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Hybrid Projection Methods for Solution Decomposition in Large-scale
Bayesian Inverse Problems ∗

JULIANNE CHUNG† , JIAHUA JIANG‡ , SCOT M. MILLER§ , AND ARVIND K. SAIBABA¶

Abstract. We develop hybrid projection methods for computing solutions to large-scale inverse
problems, where the solution represents a sum of different stochastic components. Such scenarios
arise in many imaging applications (e.g., anomaly detection in atmospheric emissions tomography)
where the reconstructed solution can be represented as a combination of two or more components and
each component contains different smoothness or stochastic properties. In a deterministic inversion
or inverse modeling framework, these assumptions correspond to different regularization terms for
each solution in the sum. Although various prior assumptions can be included in our framework, we
focus on the scenario where the solution is a sum of a sparse solution and a smooth solution. For
computing solution estimates, we develop hybrid projection methods for solution decomposition that
are based on a combined flexible and generalized Golub-Kahan processes. This approach integrates
techniques from the generalized Golub-Kahan bidiagonalization and the flexible Krylov methods. The
benefits of the proposed methods are that the decomposition of the solution can be done iteratively,
and the regularization terms and regularization parameters are adaptively chosen at each iteration.
Numerical results from photoacoustic tomography and atmospheric inverse modeling demonstrate
the potential for these methods to be used for anomaly detection.

Keywords: inverse problems, hybrid methods, generalized Golub-Kahan, flexible
methods, Tikhonov regularization, Bayesian inverse problems

1. Introduction. In many inverse problems, the ability to efficiently and accu-
rately detect anomalies from observed data can have significant benefits. For exam-
ple, in atmospheric inverse modeling, large-scale anomalous emissions of greenhouse
gasses and air pollution pose threats to human health, state emissions targets, and
energy security. We need inverse models that can identify anomalous emissions events
quickly – so the leak or malfunction in question can be fixed. However, inverse models
that can identify anomalous emissions events require more complicated prior models,
in particular, models that can incorporate multiple complex sources with different
smoothness properties. It is desirable to capture both anomalies (e.g., sparsely dis-
tributed events representing anomalous emissions like natural gas blowouts or point
sources like large power plants) and smooth regions (e.g., representing broad scale
emissions patterns from area sources). Moreover, the quality of the reconstruction
depends crucially on the choice of appropriate hyperparameters that govern the prior
and noise distributions, and estimating these parameters prior to inversion can be
prohibitively expensive. For these and other inverse problems where the solution
must capture different stochastic properties, we describe efficient and flexible itera-
tive methods for reconstructing solutions that have a combination of smooth regions
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2 CHUNG, JIANG, MILLER, AND SAIBABA

with sparse anomalies (e.g., for anomaly detection).
More specifically, we consider linear inverse problems of the form,

(1.1) d = As+ δ, with s = s1 + s2,

where the goal is to reconstruct the desired parameters s1, s2 ∈ R
n, given forward op-

erator (or parameter-to-observable map) A ∈ R
m×n and the observed data d ∈ R

m.
We assume that the measurement errors δ are realizations of Gaussian random vari-
ables, i.e., δ ∼ N (0,R), where R is a symmetric positive definite (SPD) matrix, and
that s1 and s2 are mutually independent and are realizations from different distri-
butions. Contrary to most inverse problems that involve estimating the unknown
parameters s, a distinguishing feature of the solution decomposed approach is that
both sets of parameters s1 and s2 are estimated from the data d, even if s is desired
in the end.

