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Abstract. The Kuramoto model provides a prototypical framework to synchronization phenomena in
interacting particle systems. Apart from full phase synchrony where all oscillators behave identically,
identical Kuramoto oscillators with ring-like nonlocal coupling can exhibit more elaborate patterns such
as uniformly twisted states. It was discovered by Wiley, Strogatz and Girvan in 2006 that the stability
of these twisted states depends on the coupling range of each oscillator. In this paper, we analyze
twisted states and their bifurcations in the infinite particle limit of ring-like nonlocal coupling. We
not only consider traditional pairwise interactions as in the Kuramoto model but also demonstrate the
effects of higher-order nonpairwise interactions, which arise naturally in phase reductions. We elucidate
how pairwise and nonpairwise interactions affect the stability of the twisted states, compute bifurcating
branches, and show that higher-order interactions can stabilize twisted states that are unstable if the
coupling is only pairwise.
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1 Introduction

Interacting particle systems are abundant in many real-world systems. For example fireflies flashing in
unison [7], collective behavior in the financial market [10], chirping snowy tree crickets [33], or neurons
in the brain synchronizing their bursts [15] are all examples of dynamical systems that consist of many
interacting particles. Even though each particle behaves according to its own microscopic rules, the
system as a whole can show collective dynamics, for example synchrony. A classical mathematical model
to study synchrony in these interacting particle systems is the Kuramoto model, that was proposed by
Yoshiki Kuramoto in 1984 [21]. It describes the evolution of M oscillators on the unit circle, each coupled
to every other via a simple sinusoidal coupling. Moreover, each oscillator possesses an intrinsic frequency
that is typically sampled from a real probability distribution with a unimodal symmetric density, which
makes the oscillators heterogeneous.

While the classical Kuramoto model assumes all-to-all identical coupling, in many real-world systems
the coupling is actually not all-to-all but interactions are captured by a (weighted) graph. As an example,
each oscillator may have a spatial position and coupling between oscillators depends on their positions;
such networks often arise in neural field modeling [1, 9, 11], where coupling strength typically relates to
the distance of nodes. Such a coupling scheme can be realized by considering Kuramoto oscillators on a
graph. Consider M oscillators and let a;; be the coupling from oscillator j to oscillator 4; the matrix (a;;)
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can be interpreted as the adjacency matrix of a weighted graph. The phase ¢; € T := [0, 27]/(0 ~ 27) of
oscillator ¢ evolves according to

M

: 1 '

¢ =wit - Zaij sin(¢; — i),
=1

for : = 1,..., M. Graphs that do not describe all-to-all coupling allow for more interesting dynamics
beyond full phase synchrony [31]. For example, one can consider a k-nearest-neighbor networks of M
nodes: Oscillators are arranged as a ring in ascending order around the unit circle and each oscillator
is coupled to all of its k predecessors and all of its k successors (modulo M). In other words, a;; = 1
if min(|i —j|,M — |i —j|) < k and a;; = 0 otherwise. Changing k changes the coupling range: For
k =1 we have a ring with local nearest-neighbor coupling, for k = M /2 the network is globally all-to-all
coupled, and for intermediate k the coupling is often called nonlocal. On this network, the Kuramoto
model with w; = 0 shows many interesting states. For example regular twisted states [34] or irregular
chimera states [29, 35] when we allow for phase lag parameters in the coupling function.

While the traditional Kuramoto model assumes interactions between pairs of oscillators, higher-order
interactions can have a profound impact on the dynamics; cf. [4, 5]. Such nonpairwise interactions
arise naturally in phase oscillator networks that originate from (higher order) phase reductions and
become important for the dynamics as the coupling strength is increased [2, 22]. Moreover, nonpairwise
interactions also arise in rings of nonlocally coupled oscillators: In [23], the authors consider a network
of eight nanoelectromechanical oscillators coupled via higher-order nearest-neighbor interactions. They
found that this system exhibits complex and exotic states even though the coupling functions are fairly
simple.

It turns out that instead of analyzing twisted states on large finite networks, it is easier to consider
them in the continuum limit on the limiting object, also called graphon. Therefore, we consider the
dynamics of the continuum limit of large k-nearest-neighbor networks, when k grows with the system
size M. In particular, the limiting network can be obtained by fixing the coupling range r = k/M and
sending M — oo. On this continuum limit we analyze the stability and the bifurcation around twisted
states. While twisted states have originally been studied in [34], a lot of research has been done to
generalize these results [27, 26, 24, 30, 8, 12].

In our paper, we propose an extension of the pairwise coupling in the continuum limit to higher-
order interactions. We study the stability of twisted states and show how this property is influenced
by higher-order interactions. To this end, we analyze the bifurcation point where a twisted state looses
or gains stability. We investigate which nontrivial equilibria bifurcate from the twisted states and how
they depend on the parameters of the system, which are the coupling range r and the strengths of the
higher-order interactions. We apply this theory to regular models without higher-order interactions and
thereby extend the analysis from many previous works by the bifurcation analysis. Moreover, we show
how higher-order interactions can make g-twisted states stable or unstable and how they affect the type
of the bifurcation.

The work is organized as follows: In Section 2 we introduce the system and clarify general notation.
Then, in Section 3, we first perform a Lyapunov—Schmidt reduction to convert the infinite-dimensional
problem into a finite-dimensional problem. Then, we explain how to use the symmetry of the system to
simplify the finite-dimensional problem into a two-dimensional one. Next, we tackle this two-dimensional
problem by employing a Taylor expansion from which we can read off the type of the bifurcation. In the
last part of this section, we derive equilibria approximations and analyze linear stability of bifurcating
equilibria. Section 4 contains three interesting special cases, for which we conduct numerical simulations
that illustrate and confirm the theory. In Section 5 we discuss a few more ways of generalizing pairwise
k-nearest-neighbor coupling to higher-order interactions and explain why we focused particularly on one
choice. Finally, Section 6 contains some concluding remarks.



2 Nonlocally Coupled Phase Oscillators with Higher-Order In-
teractions

2.1 Nonlocally Coupled Phase Oscillators and ¢-Twisted States

Consider a nonlocally coupled network of M identical Kuramoto phase oscillators with k-nearest-neighbor
network. More specifically, suppose that the phase ¢; of oscillator i evolves according to

Zaz jsin(g; —¢;), fori=1,..., M, (2.1)

where the the coefficients a; are defined by a; = 1 if min(]é| , M —|i|) < k and a; = 0 otherwise. This ODE
system is posed in the phase space TM and the underlying coupling structure is illustrated in Figure 1(a).
The system (2.1) has multiple symmetries. First, there is continuous symmetry of ¢; — ¢; + « for any
o € T. Moreover, since a;—; only depends on the difference i —j and the network is symmetric, the system
also has a finite symmetry group Djs, which is the dihedral group consisting of 2M elements. For a full
investigation of symmetry in this system see [3]. For ¢ € N, a ¢-twisted state is a phase configuration
that satisfies

¢! =2mqi/M + o, fori=1,..., M,

where o € T is an arbitrary parameter. By exploiting these symmetries and the odd symmetry of the
coupling function sin, one can show that these ¢g-twisted states are equilibria of (2.1). While showing the
time invariance of a g-twisted state on (2.1) is relatively easy, investigating its stability turns out to be
more complicated [12].

To understand the stability of g-twisted states one often considers the continuum limit of the network
dynamical system with infinitely many oscillators. Given a solution ¢ (¢) of the system (2.1), one can
derive the continuum limit by first defining a function ©M (¢, z) as

OM(t,z) = ¢u(t) e [% ﬁ) .

Here, x represents the position of an oscillator in the infinite network limit. In order to distinguish the
phase space T from the index set of the network nodes, we regard x as a variable on the unit circle
S:=10,1]/(0 ~ 1), that we parameterize from 0 to 1. Then, the function O (¢, z) satisfies

%@M(t z) = /S WM (2 — ) sin(@M (1, y) — ©M (¢, 2)) dy, (2.2)

where WM is defined as

—1 4
WM(z)=a; ifie |-, L
S(r)=ua lle{M’M ,

for z € S. Keeping the coupling range r := k/M € (0, %] fixed and letting M — oo, we formally obtain
the limit WM — W, € L%(S), where

W, (z) = 1 if min(z,1—2z)<r (2.3)
" "o else ' '

Now, suppose that limps_o ©M (t,2) = O(t,z) for a function ©. Then, formally taking the limit of (2.2)
as M — oo, we obtain the continuum limit

—@ t,x) /W x —y)sin(O(t,y) — O(t, z)) dy. (2.4)

In this continuum limit, a g-twisted state, see Figure 1(c), is given by

0%(z) = 2mqr + .



Even though this derivation was formal, it can be rigorously shown that the continuum limit (2.4)
approximates the dynamics of the finite system (2.1) for large M [25, 28, 19, 13].
System (2.4) has a continuous T x S symmetry. A symmetry element 8 € T acts by a phase shift

B:0(t,x)— O(t,x) + 8 (2.5)
to all oscillators and an element ¢ € S acts by rotating the ring-like network, that is,
¢:0(t,x) = O(t,x + ¢). (2.6)

The latter symmetry action can be seen as part of the limit of the Dj; symmetry of the finite-dimensional
system as M — oo; cf. [6].
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Figure 1: (a) shows a 5-nearest-neighbor graph on 20 nodes. (b) depicts the topology of a higher-
order network. All pairs (y,z) for which a triangle between (z,y, z) for x = 0 exists, i.e., that satisfy
W,.(z+y—2-0) =1 are depicted by the black area. Here, r = 0.15. (c) shows a 5-twisted state in the
continuum limit.

2.2 Nonlocal Coupling and Higher-Order Interactions

Higher-order interactions for phase oscillators are nonlinear interactions between three or more oscil-
lator phases. An example for triplet interactions between three oscillators at z,y,z € S with phases
O(t,xz),0(t,y),O(t, z) at time ¢ is given by sin(O(t, z) + O(t,y) — 20(t, x)). To incorporate nonpairwise
higher-order interactions, we extend the continuum limit (2.2) in the natural way: For a network with
pure triplet interactions the phases evolve according to

0

&9(15,30) = /SAW(z,y,x) sin(O(t, z) + O(t,y) — 20(t, x)) dydz,

where W: S* — R is a general 3-tensor that describes in which triplets there is an interaction (and
generalizes the weighted adjacency tensor for pairwise interactions).

As we are interested in g-twisted states, we consider a specific class of nonlocal higher-order interaction
structure W(z,y,x) = W,.(z + y — 2z) for the coupling function sin(O(t, z) + O(t,y) — 20(t,x)). This
choice of network topology naturally extends nonlocal pairwise interactions and in the resulting network
dynamical system g-twisted states are still relative equilibria—the resulting network topology can be seen
in Figure 1(b). While we focus on this particular generalization, there are other network nonlocal higher-
order network topologies that preserve g-twisted states as discussed in Section 5 for a discussion. The
higher-order network topology allows for long range connections: An oscillator x is not only influenced
by triangles spanned by nodes neighboring x. Instead, if say x = 0, a triangle (x,y, z) exists when
|z+y| < rin S, which is the case when for example z = 1/4 and y = 3/4. In particular, in this case
z+ 1y —2x = 0 and thus this triangle exists for all coupling ranges r > 0. In that sense, it is distinct from
the “nearest-neighbor” higher-order networks considered in [23].

