical results that will help us guarantee that we can pass to
the limit in all of the terms in (5.2) and (5.3).



16 MATT JACOBS

Lemma 5.3. Let ek be a sequence of energies satisfying (e1-e3) and suppose there exists an energy
e satisfying (e1-e3) such that ek converges pointwise everywhere to e. Let ρk ∈ X (ek), qk ∈ Y(e∗k)
be sequences of uniformly bounded density and pressure variables that satisfy the duality relation
ρkqk = ek(ρk) + e∗k(qk) almost everywhere. If qk converges strongly in L2

loc([0,∞); Ḣ1(Rd)) ∩

L
2d+4
d+4

loc (Q∞) to a limit q and ρk converges weakly in L2
loc([0,∞);L2(Rd)) to a limit ρ, then

lim sup
k→∞

∫

D
|ρ− ρk||∇q|

2 = 0

for any compact set D ⊂ Q∞

Proof. Clearly for any ϕ ∈ C∞
c (Q∞) we have

lim sup
k→∞

∫

Q∞

ϕρkqk =

∫

Q∞

ϕρq.

Thus, by Proposition 3.2, the limiting variables satisfy the duality relation ρq = e(ρ) + e∗(q)
almost everywhere.

Let M = supk‖ρk‖L∞(D) <∞. Define ē∗k and ē∗ such that ē∗k(0) = 0, ē∗(0) = 0, and

∂ē∗k(b) = {min(a,M) : a ∈ ∂e∗k(b)}, ∂ē∗(b) = {min(a,M) : a ∈ ∂e∗(b)}

Let ēk = (ē∗k)
∗ and ē = (ē∗)∗. Clearly, we still have the duality relations ρkqk = ē(ρk) + ē∗(qk)

and ρq = ē(ρ)+ ē∗(q) almost everywhere. It also follows that ē∗k, ē
∗ are uniformly Lipschitz on the

entire real line and uniformly bounded on compact subsets of R. As a result, ē∗k must converge
uniformly on compact subsets of R to ē∗.

Fix some δ > 0. Convexity and the duality relation imply that

ρk ≤
ē∗k(qk + δ) − ē∗k(qk)

δ
, ρ ≤

ē∗(q + δ) − ē∗(q)

δ
,

and

ρk ≥
ē∗k(qk)− ē∗k(qk − δ)

δ
, ρ ≥

ē∗k(q)− ē∗(q − δ)

δ
.

Therefore,
∫

D
|ρ− ρk||∇q|

2

≤

∫

D

(

|
ē∗k(qk + δ) + ē∗(q − δ)− ē∗k(qk)− ē∗(q)

δ
|+|

ē∗(q + δ) + ē∗k(qk − δ)− ē∗k(qk)− ē∗(q)

δ
|
)

|∇q|2.

Thus, it follows that

lim sup
k→∞

∫

D
|ρ− ρk||∇q|

2 ≤ 2

∫

D
|
ē∗(q + δ) + ē∗(q − δ)− 2ē∗(q)

δ
||∇q|2

If ē∗ is continuously differentiable at a point b ∈ R, then

lim
δ→0

ē∗(b+ δ) + ē∗(b− δ) − 2ē∗(b)

δ
= 0.

The singular set S ⊂ R of values where ē∗ is not continuously differentiable is at most countable.
Therefore, |∇q| is zero almost everywhere on the set {(t, x) ∈ D : q(t, x) ∈ S}. Hence, by
dominated convergence,

lim
δ→0

2

∫

D
|
ē∗(q + δ) + ē∗(q − δ)− 2ē∗(q)

δ
||∇q|2 = 0.

�
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Lemma 5.4. Let zk be a sequence of energies satisfying (z1-z3) and suppose there exists an
energy z satisfying (z1-z3) such that zk converges pointwise everywhere to z. Define ek, e by for-
mula (2.1). Suppose that (ρ1,k, ρ2,k, qk, nk) ∈ X (ek) × X (ek) × Y(e∗k) × L2

loc([0,∞);H1(Rd))
is a sequence such that (ρ1,k + ρ2,k)qk = ek(ρ1,k + ρ2,k) + e∗k(qk) almost everywhere. Sup-

pose that ρ1,k, ρ2,k converge weakly in Lr
loc([0,∞);Lr(Rd) to limits ρ1, ρ2 ∈ X (e), qk converges

strongly in L
2d+4
d+4

loc ([0,∞);L2
loc(R

d))∩L2
loc([0,∞); Ḣ1(Rd)) to a limit q, and nk converges strongly

in L2
loc([0,∞);L2(Rd)) to a limit n. If the growth terms Fi,j satisfy assumptions (F1-F2),

then ρj,kFi,j

(

z−1
k (qk), nk

)

converges weakly in Lr
loc([0,∞);Lr(Rd)) to ρjFi,j

(

z−1(q), n)
)

for all
i, j ∈ {1, 2} and any r <∞.

Proof. It suffices to prove the convergence of ρ1,kF1,1

(

z−1
k (qk), nk

)

to ρ1F1,1

(

z−1(q), n
)

, the ar-
gument for the other terms is identical. Let ϕ ∈ C∞

c (Q∞) and let D ⊂ Q∞ be a compact set
containing the support of ϕ. For N ∈ R define Sk,N := {(t, x) ∈ D : qk(t, x) + nk(t, x) > N}.
From the uniform bounds on the norms of qk, nk it follows that limN→∞ supk |Sk,N | = 0. Thus,
we can assume without loss of generality that qk, nk are uniformly bounded by some M > 0 (and
of course this same logic applies to q, n as well).