Contributions and overview. In this paper we propose a new computational frame-
work for solving inverse problems in which the solution is assumed to be the sum of
two components: a “smooth” background and a sparse term that represents anom-
alies. Following the Bayesian approach, we derive a posterior distribution for the
unknown solution components and focus on efficiently computing the MAP estimate.
Our approach has three main components:

1. Use of a majorization-minimization (MM) scheme to solve the optimization
problem for the MAP estimate as a sequence of iteratively reweighted least-
squares problems that carefully reweights only the sparse term,

2. A novel Flexible, Generalized Golub-Kahan (FGGK) iterative method for
efficiently generating a single basis for approximately solving the reweighted
least-squares subproblems, and

3. Robust methods for automatically selecting the regularization parameters
within the projected solution space at each iteration.

The main novelty of this paper is that in contrast to inner-outer methods or alter-
nating approaches that solve a sequence of least-squares/optimization problems from
“scratch,” our approach successively builds a single basis with which we seek approx-
imate solutions for the components. To accomplish this task, we develop the FGGK
approach, a new Krylov subspace solver, by paying close attention to the computa-
tional cost; like the generalized Golub-Kahan (genGK) process [10], it avoids forming
inverses of covariance matrices and uses the same number of matrix-vector products
with the forward operator and covariance matrices, but has the ability to incorpo-
rate information about both the solution components. By automatically selecting
the regularization parameter at each iteration, we avoid the need to solve repeated
optimization problems to estimate the parameters.

We demonstrate the performance of our approach on a series of large-scale test
problems that represent anomaly detection in dynamic tomography and atmospheric
inverse modeling, where for the last example that contains over a million unknowns,
our method is capable of achieving satisfactory results in fewer than 50 iterations.

An outline of the paper is as follows. In section 2 we describe a Bayesian approach
for (1.1) and provide an overview of related works that incorporate multiple stochastic
components for inverse problems. The proposed hybrid projection method for solution
decomposition is described in section 3, along with a description of some algorithmic
considerations as well as methods to choose regularization parameters. Numerical
results are provided in section 4, and conclusions are provided in section 5.
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HYBRID PROJECTION METHODS FOR SOLUTION DECOMPOSITION 3

2. Bayesian inverse problems with solution decomposition. In this sec-
tion, we describe a Bayesian approach for solving (1.1). We assume that the errors
δ and the unknowns s are mutually independent. For anomaly detection and more
generally for problems where the solution can be decomposed, we consider the case
where s1 follows a multivariate Gaussian distribution, and the components of s2 are
independent and follow the univariate Laplace distribution [2, Chapter 4.3]. The
Laplace prior enforces sparsity in s2 (e.g., the solution itself is sparse and contains
many zeros or a representation in some frequency domain is sparse) [20].

In the geostatistical framework [28, 23, 21, 22], we model the unknown function
s(ζ), where ζ ∈ R

d represents the coordinates in space, as a realization of a random
field. We express this realization as a sum of two terms:

s(ζ) = s1(ζ) + s2(ζ) s2(ζ) :=

p∑

k=1

βkψk(ζ),

where s1 is the realization of a random field that captures the smooth features, ψk

are deterministic basis functions, and βk are coefficients to be determined. As is the
prevalent approach, we take the random field s1 to be Gaussian, which is character-
ized by a mean function µ1(ζ) and a covariance function λ−2κ(ζ, ζ′), where λ is a
parameter that controls the precision and is a hyperparameter that must be deter-
mined. For short, we write s1 ∼ GP(µ1(ζ), λ

−2κ(ζ, ζ′)), where GP denotes Gaussian
process. We consider a set of grid points {ζj}nj=1 on which we represent the unknown

random field. Define the vector s1 =
[
s1(ζ1) . . . s1(ζn)

]⊤
, then it follows:

s1 ∼ N (µ1, λ
−2Q),

where µ1 =
[
µ1(ζ1) . . . µ1(ζn)

]⊤
and Qij = κ(ζi, ζj) for 1 ≤ i, j ≤ n.

