
The discrepancy of unsatisfiable matrices and a lower
bound for the Komlós conjecture constant

Dmitriy Kunisky∗

Department of Computer Science, Yale University

November 4, 2021

Abstract

We construct simple, explicit matrices with columns having unit `2 norm and dis-
crepancy approaching 1+

√
2 ≈ 2.414. This number gives a lower bound, the strongest

known as far as we are aware, on the constant appearing in the Komlós conjecture.
The unsatisfiable matrices giving this bound are built by scaling the entries of clause-
variable matrices of certain unsatisfiable Boolean formulas. We show that, for a given
formula, such a scaling maximizing a lower bound on the discrepancy may be computed
with a convex second-order cone program. Using a dual certificate for this program, we
show that our lower bound is optimal among those using unsatisfiable matrices built
from formulas admitting read-once resolution proofs of unsatisfiability. We also con-
jecture that a generalization of this certificate shows that our bound is optimal among
all bounds using unsatisfiable matrices.

∗Email: dmitriy.kunisky@yale.edu. This work was supported by ONR Award N00014-20-1-2335 and
a Simons Investigator Award to Daniel Spielman.

ar
X

iv
:2

11
1.

02
97

4v
1

 [
m

at
h.

C
O

]
 4

 N
ov

 2
02

1

Contents

1 Introduction 1
1.1 Notation . 2

2 Unsatisfiable formulas and matrices 2
2.1 Connection with Boolean formulas . 3
2.2 Unsatisfiable CNF to unsatisfiable NAE-CNF 3
2.3 Unsatisfiable formulas from trees . 4

3 Application to the Komlós conjecture 6
3.1 Proof of Theorem 1.1 . 6

4 Optimality over read-once resolution formulas 9
4.1 Optimal normalization of an unsatisfiable matrix 9
4.2 Proof of Theorem 4.1 . 11
4.3 The stick game . 15
4.4 Conjectural general dual certificate . 15

Acknowledgments 16

A Second-order cone duality 16

References 18

1 Introduction

The discrepancy of a matrix A ∈ Rm×n is

∆(A) := min
x∈{±1}n

‖Ax‖∞. (1)

The well-known Komlós conjecture of discrepancy theory concerns the quantities

K(n) := max
{

∆(A) : A ∈ Rn×n, all columns of A have `2 norm ≤ 1
}
, (2)

K := sup
n≥1

K(n). (3)

Komlós’ conjecture is then that K < ∞. Previous work on the conjecture has focused
almost exclusively on upper bounds on K(n), in particular elaborating on Banaszczyk’s
seminal result that K(n) = O(

√
log n), which remains the best known upper bound [Ban98,

BDGL18, DGLN19, BDG19, ALS21].
We are aware of very few works on lower bounds on K(n) or attempts to disprove the

Komlós conjecture. Hajela in [Haj88] showed that high-discrepancy instances may be found
with respect to any subexponential number of sign vectors, which perhaps suggests that
the conjecture might be false; [CS21] recently improved slightly on this result. Nikolov
in [Nik13] considered lower bounds arising from a natural semidefinite programming relax-
ation of ∆(A), but proved that these lower bounds never exceed 1. In private communica-
tions, some researchers have suggested that the conjecture might hold with K = 2; however,
Daniel Spielman recently communicated that an extensive numerical search yielded an (un-
published) example with n = 15 and ∆(A) ∈ [2.005, 2.006]. To the best of our knowledge
this is the state of the art at the time of writing.

Our main result is the following new lower bound on K.

Theorem 1.1. K(2k) ≥ 2−k/2 +
∑k

a=1 2−a/2. Thus, K ≥
∑∞

a=1 2−a/2 = 1 +
√

2 ≈ 2.414.

Our proof of Theorem 1.1 will construct simple, explicit high-discrepancy matrices A. These
will belong to a more general class of constructions that we describe in Section 2, which
convert unsatisfiable Boolean formulas into unsatisfiable matrices whose discrepancy admits
a convenient lower bound. After proving the Theorem in Section 3, we will also show in
Section 4 that, over bounds based on the special class of unsatisfiable matrices built from
formulas admitting read-once resolution proofs of unsatisfiability, our bound is optimal. We
moreover conjecture that our construction is optimal over all bounds based on unsatisfiable
matrices, and show that this conjecture is implied by a concrete combinatorial claim about
general resolution proofs.

We hope these results will stimulate future work investigating unsatisfiability and near-
unsatisfiability as mechanisms through which collections of vectors can have high discrepancy.
It is perhaps surprising that this is a fruitful direction at all, since much recent work following
Banaszczyk’s, including that cited above, has viewed discrepancy as a geometric problem.
If the hard cases of discrepancy problems arise rather from logical obstacles as considered
here, then it might be useful instead to ask whether discrepancy problems, even continuous
ones such as Komlós’ conjecture, may in some general way be related back to logical or
combinatorial problems like satisfiability.

1

1.1 Notation

For x, y ∈ R we write x ∧ y := min{x, y}. We write sgn(x) ∈ {−1, 0,+1} for the sign of x,
with sgn(0) = 0. For a matrix A, sgn(A) denotes the sign applied entrywise. We emphasize
that we will never consider the transpose of a matrix in this paper; the notation AT in
Section 2.3 will instead denote a matrix associated to a tree T . When we discuss rooted
binary trees, we will always assume without further comment that they are full, that is,
that every internal vertex has exactly two children. For F a Boolean formula in conjunctive
normal form, a variable is one of the formal Boolean symbols occurring in F , while a literal
is z or ¬z for any variable z. We write C ∈ F to indicate that C is a clause of F , write
var(F) for the set of variables in F , and write ∂z with z ∈ var(F) for the set of C ∈ F that
contain z or ¬z.

2 Unsatisfiable formulas and matrices

We introduce the following definition of a type of matrix A where the discrepancy admits a
simple lower bound.

Definition 2.1. We call A unsatisfiable if, for all x ∈ {±1}n, there exists some i ∈ [m]
and s ∈ {±1} such that, for all j ∈ [n], either Aij = 0 or sgn(xj) = s · sgn(Aij).

That is, if we view the sign pattern of the rows of A as describing “templates” for sign
vectors—non-zero entries forcing a certain sign and zero entries acting as “wildcards”—
then every sign vector matches one of these templates, up to a global sign flip. What is
“unsatisfiable” is the condition that a vector avoids all of these templates at once.