Our nonlocal higher-order coupling also naturally extends beyond triplet coupling: In the following we
will consider a combination of pairwise and higher-order (triplet and quadruplet) interactions. Specifically,



we consider the continuum limit
—@ t,z) /W z —y)sin(O(t,y) — O(t,z)) dy
+ )\/S/SWT(Z +y —22)sin(0(t, 2) + O(t,y) — 20(¢t, z)) dydz (2.7)
+ M/S/S/SWT(Z —y+w—212)sin(O(, 2) — O(t,y) + O(t,w) — O(t, z)) dwdydz,

where r € (0 ,2] describes the coupling range and A\, i € R are the strengths of the higher-order in-
teractions. These three parameters can be summarized into one parameter p = (r, A\, u) € P, where
P = (0, 4] x R x R denotes the parameter space. Here, the first line of (2.7) describes the continuum limit
of a Kuramoto model with nonlocal coupling and the second and third lines are triplet and quadruplet
higher-order interactions. The system (2.7) has the same symmetries as the system (2.4).

2.3 Linearization

We want to analyze the stability and bifurcations of ¢g-twisted states for (2.7) and determine the existence
and stability of possible bifurcating branches that occur as system parameters are varied. To answer these
kind of questions, eigenvalues of the linearization of the right-hand side of (2.7) are of importance. The
continuous phase shift symmetry (2.5) of system (2.7) implies that if ©(¢, z) is a solution to the PDE (2.7),
then so is O(t, x)+ 8 with a constant 8 € T, see [16]. Therefore, the system has a neutrally stable direction,
which yields a zero eigenvalue in the linearization of the right-hand side of (2.7). We can avoid the zero
eigenvalue by considering the evolution of phase differences ¥ (¢, z) := O(t, ) — ©(t,0) which reduces the
continuous phase shift symmetry (2.5). The function ¥(¢, z) satisfies

GVt = [ W =) sin(W(t.5) ~ W(t.2)) dy — [ W) sin( () dy

+A [/S /S W (z +y — 22)sin(U(t, z) + U(t,y) — 2U(t,2)) dydz

_/S/SWT(Z Fy)sin(U(t2) + U(ty)) dydz} 3
tu [/S/S/SW('Z —y+w—x)sin(¥(t, 2) — V(t,y) + V(t,w) — U(t,2)) dwdydz

*/s /S/SWT(Z —y+tw)sin((t,2) = W(t,y) + U(t,w)) dwdydz

and ¥(¢,0) = 0. We denote the right-hand side of this system by F(W¥,p). In this system, a g-twisted
state is given by ¥9(z) = 2mwgx and it cannot be perturbed along a constant function anymore, since the
perturbed function would then violate ¥(¢,0) = 0. Moreover, since we are particularly interested in the
behavior of F' in a neighborhood of a g-twisted state, we define

F(v,p) := F(¥?+ v, p), Fi: X xP = X.

Here, v can be seen as the perturbation of a twisted state which we consider in the space X := H} :=
HL(S,R) which is the function space whose functions and their weak derivatives are in L*(S,R) and
which satisfy the boundary condition f(0) = 0. Since C(S) C H'(S,R), these boundary conditions can
be imposed in the classical sense. That F'? indeed maps into X is shown as a special case in Appendix C.
Together with the scalar product

fogi= /S f(@)g(x) dz + /S Df(x)Dyg(x) dx

the space X forms a Hilbert space. Moreover, the induced norm is given by

1l = VT F = /IlF 22 + 1DFI.




Since every function n € Hg can be written as

n(x) = Z ay sin(2mkx) 4 b (1 — cos(2mkx)),
k=1
the functions uy(x) = sin(27kx) and wy(r) = 1 — cos(2wkx) for k > 1 form a Schauder basis of H{.
Furthermore, our choice of W, in (2.3) yields a Fourier decomposition

1. o
W, (z) = §WT(0) + kz:; W,.(k) cos(2mkx),
with

Welk) =14, ifk=0" (2:9)

) {2sin7(r2k7rkr) if k ?é 0
It can be shown, see Appendix C, that the Fréchet-Derivative of F?(v,p) with respect to v around 0 is
given by a bounded linear operator F2(0,p): X — X. An evaluation of F4(0,p) on these basis elements
yields

F3(0,p)[ux] = e1(g; k, p)us,
F(0,p)[wk] = c1(q, k, p)wy, (2.10)

for k € N and
er(q k) o= 5 (Wela — ) + Wi(g + k) — 2W,g) — (40 + 200, (0))

where we use the convention VAVT(fk) = Wr(k) The eigenvalues are then given by & = ¢1(q, k, p), each
with multiplicity 2. Since FZ(0,p) is a multiplication operator on this basis, the spectrum is the closure
of the set of eigenvalues, i.e.,

o(F(0,p)) = cl({&k, k € N}).

When one of these spectral values passes through 0, we may expect a change of stability of the
g-twisted state. This is what we investigate in the next section.

3 Bifurcation Theory

We now consider varying parameters along a general curve in parameter space; for phase oscillator
networks that arise as phase reductions from a physical system [2], we expect that variation of a physical
system parameter gives rise to such a curve. Specifically, we assume from now on that

1. there is a smooth curve through the interior of the parameter space p: (—4,d) — int(P), p(s) =
(T(S)a )‘(S)a IU’(S)) with p(o) =Po = (TOa )\Oa IU/O)a

2. at s = 0 we have ¢1(g, £,p(s)) = 0 for one £ € N and for all s € (=4, ) we have ¢1(q, k, p(s)) ¢ (—¢,€)
for some € > 0 and all k # ¢,

3. c1(q, ¢, p(s)) is an isolated eigenvalue, i.e., for all s € (—4,0), the sequence (c1(q, k,p(s)))ken does
not have an accumulation point at &,

4. the zero eigenvalue passes through 0 with non-vanishing speed as s passes through 0, i.e., %cl (g,¢,p(s)) #
0 for s = 0.

Remark 3.1. Since limg_ o ¢1(q, k,p) = iVAVT(q)(f2 — (4X + 2u)) exists, it is the only possible spectral
value that is not an eigenvalue. Moreover, since it depends continuously on all parameters, Assumption 3
only has to be checked at s = 0. Furthermore, since ¢1(g, k, p) is uniformly (w.r.t. k) Lipschitz continuous
in p, Assumption 2 only has to be checked at s = 0.

From now on we use the notation V for an open neighborhood of py in P. By a slight abuse of
notation, this V' might have to be shrunk from one statement to the other, but always represents a small
enough open neighborhood of pg. Similarly, (—4,d), which represents an open neighborhood of 0 in R,
might have to be shrunk from statement to statement.



3.1 Lyapunov—Schmidt Reduction

At the bifurcation point s = 0, the nullspace of the linearization is given by
N == N(F(0,po)) = span{ue, we}.

Further we denote the range of the linearization by R = span{uy,wy : k # ¢}. Following the notation
from [17], we consider F(v,p) as a map from X x P to Z, where X = Z = H}. Even though X = Z, we
use different notation for the domain and target set to emphasize the distinction between them. These
spaces can be decomposed into

X=No®X, and Z=RaZ,

where X is a complement of NV in X and Zj is a complement of R in Z. We choose Zy = N and Xy = R.
Moreover the projection onto Z; is defined by

Q: Z— Zy along R.

To determine equilibria of (2.8), we need to find solutions to F'(v,p) = 0. By performing a Lyapunov-
Schmidt reduction we can reduce this infinite-dimensional problem to a finite-dimensional problem, as
the next theorem shows.

Theorem 3.2 ([17, Chapter 1.2]). There is a neighborhood Uy x Vi C X x P of (0,po) such that the full
infinite-dimensional problem of finding equilibria of (2.8), i.e., solving

Fi(v,p) =0
in Uy X V1 is equivalent to solving
®(v,p) =0,
where ®: Uy X Vo — Zy for (v,p) € Uy x Vo C N x P. Here, ®(0,po) =0 and P is defined by

(I)(’U,p) = QFq(U + w(’vap)’p)a (31)

where ¥: N x Vo — Xg is a function satisfying 1(0,p9) = 0. It is implicitly defined to be the unique
solution to the equation

(I = Q)F(v+1(v,p),p) =0 (3.2)
in a neighborhood of (0, po).

The proof of this theorem relies on the implicit function theorem. For details see [17, Chapter 1.2]
and for an introduction see [18].

We introduce a coordinate representation of the function ® by considering the basis of the dual
space Z{ of Zy, which is given by the two functionals z§, z5 with

(27,0) = Q/Ssin@ﬂ'ﬂx)v(x) dz,
(z3,0) = fQ/Scos(QWE:c)v(x) dz,

where (-, -} denotes the dual pairing. Then, we define a function $: Usx Vs — R2, where Us C R2, V3 C R
are sufficiently small neighborhoods around the origin, as

5( (@ (21, ®(aug + bwe, p(s)))
P = . .
() )= (Gt T 33
Given (ag,bo)" in a neighborhood of (0,0)T and s € (—4,d) such that ®((ag,bo)T,s) = (0,0)T we then
know that F(¥? + ague + bowe + ¢ (aoue + bowe, p(s)),p(s)) = 0. Therefore, this first argument of F

represents an equilibrium. Conversely, every equilibrium in a neighborhood of the bifurcation point can
be found in that way.



3.2 Problem Reduction Using Symmetry

While reducing the system to phase differences (2.8) has reduced the phase-shift symmetry, the symmetry
still has the residual rotational symmetry (2.6). One can expect that this symmetry is reflected in the
bifurcation behavior. Indeed, the Lyapunov—Schmidt reduction can be carried out such that it preserves
symmetries; cf. [16]. Here, we show explicitly that the reduced equation (3.3) retains the rotational
symmetry. This simplifies the system to a one-dimensional problem by eliminating the symmetry.

Specifically, in phase differences, the rotational symmetry (2.6) acts as an operator By: X — X for
¢ € S given by

(Byf)(x) = f(x+¢) — f(§).

and the right-hand side F'? is equivariant with respect to this operation. The nullspace NN is spanned
by u¢ and wy, which can be obtained from each other by shifting one function around the circle and
adding a constant such that it satisfies the boundary conditions, i.e., by applying the operator By. For

the reduced equation determined by ﬁ), this corresponds to a rotation. Specifically, with

A = cos(2mlg)  sin(2mlo)
= \ —sin(2nlg) cos(2nle)

for a two-dimensional rotation matrix, we now show that P is S-equivariant with respect to the action
given by Ag.
Proposition 3.3. In a neighborhood of the origin, ) satisfies

(10 (2).) = ((2).2), »
for all 6.

Proof. A straight-forward calculation confirms that F'¢ satisfies

F(Bgn,p) = BsF(n, p) (3.5)
for alln € X and all p € P. Now, let us see how this property propagates to the function . By definition,
1 solves

(I - Q)Fq(v +¢(Uap)ap) =0

for all v € N,p € P. Now, choose v = Byu € N for some u € N and note that By leaves /N invariant
and further commutes with (). Then, on the one hand

(I —Q)FY(Byu+ ¥ (Bgu,p),p) = 0. (3.6)
On the other hand
0= B0
= By(I = Q)F*(u+9¢(u,p),p)
= = Q)BsF*(u+ 4 (u,p),p)
= = Q)F(By[u+¢(u,p)l,p)

by the symmetry property (3.5). By comparing (3.6) and (3.7) one sees that
Y (Bgu,p) = Byt (u, p) (3.8)

for all u € N due to the uniqueness of 1. Furthermore, the definition (3.1) of ® implies that for allv € N

®(Byv,p) = QF(Byv + ¢ (Byv, p), p)
= QF(Byv + By (v, p),p)
= QFY(By[v +1(v,p)],p)
= QByF(v+ ¥ (v,p),p)
= ByQF(v+ (v, p),p)
= By®(v,p), (3.9)



where we have used (3.8) and (3.5).
Since ®: N x V — N, where V is neighborhood of pg in P, for small enough |a|, |b|, we can write

D(aug + bwe, p) = cug + dwy

for each fixed p € V' and some ¢,d € R. Now, by applying B, to both sides of the equation and using the
symmetry property (3.9), a straight-forward calculation confirms that

D([acos(2ml) + bsin(2mld)|ug + [—asin(27lp) + b cos(2wled)|we, p)
[ccos(2ml) + dsin(2mld)|ue + [—csin(2mlp) + d cos(2mle)|wy.