Let b∞ = sup{b ∈ R : z∗(b) <∞}. Fix ǫ ∈ (0, z∗(b∞)/2) and let qk,ǫ = min(max(ǫ, qk), z
∗(b∞)−

ǫ), qǫ = min(max(ǫ, q), z∗(b∞) − ǫ). It now follows that (z∗k)
−1(qk,ǫ), (z

∗)−1(qǫ) are uniformly
bounded in L∞(D). Thanks to Lemma A.1, we know that (z∗k)

−1 converges uniformly to (z∗)−1

on (ǫ, z∗(b∞)− ǫ). Combining this with properties (F1-F2), and the various convergence proper-
ties of qk, nk, ρ1,k it follows that

lim sup
k→∞

∣

∣

∣

∫

Q∞

ϕ
(

ρ1,kF1,1

(

(z∗k)
−1(qk,ǫ), nk

)

− ρ1F1,1

(

(z∗)−1(qǫ), n
)

)∣

∣

∣
= 0.

Thus, it remains to show that

(5.9) lim
ǫ→0+

∣

∣

∣

∫

Q∞

ϕρ1

(

F1,1

(

(z∗)−1(qǫ), n
)

− F1,1

(

(z∗)−1(q), n
)

)
∣

∣

∣
= 0

and

(5.10) lim
ǫ→0+

lim sup
k→∞

∣

∣

∣

∫

Q∞

ϕρ1,k

(

F1,1

(

(z∗k)
−1(qk,ǫ), nk

)

− F1,1

(

(z∗k)
−1(qk), nk

)

)
∣

∣

∣
= 0.

To do this we will exploit the density pressure duality relationship. Thanks to the relationship
between e and z, we can express the duality relation as (ρ1,k+ρ2,k)(z

∗
k)

−1(qk) = zk(ρ1,k+ρ2,k)+qk.
Fix some δ > 0 and split the support of ρ1,k into the sets ρ1,k < δ and ρ1,k ≥ δ. Again using
duality, we have

0 ≤ ρ1,k ≤ ρ1,k + ρ2,k ∈ ∂z∗k ◦ (z
∗
k)

−1 ◦ qk

Thus, for almost every (t, x) where ρ1,k(t, x) ≥ δ, it follows that (z∗k)
−1 is at worst δ−1 Lipschitz

at the value qk(t, x) and (z∗k)
−1(qk(t, x)) is uniformly bounded with respect to k. Thus,

∣

∣

∣

∫

Q∞

ϕρ1,k

(

F1,1

(

(z∗k)
−1(qk,ǫ), nk

)

− F1,1

(

(z∗k)
−1(qk), nk

)

)∣

∣

∣

≤ Bδ‖ϕ‖L1(D) + ωδ(2ǫδ
−1)‖ρ1,k‖L1(D)‖ϕ‖L∞(D) + ‖ρ1,kϕ‖L∞(D)|Dk,ǫ|

where B is a bound on F1,1 and ωδ is the modulus of continuity of F1,1 on the bounded set
(

⋃

k{(z
∗
k)

−1(qk(t, x)) : ρ1,k(t, x) ≥ δ}
)

× [0,M ] and Dk,ǫ = {(t, x) ∈ D : qk(t, x) > z∗(b∞) + ǫ}.

The convergence of zk to z implies that lim supk→∞ |Dk,ǫ| = 0 for all fixed ǫ > 0. Thus, sending
k → ∞, then ǫ→ 0+, and then δ → 0+, we get (5.10). The strong convergence of qk implies that
the duality relation (ρ1+ρ2)(z

∗)−1(q) = z(ρ1+ρ2)+ q holds, thus we can use a similar argument
to obtain (5.9).
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�

At last, we are ready to prove our main result, which will let us pass to the limit when we
consider sequences of weak solutions to (5.1). Note that the following theorem applies in the
case where the viscosity is decreasing to zero along the sequence, as well as when the viscosity is
zero along the entire sequence.

Theorem 5.5. Let zk be a sequence of energies satisfying (z1-z3). Suppose there exists an energy
z satisfying (z1-z3) such that zk converges pointwise everywhere to z. Define ek, e by formula
(2.1). Let ρ01, ρ

0
2 ∈ L1(Rd)∩L∞(Rd), n0 ∈ L2(Rd) be initial data such that e(ρ01+ρ

0
2) ∈ L1(Rd). Let

V ∈ L2
loc([0,∞);L2(Rd)) be a vector field such that ∇ ·V ∈ L∞(Q∞) and let Fi,j be source terms

satisfying (F1-F2). Let ρ1,k, ρ2,k ∈ X (ek), qk ∈ Y(e∗k), nk ∈ L2
loc([0,∞);H1(Rd)) be sequences

of density pressure and nutrient variables such that ∇ρ1,k,∇ρ2,k ∈ L2
loc([0,∞);L2(Rd)). Suppose

that for each k, the variables (ρ1,k, ρ2,k, qk, nk) are weak solutions to the system (5.1) with energy
ek, viscosity constant γk ≥ 0, and initial data (ρ01, ρ

0
2, n

0). If γk converges to 0 and at least one
of the following two conditions hold:

(a) ∂z(a) is a singleton for all a ∈ (0,∞),
(b) the source terms satisfy the additional condition (F3),

then any limit point (ρ1, ρ2, q, n) of the sequence is a solution of (1.3).