Example 2.2. Both of the following matrices are unsatisfiable, as are any matrices formed
by multiplying their entries by non-negative scalars:

1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1

 ,

1 0 1 1
0 1 1 −1
1 1 −1 0
1 −1 0 −1

 . (4)

The first is the kind of “tree-like” unsatisfiable matrix that we will analyze in detail in the
sequel, while the second is outside this class; we discuss another remarkable property both
share following our third proof of Theorem 1.1 in Section 3.

The following will be our main tool. Define

δ(A) :=
m

min
i=1

n∑
j=1

|Aij|. (5)

Proposition 2.3. If A is unsatisfiable, then ∆(A) ≥ δ(A).

This is just because, by definition of A being unsatisfiable, for each x ∈ {±1}n, Ax has
an entry equal to plus or minus the `1 norm of some row. Because of this bound, it seems
appealing to search among unsatisfiable matrices A for ones with large δ(A), which will
therefore also have large discrepancy.

2

2.1 Connection with Boolean formulas

Where can we find unsatisfiable matrices? As our terminology suggests, it is helpful to
reframe their definition in logical terms of Boolean formulas. Let z1, . . . , zn be formal Boolean
variables. For formulas fi, define the “not-all-equal” or NAE clause NAE(f1, . . . , fk) to be
false if and only if its inputs are either all true or all false:

NAE(f1, . . . , fk) := (f1 ∨ · · · ∨ fk) ∧ (¬f1 ∨ · · · ∨ ¬fk). (6)

Note that the NAE clause is invariant under negation, NAE(f1, . . . , fk) = NAE(¬f1, . . . ,¬fk).
We call a not-all-equal conjunctive normal form (NAE-CNF) formula any conjunction of
NAE clauses where all inputs are the zi or their negations, such as:

F = NAE(¬z1, z2,¬z5) ∧ NAE(z2,¬z3, z4,¬z6) ∧ NAE(z1, z4, z5). (7)

Any NAE-CNF formula F may be encoded in its clause-variable matrix AF with one row
per NAE clause and one column per variable, such that AFij is 1 if zj occurs in clause i, is
−1 if ¬zj occurs in clause i, and is zero otherwise. For example, for the F given above,

AF =

 −1 1 0 0 −1 0
0 1 −1 1 0 −1
1 0 0 1 1 0

 . (8)

We writeAF for the matrix of formula F , and FA for the formula of matrixA. The following
is immediate from the definition of an unsatisfiable matrix.

Proposition 2.4. A is unsatisfiable (in the sense of Definition 2.1) if and only if Fsgn(A) is
unsatisfiable (in the usual sense of a Boolean formula).

2.2 Unsatisfiable CNF to unsatisfiable NAE-CNF

We may also build unsatisfiable matrices almost as directly from ordinary unsatisfiable con-
junctive normal form (CNF) formulas, rather than ones involving NAE clauses. To see this,
note that the CNF formula

(fi1,1 ∨ · · · ∨ fi1,c1) ∧ · · · ∧ (fim,1 ∨ · · · ∨ fim,cm
) (9)

is satisfiable if and only if the following NAE-CNF formula, equipped with an extra “dummy”
variable z′, is satisfiable:

NAE(z′, fi1,1 , . . . , fi1,c1) ∧ · · · ∧ NAE(z′, fim,1 , . . . , fim,cm
). (10)

Thus, for an unsatisfiable CNF formula F , we write AF for the matrix formed by first
converting it to the equivalent unsatisfiable NAE-CNF formula, and then building the asso-
ciated matrix. In fact, if we associate to F itself a clause-variable matrix ÃF as we did to
an NAE-CNF formula, by recording which variables occur positively or negatively in which

3

clauses, then AF is formed simply by appending to ÃF a column of 1’s (which corresponds
to the variable z′). We adopt the convention that this concatenation happens on the left:

AF =

1
1
... ÃF

1
1

 . (11)

We will mostly focus in the remainder of the paper on unsatisfiable matrices built from
CNF formulas via this transformation; in Section 4.1 we will briefly discuss the question of
whether working with NAE-CNF formulas not of this form can improve on our results.

2.3 Unsatisfiable formulas from trees

We have reduced the task of building unsatisfiable matrices to that of producing unsatisfiable
CNF formulas. We introduce two classes of such formulas whose structure is especially well-
understood. The following definition is not crucial to our reasoning, but we present it to
explain the names of these classes of formulas before giving the reformulations that will be
more useful. The reader may see, e.g., [BHvM09] for a detailed treatment of these topics.

Definition 2.5. A formula F is minimally unsatisfiable (MU) if F is unsatisfiable, but
removing any clause from F yields a satisfiable formula. F is furthermore strongly minimally
unsatisfiable (SMU) if adding any literal to any clause (not already containing that literal)
yields a satisfiable formula.

The following quantity turns out to give a natural grading of unsatisfiable formulas.

Definition 2.6. The deficiency of an unsatisfiable formula F is the difference between the
number of clauses and the number of variables. The set of MU formulas F with deficiency `
is denoted MU(`) and the set of SMU formulas formulas with deficiency ` is denoted SMU(`).

A folklore result, sometimes attributed to Tarsi, says that all unsatisfiable formulas have
deficiency at least one.

The following is a complete and concrete description of the classes MU(1) and SMU(1).
While there are some structural results about the classes MU(`) and SMU(`) for ` ≥ 2, these
results quickly become far weaker for growing ` (e.g., beyond ` ≥ 5; see [BK09] for a survey).

Definition 2.7. Let T be a rooted binary tree, with each internal vertex v labelled by a
distinct Boolean variable zv, one leafward edge from v labelled by zv, and the other labelled
by ¬zv. Label each leaf of T by a clause formed by the disjunction of the literals appearing
as edge labels on the path joining that leaf to the root. We write FT for the CNF formula
given by the conjunction of the clauses appearing on the leaves of T .

We illustrate this construction in Figure 1. Perhaps surprisingly, this class of constructions
exactly describes SMU(1), and a minor variation describes MU(1).

4

w
¬w

x y

z

w

¬xx

¬zz

y ¬y →
(w ∨ x) ∧
(w ∨ ¬x ∨ z) ∧
(w ∨ ¬x ∨ ¬z) ∧
(¬w ∨ y) ∧
(¬w ∨ ¬y)

Figure 1: We illustrate the tree construction of an SMU(1) formula. The clauses of the
formula on the right, read from top to bottom, correspond to the leaves of the tree on the
left, read from left to right.

Proposition 2.8 (Lemma C.5 of [Kul00]). For every F ∈ SMU(1), there exists a rooted
binary tree T as in Definition 2.7 such that F = FT . For every F ∈ MU(1), there exists
F ′ ∈ SMU(1) such that F is formed by removing occurrences of literals from clauses of F ′

such that every literal still occurs in some clause.