Using (3.3), this yields the result. O

Next, we show that & does not change the angle of a vector but only multiplies its length by a (possibly
negative) factor.
To achieve this, we first define the space of odd functions O:

O:={feX: flx)=—f(-2)}
Lemma 3.4. Letp € P and v € O. Then Fi(v,p) € O.

This lemma follows by a calculation using linear substitutions of the integrating variables that appear
in the definition of F'¢ and F'.
Given this lemma, we can consider the restriction of F'¢ to the space of odd functions O:

Fot. Xt xp— 27, FoT (v, p) := Fi(v,p),

where both XT = ZT = O. We use the symbol + whenever we are referring to a function or a space that
is reduced to O.

Under this restriction F% inherits smoothness from F and F9. Following the notation from Section 3.1
we denote Nt := NV(EF21(0,p)) = span{us}. Moreover, there are decompositions

xt=~Ntex! and Zz'=RrtoZz,

where R is the range of F2(0,py) and we choose Xg = R and Zg = NT. Additionally, we denote QF
for the restricted projection of @ from Xt onto NT. Now we can perform another Lyapunov-Schmidt
reduction on the space of odd functions:

Lemma 3.5 ([17]). Solving the infinite problem
F*1(0,p) =0
18 equivalent to solving
®f(v,p) =0,
where ®t: Ut x V = Z} and (v,p) € Ut x V. Nt x P. Here, ®1(0, po) = 0 and ®' is defined by
' (v,p) == QTF (v + 41 (v,p), p), (3.10)

where ¥T: NT x V — Xg is a unique function satisfying ¥1(0,po) = 0. It is implicitly defined to be the
unique solution of the equation

(I = QNF" (v + T (v,p),p) =0 (3.11)
in a neighborhood of (0, po).

This Lemma follows from [17]. We can use it to show the next lemma:



Lemma 3.6. & does not change the angle of a vector but only multiplies its length by a (possibly negative)
factor. To be precise, for all (a,b) in a small neighborhood U of (0,0) and s € (—96,9),

& ((‘;) s) = h((a,b)T,s) (Z) : (3.12)

where h: U x (=6,0) = R is a rotationally invariant function, i.e.
A a ~ a
(4 (5) ) =((5) +)
for all ¢.

Proof. First note, that due to Proposition 3.3, it suffices to show (3.12) for b = 0. Therefore, it is left to
show that ®((a,0)",s) = 0. Since both 1 and ¢! are uniquely defined 1" must be the restriction of
to the space O. In particular,

¥(v,p) = ¥i(v,p) €O
whenever v € O. This shows that 1(aug, p) is an odd function. Now, we evaluate ®5((a,0)7, s):

®2((a,0) ", 5) = (25, D(aur, p(s)))
= (23, QF(aus + P (aug, p(s)), p(s)))
=0,

*
225
*
225

because aug + 1 (aug, p(s)) is odd and F? maps odd functions to odd functions, see Lemma 3.4. Therefore,
when b = 0 in (3.3) and a and s are in a small neighborhood of the bifurcation point, we find that
$, = 0. Since ((0,0)T,s) = (0,0)T, we can choose h such that the claim of the lemma holds. Finally,
by Proposition 3.3 it follows that h has to satisfy the rotational invariance condition. O

Consequently, when looking for zeros of i)((a, b)T,s), we can restrict ourselves to b = 0. Given a,s
such that ®((a,0)",s) = 0, all other zeros can then be obtained by applying A, to (a,0)". Therefore,
we might as well study the problem of finding zeros of

h(a,s) := i((a,O)T,s) = @L(a, s) = (zf,@T(aw,p(s))).

In the next section, we Taylor-expand h to see which zeros it has in a neighborhood of the origin.

3.3 Taylor Expansion around the Bifurcation Point

In order to determine the type of the bifurcation it is necessary to compute the derivatives of h. Since F is
smooth, as proven in Appendix C, the function 1, ® and iﬂ, which originate from the implicit function
theorem or are concatenations of smooth functions, are smooth as well. In order to derive expressions for
the derivative of h we first need to compute derivatives of F'T. These derivatives are given in the next
lemma:

Lemma 3.7. The derivative of FOT, evaluated on the basis functions satisfies

FEH0,p)[ur] = c1(q, k, p)uk. (3.13)
An evaluation of second derivatives of F4T on the basis elements uy, yields
F31(0,p)[ur, ur] = c2(q, k, p)uan (3.14)
Further, mized second derivatives are given by
FE1(0,p)[tm, ur] = c3(a,m, by p)um—k + (g, m, k, p)um sk, (3.15)
for all m,k € N with m # k. Here, we use the convention u_, = —u, for n € N. Furthermore, we find
F&1(0,p)[un, uk, ur] = 3¢s(q, k, p)ug + co(q, k, p)usk, (3.16)

for k € N. Here, c1,...,cg are coefficients that depend on q,k,m,p and the Fourier coefficients W, (k) of
the coupling function. The full expressions for these coefficients can be found in Appendix A.
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Proof. This lemma can be proven by inserting the basis functions into the representation of the derivative
of F', derived in Appendix C. |

Now, we can use Lemma 3.7 to calculate derivatives of 1/ and ®'. This follows the lines of [17, Section
1.6].

Lemma 3.8. The derivatives of ¥' satisfy
P10, po)ue = 0, (3.17)

d’lv(oapo)[ue,w] = M

— U2g.- 3.18
Cl(‘]a 2€ap0> . ( )

Proof. Taking the derivative of (3.11) with respect to v yields
(I = QNFI (v + ¢¥(v,p), p)lor + 9] (v, p)vr] = 0 (3.19)

for all v; € NT. Now, we insert v = 0 and p = po into (3.19). Noting that F2f(0,pg)v; = 0 and
QTF21(0,po) = 0, we are left with F21(0, p)il (0, po)vy = 0. Since ¢f maps Nt into X and F21(0, p)
regarded as a map from Xg to RT is bijective, we obtain (3.17).

Differentiating (3.19) once more with respect to v gives

(I - QNFLT (v + T (v,p), p)[vr + ¥l (v, p)v1,v2 + ) (v, p)va]
+ (I - QT)F:)}’T(’U + ’l,/)T(’l),p),p>’l/)lU(’l),p)[Ul, v?] - 0

for all vy,vy € NT. Again, by inserting v = 0 and p = pg into the previous equation we obtain
(I = QNFLT(0,po)[v1,v2] + FLT(0, po)t, (0, po)[vr, va] = 0 (3.20)

for all vy, va € NT. Now, we compute 1], (0, po)[us, ue] by choosing v1 = ve = u, in (3.20) and using (3.14).
We obtain

ngT(()?pO)’l/)'LT)U (0,])0)[’&@, ul] = 702((15 Eapo)uﬂ-

Therefore, by noting that ¢}, (0, po)[ue, ue] € X{, considering F2(0,po): X! — R' as an invertible map
and using (3.13), we are left with (3.18). O

Now we can use these derivatives to calculate the derivatives of ®1:

Lemma 3.9. & satisfies

1(0,0) =0, f(0,0) =0,
qA)tha( ’ =Y, qA)thaa(OaO *6717
where
1 c2(q,¢,po)cs(q, 24,4, p
"1 = 5 (05(qa€ap0) - 2( Cl((); ;(E pO) 0) . (321)

Proof. By differentiating (3.10) with respect to v we get

ol (v, p)vr = QTFLT (v + ¢T (v, p), p) o1 + % (v, p)vr], (3.22)
o, (v, p)[v1,v2] = QTFLT (v + ¢ (v, p) o1 + ¥l (v, o1, v2 + ¥ (v, p)va]
+QTFI (v + 1 (v,p), D)0, (v, p) V1, 2],
@, (v, p)[v1,v2,v3] = QTELT (v + 91 (v, p), p)[v1 + ¥f (v, P)v1, v2 + P} (v, P)va, vs + ] (v, p)vs]

+ QTFLT (v + ¥t (v, p), p) o1 + ¥l (v, p)or, ¥, (v, p)[v2, v3]]

+ QTFLT (v + ¥t (v, p), p) vz + ¥l (v, ), ¥, (v, p) 1, v3]]

+ QTELT (v + ¢ (v, p), p)[vs + ¥ (v, p)vs, ¥l (v, p)[v1, v2]]

+QTF (v + ¢ (v,p), p)¥l,, (v, )01, 02, v5]
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for all v1,ve,v3 € NT. Evaluating these derivatives at v = 0 and p = py and using (3.17) yields

(0, po)v1 = 0, (3.23a)
(I)j:m (OaPO)[Ula ’UQ] = QTF(J’T(O pO)[UI, ’UQ] (323b)
(I)Ivv (OaPO)[Ula V2, U3] = QTFE{;U (0 pO)[UI, V2, ’U3]
+ TF;)]'L’; 0) v a )
2 R0 o Ol ] 250
+ QTFLT(0,po) v, 9], (0, po) w1, vs]]
+QTFLT(0,p0)[v3, 9], (0, po) [01, va]].
By the definition of ®T we get
$7(0,0) =0
By (3.23a) we get
B! (0,0) = (27, ®,(0, po)us) = 0.
Using (3.23b) and (3.14), we obtain
(i)jw(o, 0) = <ZT’ (I)ZU(O,po)[Ug, Ug]> = <ZT’ QTFEJ(O’IJO)[U@ Ug]> = <ZT’ 0> =0.
Using (3.23c), (3.16), (3.18) and (3.15) yields
@, (0, po) [ue, ue, ue) = QTFLT (0, po)ue, e, we
+ 3QTF‘1 T( 5p0)[u27 ’l/)T (Oap())[ulv ue]]
= Q'F&1(0,po)[we, e, ue]
SCQ(qa Eapo) T
- 0
C1 (Qa 2€ap0) Q ( pO)[U& U2é]
302 (q7 67 p0)03 (Qa 265 E, pO)
=3 4 —
C5(qa apo)uf Cl(q,2£,p0> u
Therefore, ! (0,0) = 6;.
O
Now, we compute derivatives involving s.
Lemma 3.10. & satisfies
®1(0,00=0, ! (0,0) =2,
where
d
Y2 = _cl(Qagap(s)) . (324)

ds 5=0
Proof. Since F©T(0,p) = F(¥4,p) = 0 for all p € P, we have $1(0, s) = 0 for all s € (-4, ). In particular,
$,(0,0) = 0.
To compute the mixed derivative, we first differentiate (3.11) with respect to p to obtain
(I = QNFE (v + ¢ (v,p), ) (v, p) + (I = QN)FLT (v + ¢ (v,p),p) = 0. (3.25)
Now, we insert v =0, p = po to get

(I = QNFLT(0,p0)v}(0,p0) + (I = QN ELT(0,po) = 0.