Proof. Step 1: Uniform bounds, basic convergence properties, and parabolic structure.
Summing the first two equations of (5.1) together, we see that for any test function ψ ∈

W 1,1
c ([0,∞);H1(Rd)) ρk, qk are weak solutions to the parabolic equation

(5.11)

∫

Rd

ψ(0, x)ρ0 =

∫

Q∞

−ρk∂tψ +∇ψ · (∇qk + γk∇ρk)− ρk∇ψ · V − ψµk

where ρk = ρ1,k+ρ2,k, µk = µ1,k+µ2,k and µi,k = ρ1,kFi,1

(

(z∗k)
−1(qk, nk)

)

+ρ2,kFi,2

(

(z∗k)
−1(qk, nk)

)

.
Thanks to Proposition 4.3, ρk, qk, µk must satisfy the energy dissipation inequality

∫

Q∞

−e(ρk)∂tω + ω|∇qk|
2 + ωe∗(qk)∇ · V − ωµkqk ≤

∫

Rd

ω(0)e(ρ0(x)) dx,

for every nonnegative ω ∈W 1,∞([0,∞)) and the estimates (4.10)-(4.17). After plugging estimate
(4.10) into estimate (4.12), it follows that all of the estimates (4.11-4.17) are independent of k
and only depend on ρ0, V and the bounds on Fi,j . Thus, ρk, qk are uniformly bounded in
the norms estimated in (4.11)-(4.17). As a result, there must exist ρ ∈ X (e), q ∈ Y(e∗) and

µ ∈ L∞
loc([0,∞);L∞(Rd)∩L1(Rd)) such that ρk, qk, µk converge weakly in L

2d+4
d+4

loc ([0,∞);L2
loc(R

d))
(along a subsequence that we do not relabel) to ρ, q, µ respectively. Note that for ρk, µk the weak
convergence in fact holds in Lr

loc(Q∞) for any r <∞.
Property (F2) implies that 0 ≤ ρ1,k, ρ2,k ≤ ρk. Hence, ρ1,k, ρ2,k are uniformly bounded in

L∞
loc([0,∞);L1(Rd)∩L∞(Rd)) and there exist limit points ρ1, ρ2 (and a subsequence that we do not

relabel) such that ρ1,k, ρ2,k converge weakly in Lr
loc([0,∞);L1(Rd)∩Lr(Rd)) to ρ1, ρ2 respectively

for any r < ∞. Furthermore, the bounds on ρ1,k, ρ2,k combined with standard results for the

heat equation imply that nk is uniformly bounded in L2
loc([0,∞);H1(Rd))∩H1

loc([0,∞);H−1(Rd)).

Hence, the Aubin-Lions Lemma implies that there exists a limit point n ∈ L2
loc([0,∞);H1(Rd))

and a subsequence (that we do not relabel) such that nk converges to n in L2
loc([0,∞);L2(Rd)).

Thanks to the linear structure of equation (5.11), the convergence properties we have estab-
lished are strong enough to send k → ∞. Thus, ρ, q, µ satisfy the weak equation

(5.12)

∫

Rd

ψ(0, x)ρ0(x) dx =

∫

Q∞

∇q · ∇ψ − ρ∂tψ − ρV · ∇ψ − µψ.
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for any ψ ∈ W 1,1
c ([0,∞);H1(Rd)) After taking the limit, the bounds on ρ, q, µ inherited from

the estimates (4.11-4.17) allow us to conclude that (5.12) holds for any ψ ∈W 1,1
c ([0,∞);L1(ρ)∩

Ḣ1(Rd)). Thus, Proposition 4.2 implies that for every ω ∈ W 1,∞
c ([0,∞)) the limit variables

ρ, µ, q satisfy the energy dissipation relation
∫

Rd

ω(0)e(ρ(0, x)) dx =

∫

Q∞

−e(ρ)∂tω + ω|∇q|2 + ωe∗(q)∇ · V − ωµq.

Step 2: Weak convergence of the products ρ1,kqk, ρ2,kqk.
We want to use Lemma 3.3 to prove that ρi,kqk converges weakly to ρiq for i = 1, 2. This will

imply that ρkqk converges weakly to ρq. Fix some ǫ > 0 and let ηǫ be a spatial mollifier. Define
ρi,k,ǫ = ηǫ ∗ ρi,k and ρi,ǫ = ηǫ ∗ ρi. Thanks to estimates (4.11-4.13), it follows that

sup
k

‖∂tρi,k,ǫ‖L2(QT ) + ‖∇ρi,k,ǫ‖L2(QT ) .ǫ sup
k

‖ρi,k‖L2(QT ) + ‖ρi,k‖H1([0,T ];H−1(Rd)) <∞.