We note that, by the requirement on the occurrence of literals in F , it is impossible to
“collapse” two clauses and make them identical when we start with F ′ ∈ SMU(1) and follow
the construction above. While [Kul00] gives a convenient summary, the result for SMU(1)
originates with [AL86], and essentially the same statement for MU(1), albeit with a more
complicated proof and not making explicit reference to trees, appeared in [DDB98].

Let us briefly outline the simple and elegant proof that each FT is unsatisfiable: given
an assignment of the variables, follow the path from the root given by, at each step, moving
to the vertex that is labelled with a false value under this assignment. Then, every literal
in the disjunctive clause of the leaf thus reached is false, so the assignment is not satisfying.
This holds for all assignments, so FT is unsatisfiable. The same argument also applies to
any MU(1) formula formed by removing occurrences of literals from FT .

This tree construction of unsatisfiable formulas has proved useful in other searches for
extremal unsatisfiable CNF formulas. Perhaps most notably, the line of work [Geb12, GST16]
designed trees T such that associated MU(1) formulas make the greatest “degree” of any
variable (the number of clauses containing it) as small as is possible, to leading order, over all
unsatisfiable k-CNF formulas. In this sense, the FT and their truncations appear to include
the “most regular” possible unsatisfiable formulas. This will be relevant for our purposes,
since we too will want to find unsatisfiable formulas that are as regular as possible, albeit in
a “smoother” sense we discuss in Section 4.1.

For the sake of brevity, we write AT := AFT for the unsatisfiable matrix associated
to the formula FT ∈ SMU(1). Later we will consider optimizing this construction over
multiplications of the entries ofAT by arbitrary non-negative scalars, which implicitly allows
the “literal elimination” forming MU(1) formulas from SMU(1) ones.

5

We note also that, since in any binary tree the number of internal vertices is one smaller
than the number of leaves, the matrix AT constructed per Sections 2.1 and 2.2 from FT
will be square. This is not important (a rectangular matrix could be padded with zeros
to be square without changing its discrepancy, for instance), but coincides nicely with the
traditional statement of the Komlós conjecture over square matrices.

3 Application to the Komlós conjecture

We will now prove Theorem 1.1, by producing unsatisfiable Â ∈ Rn×n with δ(Â) large and

columns of unit norm. These will have sgn(Â) = AT for complete binary trees T , and will
have their entry magnitudes adjusted to satisfy the norm constraint. Before proceeding, let
us introduce one last piece of terminology: we call a matrix normalized if all of its columns
have `2 norm at most 1 (recalling that this is the condition of the Komlós conjecture). As a

notational convention, we write Â for matrices guaranteed to be normalized (possibly with
various superscripts) and A for other matrices.

3.1 Proof of Theorem 1.1

We give three proofs. All three work with the following sequence of matrices. Write Tk for
the complete binary tree of depth k. The first few matrices ATk produced by the procedure
of Section 2.3 from these trees are

[
1
]︸︷︷︸

AT0

,

[
1 1
1 −1

]
︸ ︷︷ ︸

AT1

,

1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1

︸ ︷︷ ︸

AT2

,

1 1 1 0 1 0 0 0
1 1 1 0 −1 0 0 0
1 1 −1 0 0 1 0 0
1 1 −1 0 0 −1 0 0
1 −1 0 1 0 0 1 0
1 −1 0 1 0 0 −1 0
1 −1 0 −1 0 0 0 1
1 −1 0 −1 0 0 0 −1

︸ ︷︷ ︸

AT3

. (12)

(Here we view FT0 as the empty CNF formula.) We recall that the leading column all of
whose entries equal 1 corresponds to the dummy variable added to a CNF formula to get an
equivalent NAE-CNF formula.

The pattern is likely intuitively clear, but let us give a more precise description. The
columns of ATk , besides the first column of the dummy variable, correspond to internal
vertices of Tk, which we label with binary strings, starting with the empty string ∅ at the
root and adding a 0 to get the string of the left child and a 1 to get that of the right child
for each internal vertex. The rows of ATk correspond to the leaves of Tk, which we label by
continuing the same procedure. For a binary string s, let us write |s| for the length, s(i) for
the ith character, and s < t if s is a strict prefix of the string t. Then, it is simple to verify

6

that the procedure of Section 2.3 gives

ATkst =

1 if t < s and s(|t|+ 1) = 0,
−1 if t < s and s(|t|+ 1) = 1,

0 otherwise.
(13)

Let ÂTk be formed by dividing every column of ATk by its `2 norm. Counting the vertices
at various depths in Tk and the numbers of leaves in their subtrees gives that, for k ≥ 1,
there are two columns in ATk whose norm is 2k/2 (one is the column of the dummy variable),
and 2a columns whose norm is 2(k−a)/2 for each 1 ≤ a ≤ k − 1. Also, every row has a
non-zero entry in both columns of the first kind, and a non-zero entry in one column of each
subsequent kind. Thus the `1 norm of each row of ÂTk is the same, and equals

δ(ÂTk) = 2 · 2−k/2 +
k−1∑
a=1

2−(k−a)/2 = 2−k/2 +
k∑
a=1

2−a/2. (14)

(For k = 0, the only column is that of the dummy variable, and the adjusted calculation

gives the correct result δ(ÂT0) = 1 as well.) Therefore, Theorem 1.1 is proved provided we
can show that the ATk are unsatisfiable. It is this claim that we give several proofs of.

The first proof is immediate based on the background we have established.

Proof 1. The ATk are the unsatisfiable matrices associated to the unsatisfiable formulas FTk
built from the trees Tk per Section 2.3.

The matricesATk are also well-known in the signal processing literature as the transposes
of those representing the discrete wavelet transform of the Haar wavelet (the normalized ÂTk

give the orthogonal version of this transform). Thus these matrices operate as a “synthesis”
operator combining wavelet coefficients into a signal. Our claim may then be seen as saying
that perfectly “flat” collections of wavelet coefficients must give rise to signals that are at
least somewhat “spiky.” The usual recursive treatment of these matrices in signal processing
also affords a different proof of Theorem 1.1.

Proof 2. Up to reordering the rows and columns, the normalized matrices satisfy the recur-
sion

ÂTk+1 =
1√
2

[
ÂTk I2k

ÂTk −I2k

]
(15)

for all k ≥ 1. It is simple to show by induction that this coincides with the construction
given earlier. To prove ÂTk is unsatisfiable, we prove by induction that ÂTkx has some
entry equal exactly to δ(ÂTk) for all x ∈ {±1}2k . The statement clearly holds for k = 0.
For x1,x2 ∈ {±1}2k we have

ÂTk+1

[
x1

x2

]
=

1√
2

[
ÂTkx1 + x2

ÂTkx1 − x2

]
. (16)

By the inductive hypothesis, some entry of ÂTkx1 equals ±δ(ÂTk), say in coordinate i.