In this paper, to model the anomalies, we use point sources whose locations
coincide with the grid points; this can be accomplished by taking the basis functions
ψk(ζ) = δ(ζ − ζk) as Dirac delta functions and the number of basis functions p = n.
In practice, we represent the delta function by a Gaussian with a scale parameter
smaller than the mesh width. Since anomalies are localized, we enforce sparsity in
the coefficients βk as follows: we assume that the coefficients βk are independent of
one another and the random field s1, and impose the univariate Laplace distribution
with mean [µ2]j and scale parameter 2α−2, that is,

βj ∼ L([µ2]j , 2α
−2) 1 ≤ j ≤ n.

Similar to s1, we define the vector s2 with components [s2]j = βj for 1 ≤ j ≤ n.
In summary, we have the prior model

(2.1) s1 ∼ N (µ1, λ
−2Q) and [s2]j ∼ L([µ2]j , 2α

−2), 1 ≤ j ≤ n,

where µ1,µ2 ∈ R
n, Q is SPD, and λ 6= 0, α 6= 0 are scaling parameters. For problems

of interest, computing the inverse and square root of R is inexpensive (e.g., R is often
a diagonal matrix), but explicit computation of Q (or its inverse or square root) may
not be possible. However, we assume that matrix-vector multiplications (matvecs)
involving A, A⊤, and Q can be done efficiently (e.g., in O(n logn) operations rather
than O(n2) operations for an n× n matrix); for details, see [1]. This framework can
be extended to spatiotemporal models, but we do not provide the details here.

This manuscript is for review purposes only.



4 CHUNG, JIANG, MILLER, AND SAIBABA

Under assumptions (1.1) and (2.1) and using Bayes’ theorem, the posterior prob-
ability density function is given by
(2.2)

πpost(s1, s2 | d) = π(d | s1, s2)π(s1)π(s2)
π(d)

∝ exp

(
−1

2
‖As− d‖2R−1 −

λ2

2
‖s1 − µ1‖2Q−1 −

α2

2
‖s2 − µ2‖1

)
,

where ‖ · ‖1 denotes the 1-norm of a vector, ‖x‖2M = x⊤Mx for any SPD matrix
M, and ∝ means “proportional to.” In the Bayesian framework, the solution is the
posterior distribution. Notice that the posterior is not Gaussian.

In this manuscript, we describe new hybrid projection methods to efficiently ap-
proximate the maximum a posteriori (MAP) estimate, which corresponds to the mode
of the posterior distribution and is the solution to the following optimization problem,

(2.3) min
s1∈Rn,s2∈Rn

‖A(s1 + s2)− d‖2R−1 + λ2 ‖s1 − µ1‖2Q−1 + α2 ‖s2 − µ2‖1 .

Computational challenges. Optimization problems such as (2.3) can be computa-
tionally challenging to solve, and there are three main computational concerns. First,
an accurate reconstruction of s will rely heavily on being able to obtain good esti-
mates of regularization parameters λ and α, which can be very difficult to estimate
prior to solution computation. Second, for many problems with nonstandard priors
(e.g., priors defined on nonstructured grids), explicit computation of Q (or its inverse
or square root) may not be possible. Generalized hybrid iterative methods which are
based on the genGK bidiagonalization can be used to solve problems of the form

(2.4) min
s1∈Rn

‖As1 − d‖2R−1 + λ2 ‖s1 − µ1‖2Q−1

and are described in [10]. Third, it is well known that solving the ℓ1 regularized prob-
lem can be computationally difficult, due to nondifferentiability at the origin as well
as the need to use expensive nonlinear or iteratively reweighted optimization schemes.
These inner-outer approaches can get very costly [12, 33], which has led to the devel-
opment of accelerated alternative methods such as split Bregman methods [40] and
iterative shrinkage threshholding algorithms [3], where an iterative two-step process
is used. However, these methods require a priori selection of various parameters (in-
cluding the regularization and shrinkage parameter), which can be cumbersome [29].
Flexible Krylov methods have been proposed [14, 7] as a means to both avoid inner-
outer schemes and allow automatic regularization parameter selection. Such methods
can be used to solve problems of the form,

(2.5) min
s2∈Rn

‖As2 − d‖22 + α2 ‖s2 − µ2‖1

and are described in [7].
A natural approach to solve (2.3) would utilize an alternating optimization scheme

(see Algorithm 2.1), but this approach may be very slow and requires unrealistic ini-
tialization vectors. Instead, we describe in section 3 an iterative FGGK approach that
combines the flexible and generalized Golub-Kahan projection methods to efficiently
generate a basis for solving inverse problems with mixed prior models.