12



Again, because F'¢1(0,p) = 0 for all p its derivative with respect to p, i.e., the second part of the previous
equation, is 0. Moreover for v € Xg, (I —QYF21(0,pg)v = 0 is equivalent to v = 0 and therefore

¥1(0,po) = 0. (3.26)

Now, the mixed first derivatives can be computed by differentiating (3.22) with respect to p as follows:

ol (v,p)[or, p1] = QTFLT (v + 9T (v,p), p)[v1 + ¥ (v, p)vr]ef (v, p)p1
+ QTELT (v + ¢ (v,p), p)[v1 + 1 (v, p)o1, pi]
+ QTFE’T(U + Q/JT (’Uap)ap)wlp(vap)[vlﬂpl]

for all v; € NT,p; € R3. Evaluating that at v = 0, p = pg yields

@Ip(oapo)[ulvpl] = QTFg;;T(OapO)[ulvpl]

= Dpcl(qvkap)’ P1ug.
p

=Po
Consequently,
©4,(0,0) = Dyer(q.kp)| _ p/(0)
P=Ppo
d
= gcl(qvgvp(s)) -
O
Now, we can put these lemmas together and formulate the concluding theorem of this section:
Theorem 3.11. The Taylor-expansion of ®t(a,s) = h(a, s) is
‘iﬂ(a, s) [71113 + 0(04)] + s [7211 + (9(62)} + O(s%)
= a(y1a® + 728) + O(a* + |s| a® + s?) (3.27)
Here, v1 and v2 are defined as in (3.21) and (3.24), respectively.
Proof. Since F' is smooth, this follows from Lemmas 3.9 and 3.10. |

Here, (3.27) is the Taylor expansion of a pitchfork bifurcation. In fact, by using the implicit function
theorem, one can show that except for the trivial solution branch a = 0 there is another curve of equilibria
in the neighborhood of the trivial solution. This non-trivial solution branch can be parameterized by
a twice continuously differentiable curve 7 — (s(7),a(7)) for 7 € (—¢,€) and 0 < € small enough. In
this case, $(0) = a(0) = 0 and the parameterization can be chosen such that @(0) = 1. Then, $(0) =0
and §(0) = —2v1/v2. Here, a dot means differentiation with respect to 7. Given these derivatives, the
non-trivial solution curve exists for s < 0 when v/ > 0 and for s > 0 when 2 /1 < 0. Moreover, in a
neighborhood of the bifurcation point, we can approximate

a ~ a*PP(s) = Mﬁ. (3.28)
ga!

~ Given a ag,so with h(ag,s0) = 0 we infer all ao, bo, 50 with a2 + b2 = a2 and sy = 3o satisfy
®((ap,bo) ", 50) =0, due to the symmetry (3.4) of ®.
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3.4 Higher-Order Equilibria Approximations

In the last section, we clarified existence of solutions to ®(v,p(s)) = 0. In this section we explain how
to use these solutions to derive formulas that can be used to approximate the zeros of F? in H}. Given
v € N that solves ®(v,p(s)) =0 we know that F(¥?+ v + (v, p(s)),p(s)) = 0. For a given p(s), a zero
of F is therefore given by Z(v,s) := U7+ v + ¢(v,p(s)). A naive 0-th order approximation would be
given by

Z(v,5) = ¥+ O([[ (v, 5)|))-

However, since after neglecting the higher-order terms this approximation coincides with the trivial zero
of F'| i.e., the g-twisted state, this approximation is not useful.

An approximation of first order can be derived by expanding Z(v, s) in terms of v and s up to first
derivatives. This yields

Z(v,8) = W9+ 0+ 4, (0,p0)0 + 51 (0, o)’ (0) + O(l| (v, 5)]*)
= U+ v+ O(|(v,5)[I"),

where we have used that 1,(0,po) = 0 and ¢,(0,pg) = 0. Neglecting the higher-order terms, we denote
ZNv,8) =V 40 (3.29)

for the first order approximation.
To get a more precise approximation, we assume that p: (=6,0) — P is a smooth curve. Then, we
expand up to second order:

a =y lv s) — Y v, s
W (o) = 9 0t (o) < 9OV () 0w

with

H< ’l/)vv(ova)[vav] va(ov O)[ s P I(O)] )
Pup(0,20) [0, 0" (0)] ¢pp(0, po) [p'(0), P/ (0)] + ¢ (0, po)p” (0)

First, we take care of the lower right entry of H. Note that v,(0,po) = 0, as shown in (3.26). Next,
differentiating (3.25) with respect to p and evaluating at p = pg and v = 0 yields

= (I = Q) Fwuw (¥, po)[1h(0, po)p’ (0), ¥ (0, po)p' (0)] (3.30a)
+ (I = Q) Fup(¥?, po)[tp (0, po)p’ (0), p'(0)] (3.30b)
+ (I = Q)Fu (¥, po)tpy (0, p0)[p'(0), p'(0)] (3-30¢)
+ (I = Q) Fup(¥?, po)[tp (0, po)p’ (0), p'(0)] (3.30d)
+ (I = Q) Fpp (T, po)[p(0), p'(0)]- (3-30e)

Again, due to 1,(0,po) = 0, we observe that the terms (3.30a), (3.30b) and (3.30d) equal 0. Moreover,
F(¥%,p) =0 for all p € P. Therefore, Fp,,(¥7,pg) = 0, and thus (3.30e) is 0 as well. As a consequence

0= (I = Q)Fu (¥, po)ihpp(0, po)[p'(0),p'(0)]-

Since 1 maps into Xy we conclude that ¢,,(0,po)[p’(0),p'(0)] = 0 and thus Hes = 0.
Second, we look at the off-diagonal entries Hay = Hia. To obtain an expression for ,,(0,po) we
differentiate (3.19) with respect to p, insert v = 0, p = po and thereby obtain

0= (I = Q)Fyy (¥, po)[vi, ¥, (0,p0)p'(0)] (3.31a)
+ (I = Q)Fup (¥, po)[v1, p'(0)] (3.31b)
+ (I — Q)Fy (P9, po)thup(0, po)[v1, ' (0)], (3.31c¢)
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for all v; € N. Since 9,(0,po) = 0, as shown in (3.26), (3.31a) equals 0. Moreover, for all p € P,
Fg (¥, p)v € Zy for all v € N. Therefore, Fg,(¥?,p)[v,p’(0)] € Zy, too, and consequently (3.31b) is 0.
Again, we conclude that 1,,(0,pg) = 0. Therefore,

- (ww(o,go)[v,v] 8)

and thus
W40 (0, p(s)) = B9+ 0+ St (0,p0)[o, 0] + O (v, 9)])

for all v € N and s € (—4,9) in a neighborhood of (0,0). We denote

Z(0,5) = W0 v+ S00u(0,po)lo, ] (332)

for the second order expansion.

However, until now we have assumed that v solves ®(v,p(s)) = 0. Since this solution v depends
on s, we denote it by v(s). Unfortunately, for given s these v are not known exactly but they also
have to be approximated by a function that we call v*PP. We derive v*PP by first computing a®PP(s)
according to (3.28). Then, ®f(a?"P(s),s) ~ 0 and consequently ®(A,(a*P(s),0)T,s) ~ 0 for all ¢, but
for simplicity we keep ¢ = 0. Now, we define v*PP(s) := a®PP(s)u, and because ® is the coordinate version
of @, it follows that ®(v?PP(s),s) ~ 0. Given this function v*PP(s), we use Z¢(v?P(s),s) for i € {1,2} to
approximate the real equilibrium Z(v(s), s). Consequently, the total approximation error is given by

| Z8 (0P (s), s) — Z(v(s),s)| < |Z"(v*PP(s),s) — Z'(v,s)| (3.33a)
+|Z'(w(s), s) — Z(v(s), )] . (3.33b)

In the remaining part of this subsection, we determine the magnitude of the approximation error of both
parts (3.33a) and (3.33b) in dependence of the parameter s.

To obtain an estimate for the first part (3.33a), we reconsider the curve (a(7), s(7)) that describes
the nontrivial equilibria. Because a(0) = 1, we can reparameterize the curve such that locally a(7) = 7.
Then, we still have s(0) = 0, $(0) = 0 and 3(0) = —27y1/72. Due to a(r) = 1 for all 7 in a small

neighborhood of the origin and the symmetry of ® discussed in Lemma 3.6, we can infer that s(—7) = s(7).
Consequently, s(7) has vanishing third derivative at 7 = 0. Since the curve is smooth that results in

s(1) = —y1/727% + O(7%). Using this representation, one can show that
a7 (s(7)) = a(7)] = ’ —2l0) T‘ = 0(*) = 0(s%).
a!

Since Z'(v, s) is polynomial in v, that then results in
Z' (™ (s), 5) — Z'(v(s),5) = O(s?).

To estimate the second part of the error (3.33b), it is important to note that w(s) is dependent on s.
In fact, due to the pitchfork bifurcation, its dependence can be expressed as v(s) = O(s2). Combining
that with Zi(v, s) — Z(v,s) = O(||(v, s)||"""), as shown above, we find

it+1

2)_

Putting these two errors together, we conclude that the total approximation error is given by

Z'(v(s),5) = Z(v(s), 8) = O(|(v(s), 8)[) = O(s

ZH(v?PP(s), 5) — Z'(v(s), s) = O(smi“(%’igl) .

In particular, deriving a third order approximation Z3(v, s) or even higher-order approximations is
useless unless one can also improve the approximation in the first step (3.33a). This, however, would
require a more detailed Taylor-expansion of ®' than the one given in Theorem 3.11 and thus more
derivatives of F'9.

15



3.5 Linear Stability
Up to now, we have only determined the existence of equilibria of the PDE

%\P(t, x) = F(¥,p)(z).
We have seen that apart from the trivial solution, there exists a solution curve of nontrivial solutions. In
this section, we formally investigate the linear stability of g-twisted states and bifurcating branches. A
rigorous proof of nonlinear stability is beyond the scope of this article.

Without loss of generality, we assume 2 > 0. If this is not the case, reverse the parameterization
of p(s) by considering p(—s) instead. Moreover, since the stability depends on the spectrum of the
linearization, we denote

Ii(S) ‘=supcy (Qa k,p(S))
keN
k0
and assume x(0) < 0 since otherwise neither the twisted state nor the bifurcating equilibria can be stable.
Note that x(s) is continuous in s and thus k(s) < 0 for all s in a neighborhood of 0. Consequently, we
only have to investigate how the critical zero eigenvalues at the bifurcation change, when perturbing
(P9, pg) to nearby equilibria.

Stability of the twisted state. Since vy, = %cl (g,?, p(s))‘ is assumed to be positive, ¢1(q, £, p(s)) <

0 for all s < 0. Consequently, supycy c1(q, k,p(s)) < 0 for all s < 0, which means that the spectrum of
F%(0,p(s)) is in the left half of the complex plane. Therefore, U7 is linearly stable. If, on the other hand
s> 0, F1(0,p(s)) has positive eigenvalues, from which we can conclude linear instability.