Then one of coordinate i or coordinate 2k + i above equals ±(1 + δ(ÂTk))/
√

2 = ±δ(ÂTk+1),
completing the induction.

7

The same argument more generally implies that the map

φ(A) :=
1√
2

[
A I
A −I

]
(17)

has the property of preserving both normalization and unsatisfiability of matrices. We have

δ(φ(A)) =
1 + δ(A)√

2
, (18)

so in fact a recursive sequence A(k) = φ(A(k−1)) initialized from any normalized unsatisfiable
A(0) (even one with δ(A(0)) > 1 +

√
2) will have δ(A(k))→ 1 +

√
2.

Our final proof of unsatisfiability takes advantage of a further special property of the ATk

beyond unsatisfiability: the sets of sign vectors that align with each of their rows (up to a
sign flip) are disjoint.

Proof 3. Let us say that x ∈ {±1}2k matches row i of ATk if there exists s ∈ {±1} such
that, for all j with ATkij 6= 0, we have xj = s · ATkij . ATk is unsatisfiable if and only if each x
matches some row of ATk . No x can match two different rows of ATk , since any pair of rows
have a pair of equal non-zero entries in the first coordinate and a pair of opposite non-zero
entries in some coordinate. Also, since each row has k+ 1 nonzero entries, each row matches
22k−k−1 · 2 = 22k/2k different vectors of {±1}2k . Since there are 2k rows, every x ∈ {±1}2k

matches exactly one row of ATk .

This proof points to a more geometric interpretation of unsatisfiability. The negation of
an unsatisfiable CNF formula, or CNF contradiction, is a disjunctive normal form (DNF)
formula that is true for every variable assignment, thus called a DNF tautology. A DNF
tautology corresponds to a covering of the hypercube {±1}n by facets (the same as our de-
scription of Definition 2.1 in terms of “templates” for sign vectors). Such coverings have been
studied occasionally both from the geometric and the logical perspectives [AL86, FHK93,
SS00, Szö08].

Our proof shows that the rows of ATk describe parallel pairs of facets of the hypercube
{±1}n that partition the hypercube vertices rather than merely covering them. Such DNF
tautologies are called disjoint in [Szö08], and [AL86] observed that SMU(1) formulas always
correspond to disjoint covers. This property makes it easier to check unsatisfiability, requir-
ing only that we verify disjointness (the rows’ agreeing in at least one non-zero entry and
disagreeing in at least one non-zero entry) and carrying out a counting argument.

We mention in passing a tempting attack on the Komlós conjecture along these lines:
the second 4× 4 matrix in Example 2.2 is one example of an unsatisfiable matrix with this
partitioning property that does not arise from SMU(1), or for that matter from any CNF
formula, and that has the further special property of having an equal number of non-zero
entries in each column. If such 2k × 2k unsatisfiable matrices with k + 1 non-zero entries in
each row and each column existed for arbitrarily large k then they would have discrepancy at
least

√
k + 1 &

√
log 2k, disproving the Komlós conjecture and showing that Banaszczyk’s

discrepancy bound is tight. However, counting the requisite agreeing and disagreeing pairs of
coordinates shows that such regular matrices cannot exist once k > 2. It may seem appealing
to look for nearly-regular matrices instead, but, based on Conjecture 4.4 below, we believe
that this approach will not disprove the Komlós conjecture.

8

4 Optimality over read-once resolution formulas

It is natural to ask whether our lower bound is optimal among those based on tree con-
structions of unsatisfiable formulas. In Theorem 4.1 below we will show that this is indeed
the case: any matrix Â constructed by normalizing the entries of AF with F ∈ MU(1) to

have columns of norm at most 1 with arbitrary entry magnitudes has δ(Â) < 1 +
√

2. In
fact, more is true: the same holds for the larger class of all F admitting read-once resolution
proofs of unsatisfiability.

Towards stating our result, we review some basic definitions concerning resolution. Let
F be an unsatisfiable CNF formula. It is well-known that F admits a tree resolution proof
of unsatisfiability. This is a rooted binary tree T whose vertices are labelled by disjunctive
clauses. Each leaf is labelled with some clause of F (with repetitions allowed) and the root is
labelled with the empty clause. Whenever the two children of an internal vertex are labelled
with clauses C and D, there is some variable z such that it is possible to write C = z ∨ G
and D = ¬z ∨H. In this case, the internal vertex is labelled with G ∨H and we say that
the variable z is resolved at that vertex. Under this rule, if an assignment makes the clauses
labelling the two children of an internal vertex true, then it also makes the clause labelling
the internal vertex true. Since the root is labelled with the empty clause, which is never
true, the existence of such a tree certifies the unsatisfiability of F .

If there exists such a resolution proof where each clause occurs as the label of at most
one leaf of T , then we say that F has a read-once resolution (ROR) proof of unsatisfiability,
and we write F ∈ ROR. The tree representation of an MU(1) formula from Definition 2.7
and Proposition 2.8 in fact also gives a tree resolution proof of unsatisfiability of the same
formula, where the label of each internal vertex is the variable that is resolved at that
vertex. Moreover, these are read-once proofs, so we have SMU(1) ⊂ MU(1) ⊂ ROR, and
each inclusion is strict; the former is easy to check, while a small example for the latter
is given in [BK09]. In particular, as that example shows, it can be that a formula is not
MU but is ROR and ceases to be ROR if any clauses are removed; that is, sometimes one
may make an unsatisfiable formula ROR by adding some superfluous clauses and violating
minimal unsatisfiability.

Our second main result is then as follows.

Theorem 4.1. Let F ∈ ROR, and let Â be any matrix formed by multiplying the entries
of AF by arbitrary non-negative scalars so that the columns have `2 norm at most 1. Then,
δ(Â) < 1 +

√
2.

4.1 Optimal normalization of an unsatisfiable matrix

We first show that, for any unsatisfiable matrix A, there is an efficient convex optimization
algorithm for maximizing δ(Â) over those matrices Â that are normalized by multiplying
the entries of A by non-negative scalars. That is, tuning the magnitudes of the entries A is
a fairly routine matter once their signs are fixed.1 This fact both will play a role in our proof

1The study of those properties of a matrix that depend only on its sign pattern is sometimes called
qualitative matrix analysis (QMA), which has played a role in other results in satisfiability; see [BK09] for
some discussion.