Thus, for ǫ > 0 fixed, ρi,k,ǫ is uniformly equicontinuous in L2(QT ). The uniform bounds (4.11)
and (4.13) automatically upgrade this to uniform equicontinuity in Lr(QT ) ∩ L1(QT ) for any
r < ∞. In addition, the estimates (4.17) and (4.14) imply that qk is spatially equicontinuous

in L
2d+4
d+4

loc (Q∞). Thus, we can apply Lemma 3.3 to conclude that ρi,kqk converges weakly in

(Cc(Q∞))∗ to ρiq for i = 1, 2. The uniform boundedness of ρi,kqk in L
2d+4
d+4

loc ([0,∞);L2(Rd)) gives

us the automatic upgrade to weak convergence in L
2d+4
d+4

loc ([0,∞);L2(Rd)). Now Proposition 3.2
implies that ρq = e(ρ) + e∗(q) almost everywhere and e(ρk) and e

∗(qk) converge weakly to e(ρ)
and e∗(q) respectively.
Step 3: Strong convergence of ∇qk to ∇q in L2

loc([0,∞);L2(Rd)).
We now want to use Proposition 5.2 to prove the strong convergence of the pressure gradient.

Note that the pointwise everywhere convergence of zk to z implies the pointwise everywhere
convergence of ek to e. We have already shown that ρkqk converges weakly to ρq and verified
the inequalities (5.5) and (5.6). Thus it remains to show that the upper semicontinuity property
(5.7) holds. To verify this condition, we will need to consider the scenarios (a) and (b) separately.
Step 3a: Scenario (a) holds. When ∂z(a) is a singleton for all a ∈ (0,∞), it follows that ∂e(a)
is a singleton for all a ∈ (0,∞) and hence e∗ must be strictly convex on (0,∞) ∩ (e∗)−1(R).
Thus, Lemma A.3 implies that qk converges in measure to q. Since qk is uniformly bounded

in L
2d+4
d+4

loc ([0,∞);L2
loc(R

d)), we can upgrade the convergence in measure to strong convergence in

Lr
loc(Q∞) for any r < 2d+4

d+4 . From the strong convergence, it is automatic that

lim sup
k→∞

∫

Q∞

ωµkqk =

∫

Q∞

ωµq

any ω ∈W 1,∞
c ([0,∞)).

Step 3b: Scenario (b) holds
Without strict convexity of the dual energy, the weak convergence of e∗k(qk) does not give

us strong convergence of qk. Thus, to prove (5.7) we will need a more delicate argument that
exploits the structure of the product qkµk

We begin by fixing some δ > 0 and letting Jδ be a space time mollifier. Set qk,δ := Jδ ∗ qk and

qδ := q∗Jδ . It is clear that qk,δ converges strongly to qδ in L
2
loc([0,∞);L2

loc(R
d)) and qδ converges

strongly to q in L
2d+4
d+4

loc ([0,∞);L2
loc(R

d)). Thus, it will be enough to show that

lim inf
δ→0

lim sup
k→∞

∫

Q∞

ω(qk − qk,δ)µi,k ≤ 0,
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for i = 1, 2.
We focus on the case i = 1 (the argument for i = 2 is identical). Assumption (F3) and the

monotonicity of (z∗k)
−1 guarantees that q 7→ F1,1

(

(z∗k)
−1(q), n

)

+ F1,2

(

(z∗k)
−1(q), n

)

is decreasing
for each fixed value of n. As a result, there must exist a function fk : [0,∞) × [0,∞) → R such
that for each fixed value of n, we have fk(0, n) = 0, q 7→ fk(q, n) is convex, and −∂qfk(q, n) =
F1,1

(

(z∗k)
−1(q), n

)

+ F1,2

(

(z∗k)
−1(q), n

)

. The structure of µ1,k combined with the convexity of fk
implies that

∫

Q∞

ω(qk − qk,δ)µi,k ≤

∫

Q∞

ωρ1,k
(

fk(qk,δ, nk)− fk(qk, nk)).

Since F1,1+F1,2 is uniformly bounded over R× [0,∞), it follows that fk is uniformly Lipschitz
in the first argument. Uniform equicontinuity in the second argument is clear when q = 0. For
q > 0, fix some ǫ ∈ (0, q) and consider n1, n2 ≥ 0. We see that

|fk(q, n1)− fk(q, n2)| ≤
2

∑

i=1

∫ q

0
|F1,i

(

(z∗k)
−1(a), n1

)

− F1,i

(

(z∗k)
−1(a), n2

)

|da.

≤ 2Bǫ+ q sup
b∈[(z∗

k
)−1(ǫ),(z∗

k
)−1(q)]

2
∑

i=1

|F1,i(b, n1
)

− F1,i

(

b, n2
)

|,

where B is a bound on F1,1 + F1,2. Assumption (z3) and the pointwise everywhere convergence
of zk to z implies that (z∗k)

−1(ǫ), (z∗k)
−1(q) are uniformly bounded with respect to k. Thus, it

now follows that fk is uniformly equicontinuous in the second argument on compact subsets of
[0,∞)2. As a result, fk must converge uniformly on compact subsets of [0,∞)2 to a limit function
f that is convex in the first variable and continuous in the second.