Stability of the bifurcating branches in O. First, we study the stability of the bifurcating equilibria
only in the space of odd functions O. Considering the bifurcation problem in this reduced space, there is
only one critical eigenvalue with multiplicity one that passes through 0 and a one-dimensional curve of
bifurcating equilibria. As explained at the end of Section 3.3, this curve corresponds to 7 +— (s(7), a(7))
for 7 € (—e¢, €) with s(0) = a(0) = 0 and @(0) = 1. Further, we denote v(7) = a(T)ug + %' (a(T)ue, p(s(7)))
for the equilibrium of F¢T such that F%(v(7),p(s(7))) = 0. The principle of exchange of stability [17,
Section 1.7] can now be applied to study the linear stability of these bifurcating equilibria. First, the
critical zero eigenvalue gets perturbed to an eigenvalue v(7) of FZT(v(7),p(s(7))), see [17, Proposition
1.7.2]. To be precise,

FIH(o(r), p(s(7))) (ue + w(r)) = v(r)(ue +w(r)),

where w(r) € O is a continuously differentiable curve, v(0) = 0 and s € (—4,6). Moreover, v(7) is
continuously differentiable and represents the perturbation of the zero eigenvalue. Its derivative at 7 =0
can be computed using the formula

728(0) = —2(0),

see also formula (1.7.41) in [17]. However, due to $(0) = 0 we obtain #(0) = 0. The second derivative
satisfies

2725(0) = —(0),

see formula (7.7.45) in [17]. Using §(0) = —27v;1/v2 we find #(0) = 4v;. Since k(s) < 0, the stability
of the bifurcating branch in a neighborhood of the bifurcation point is then determined by the sign of
the perturbed eigenvalue v(7). To be precise, if 43 < 0 then §(0) > 0 and thus bifurcating solutions
exist whenever s > 0 is close to 0. Since 2 < 0, the ¢g-twisted state has a positive eigenvalue and is
thus linearly unstable in that parameter region. The leading eigenvalue of the bifurcating solution v(7),
however is given by v(7) < 0. Therefore, the bifurcating solutions are stable. In this case, the bifurcation
is supercritical. If 4; > 0, we have §(0) < 0. Consequently, the bifurcating solutions exist for s < 0. Here,
the g-twisted state is linearly stable and the leading eigenvalue of the bifurcating branch is v(7) > 0.
Thus, these bifurcating equilibria are unstable. Such a bifurcation is called subcritical.
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Stability of the bifurcating branches in H}. Now, we consider the bifurcation problem in H}.
First note, that since O C Hg, the equilibrium v(7) is still an equilibrium of F'¢ when considered
in H}. Furthermore, by applying the symmetry condition (3.5), one can retrieve every other equilibria
in a neighborhood of the bifurcation point. Specifically, for all ¢ € R, the functions Bg(v(7)) are also
equilibria. This symmetry results in a two-dimensional surface of equilibria, that is parameterized by ¢
and 7. Corresponding to this surface of equilibria, there are two critical zero spectral values, that we need
to track when perturbing the trivial equilibria (0, pg) to bifurcating equilibria (v(7),p(s(7))) that lies on
the surface. Obviously, since O C H{, (v(7),p(s(7))) inherits the eigenvalue v(7). Because (v(7), p(s(7)))
lies on a surface of equilibria, the other spectral value is given by 0. Even though this zero spectral value
prevents us from directly concluding linear stability, our numerical simulations in the next section show
that bifurcating equilibria are stable in Hi when they are stable in O.

4 Applications

In this section, we take a few specific choices of the curve p(s) and evaluate the bifurcation in more detail.
We compute the ratio v2 /1 which determines if bifurcating solutions exist for s > 0 or s < 0. Moreover,
we approximate these bifurcating solutions using the expansions in Section 3.4 and study their existence
numerically as a cross-validation. In the first part of the section, we only look at graph coupling. The
second subsection additionally includes one higher-order interaction and shows how that can influence the
stability of twisted states. Finally, in the last part of this section, we consider all higher-order interactions
and explain how they can be used to change the type of the bifurcation from subcritial to supercritical
or vice versa.

4.1 The Kuramoto Model on Nonlocal Graphs
4.1.1 The Attractive Kuramoto Model (Subcritical Bifurcation)

In this section we apply the bifurcation theory to the Kuramoto model on limits of k-nearest-neighbor
graphs. Specifically, we consider no higher-order interactions, i.e., A = p = 0 in (2.8). Instead we
only consider the coupling range r in the continuum limit as a parameter. When r > 0 is very small,
the eigenvalues around a g-twisted state are all negative [34]. Then, upon increasing r, the eigenvalue
corresponding to k = 1 is the first one that passes through 0. We denote this threshold by r§(q) with a
superscript a to indicate that we are working with the attractive Kuramoto model. It is called attractive,
since two oscillators that are close attract each other. In our notation that means ¢;(q, %, (r,0,0)) < 0
for all k € N and r € (0,78(q)) and ¢1(q, 1, (r5(g),0,0)) = 0, see Figure 2 and [34].

To analyze this bifurcation we choose a curve p: (—4,5) — P with p(s) = (r3(q) + s,0,0). As
explained in Section 3.3, finding equilibria of the Kuramoto model on a graph around the g-twisted state
in a neighborhood of the bifurcation at r3(q) is equivalent to finding solutions to the equation ®'(a,s) = 0
in a neighborhood of the origin. According to the results in the same section, for given sy € (-4, 9),
an approximate solution is given by a®PP and it exists whenever the quantity under the root in (3.28)
is positive. As seen in Figure 3(a) and shown in Appendix B.2, 72/v1 > 0. Moreover, since the first
eigenvalue passes through 0 from below, we have 72 > 0, which then implies v; > 0. Therefore, for
r € (r§(q) — 9,75(q)) there exist further equilibria of (2.7) and (2.8) when A = p = 0 around the g-twisted
states. However, according to the principles explained in Section 3.5, the g-twisted state is stable in that
regime and the bifurcating solutions are unstable.

To confirm the existence of the bifurcating solutions, we consider the sequence of finite particle
systems (2.1) whose continuum limit is given by (2.4), or equivalently (2.7) with A = g = 0. In these
systems, the coefficients ay, are defined by a = 1 if min(|k|, M — |k|) < |Mr] and af = 0 otherwise. The
corresponding system of phase differences, defined by 0y := ¢ — ¢1, is given by

. 1 I 1
Ok = 17 ;ak—j sin(0; —Ok) — 77 ;al—j sin(6;). (4.1)

However, since the definition of aj involves rounding, r» cannot be regarded as a continuous bifurcation
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Figure 2: Eigenvalues ¢ (5, k, (r,0,0)) of a 5-twisted state. Until 7§(5) ~ 0.06632 all eigenvalues are
negative. At r§(5), the eigenvalue ¢ (5, k, (r,0,0)) with k = 1 passes through 0. Shortly thereafter, the
eigenvalue corresponding to k = 2 passes through 0 as well. For 0.1170 < r < 0.1789 all eigenvalues are
positive.

parameter. Therefore, we consider the system
1 1 &
b= 57 ; by sin(0; — Ox) — - ; by sin(6;), (4.2)

in which the coefficients by are defined as follows: Let kg = [rM |. Then,

1 if min(|k|, M — |k|) < ko
b :=<rM — ko if min(|k|, M —|k|) =ko+1
0 otherwise

Here, r can be considered as a continuous bifurcation parameter.

However, when simulating the finite particle system (4.2), it turns out that the bifurcation does not
occur at r§(¢) but at another value 5" (q) which is slightly different from r§(¢). In fact, numerical
simulations show 73(q) = 5™ (q) + O(1/M). For example, for ¢ = 5 we get 73(5) ~ 0.06632 whereas

7’8’1000(5) ~ 0.06582. Consequently, when looking for bifurcating solutions of ¢-twisted in the finite

particle system (4.2) one should search in a neighborhood of TS’M(q). In particular, we fix s = sg and
look for bifurcating solutions for r = TS’M(q) + So. In order to get an approximation for a solution of
®(v,p(s)) = 0, we calculate vy, and 72 according to (3.21) and (3.24) based on the value r = r§(q) + so.
Then, we calculate a®PP(sg) according to (3.28) and proceed by along the steps explained in Section 3.4
to get v*PP. We next use a discrete analog of the first order approximation Z!(v®P, sq) as the initial

condition of a zero finding algorithm (e.g. a Newton-iteration), that we then apply to the right-hand side
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Figure 3: Bifurcation ratio 2. (a) shows the ratio for the attractive Kuramoto model at r = r§(q) when
the first (k = 1, independent of ¢) eigenvalue passes through 0. The value of % seems to converge to
~ 1.723. (b) shows the same ratio for the repulsive Kuramoto model at r = 7{,(¢), which is the bifurcation
when the g-twisted first becomes stable upon increasing r. Note that in the repulsive Kuramoto model
the critical eigenvalue is not the same for all ¢. In fact, argming c1(q, k, (r§(¢),0,0)) depends on ¢ and
jumps in (b) correspond to irregular changes of argmin. For ¢ = 1, there is no bifurcation in the repulsive
Kuramoto model and the data points that are approximately at (2,6248) and (3,1045) are omitted in
this plot.

of (4.2). For one specific parameter choice, the solution Z of this zero-finding algorithm is depicted in
Figure 4.

While the simulations depicted in Figure 4 are based on the system (4.2), in which r is a continuous
bifurcation parameter, similar results hold for the system (4.1). Here, however, we could not choose M
arbitrarily. Instead, we were particularly successful finding bifurcating solutions when rg’M(q) is close to
an integer multiple of 1/M.

4.1.2 The Repulsive Kuramoto Model (Supercritical Bifurcation)

Now we consider a variant of (2.8) with A = g = 0, in which we reverse the sign of the right-hand side.
In particular, we look at

a\ll (t,x) /W x —y)sin(¥(t,y) — ¥(t,z)) der/SWT(y) sin(¥(y)) dy. (4.3)

Its finite-dimensional analog of (4.2) is then given by

M

M
-1
=7 Zbk_j sin(6; — Z _;jsin(@ (4.4)
j=1

Here, two oscillators that are close to each other, repel each other. Therefore, we call this model the
repulsive Kuramoto model, see also [12].

Because the systems (4.3) and (2.8) with A = = 0 are only different by a factor of —1 on the right-
hand side, they share the same equilibria. Yet, they are not identical, since the stability of these equilibria
depends on the eigenvalues of the linearization of the right-hand side and they are nonidentical. In fact,
the spectrum of the linearization of the right-hand side of (4.3) can be obtained from multiplying the
spectrum of (2.8) by —1. Similarly, the eigenvalues of the system (4.4) can be obtained by multiplying
the eigenvalues from (4.2) by —1. Therefore, the eigenvalues of the linearization of the right hand
around a g¢-twisted state are —ci(q, k, (r,0,0)). Consequently, the g-twisted state is linearly stable if
c1(g, k, (r,0,0)) >0 for all k € N.

As seen in Figure 2, for ¢ = 5 there is an interval r € (0.117,0.1789) in which all these conditions are
satisfied. Moreover, in a neighborhood of the lower boundary of this interval, maxy —c1 (5, k, (r,0,0)) =
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Figure 4: Bifurcating solution around a ¢-twisted state in the system (4.2). (a) shows Z — ¥4 (red line),
its first order approximation Z!(v®P, s9) —W¥? (blue) and its second order approximation Z2(v?PP, sq)— W4
(green). Here v®PP = a®PPyy such that ®(v*PP,p(sg)) & 0 up to higher-order terms. It this was exact, as
explained in Section 3.4, we would have F(Z(v,s0),p(s0)) = 0. We denote Z for an equilibrium of the
system (4.2) for r = 73 (q) 4 so. Moreover, (b) depicts the first order error Z — Z*(v*P, s0) (blue line)
and the second order error Z — Z%(v?PP 5) (green line). Parameter values: M = 1000, sg = —107%,
¢ = 5. That results in v1 ~ 9.494 - 1073, 4o & 8.400 - 102, a®P = 2.974 - 10~2.

—ming ¢1 (5, k, (r,0,0)) is attained for k = 11. It was shown in [12] that for all ¢ € N there is an interval
in which a g-twisted state is linearly stable in the repulsive Kuramoto model. In particular, the authors
showed that stability holds if 1.1787 < 2¢r < 1.7829, which agrees with our observation in Figure 2. For
q = 1 there is no bifurcation in the repulsive Kuramoto model.

To analyze the bifurcation, we denote r{(q) for the smallest value of r until which there is a positive
eigenvalue of the g-twisted state in the repulsive Kuramoto model. For example r§(5) ~ 0.11787. We
then choose the parameter curve p(s) = (r§(q) + s,0,0). A numerical evaluation of (3.21) and (3.24) for
g = 5 and k = 11 shows 71,72 > 0, see also Figure 3(b). Therefore, bifurcating solutions exist when
s < 0, or equivalently r < r§(5). Since the b-twisted state is unstable in that regime, these bifurcating
solutions are linearly stable.