9

of Theorem 4.1, as we will use the convex duality of this optimization problem, and is a
useful computational device (we have used it for searching for high-discrepancy unsatisfiable
matrices and verifying Theorem 4.1 numerically), so we present it in generality before moving
on to our argument.

Lemma 4.2. Let F be any unsatisfiable NAE-CNF formula on n variables. Let C1, . . . , Cm ⊆
[n] contain the indices of variables appearing in each clause, and V1, . . . , Vn ⊆ [m] contain
the indices of clauses that each variable appears in. Over all matrices formed by multiplying
the entries of AF by non-negative scalars such that the columns have `2 norm at most 1, let
ÂF be the matrix that maximizes δ(ÂF). Then, this value is given by either of the following
dual optimization problems, which are convex second-order cone programs (SOCPs):

δ(ÂF) =

{
maximize minmi=1

∑
j∈Ci

aij

subject to
√∑

i∈Vj a
2
ij ≤ 1 for all j ∈ [n]

}
(19)

=

{
minimize

∑n
j=1

√∑
i∈Vj µ

2
i

subject to
∑m

i=1 µi = 1

}
. (20)

The variables in the first (“primal”) program are aij ∈ R indexed by i ∈ [m] and j ∈ [n]
such that j ∈ Ci, while the variables in the second (“dual”) program are µi indexed only by
i ∈ [m]. The constraints aij ≥ 0 and µi ≥ 0 may be added to the primal and dual respectively
without changing the value.

The primal program is just a direct formulation of optimizing over possible normalizations
of AF . Obtaining the dual is a routine convex duality computation; we give the details in
Appendix A by writing the above as an equivalent semidefinite program, computing its dual,
and then converting that dual back to an SOCP.

Another way to see that the primal is a convex problem without working with second-
order constraints is to set bij :=

√
aij and square the constraint, making this a maximization

of the minimum of sums of square roots under linear constraints. Since the square root
function is concave, the minimum of sums of square root functions (of linear inputs) is
concave also. Thus the primal amounts to maximizing a concave function under linear
constraints.

In light of the dual program in Lemma 4.2, the Komlós conjecture for the smaller quantity
δ(·) rather than ∆(·) and for the special case of unsatisfiable matrices reads as follows.

Problem 4.3. Does there exist Kunsat > 0 such that, for any unsatisfiable NAE-CNF formula
F , there exists a distribution of “masses” µC ≥ 0 over clauses with

∑
C∈F µC = 1 and

∑
z∈var(F)

√∑
C∈∂z

µ2
C ≤ Kunsat ? (21)

The optimal Kunsat is a lower bound on K from Komlós’ conjecture, and the cases of CNF
and NAE-CNF formulas are equivalent up to an adjustment of Kunsat. Namely, if we expand
each NAE clause C of an NAE-CNF formula to two disjunctive clauses C1 and C2, obtaining
an unsatisfiable CNF formula, then for any clause weights ν for the CNF formula we may

10

set µC := νC1 + νC2 , and since µ2
C ≤ 2(ν2C1

+ ν2C2
) the objective value of clause weights

µ will be at most
√

2 times that of ν. If Conjecture 4.4 below holds, then Problem 4.3
admits a positive solution with Kunsat =

√
2(1 +

√
2) = 2 +

√
2 ≈ 3.414; thus, in this case,

unsatisfiable NAE-CNF formulas could at best prove the lower bound K ≥ 2 +
√

2. This
would be an improvement on our lower bound K ≥ 1 +

√
2, but numerical searches have

shown no indication that such NAE-CNF formulas exist.
We note that the work of [Geb12, GST16] mentioned earlier addressed a similar question:

it was conjectured that, in any unsatisfiable k-CNF formula, there is some variable that
occurs in at least Ω(2k/k) clauses, i.e., some z ∈ var(F) with |∂z| = Ω(2k/k). The results
of [Geb12] constructed trees achieving this, and [GST16] later even achieved the optimal
constant (see also [KST93, SS00, HS05, HS06] for earlier progress and [HKSS14] for another
presentation). Problem 4.3 also asks how “regular” unsatisfiable CNF formulas can be, albeit
in a “smoother” way. To see that this is the general thrust of the question, note for example
that if there are m variables, n clauses, and µC = 1/n for all C ∈ F , then the left-hand side
is the average of

√
|∂z| over variables z, divided by the clause density n/m.

4.2 Proof of Theorem 4.1

We give two proofs, which share the following initial observations. Without loss of generality,
we may suppose Â = ÂF is the optimal normalization of AF maximizing δ(ÂF). The first
step is to reduce to the case F ∈ MU(1), and then to the case F ∈ SMU(1).

Let T be a read-once resolution tree for F , and view each internal vertex as labelled by
the variable that is resolved at that vertex. Consider repeatedly performing the following
operation: if any internal vertex label is repeated, find an occurrence of a repeated label
whose subtree contains no further occurrences of that label, and change that variable and
all its occurrences in that subtree to a new variable added to F . The resulting T remains
a resolution tree of the new formula. On AF , this operation has the effect of splitting one
column into two, with each non-zero entry occurring in exactly one of the two columns
in the same coordinate. This only increases δ(ÂF), since any normalization of the old
matrix remains a valid normalization of the new matrix (with the entries of the split column
retaining their normalized magnitudes) with the same value of δ(·). Thus we may repeat

this operation until no internal vertex labels in T are repeated, only increasing δ(ÂF); at the
end, all internal vertex labels will be distinct, and the resulting formula will be in MU(1).
Thus without loss of generality we may suppose F ∈ MU(1).

Next, note that, by Proposition 2.8, for any F ∈ MU(1) there exists F ′ ∈ SMU(1) such
that AF is produced by zeroing some entries of AF ′

. Thus we may further without loss of
generality suppose F ∈ SMU(1), i.e., F = FT and thus AF = AT for some binary tree T .