For all k we have |fk(q, n)| ≤ Bq. Thus, it is now clear that

lim inf
δ→0

lim sup
k→∞

∫

Q∞

ωρ1,k

(

|fk(qk,δ, nk)−f(q, n)|+|fk(qk, nk)−f(qk, nk)|+|f(qk, n)−f(qk, nk)|
)

= 0.

It remains to prove that

lim sup
k→∞

∫

Q∞

ωρ1,k
(

f(q, n)− f(qk, n)) ≤ 0.

Let f∗(a, n) = supq∈[0,∞) aq − f(q, n). Given any smooth function ψ ∈ C∞
c (Q∞), we have

∫

Q∞

ωρ1,k
(

f(q, n)− f(qk, n)) ≤

∫

Q∞

ωρ1,k
(

f(q, n)− qkψ) + ωρ1,kf
∗(ψ, n).

Using the weak convergence of the product ρ1,kqk to ρ1q we see that

lim sup
k→∞

∫

Q∞

ωρ1,k
(

f(q, n)− qkψ) + ρ1,kf
∗(ψ, n) =

∫

Q∞

ωρ1
(

f(q, n)− qψ) + ωρ1f
∗(ψ, n).

Taking an infimum over ψ, we get

lim sup
k→∞

∫

Q∞

ωρ1,k
(

f(q, n)− f(qk, n)) ≤ 0.

as desired.
Step 4: Passing to the limit in the weak equations

Now that we have obtained the strong convergence of the pressure gradient, we are ready
to pass to the limit in the weak equations. In Lemma 5.4, we showed that the source terms
converge weakly to the desired limit under the convergence properties that we have established.
The weak convergence of the remaining terms is clear except for the weak convergence of the
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product
ρi,k
ρk

∇qk to ρi
ρ ∇q. Given some δ > 0, it follows from Lemma 5.3 that 1

ρk+δ∇qk converges

strongly in L2
loc([0,∞);L2(Rd)) to 1

ρ+δ∇q. Thus, if we can show that

(5.13) lim inf
δ→0

(

∫

QT

δρi
ρ(ρ+ δ)

|∇q|2 + lim sup
k→∞

∫

QT

δρi,k
ρk(ρk + δ)

|∇qk|
2
)

= 0,

then it will follow that
ρi,k
ρk

∇qk converges weakly in L2
loc([0,∞);L2(Rd)) to ρi

ρ ∇q.

Since ρi,k ≤ ρk and ρi ≤ ρ, the left hand side of (5.13) is bounded above by

lim inf
δ→0

(

∫

QT

δ

ρ+ δ
|∇q|2 + lim sup

k→∞

∫

QT

δ

ρk + δ
|∇qk|

2
)

= lim inf
δ→0

∫

QT

2δ

ρ+ δ
|∇q|2,

where we have used Lemma 5.3 to go from the first line to the second. The property lim supa→0+
e(a)
a =

0 combined with the duality relation implies that q = 0 whenever ρ = 0. As a result, |∇q| gives
no mass to the set of points where ρ = 0. By dominated convergence

lim inf
δ→0

∫

QT

2δ

ρ+ δ
|∇q|2 = 0.

�

Corollary 5.6. Let e be an energy satisfying (e1-e3) such that ∂e(a) is a singleton for all
a ∈ (0,∞). Let Fi,j be source terms satisfying (F1-F2). Given initial data ρ01, ρ

0
2 ∈ L1(Rd) ∩

L∞(Rd), n0 ∈ L2(Rd) such that e(ρ01 + ρ02) ∈ L1(Rd), there exists a weak solution (ρ1, ρ2, q, n) ∈
X (e)× X (e)× Y(e∗)× L2

loc([0,∞);H1(Rd)) to the system (1.3).

Proof. For γk = 1
k , the existence of a solution to the system (5.1) for the fixed energy e is

straightforward. Using these solutions, we can pass to the limit as k → ∞ using Theorem
5.5. �

Corollary 5.7. Let e be an energy satisfying (e1-e3) and let Fi,j be source terms satisfying (F1-

F3). Given initial data ρ01, ρ
0
2 ∈ L1(Rd) ∩ L∞(Rd), n0 ∈ L2(Rd) such that e(ρ01 + ρ02) ∈ L1(Rd),

there exists a weak solution (ρ1, ρ2, q, n) ∈ X (e) × X (e) × Y(e∗) × L2
loc([0,∞);H1(Rd)) to the

system (1.1).

Proof. See Corollary 5.6. �

Corollary 5.8. Let Fi,j be source terms satisfying (F1-F3). Given initial data ρ01, ρ
0
2 ∈ L1(Rd)∩

L∞(Rd), n0 ∈ L2(Rd) such that ρ01 + ρ02 ≤ 1 almost everywhere, let (ρ1,m, ρ2,m, qm, nm) ∈ X (e)×

X (e)×Y(e∗)×L2
loc([0,∞);H1(Rd)) be weak solutions of the system (1.3) with the energy em(a) =

1
ma

m. As m → ∞, any weak limit point of the sequence (ρ1,m, ρ2,m, qm, nm) is a solution to the
system (1.3) with the incompressible energy

e∞(a) =

{

0 if a ∈ [0, 1],

+∞ otherwise.