To validate that numerically, we first choose M large enough and then determine rg’M (5), which is the
bifurcation point in the M-particle system with lims_, oo rg’M(Ev) — r5(5). Next, we choose s < 0 with
small enough |s|. Finally, we simulate the system (4.2) for random initial conditions that are close to
the 5-twisted state until the system reaches an equilibrium. We observe, see Figure 5, that all resulting
equilibria lie in a neighborhood of the 5-twisted state. The differences between these equilibria and the 5-
twisted state are sinusoidal functions with 11 periods on the domain S, which corresponds to the unstable
direction spanned by w17 and wi; of the 5-twisted state. Moreover, the amplitudes of these differences
are all the same and they can be approximated by solving (3.28).

4.2 Stabilization via Higher-Order Interactions

In this section, we keep ro € (0, %) and pp = 0 constant and vary A. When considering the eigenvalues

c1(g, k, (10, A,0)) we note that %cl(q,kz, (ro, A, 0)) is constant with respect to A and does not depend
on k. We denote this quantity by h(g,ro). Note that it is given by

. 2
h(g,r0) = =Wr,(q) = " sin(2mqro).

Therefore, whenever this quantity is nonzero, one can use higher-order interactions to stabilize or desta-
bilize ¢g-twisted states on the continuum limit of k-nearest-neighbor graphs. To explain this, suppose
for example, that m := maxy c1(q, k, (19,0,0)) > 0. In this case the g-twisted state is unstable in the
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Figure 5: Simulation of (4.2) with initial conditions that are close to the 5-twisted state until trajectories
have reached an equilibrium. The wiggly lined that are centered around 0 are random functions with
amplitude 1072 in whose direction we have perturbed the of the 5-twisted state to obtain the initial
condition for the ODE solver. The resulting limiting equilibria of the ODE system are depicted as
modulations of the 5-twisted state. These limiting equilibria can be obtained by adding the sinusoidal
functions to the 5-twisted state. All sinusoidal functions have an amplitude of ~ 0.12575 = 0.047 which
is close to the prediction a®P? = 0.03947 by (3.28). Furthermore, these modulations can be obtained
from each other by applying the operator B,. Parameter values: M = 1000,s = —107°,ry M(5) ~
0.11654, 75(5) = 0.11704,7 = 5™ (q) + 5, 71 ~ 1.38 ¥ 1073, 75 ~ 2.12.

model (2.8) with A = g = 0. Due to the linearity of ¢1(q, k, (ro, A, 0)) with respect to A, we can then write
C1 (qa ka (TO, )‘a 0)) =0 (Qa ka (7"0, Oa O)) + )‘h(Qa TO)'

Then, the maximal eigenvalue of the linearization around a ¢-twisted state for parameters o, A is given
by m 4+ Ah(q, ro). Consequently, if a g-twisted state is unstable for A = 0, i.e., m > 0, one can stabilize it
by choosing A < h(;—,To) if h(g,79) > 0 and X > h(;—,”:o) if h(g,r0) < 0. In the nongeneric case h(g,79) = 0,
a (de)stabilization is not possible.

It can be shown (see Theorem B.2) that for all ¢ and large enough r the largest eigenvalue m =
maxy c1(g, k, (1,0,0)) is attained for k = ¢. In particular, a sufficient condition that the largest eigen-
value m is attained for k = ¢ is

2 <2r— 1 sin(27r), (4.5)
mq T

which is proven in Appendix B. Since the right-hand side of (4.5) is monotonically increasing in r, there
is a threshold 7(¢) such that (4.5) holds for all » > #(q). Moreover, due to the continuity of the right-hand
side and the convergence of the left-hand side to 0 as ¢ — oo, this threshold converges to 0 as ¢ — oc.
However, since (4.5) is only a sufficient condition, the largest eigenvalue might already be attained by
k = q for r < 7#(q). We denote r*(q) for the smallest value of € (0, 3) such that for all 7 > r*(g), the
largest eigenvalue is attained for ¢ = k. We then have the inequality 0 < r*(q) < 7(q) < % Consequently,

when ¢ € (r*(q), 3] and Wi, (q) # 0 there is a bifurcation when A = Ao, with
m Wro (29) + Wro 0) - 2WT0 (9)

Y=g = T . (4.6)

Remark 4.1. Note that we need limy_,o c1(q, k, (ro, A0, 0)) = —(3 + X)Wy, () # 0 in order to ensure that
an isolated elgenvalue is passing through 0 at the bifurcation point. When ro > r* (g) this is equivalent
to Ag # — smce we assumed W, (q) # 0. However, since W, (2q) + W, (0) > 0, it guaranteed by (4.6)
that )\0 7& -5

By analyzing the ratio of v1/v2 we can determine the type of the bifurcation, see Figure 6.

4.3 Changing the Type of the Bifurcation

Here, we fix r and consider 4\ + 2u as the bifurcation parameter. Then, we vary A and see how this
variation affects the type of the bifurcation. Assuming (4.5), the largest eigenvalue is attained for k = ¢
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Figure 6: Maximal eigenvalue of a 8-twisted state for in the system (2.8) in dependence of ry and A. Red
colors represent an unstable 8-twisted state, whereas the 8-twisted state is stable if the color is green.
The bigger the magnitude of the maximal eigenvalue, the darker the color. The black line depicts the
value of r*(8). For all ro > r*(8) the bifurcation boundary can be calculated from (4.6). The blue curve
indicates a subcritical bifurcation whereas supercritical bifurcations are yellow. (b) is a more detailed
view of one region in (a). Note also that the bifurcation at A = 0 is subcritical, as shown in Section 4.1

and the bifurcation takes place at
W,(0) + W, (2g) — 2W,.(q)
W, (q)

It is easy to see that (4.5) is satisfied if 2 < 27gr — sin(2mwgr), which is equivalent to gr > vy =~ 0.4065,
where vg solves 2 = 2mvg — sin(27vg). We consider the curve

AN+ 2u = =: H(q,r).

p'(s) = (r'(s), X' (s), n'(5) " = (ro.4s — 2t + H(q,r0)/4,25 + 40) ",

which is parameterized by s and t € R is an additional parameter. Note that 4\'(0) + 2u'(0) = H(q,7)
for all t € R. Therefore, there is a bifurcation at s = 0 for all t € R. We calculate

d .
= — = —5W,
Y2 ds C1 (Q7 qvp) s=0 (Q)a

which is independent of t. Moreover,

cs5(¢,4,p(0)) = ¢s(q,¢,p°(0)) — =tW,(q)

N = DN~

c2(q,4,p(0)) = c2(q,¢,p°(0)) — st(—W,(0) + W,(2q))

c3(q,2¢,¢,p'(0)) = ¢s(q, 24,4, p°(0))
c1(q,2¢,p'(0)) = c1(g, 2¢,°(0))
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which leads to

1, vy €2(4,4,0'(0))es(g: 29, ¢, p4(0))
n=3 < 5(¢,4,p°(0)) c1(¢, 24, p4(0)) >
B 1. 3(¢,2¢,4,0°(0)) ,, = :
n - 7Wr(@) mf(*wr(o) + W, (29))
= ? + tX(qa T)
with
N C 0 T T
X(avr) = ~3Wht) + SLZLLTLD (i 0) 417, 20).

It can be shown (see Appendix A) that

X(g,r) = gwqr) (4.7)

for a function ¢: R>o — R, see Figure 7. Moreover, based on the explicit expression of ¢ that is given in
the appendix, we conclude t(v) = v+ O(1) as v — oo.

. . . . . . . . .
0 05 1 15 2 25 3 35 4 45 5
Vo v

Figure 7: The function ¢(v).

To conclude, v4 is independent of t and whenever ~§ # 0 there is a bifurcation at s = 0. Furthermore,
if additionally X (q,7) # 0, 74 can take any value in R by suitably choosing t. Consequently, the ratio
75 /74 can also take arbitrary values in R\ {0}. Since the sign of that ratio determines the type (sub- or
supercritical) of the bifurcation, the parameter t can be used to influence the type of the bifurcation. As
can be rigorously shown, «(v) > 0 for all v > v, see Figure 7. Therefore, a sufficient condition to have
X(g,r) > 0 is given by gr > vy.

The possibility of changing the bifurcation type by adjusting the strengths of various higher-order
interactions to the continuum limit of k-nearest-neighbor graphs extends previous results [32, 20]. In
particular, [32] contains a global bifurcation analysis for a coupling composed of a pairwise and two
higher-order interaction terms. The authors found that by suitably choosing the strengths of the higher-
order interaction one can influence the type of the pitchfork bifurcation, in which a certain state changes
its stability. Moreover, in [20] it is shown in the context of bifurcations from trivial branches in network
dynamics, that modifications of the original network model can generically induce changes between sub-
and super-critical bifurcations. The main idea in [20] is to first formally study normal forms for suitable
macroscopic observables and then monitor the effect of network model changes in the concrete bifurca-
tion coeflicients in the normal form. Hence, the results presented here concretely and rigorously prove
that higher-order interactions can trigger the effect between sub- and supercritical bifurcations, even for
nontrivial branches of twisted states.
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5 Other Higher-Order Nonlocal Couplings

In this section, we discuss other possible generalizations of the pairwise interactions (2.4) to higher-order
interactions. Instead of focusing on the system of phase differences, we consider the original system
that describes the absolute position ©(t,x) of the oscillators. The name “nearest-neighbor” coupling for
the graph interactions (2.1) originates from supposing that the individual oscillators ¢ = 1,..., M are
equidistantly placed on the unit circle in ascending order. In a nearest-neighbor graph, each oscillator is
then connected to its predecessor and its successor on the circle. More generally, in a k-nearest-neighbor
graph, each oscillator is connected to all of its k-predecessors and k-successors on the circle. If one fixes
r = k/M and sends M — o0, a nonlocal coupling in the continuum limit emerges. One can imagine two
oscillators ,y € S in the continuum limit to be coupled if W,.(z —y) = 1. The parameter r specifies how
far the two oscillators can be spaced apart such that they are still considered neighbors.
Now, let us consider the higher-order coupling

%@ t,x) //W z4y—2x)sin(O(t, z) + O(t,y) — 20(t, x)) dydz, (5.1)
which is characterized by the coupling kernel W, (z+y—2x). While this is a straight-forward generalization
of the pairwise continuum limit of k-nearest-neighbor coupling (2.4) to higher-order interactions, the
terminology “nearest-neighbor” has to be used more carefully. Strictly speaking, three oscillators z,y, x €
S do not need to neighbor each other for them to be coupled, which is the case when W, (z +y —2z) = 1.
For example, when z =y = % and x = 0, we have z + y — 22 = 0 € S. Therefore, these three oscillators
are coupled for every r > 0, even though z and x are relatively far apart. Similar arguments also hold for
the 4-way interaction in (2.7). One can further generalize (5.1) by replacing the coupling function and
the interaction function to

%@ t,x) //W (m1z + moy + maz) sin(n1O(t, z) + n20(t,y) + n3O(t, x)) dydz, (5.2)

or even to the d 4+ 1-way coupling

P d . d
E@(t,x) = /Sd W, <Z miy; + md+1x> sin <Z n;O(t,y;) + nd+1®(t,x)> dy (5.3)

=1 i=1

for coefficients m;,n; € Z \ {0}. Note, however, that we must have n; =m;, i =1,...,d+ 1 in order for
q- tvvlsted states to be invariant. For special cases—as those con51dered above—the system is symmetric:
If Zl ; m; = 0 then we have a phase shift symmetry (2.5) and if Zl ; m; = 0 then we have a rotational
symmetry of the ring (2.6)

If one wants to derive higher-order continuum limits that overcome the issue of the nearest-neighbor
terminology in higher-order networks, one can consider other generalizations of (2.4). For example, three
oscillators z,y,x € S in the 3-way coupling

—@ t,x) //W z—x)W,(y — z)sin(0(t, 2) + O(t,y) — 20(t, z)) dydz (5.4)

are coupled if z is close to x and additionally ¥ is close to x. As a result, all three oscillators z, y and = need
to be close enough to each other for them to be coupled. Another possible higher-order generalization
of (2.4) is given by

%G(t, z) = /S/SWT(,Z )Wy — )W, (2 — y)sin(O(t, 2) + O(t,y) — 20(t,2)) dydz.  (5.5)

This coupling additionally introduces a symmetry between x,y and z. In fact, if ,y, z are coupled, then
any permutation of them is also coupled. Note that the prefactors 1,1, —2 of ©(¢,2), O(t,y) and O(¢, x)
in (5.4) and (5.5) can also be generalized to arbitrary coefficients ny,ng,ns € Z \ {0}. However, they
must add up to zero, i.e., n; +ns +ng = 0. Such “diffusive” coupling terms guarantees the invariance of
g-twisted states and can correspond, for example, to a normal form symmetry in a phase reductions [2].