We will prove Theorem 4.1 by producing a dual certificate µ for the convex program in
Lemma 4.2. To motivate this dual certificate, it is helpful to identify a good dual certificate
for the case of the complete binary tree T = Tk. For v a vertex of a given tree, let us write
depth(v) for its depth, and for T a tree let us write L(T) for the set of leaves and I(T) for
the set of internal vertices. We write ` ≤ i if ` lies in the subtree rooted at i (or “below” i).
In Tk, the optimal dual bound is achieved by the dual certificate ν ∈ R2k where we set all

11

ν` := 2−k. Indeed, with these choices the objective value is√ ∑
`∈L(Tk)

ν2` +
∑

i∈I(Tk)

√∑
`≤i

ν2` = 2−k/2 +
∑

i∈I(Tk)

√
2k−depth(i) · 2−2k

= 2−k/2 +
∑

i∈I(Tk)

2−(k+depth(i))/2 (22)

= 2−k/2 +
k−1∑
a=0

2a · 2−(k+a)/2

= 2−k/2 +
k∑
a=1

2−a/2. (23)

If T has depth at most k, we view T as a subtree of Tk, so that some of the leaves of T
correspond to internal vertices of Tk where the larger tree has been “trimmed.” We choose
µ` for ` ∈ T so that the squared mass of ` is the proportional to the sum of the squared
masses of `′ ∈ Tk that lies under `:

µ
(0)
` :=

√ ∑
`′∈L(Tk):`′≤`

ν2`′ = 2−(k+depth(`))/2, (24)

µ` :=
µ
(0)
`∑

`∈L(T) µ
(0)
`

, (25)

where we borrow the first computation from (22).
We will then have for any i ∈ I(T) that√ ∑

`∈L(T):`≤i

µ2
` =

1∑
`∈L(T) µ

(0)
`

√ ∑
`∈L(T):`≤i

∑
`′∈L(Tk):`′≤`

ν2`′ =
2−(k+depth(i))/2∑

`∈L(T) 2−(k+depth(`))/2
, (26)

borrowing the same computation again. The dual bound achieved by µ is the sum of these
terms, with that of the root vertex repeated:

δ(ÂT) ≤
2−k/2 +

∑
i∈I(T) 2−(k+depth(i))/2∑

`∈L(T) 2−(k+depth(`))/2
=

1 +
∑

i∈I(T) 2−depth(i)/2∑
`∈L(T) 2−depth(`)/2

. (27)

It thus suffices to show that the quantity on the right-hand side, now just a combinatorial
quantity associated to a binary tree T , is always smaller than 1 +

√
2. Having used Tk to

motivate our construction, we now work only with T and write I = I(T) and L = L(T)
below.

Proof 1. Let us write Ia and La for the sets of internal vertices and leaves respectively at
depth a in T . We have |I0| = 1, |L0| = 0, and the |La| may be computed from the |Ia| as

|La| = 2|Ia−1| − |Ia| (28)

12

for a ≥ 1. Using this, we may rewrite the denominator of (27) in terms of the numerator as

∑
`∈L

2−depth(`)/2 =
∞∑
a=1

|La|2−a/2

=
√

2
∞∑
a=0

|Ia|2−a/2 −
∞∑
a=1

|Ia|2−a/2

= 1 + (
√

2− 1)
∞∑
a=0

|Ia|2−a/2

= 1 + (
√

2− 1)
∑
i∈I

2−depth(i)/2. (29)

Thus the bound (27) is, setting X :=
∑

i∈I 2−depth(i)/2 > 0,

δ(ÂT) ≤ 1 +X

1 + (
√

2− 1)X
, (30)

which is a strictly increasing function of X > 0 whose limit as X →∞ is 1 +
√

2.

This proof is simple and direct, but suffers from the drawback that it seems quite difficult
to extend to the generalized construction we propose later in Section 4.4. We therefore also
offer the following, seemingly more elaborate proof, which however offers a technique that
might be more readily generalized. It also gives natural probabilistic interpretations of the
unusual-looking quantities appearing in Theorem 1.1 as

2−k/2 +
k∑
a=1

2−a/2 = E
X∼Geom(1/2)

√
2
X∧k

, (31)

1 +
√

2 = E
X∼Geom(1/2)

√
2
X
, (32)

where Geom(1/2) is the geometric distribution of the number of fair coin tosses made before
a toss lands heads.

Proof 2. Let f : I ↪→ L be an injective map such that f(i) ≤ i for all i ∈ I. That is, f maps
each internal vertex to a distinct leaf lying below it. Write pf (i) = pf (f(i)) for the length of
the path between i and f(i), with pf (`) = −∞ if ` is not in the image of f . For any such f ,∑

i∈I

2−depth(i)/2 =
∑
`∈L

2−depth(`)/2 · 2pf (`)/2. (33)

Suppose further that ρ is a probability distribution over such f . We then have∑
i∈I

2−depth(i)/2 =
∑
`∈L

2−depth(`)/2 E
f∼ρ

[
2pf (`)/2

]
. (34)

We choose the random f ∼ ρ sampled as follows. We first construct a partition of T into
edge-disjoint paths from internal vertices to leaves lying beneath those vertices. We start

13

vs.

Figure 2: In the left panel, we show a partition of a binary tree into edge-disjoint paths used
in the second proof of Theorem 4.1. The two bold paths are those attached to the root; to
form the map f , one of the two will be discarded from the partition. In the right panel, we
show the local choice made at each non-root internal vertex in constructing a random such
partition.

two paths from the root. At each non-root internal vertex, with probability 1/2 each we
continue the path arriving at that vertex from above to the left or to the right, and start
a new path in the other direction. Next, we delete one of the two paths touching the root,
uniformly at random. In the remaining set of paths, there is exactly one path starting at
each internal vertex, and each path ends at a distinct leaf. Thus, for each i ∈ I, we let f(i)
be the leaf endpoint of the unique path whose internal vertex endpoint is i. We illustrate
this construction in Figure 2.

For any `, the law of the random variable pf (`) is that of (X ∧ depth(`)) · Y , where
X ∼ Geom(1/2), Y = 1 whenever X < depth(`), and Y is chosen uniformly at random from
{−∞, 1} if X = depth(`). The case Y = −∞ here corresponds to ` being the endpoint of one
of the paths touching the root in the initial partition, but that path then being deleted when
the mapping f is determined, so that ` is not in the image of f . In particular, pf (`) = j with
probability 2−j for j = 1, . . . , depth(`), and pf (`) = −∞ with probability 2−depth(`). Thus,

E
f∼ρ

[
2pf (`)/2

]
=

depth(`)∑
j=1

2−j/2 =
2−1/2 − 2−(depth(`)+1)/2

1− 2−1/2
= (1− 2−depth(`)/2)(1 +

√
2). (35)

Substituting and using that
∑

`∈L 2−depth(`) = 1, we find

∑
i∈I

2−depth(i)/2 = (1+
√

2)
∑
`∈L

(2−depth(`)/2−2−depth(`)) = (1+
√

2)

(∑
`∈L

2−depth(`)/2 − 1

)
, (36)

which is just a rewritten version of the main relation (29) from the first proof, and the rest
of the proof is completed as before.