Proof. It is clear that em converges pointwise everywhere to e∞. We can use Corollary 5.6 to
construct weak solutions of (1.3) for each m > 0. We can then use Theorem 5.5 to pass to the
limit m→ ∞. �

At last, we will show that weak solutions to (1.3) can be easily converted into weak solutions
to (1.1).



22 MATT JACOBS

Proposition 5.9. Let z be an energy satisfying (z1-z3) and define e by formula (2.1). Suppose
that ρ01, ρ

0
2 ∈ L1(Rd)∩L∞(Rd), n0 ∈ L2(Rd) is initial data such that e(ρ01+ρ

0
2), z(ρ

0
1+ρ

0
2) ∈ L

1(Rd).
If (ρ1, ρ2, q, n) ∈ X (e) × X (e) × Y(e∗) × L2

loc([0,∞);H1(Rd)) is a weak solution to the system

(1.3) and we set p = (z∗)−1(q), then (ρ1, ρ2, p, n) ∈ X (e) × X (e) × L
2d+4
d+4

loc ([0,∞);L1
loc(ρ)) ∩

L2
loc([0,∞); Ḣ1(ρ)) × L2

loc([0,∞);H1(Rd)) is a weak solution of (1.1).

Proof. The duality relation ρq = e(ρ)+e∗(q) is equivalent to pρ = z(ρ)+z∗(p) = z(ρ)+ q. Given
a compact subset D ⊂ Q∞ we have

∫

D
ρ|p| ≤

∫

D
|z(ρ)| + q

Thus, p ∈ L1
loc(ρ).

If sup ∂e∗(0) > 0, then (z∗)−1 is uniformly Lipschitz on all of [0,∞) and ρ is bounded away
from zero on q > 0. By the duality relation and the chain rule for Sobolev functions, we have
∇p = 1

ρ∇q and ∇p ∈ L2
loc([0,∞);L2(Rd)). In this case, it is now clear that (ρ1, ρ2, p, n) is a weak

solution to (1.1).
Otherwise, we are in the case where q = 0 implies that ρ = 0 and we cannot extend (z∗)−1 to

be uniformly Lipschitz on [0,∞). Fix some δ > 0 and let ηδ : [0,∞) → R be a smooth increasing

function such that ηδ(a) = 0 if a ≤ δ and ηδ(a) = 1 if a ≥ 2δ. Since lim supa→0+
e(a)
a = 0, it

follows that 1
ρ is bounded on q ≥ δ. Given any test function ϕ ∈ L∞

c ([0,∞);W 1,∞
c (Rd)) we see

that
∫

Q∞

p∇ · (ϕηδ(q)) =

∫

Q∞

pρ
ηδ(q)

ρ
∇ · ϕ+ pρ

η′δ(q)

ρ
∇q · ϕ

Since p must be bounded on the support of η′δ(q), it follows that the above integral is well defined.
Define qδ := max(q, δ), and pδ := (z∗)−1(qδ). Since (z∗)−1 is Lipschitz on [δ,∞), the chain rule

for Sobolev functions allows us to compute ∇pδ =
χδ(q)
ρ ∇q where χδ is the characteristic function

[δ,∞). Furthermore, on the support of ηδ, η
′
δ it follows that p = pδ. Hence,

(5.14)

∫

Q∞

p∇ · (ϕηδ(q)) =

∫

Q∞

pδρ
ηδ(q)

ρ
∇ · ϕ+ pδρ

η′δ(q)

ρ
∇q · ϕ =

∫

Q∞

ηδ(q)

ρ
∇q · ϕ

Thus, ∇p is well defined as a distribution against any test vector field of the form ηδ(q)ψ where

ψ ∈ L∞
c ([0,∞);W 1,∞

c (Rd)) and when tested against these fields we have ∇p = 1
ρ∇q. Examining

equation (5.14), we see that we can in fact relax ϕ to belong to L2
c([0,∞);L2(Rd)).

It is now clear that if g is some function such that 0 ≤ g ≤ ρ then we have g∇p = g
ρ∇q on

the support of ηδ(q). Since ηδ(q)
g
ρ∇q ∈ L2

loc([0,∞);L2(Rd)) independently of δ, it follows that

g∇p ∈ L2
loc([0,∞);L2(Rd)). Thus, we can conclude that

ρi
ρ
∇q · ϕ = ρi∇p · ϕ

where ϕ is any element of L2
c([0,∞);L2(Rd)). It now follows that (ρ1, ρ2, p, n) is a solution to

the system (1.1). The regularity of p can then be improved by arguing as in Propositions 4.2
and 4.3. �

The proofs of Theorems 1.1 1.2, and 1.3 are now just corollaries of the previous proposition,
Theorem 5.5, and Corollaries 5.6 and 5.7.
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Appendix A. Some Convergence results for sequences of convex functions

Lemma A.1. Let f : R → R ∪ {+∞} be a proper, lower semicontinuous, convex function such
that f−1(R) is not a singleton. If fk : R → R ∪ {+∞} is a sequence of proper, lower semi-
continuous convex functions such that fk converges pointwise everywhere to f then the following
properties hold:

(1) If f is differentiable at a point a ∈ R, then

lim sup
k→∞

max
(

| sup ∂fk(a)− f ′(a)| , | inf ∂fk(a)− f ′(a)|
)

= 0.