Of course, we can also study the stability of g-twisted states in the models (5.3), (5.4) and (5.5).
Calculating the eigenvalues of the linearization of the right-hand sides of those systems around a g-
twisted state yields the following:
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The eigenvalues of the linearization of the right-hand side of (5.3) with n; =m;, i=1,...,d+ 1 are
given by A9 = 0 with multiplicity 1 and A\; = %deWT (¢) if k # 0. This eigenvalue has multiplicity co.
In the system (5.4), the eigenvalues are A\g = 0, again with multiplicity 1 and

Ne = W, (@) [Wi(a + ) + Wilg — K) — 2, (g)

if k # 0, each with multiplicity 2. Finally, for the system (5.5), the eigenvalues around a g-twisted state
are given by A\g = 0 (multiplicity 1) and

M=t ZEZZ {Wr(fk = QW+ q) + Wi(—k + L+ )W, (£ — q)

+ Wl — )Wy (k+q+0) + Woll + )Wy (k — q + )
— AW, (L — )W, (£ + q)

if k # 0. Again, the multiplicity of these eigenvalues is 2. For all these systems, the eigenfunctions are
given by sin(2wkx) and cos(27kz).

In Section 4.2 we showed that adding higher-order interactions of the form (5.1) to the pairwise
coupling (2.4) can stabilize g-twisted states, when the strength of the higher-order interactions is adjusted
suitably. A numerical analysis shows that the systems (5.3), (5.4) and (5.5) can also stabilize g-twisted
states when added to the pairwise coupling (2.4). However, we chose two different instances of higher-order
interactions of the form (5.3) for a couple of reasons. First, the formulas for 3-way and 4-way coupling are
simple, since they only include the evaluation of W, once. In contrast, the 3-way coupling (5.5) involves
three evaluations of W,. and a generalization to 4-way coupling would involve even more evaluations.
Second, it is easier to compute eigenvalues of the linearization of the right-hand side of (5.1) around a
twisted state than it is to compute them for (5.4) and (5.5). Third and most importantly, these eigenvalues
of (5.3) are independent of k. Therefore, when adding a system (5.3) to the pairwise system (2.4), the
maximal eigenvalue is still attained for the same k& when varying the strength of the higher-order coupling.

6 Conclusion

In this article, we considered the continuum limit of a Kuramoto model on k-nearest-neighbor networks
and extended it to include higher-order interactions. We analyzed the stability of ¢-twisted states and
performed a rigorous Lyapunov—Schmidt reduction to find bifurcating equilibria. We saw that the bifur-
cation at which the twisted states lose their stability is a pitchfork bifurcation. Moreover, we determined
leading coefficients in the Taylor expansion to classify the bifurcation as sub- or supercritical. This con-
siders and extends previous works from two perspectives. Firstly, we added a bifurcation analysis to
previous works [34, 12], which have analyzed stability of twisted state in the attractive and repulsive
Kuramoto model on k-nearest-neighbor graphs. In particular, the problem of finding and classifying bi-
furcating solutions was left open in [34]. Secondly, the authors of [32] considered a higher-order all-to-all
Kuramoto model whose right-hand consists of a pairwise part and two higher-order interaction parts,
thus resembling our model (2.8). In this model they analyzed the stability of the splay state and the
bifurcation at which it looses its stability. While there is always a pitchfork bifurcation, they found that
when varying the strengths of the higher-order couplings, as we did in Section 4.3, one can influence if the
bifurcation is sub- or supercritical. In that regard, we have extended their results to the continuum limit
of k-nearest-neighbor networks and thereby shown that the phenomenon that one can change the type
of a bifurcation with suitable higher-order interactions generically occurs in a wider class of higher-order
networks.

Our work has also raised further follow up questions. For example, we believe that our techniques are
also applicable to analyze bifurcations of generalized twisted states in similar models. For example, one
can analyze twisted states in the Kuramoto model on other graphs, whose limit can still be characterized
by a function W, (z), which does not necessarily need to be of the form (2.3). Since our formulas (3.27) are
also valid in that case, our work poses a framework within which one can study the effect of the Fourier
coefficients of W,.(x) on the bifurcation. Another example to which our theory could be applied is gen-
eralized twisted states on a two-dimensional lattice whose stability has been analyzed in [14]. Moreover,
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apart from the pairwise coupling we have only considered 3-way and 4-way higher-order interactions,
however one can certainly add 5-way coupling, 6-way coupling, etc. and investigate how these interac-
tions influence the bifurcation. Then, one might expect to control even higher order derivatives of (3.27).
Regarding this question from a different perspective, one can also ask if every polynomial that respects
the symmetry of the system can be obtained as a Taylor expansion of the function ®f(a,s) = h(a, s)
when adding enough higher-order interactions.
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A Abbreviations

let p = (r,\, 1) € P. Using the convention W,(—k) := W,.(k), we then define

ci(q, k,p) = (Wr(q — k) + Wilq+k) —2W,(q) — (4X + QN)WT(Q))

2(g,k,p) = 2 (= Wilg = 2k) + 2, (g — k) = 2, (g + k) + W (g + 2k) — 20, (q — k) + 22W, (g + &)

— 00| = x|

cs(g,m, k,p) = g( — Wi(q—m)+W.(g—m+k)+ W,(q— k)

—Welg+ k) —Wilg+m—k) JrVVT(qum))
04(q,m, kap) = é( - WT(q_m_ k) +Wr(q _m) +Wr(q_ k)
—Wy(qg+ k) — Wi (g +m) +Wr(q+m+k))

1 /.- - - A A
cs(a,k.p) = 16 (Wi lg = 20) = 4Wi (g = k) + 6 (@) — 41V (g + k) + Wi (g + 26)
+ AAW, (g — k) + 32AW,.(q) + 4AW,.(q + k)
20 (g — k) + 14, g) + 20V (g + F) )
1 /.- - A A -
co(a,k.p) = 15 (Wl = 3k) = 31, (g = 20) + 31, (g — k) = 2Wi () + 3Wi(g + K)

— 3W,(q + 2k) + Wy(q + 3k) — 12AW,(q — k) — 16AW,.(q) — 122AW,.(q + k)
- QIUWT(Q))

co does not depend on pu.
cs does not depend on A, u. c3 satisfies c3(gq, m, k,p) = —cs(q, k, m, p).
¢4 does not depend on A\, p.

Calculation of «(v) Suppose that W,.(k) is given by (2.9). Rewriting this relation yields

W, (k) = % sin(2mkr) = %f(kr),

if k#£0and f: R — R is given by f(r) = 2 sin(27r). Moreover, note that

s

W,.(0) = kW= (0).
We use this to calculate:
W,.(0) + W, (29) — 2W,.(q)

H(q,r) = W (o) = u(qr),

where u: R — R is defined by

_ 4v+ 1 f(20) — 2f(v)

Moreover,
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with g: R — R,

o0) = 7 (100 + 3760 200 - u) )
Furthermore,
3(4:20.4.7°(0)) = » (—f<qr> 8- Lpgn + if(sqm)
Y 8 q 3q
= éh(qr),
with h: R — R,
h(v) = é <f(v) +8v— f(2u)+ %f(?w)) .

Finally, we can put everything together and calculate

h
X(0r) =~ )+ 1 (o)

= uqn)

- a qr),
with

h
v(v) = —if(v) + 49((1;)) (—41} + %f@v)) .
In conclusion, we have
-1 —sin(27v) + 47v — sin(47v) + 3 sin(67v) B 1.

Hv) = 2 sin(2mv) + 8 (— sin(27v) + 3 sin(67v) — (2mv + 3 sin(4mwv) — 2sin(27v))) ( vt ™ sm(47rv)>

B Supplementary Calculations

B.1 Maximal Eigenvalue

Lemma B.1. For all k € Z\ {0} and all v with 0 <r < % we have
(1) > Wi (k) B.1)

Proof. Because W, (k) = W,(—k) this inequality only needs to be shown for k € N,k > 2. The derivative
of W, (k) with respect to r is given by

%Wr(k) = 4 cos(2mkr).

Since cos is decreasing in [0, 7/2] we get %Wr(l) = 4 cos(2nr) > 4 cos(2nrk) = %Wr(k) forallr € [0, %]
Since Wy (k) = 0, equation (B.1) follows for all € [0, 2]. On the one hand, since this holds in particular

) 4k
for r = % and %Wi(l) > 0 for all 7 < 1 we have W, (1) > Wa (1) =W (k)= 2 for all 7 € [, 1.
On the other hand, W, (k) < 2. Therefore the inequality (B.1) extends to all 7 € [0, 1]. By a symmetry
argument one can see that it even holds for all 7 € [0, 3]. O

Theorem B.2. If%q < 27“—% sin(27r), the largest eigenvalue of the linearization of (2.8) with A = p =0
around a g-twisted state is attained for k = q, i.e., maxy c1(q, k, (r,0,0)) = c1(q, g, (r,0,0)).

28



Proof. Let k € N, k # ¢ be fixed and r € [0, %], q € N such that the assumption in the theorem is fulfilled.
Then,

IN

. A 2 1 1
Wi(g+k) — W (29) p ((]Jr—k + 2—q)

4

mq

IN

2
< 4r — =sin(27r)
0
= Wr(o) - Wr(l)
since k — g € Z \ {0}, we obtain by Lemma B.1
Wo(g + k) — We(2q) < Wi (0) = Wi(k — q).
After rearranging this inequality and subtracting QWT(q) to both sides it reads as
WT(2q) + W’I‘(O) - QW’I‘(q) > Wr(q + k) + Wr(k - Q) - QWT(q)'
This is equivalent to ¢1(q, g, (r,0,0)) > ¢1(q, k, (r,0,0)) for all k # g. Thus, the proof is complete. O

B.2 ~ Ratio in the Attractive Kuramoto Model

Here, we consider the bifurcation in the attractive Kuramoto model studied in Section 4.1. We show that
~v1/72 > 0 when the ¢-twisted state looses its stability. To do this, we assume the following statements,
which mainly follow from an analysis in [34]:

e At r = 7y the first eigenvalue ¢1(q,1,(r,0,0)) passes through 0 from below when increasing r.
Moreover, at the bifurcation the other eigenvalues are negative, i.e., ¢1(q, ¥, (19,0,0)) < 0 for all
{>2.

° cl(q + 1,1, (TO,O,O)) > 0.