14

4.3 The stick game

Though we do not use it in our arguments, we mention a pleasant reinterpretation of search-
ing for high-discrepancy matrices built by normalizing AT for binary trees T . The following
describes the simultaneous construction both of the tree and the normalization.

Consider a game of woodland solitaire, where the player is equipped with an endless
supply of sticks of unit length. The game is played on several piles of sticks, starting with
one empty pile. At every step, the player can choose one pile, add a new stick of unit length
to it, break every stick in that pile into two sticks of arbitrary length, and place one from
each pair into a new pile. For instance, representing piles by tuples, the game may proceed
like so:()

→
(

1

3

)(
2

3

)
→
(

1

12
,
1

2

)(
1

4
,
1

2

)(
2

3

)
→
(

1

12
,
1

2

)(
1

8
,
1

8
,
1

2

)(
1

8
,
3

8
,
1

2

)(
2

3

)
(37)

We underline the pile that the “add and break” operation is applied to at every step.
Theorem 4.1 implies that if one computes the sum of square roots of stick lengths in each

pile, then all of these numbers cannot simultaneously exceed 1 +
√

2, no matter how the
player plays nor for how long. Indeed, the lengths in each pile at the end are the squared
magnitudes of the entries in each row of some normalization of AT , where T describes the
branching structure of the player’s choices; it is easily verified that any normalization can
be obtained in this way by breaking sticks appropriately.

It is an intriguing question whether the construction of high-discrepancy matrices, no
longer just unsatisfiable ones, may be encoded in some variant of such a game.

4.4 Conjectural general dual certificate

A final natural question, which we leave open, is whether our lower bound is optimal over
Â formed by normalizing any AF for an unsatisfiable CNF formula F . We conjecture that
this is the case, and propose the following dual certificate construction to verify this claim,
generalizing our use of read-once resolution proofs in the proof of Theorem 4.1.

Let T be a general resolution proof of unsatisfiability of F . We use T to define a dual
certificate µ. For a clause C of F , let occ(C) ⊆ L(T) denote the set of leaves of T that are
labelled by C. Define the effective depth of C, denoted d(C), by the relation

2−d(C) :=
∑

`∈occ(C)

2−depth(`). (38)

Note that the effective depth obeys a coalescence property: the effective depth of a clause
occurring twice at depth k is k − 1, and similarly for further occurrences. We then define,
by analogy with µ from the proof of Theorem 4.1,

µ
(0)
C := 2−d(C)/2, (39)

µC :=
µ
(0)
C∑

C′∈F µ
(0)
C′

. (40)

We then conjecture that the objective value of this choice of µ is bounded by that achieved
by the complete binary tree formula.

15

Conjecture 4.4. For any unsatisfiable formula F and resolution proof T , for µ constructed
as above,

√∑
C∈F

µ2
C +

∑
z∈var(F)

√∑
C∈∂z

µ2
C =

1 +
∑

z∈var(F)

√∑
C∈∂z 2−d(C)∑

C∈F 2−d(C)/2
< 1 +

√
2. (41)

As mentioned earlier, this would also imply a positive solution of Problem 4.3 for unsatisfiable
NAE-CNF formulas with constant Kunsat = 2 +

√
2 (though the optimal constant could be

smaller and indeed could be 1 +
√

2). We note that, by the coalescence property, the
numerator above may be bounded by

∑
z∈var(F) 2−d(z) for an effective depth of variables

defined similarly over their occurrences when internal vertices are labelled with the variables
resolved at those vertices. That is, it would suffice to show the weaker bound

1 +
∑

z∈var(F) 2−d(z)/2∑
C∈F 2−d(C)/2

< 1 +
√

2, (42)

which is directly analogous to the objective value considered in the proofs of Theorem 4.1,
with depth replaced by effective depth.

One potential approach to proving Conjecture 4.4 is to define, following our second proof
of Theorem 4.1, a random map f : F ↪→ var(F) from clauses to variables, such that we are
able to control the difference between d(C) and d(f(C)) on average. However, it does not
appear that a straightforward generalization of the partition into paths of T from the proof
of Theorem 4.1 furnishes a useful such map in this setting.

We note also that we do not need the claim to hold for any resolution proof T , but rather
just some proof. This may be helpful; for instance, [Kul00] describes how unsatisfiable F
having small deficiency admit resolution proofs consisting of several resolution proofs for
MU(1) formulas “glued” together appropriately with a small number of further resolutions.
I have not yet been able to apply such results to generalize Theorem 4.1, and numerical
experiments and small examples appear to support the stronger conjecture stated above.

Acknowledgments

I thank Afonso Bandeira, Pravesh Kothari, Cristopher Moore, and Daniel Spielman for
helpful discussions during the preparation of this paper.

A Second-order cone duality

In this section we justify the convex duality transformation of Lemma 4.2. We take the
approach of transforming the second-order cone program (SOCP) to a semidefinite pro-
gram (SDP) and computing the dual in that setting. The key observation is that a constraint

16

√∑d
i=1 y

2
i ≤ t on y ∈ Rd and with t ≥ 0 is satisfied if and only if

M (y, t) :=

t y1 · · · yd
y1 t 0 0
... 0

. . .
...

yd 0 · · · t

 � 0, (43)

as can be seen by taking the Schur complement with the bottom right d× d block.
In our case, we first rewrite the primal program in canonical form:

δ(ÂF) =

{
maximize minmi=1

∑
j∈Ci

aij

subject to
√∑

i:j∈Ci
a2ij ≤ 1 for all j ∈ [n]

}

=

maximize c
subject to c ≤

∑
j∈Ci

aij for all i ∈ [m],√∑
i:j∈Ci

a2ij ≤ 1 for all j ∈ [n]

and then, letting aj := (aij : j ∈ Ci), we may rewrite as an SDP

=

maximize c
subject to c ≤

∑
j∈Ci

aij for all i ∈ [m],

M (aj, 1) � 0 for all j ∈ [n]

 . (44)

We now introduce dual variables µi ≥ 0 for i ∈ [m] for the linear constraints and Λ(j) � 0
with Λ(j) ∈ R(#{i:j∈Ci}+1)×(#{i:j∈Ci}+1) for the semidefinite constraints. The Lagrangian is

L(c,a;µ, {Λ(j)}j∈[n]) := c−
m∑
i=1

µi

(
c−

∑
j∈Ci

aij

)
+

n∑
j=1

〈
M (aj, 1),Λ(j)

〉
=

n∑
j=1

Tr(Λ(j)) + c

(
1−

m∑
i=1

µi

)
+

m∑
i=1

∑
j∈Ci

aij

(
µi − 2Λ

(j)
1,i+1

)
. (45)

Verifying the Slater conditions and writing the dual based on the rewritten Lagrangian
above, we find the initial dual problem

δ(ÂF) =

minimize
∑n

j=1 Tr(Λ
(j))

subject to Λ(j) ∈ R(#{i:j∈Ci}+1)×(#{i:j∈Ci}+1)
�0 ,

µi ≥ 0,

Λ
(j)
1,i+1 = Λ

(j)
i+1,1 = −µi/2 for all i ∈ [m], j ∈ Ci,∑m

i=1 µi = 1

. (46)

We next observe that, for any fixed µ, we can optimize over all Λ(j) explicitly. Namely,
this problem reduces to several independent problems of the form

minimize Tr(Λ)

subject to Λ ∈ R(d+1)×(d+1)
�0 ,

Λ1,i+1 = Λi+1,1 = xi for all i ∈ [d].