(2) The convergence of fk to f is uniform on compact subsets of the interior of f−1(R).
(3) f∗k converges pointwise everywhere to f∗ except possibly at the two exceptional values

b+∞ = sup{b ∈ R : z∗(b) <∞}, b−∞ = inf{b ∈ R : z∗(b) <∞}.
(4) If f∗ is differentiable at a point b ∈ R, then

lim sup
k→∞

max
(

| sup ∂f∗k (b)− f∗ ′(b)| , | inf ∂f∗k (b)− f∗ ′(b)|
)

= 0,

and the convergence of f∗k to f∗ is uniform on compact subsets of the interior of (f∗)−1(R).

Proof. Let a be a point of differentiability for f . Since f ′(a) exists and is finite, there exists δ0 > 0
such that f is finite on [a− δ0, a+ δ0]. Fix some δ ∈ (0, δ0). The convergence of fk to f implies
that there must exist some N,B sufficiently large such that |fk(a)|, |fk(a − δ)|, |fk(a + δ)| < B
for all k > N . Now we can use convexity to bound

fk(a)− fk(a− δ)

δ
≤ inf ∂fk(a) ≤ sup ∂fk(a) ≤

fk(a+ δ)− fk(a)

δ
.

Thus,

lim sup
k→∞

max
(

| sup ∂fk(a)−f
′(a)| , | inf ∂fk(a)−f

′(a)|
)

≤ |
f(a)− f(a− δ)

δ
−f ′(a)|+|

f(a+ δ) − f(a)

δ
−f ′(a)|.

Sending δ → 0 and using the fact that f is differentiable at a, we get the desired result.
Now suppose that [a0, a1] is an interval in the interior of f−1(R) and choose some δ > 0 such

that [a0− δ, a1 + δ] is still in the interior of f−1(R) and f is differentiable at a0− δ, a1+ δ. Given
any a ∈ [a0, a1], we have

f ′(a0 − δ) ≤ inf ∂f(a) ≤ sup ∂f(a) ≤ f ′(a1 + δ).

It then follows from our above work that ∂fk(a) is uniformly bounded on [a0, a1] for all k
sufficiently large. Hence, fk is uniformly equicontinuous on [a0, a1] and thus converges uniformly
to f .

Now we consider f∗. Fix some b ∈ R. If f∗(b) = +∞, then for each j ∈ Z+ there exists aj ∈ R

such that ajb− f(aj) > j. We can then compute

lim inf
k→∞

f∗k (b) ≥ lim inf
k→∞

ajb− fk(aj) > j.

Thus, lim infk→∞ f∗k (b) = +∞.
If b−∞ = b+∞ then we are already done. Otherwise, given b ∈ (b−∞, b

+
∞), let a0, a1 be the infimum

and supremum of the set {a ∈ R : b ∈ ∂f(a)} respectively. Since b ∈ (b−∞, b
+
∞), a0, a1 must exist

and are finite. Furthermore, for any a ∈ [a0, a1] we have f∗(b) = ab− f(a).

If we fix some δ > 0, it follows that f(a0)−f(a0−δ)
δ < b < f(a1+δ)−f(a1)

δ , and hence for all k

sufficiently large fk(a0)−fk(a0−δ)
δ < b < fk(a1+δ)−fk(a1)

δ Hence, for all k sufficiently large

f∗k (b) = sup
a∈[a0−δ,a1+δ]

ab− fk(a).
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It is now clear that lim infk→∞ f∗k (b) ≥ f∗(b).
If a0 < a1 then f is differentiable at all a ∈ (a0, a1) and f ′(a) = b. Therefore if we fix some

a′ ∈ (a0, a1) and for each k choose some bk ∈ ∂fk(a
′) then

f∗k (b) ≤ sup
a∈[a0−δ,a1+δ]

ab−fk(a
′)−bk(a−a

′) ≤ max
(

(a0−δ)b−bk(a0−δ−a
′) , (a1+δ)b−bk(a1+δ−a

′)
)

−fk(a
′)

Since bk → b, we get
lim sup
k→∞

f∗k (b) ≤ a′b− f(a′) = f∗(b).

Otherwise if a0 = a1, then since f−1(R) is not a singleton, we can find a sequence aj converging
to a0 such that f is differentiable at aj for all j. For each j, k choose some bj,k ∈ ∂fk(aj) and
note that limk→∞ bj,k = f ′(aj). Thus, we can compute

lim sup
k→∞

f∗k (b) ≤ lim sup
k→∞

sup
a∈[a0−δ,a0+δ]

ab− fk(aj)− bj,k(a− aj)

≤ a0b− f(aj)− f ′(aj)(a0 − aj) + δ(|b| + |f ′(aj)|)

Sending δ → 0 and then j → ∞, it follows that

lim sup
k→∞

f∗k (b) ≤ a0b− f(a0) = f∗(b)

as desired.
We have now shown that limk→∞ f∗k (b) = f∗(b) except possibly at b = b+∞, b

−
∞. Since b+∞, b

−
∞

does not lie in the interior of (f∗)−1(R), we can use the same argument we used to establish
properties (1) and (2) to establish property (4). �

Lemma A.2. Let z : R → R∪{+∞} be an energy satisfying (z1-z3) and let zk : R → R∪{+∞}
be a sequence of energies satisfying (z1-z3) such that zk converges pointwise everywhere to z. If
we set b∞ = inf{b ∈ R : z∗(b) = +∞} then (z∗k)

−1 converges uniformly to (z∗)−1 on compact

subsets of
(

0, z∗(b∞)
)

.