From the first statement, it immediately follows that v, > 0. It remains to show that v; > 0.
In particular, using the abbreviations from Appendix A and py = (r9,0,0), it follows from these
statements that

e1(0,1,p0) = 3 (Wry(g — 1) = 213, (g) + Wy (g +1)) = 0 (B2)
e1(0,2,p0) = 3 Wy (g —2) — 21W3, (g) + Wy (g +2) < 0 (.3)
ci(g+1,1,po) = i(Wm (@) = 2Wrg (g + 1) + Wiy (g +2)) > 0 (B.4)

Using (B.2) we then get
16¢5(q, 1,p0) = Wiy (q — 2) — 4 Wiy (g = 1) + 6W;, (q) — 4W, (g + 1) + Wi (g + 2)
= Wi (g —2) = 2Wro (@) + Wiy (g +2) =2 1.
Moreover, we note that
c2(¢,1,p0) = €3(q,2,1,p0) = Wy (q = 2) +2Wy (g = 1) = 2Wyo (g + 1) + Wiy (a4 2) =: g2-

Then, we obtain

& ’17 C ’27]‘5
3271 =16 <65(q,1,po) _ 2@ L pojesls p°)>

Cl(qa QaPO)
2
=q1— &
q1
1
= —(q1 + @) — )
q1
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By (B.3) we have ¢; < 0. Furthermore, using (B.2) and (B.4) we obtain

g1 +q2 = Q(WTo(q - 1) - WTo(q) - WTo(q + 1) + WTo(q + 2))
= 2(Wy(q) = 2Wey (g + 1) + Wiy (g + 2))
> 0.

Consequently, g2 > 0. Thus, we conclude ¢; < 0, ¢1 + g2 > 0 and g1 — g2 < 0 and therefore ~v; > 0.

C Derivative

In this section we show that F' is indeed Fréchet differentiable. We give the operator that represents the
Fréchet-Derivative but only show this without higher-order interactions, i.e., when A = u = 0, since that
does not complicate but only lengthen the calculations.

We claim, that the n-th Fréchet-Derivative of F(¥, p) around a state ¥ is given by a n-linear operator
AY: (H})™ — H} with

(A [n1, ..., ma)) (@)

\
S
H
\

&.’:13
§
§
F£
B
E
/—\
\_/
rEu
o
<
\

o
E
—
Y
=
—
Y
2
B
=
=
—
&
Q.
S

- /S/S/SWT(Z_?J“” H y) + ni(w)) sin™ (U (2) — U(y) + ¥(w)) dwdydz |,

where sin™ denotes the n-th derivative of sin.
The main estimations needed to prove that this is indeed a m-linear operator and the n-th Fréchet
derivative of F' are

y 2
) = n(e)” = | [ on(z) dz] < [ om(e)? az = ol (1)
for the part without higher-order interactions and
[n(2) + n(y) = 2n(2)|* < 4(|0n]|7-, (C.2)
[n(2) = n(y) + n(w) —n(x)|* < 4(|on||7: (C.3)

for the parts involving higher-order interactions. Due to the similarity of the main estimations (C.1),(C.2)
and (C.3) regarding the parts with and without higher-order interactions, respectively, we only consider
parts without higher-order interactions in the following. That means we only proof the boundedness of
AY and its derivative property for A = p = 0.

C.1 Boundedness of AY

First we show that AY is bounded.
Denote

= [ Weta =) TT0n0) = (o) sin (¥) = (2)) dy
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and

n

g(@) = | Wo(y) [ mily) sin™ (¥ (y)) dy.

s i=1
Then
(A¥ [, ma)) () = f(x) = g(2)
Using ||sin(™ . <1and ||[W,||, <1 we estimate

115 = | ( [t = TL0n) = e sinl (3(0) ) dy> r

<[/ f[l(m(y) ) dyd

n
2
= [T lomlz-.
i=1

Moreover, a similar estimation yields
n
2 2
lgll7= < TTlmil7=-
i=1

Further, we calculate the derivative of f:

Dy f(x)

Let us denote

ha(z) = H(m(x +r) = () sin (U (a + 1) = ()
ha(x) = — H(m(x =) = ni(x))sin" (¥ (2 — ) — ¥())

and
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Then, Dy (AY[n1, ..., nn])(2) = Dof(x) = hi(z) + ha(z) + 3 uj(x) + g(z). An estimation shows that

::]:

a7 = l (mi(z + 1) = ni(2)) sin™ (O(z +7) — V(x))| da

3 .
Il

]:[7]11'+T ni(x))? dx

2
< H 10mil12 -
i=1

Similarly, we obtain [|he|7. < 17, [|8m:]|3.. Moreover,

T+r N 5 5
)2, = /S / TTni(v) — o)) (—0m; (@) sin (B(y) — ¥(2)) dy | da

o=t

i#]

< /S /S T 10m12- (@n;())? dy da
2}
=1 lom:3-
=1

and

x+r N ~ ~ ~ 2
lqllZ: /(/ [T (y) = mi(a)) sin™ V(D (y) — U (2))(~0¥ ()) dy) dz

T i=1

< [ [TTonts: 0%y ay e
< Lot
i=1

All together, we obtain:

a\izH
LZ

- 2 ~ 2 ~ 2
v _ v v
HA (71, ] HI*HA (71, ] L2+HD1(A [, omal)||
2
=f—gls +||h1 +ha+ D> uj+q
j=1 L2

2 2 2 2 2 2
< 2| flIz2 +2llglze + (n+3) | Nhallze + lh2llze + D lluslze + llalz2

j=1
<2 lom2 + 2 ] Iml= + (0 +3) ( n+2) H ol + H o7
=1 =1
<aTTlml + <n+3>(n+2 Tl +H|\m|\Hl i )
=1

< Tl
i=1

where ¢ can be chosen as

- 12
c4+(n+3)<n+2+H\PH >
ol

32



Even though some estimations are far from being tight, this proves that AY [m1,-..,7n] is a bounded
n-linear operator.

C.2 Derivative Property

To inductively show that AY [71,...,mn] is the n-th Fréchet derivative of F' around ¥ we need to confirm
that
im Dt TyeeesMn—1]| — v 1yevesMn—1] — v 1y-vesMn = 0. .
e Tonllom 1, nea) = AV, o] = Al | =0 (C.4)
First we rewrite
AV My 1] — A‘i’[m, ey Mne1] — A\i'[nl, -
= /SWT(ZE —y) H (i(y) — ni(x)) sin" (T (y) — U(@) + 70 (y) — nn(x)) dy
- /SWT(y) LI 7 sin" (0 () + (1)) dy
= [ Wt =) [T u(0) = mo)sin ) W)
T () sin[™ 1 (¥
+ [ W) T i) sil" =3 ay
= [ Wetw =) T n) = o)) sl ) = ¥(2) ay
- () sin™ (B
+ [ W [Tt ¥
= [Witw =) [T 0n) = mla) [sin? 1B (0) ~ F(a) + 10 ) = ()
S i=1 (C.5)

i () — () — () — ) sinl" () — By
- /SWT(y) l:[ mi(y) [Sin["_” (T(y) + mnly)) —sin" (B (y)) — na(y) sin™ (T (y)| dy  (C.6)

By introducing the notation g;(z) for (C.5) and ga(z) for (C.6) we recover

AV ] = AV [ maea] = AV ] = (@) + g2(2).
Note that by Taylor’s Theorem we have

"
f(@o +a) = f(zo) + af'(z0) + fT@)Cﬁ
for each twice continuously differentiable function f and some £ € (xg, xo+a)ifa > 0and £ € (z—0—a,xq)

if a < 0. By applying this theorem to f = sin[" ! it follows that

2
|sin® (2o 4 a) — sin™ Y (zg) — asinl™ (z)| < %. (C.7)
Using this inequality we can estimate
n—1 _ _
lonl- = [ { [t =) TLn) = ) sl 0) = #(0) 1000 = ()
i=1
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—sin" () — () — (ay) — 1o 2)) sinl (B (y) — F))] dy) do

1%
=1 1T llomill= llomallz-
=1

Furthermore, also by using (C.7), we obtain

loal- = | ( [wiw) ﬁ ni(y) [sin" (D) + 1)) - sin (D)) — mn(y) sin" (F(y)| dy> da

<H||m|L2/(/ e |dy> o

H |771||L2 HnnHLZ :

»-lkl>—‘

Now, we calculate the derivative

Do(AY " [y ] = A% maa] — A% [, )
:ngl(z>

z4+rn—1 . )
= e (/_ H(m(y) - 771'(1')) {Sin[nfl](\ll(y) — \II(;L-) + nn(y) _ nn(x))

T =1

= T+ ) = ) [sin (o +7) = F(@) + 70 @ +7) = ()
i=1 (C.S)
—sin" (T (2 + ) = B(2)) = (a2 + 1) = na(2)) sin"l( (»’C+T)*‘i’($))}
—n_l iz — 1) — () |sinl" V(U (z —r) — U(x n(x — 1) —nn(x
g(n( ) 77())[ (U(z =) = V() + nn( ) — () ©9)

—sinl" N @(z — 1) = D(@)) = (a2 = 1) = m (@) sin (D = 1) = V()]

e (C.10)

o - R (C.11)

(
~ (1 (y) = (@) sin" (B (y) — (2)) (0¥ (2))| dy
We use the abbreviations us (z) for (C.8), uz(z) for (C.9), w(x) for the j-th summand in (C.10) and

ug(x) for (C.11) such that Dy (AY T [y, ..., 1] —AY[n1,..., 1] —A¥n1, ..., Mn]) = ur(x) +us(z)+
> u3(x) + ua(x). Further, we split ug into us,1(z) + uaa(x) as

z4rn—1
ug () = /7 [T i) — i) (~0%(2)) [Sin[”}(‘ff(y) = U(@) +19(y) = 7a(@))

=1
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—sinl (B (y) = (@) = (ga(y) = ma () sin N B(y) — F(2)| dy

=N

z4+rn—1
uia@) = [ L0 ~ o) (0m (o) [sin")(B(o) = F(a) + 10 0) = 1 (2)

—sinl")(B(y) ~ W(a))| dy

Then, again by using Taylor’s theorem, we can estimate

72 < H 10m: 7. / (Sin["_l](\f’(x +7) = U(2) + Nz +7) — na(2))

=1

I /\

1_:[1 Ir?nzILz/(l(nn(:cw) (m))2>2 da

n—1
2 4
< 7 [T 1omilz= 109117 -
i=1

A
| =

Similarly, [lus||7. < 2 TI220 10m:l72 18,72 Moreover,

df, < Hnamnm / / o (@))? [sinl" (D (y) = D(@) + 7 (y) = 1a())
Z#J

sl y) — () — () — ) s () — ()] g
< TL 10wl [ [ @) |50 - m(@)?| e
i

1 2 4 2
< 7 1L U0mllz2) 10nall 2 1005172

1
1l (10mil172) 19072

and

||u4,1|\izs1_11 lomd [ [ ( 00 (@) 2 () — (e >>2)2 dyde

15 2 4
1 H 10032 101 [ 7.2

IN

puaalie < T 1ol | [ 1-om)) —nae) v

n—1

2 4

< H Hamllm HaUnHL?
=1

Finally, we can combine the estimations to obtain

) ~ _ 2
HAW“’"[nh...,nn_ﬂ — A%, ] = AV )

Hl
. - ~ 2
< HA“”""[nl,--w??nfl] — A%y, 1) — AV, ] B
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s -~ - 2
|| Da AT ] = AV ] = AV )|

L2
2
n—1 )
<llgr+ g2ll7e + |jua +ua + D> ud +uay +uas

Jj=1 L2

2 2 2
Lo T lluaalle + lluazlze

i)
H1

J
U3

n—1
2 2 2 2
< 2(llgall7 + llgallzz) + (n +3) | llualza + luzlzz + ) ‘
j=1

n—1 n+ 6 n—1 1 n—1
2 4 2 4 2 4
< TT 1mellZ Imallz + (n+3) (T LT ellZa il + 7 L1 Il [l e
i=1 1

=1 i=

< clmalli

where ¢ can be chosen to be

n—1
2 n+6 1=+
=TTl (14 (43 i
o= LI (1 s (22 + 3 o],

i=1

This confirms (C.4) and therefore concludes this section.
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