(47)

17

Here, the positivity of 2 × 2 principal minors implies Λi+1,i+1 ≥ x2i /Λ1,1 for any feasible Λ.
Moreover, for any t > 0 the choice of Λ with Λ1,1 = t, Λi+1,i+1 = x2i /t, Λ1,i+1 = Λi+1,1 = xi,
and all other entries equal to zero has Λ � 0, since all principal minors are non-negative.
Therefore, the above is equivalent to minimizing over t > 0 the function t+

∑d
i=1 x

2
i /t, which

is achieved at t? =
√∑d

i=1 x
2
i and has value 2t?.

Applying this in (46), we may eliminate the Λ(j) variables, and we are left with the form
of the dual given in Lemma 4.2:

δ(ÂF) =

{
minimize

∑n
j=1

√∑
i:j∈Ci

µ2
i

subject to
∑m

i=1 µi = 1

}
, (48)

where we note that the constraints µi ≥ 0 do not affect the value.

References

[AL86] Ron Aharoni and Nathan Linial. Minimal non-two-colorable hypergraphs and
minimal unsatisfiable formulas. Journal of Combinatorial Theory, Series A,
43(2):196–204, 1986.

[ALS21] Ryan Alweiss, Yang P Liu, and Mehtaab Sawhney. Discrepancy minimization
via a self-balancing walk. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 14–20, 2021.

[Ban98] Wojciech Banaszczyk. Balancing vectors and Gaussian measures of n-dimensional
convex bodies. Random Structures & Algorithms, 12(4):351–360, 1998.

[BDG19] Nikhil Bansal, Daniel Dadush, and Shashwat Garg. An algorithm for Komlós con-
jecture matching Banaszczyk’s bound. SIAM Journal on Computing, 48(2):534–
553, 2019.

[BDGL18] Nikhil Bansal, Daniel Dadush, Shashwat Garg, and Shachar Lovett. The Gram-
Schmidt walk: a cure for the Banaszczyk blues. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, pages 587–597, 2018.

[BHvM09] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability,
volume 185. IOS press, 2009.

[BK09] Hans Kleine Büning and Oliver Kullmann. Minimal unsatisfiability and autarkies.
Handbook of Satisfiability, 185:339–401, 2009.

[CS21] Giorgos Chasapis and Nikos Skarmogiannis. A note on norms of signed sums of
vectors. Advances in Geometry, 21(1):5–14, 2021.

[DDB98] Gennady Davydov, Inna Davydova, and Hans Kleine Büning. An efficient algo-
rithm for the minimal unsatisfiability problem for a subclass of CNF. Annals of
Mathematics and Artificial Intelligence, 23(3):229–245, 1998.

18

[DGLN19] Daniel Dadush, Shashwat Garg, Shachar Lovett, and Aleksandar Nikolov. To-
wards a constructive version of Banaszczyk’s vector balancing theorem. Theory
of Computing, 15(1):1–58, 2019.

[FHK93] Alexander Felzenbaum, Ron Holzman, and Daniel J Kleitman. Packing lines in
a hypercube. Discrete Mathematics, 117(1-3):107–112, 1993.

[Geb12] Heidi Gebauer. Disproof of the neighborhood conjecture with implications to
SAT. Combinatorica, 32(5):573–587, 2012.

[GST16] Heidi Gebauer, Tibor Szabó, and Gábor Tardos. The local lemma is asymptoti-
cally tight for SAT. Journal of the ACM (JACM), 63(5):1–32, 2016.

[Haj88] D Hajela. On a conjecture of Kömlos about signed sums of vectors inside the
sphere. European Journal of Combinatorics, 9(1):33–37, 1988.

[HKSS14] Dan Hefetz, Michael Krivelevich, Miloš Stojaković, and Tibor Szabó. Positional
games. Springer, 2014.

[HS05] Shlomo Hoory and Stefan Szeider. Computing unsatisfiable k-SAT instances with
few occurrences per variable. Theoretical Computer Science, 337(1-3):347–359,
2005.

[HS06] Shlomo Hoory and Stefan Szeider. A note on unsatisfiable k-CNF formulas with
few occurrences per variable. SIAM Journal on Discrete Mathematics, 20(2):523–
528, 2006.

[KST93] Jan Kratochv́ıl, Petr Savickỳ, and Zsolt Tuza. One more occurrence of vari-
ables makes satisfiability jump from trivial to NP-complete. SIAM Journal on
Computing, 22(1):203–210, 1993.

[Kul00] Oliver Kullmann. An application of matroid theory to the SAT problem. In
Proceedings 15th Annual IEEE Conference on Computational Complexity, pages
116–124. IEEE, 2000.

[Nik13] Aleksandar Nikolov. The Komlós conjecture holds for vector colorings. arXiv
preprint arXiv:1301.4039, 2013.

[SS00] Petr Savickỳ and Jǐŕı Sgall. DNF tautologies with a limited number of occurrences
of every variable. Theoretical Computer Science, 238(1-2):495–498, 2000.

[Szö08] Balázs Szörényi. Disjoint DNF tautologies with conflict bound two. Journal on
Satisfiability, Boolean Modeling and Computation, 4(1):1–14, 2008.

19

	1 Introduction
	1.1 Notation

	2 Unsatisfiable formulas and matrices
	2.1 Connection with Boolean formulas
	2.2 Unsatisfiable CNF to unsatisfiable NAE-CNF
	2.3 Unsatisfiable formulas from trees

	3 Application to the Komlós conjecture
	3.1 Proof of Theorem 1.1

	4 Optimality over read-once resolution formulas
	4.1 Optimal normalization of an unsatisfiable matrix
	4.2 Proof of Theorem 4.1
	4.3 The stick game
	4.4 Conjectural general dual certificate

	Acknowledgments
	A Second-order cone duality
	References