Proof. If z∗(b∞) = 0, then there is nothing to prove. Otherwise, given ǫ ∈ (0, z∗(b∞)) there must
exist bǫ/2 < bǫ ∈ R such that z∗(bǫ/2) = ǫ/2 and z∗(bǫ) = ǫ. It then follows that for all b ≥ bǫ and
k sufficiently large

ǫ

4(bǫ − bǫ/2)
≤ inf ∂z∗k(b).

As a result, (z∗k)
−1 is uniformly Lipschitz on [ǫ, z∗(b∞)). Choose some value a ∈ [ǫ, z∗(b∞))

and let b̄ = (z∗)−1(a). Let ak = z∗k(b̄) and note that once k is sufficiently large we must have
a ∈ z∗k(R). Thus,

|(z∗)−1(a)− (z∗k)
−1(a)| = |b̄− (z∗k)

−1(ak + a− ak)| ≤ Lǫ|a− ak| = Lǫ|z
∗(b̄)− z∗k(b̄)|

Now the uniform convergence of z∗k to z∗ on compact subsets of (−∞, b∞) combined with the
Lipschitz bound implies the uniform convergence of (z∗k)

−1 to (z∗)−1 on compact subsets of
(0, z∗(b∞)).

�

Lemma A.3. Suppose that fk : R → R is a sequence of proper, lower semicontinuous, convex
functions that converge pointwise everywhere to a function f : R → R that is also proper, lower
semicontinuous, and convex with a0 := inf{a ∈ R : f(a) < ∞} < sup{a ∈ R : f(a) < ∞} =: a1.
Let uk ∈ L1

loc(Q∞) be a sequence of uniformly integrable functions such that uk converges weakly
in L1

loc(Q∞) to a limit u ∈ L1
loc(Q∞). Suppose in addition that the sequence fk(uk) converges

weakly in L1
loc(Q∞) to f(u) ∈ L1

loc([0,∞);L1(Rd)). If there exists v ∈ L∞
loc(Q∞) such that

v ∈ ∂f(u) and f is strictly convex on the interior of f−1(R), then uk converges locally in measure
to u.
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Proof. Fix a compact set D ⊂ Q∞. Fix ǫ > 0 and let Sk,ǫ = {(t, x) ∈ D : uk > a1 + ǫ}. Choose
some value a ∈ (a0, a1). Since f(a) is finite and fk(a1+ ǫ) must approach ∞ as k → ∞, it follows
that fk is increasing at a1 + ǫ for all k sufficiently large. Therefore,

lim sup
k→∞

|Sk,ǫ|fk(a1 + ǫ) ≤ lim sup
k→∞

∫

Sk,ǫ

fk(uk) ≤ lim sup
k→∞

∫

D
|fk(uk)| <∞,

where in the last inequality we used the fact that the sequence fk(uk) is uniformly bounded in
L1
loc(Q∞). Of course the above inequality is only possible if lim supk→∞ |Sk,ǫ| = 0. A similar

argument shows that the measure of the sets {(t, x) ∈ D : uk(t, x) < a0 − ǫ} also vanishes in the
k → ∞ limit.

Given some δ < (a1−a0)/2, define uk,δ = max(a0+δ,min(uk, a1−δ)) and vk,δ = inf ∂fk(uk,δ).
From the convergence properties of uk and fk(uk) we have

lim
k→∞

∫

D
fk(uk)− f(u)− v(uk − u) = 0.

Therefore,

0 ≥ lim sup
k→∞

∫

D
fk(uk,δ) + vk,δ(uk − uk,δ)− f(u)− v(uk − u).

For δ > 0 fixed, Lemma A.1 implies that fk(uk,δ)− f(uk,δ) converges uniformly to zero. Hence,

0 ≥ lim sup
k→∞

∫

D
vk,δ(uk − uk,δ) + f(uk,δ)− f(u)− v(uk − u).

For δ sufficiently small, either vk,δ(uk − uk,δ) is positive or vk,δ is bounded. Either way, from the
uniform integrability of uk and our work in the first paragraph, it follows that

lim
δ→0

lim sup
k→∞

∫

D
vk,δ(uk − uk,δ) + v(uk − uk,δ) ≥ 0.

Thus,

(A.1) 0 ≥ lim
δ→0

lim sup
k→∞

∫

D
f(uk,δ)− f(u)− v(uk,δ − u).

Given ǫ > 0, let Dk,δ,ǫ = {(t, x) ∈ D : |uk,δ −u| > ǫ}. Equation (A.1) is a Bregman divergence
of a strictly convex function, therefore,

lim
δ→0

lim sup
k→∞

|Dk,δ,ǫ| = 0.

If we let u′k = max(min(a1, uk), a0) and D′
k,ǫ = {(t, x) ∈ D : |u′k − u| > ǫ} then it is clear that

lim supk→∞ |Dk,ǫ| = 0. Thus, u′k converges locally in measure to u. From our work in the first
paragraph we know that uk − u′k converges locally in measure to zero, thus we are done.

�
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