This manuscript is for review purposes only.
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Algorithm 2.1 Solving (2.3) using alternating optimization

1: Initialize s
(0)
2 , k = 1

2: while not converged do

3: Solve s
(k)
1 = argmins1

∥∥∥As1 − (d−As
(k−1)
2 )

∥∥∥
2

R−1
+ λ2 ‖s1 − µ1‖2Q−1

4: Solve s
(k)
2 = argmins2

∥∥∥As2 − (d−As
(k)
1 )

∥∥∥
2

2
+ α2 ‖s2 − µ2‖1

5: Set k = k + 1
6: end while

Related approaches and ideas. The idea to incorporate multiple stochastic com-
ponents for inverse problems is not necessarily new, nor is it restricted to atmospheric
imaging. For example, different texture models have been investigated for improved
breast cancer imaging [25]. However, previous methods to handle multiple stochastic
components are quite costly and often rely on simplifying assumptions. For example,
in [41], the authors disaggregate the unknown fluxes to account for the biospheric and
fossil fuel components separately, but simple Gaussian priors were used (a stationary,
separable exponential model for the biospheric fluxes and a diagonal covariance ma-
trix for the fossil fuel fluxes). In the special case where both priors are Gaussian, i.e.,
s1 ∼ N (µ1,Q1) and s2 ∼ N (µ2,Q2) with µ1,µ2 ∈ R

n and SPD matrices Q1,Q2,
it can be shown that s ∼ N (µ1 + µ2,Q1 + Q2), and methods for mixed Gaussian
priors can be used [6]. Furthermore, if sparsity or a sparsity decomposition is desired,
methods based on robust PCA have been developed, e.g. in dynamic magnetic reso-
nance imaging, to separate the solution (reshaped into a matrix) into a low-rank plus
a sparse matrix [37], but such methods are too restrictive for the problems of interest.

We remark that although optimization problem (2.3) has a similar flavor to elastic
net regularization [43, 19, 5] and other ℓ1 − ℓ2 problems [42], our approach is funda-
mentally different. First, these approaches linearly combine ℓ1 and ℓ2 regularization
for s and do not split the solution into two stochastic components. That is, they
assume that the entire solution vector is included in both regularization terms, e.g.,
for elastic net,

(2.6) min
s∈Rn

‖As − d‖22 + λ2 ‖s‖22 + α2 ‖s‖1 .

Second, typically iterative numerical methods of active set type are employed to solve
elastic net regularized problems, but the inclusion of nontrivial regularizers makes
these approaches infeasible.

3. Hybrid projection methods for solution decomposition. In this sec-
tion, we describe an efficient computational method to approximate the MAP esti-
mate given in (2.3). We develop a combined hybrid projection method that builds
on the generalized and flexible Golub-Kahan processes and inherits many of the main
computational benefits from previously developed hybrid approaches.

We begin in subsection 3.1 by describing an MM approach to handle the 1-norm
regularization term in (2.3). Although this inner-outer optimization approach is com-
putationally infeasible, it motivates the use of flexible preconditioning techniques that,
extended and combined with genGK methods, are described in subsection 3.2. In par-
ticular, we describe a Flexible Generalized Golub-Kahan (FGGK) projection method,
with some discussion on algorithmic considerations (e.g., breakdown) and computa-
tional considerations, and then we describe a hybrid projection approach based on

This manuscript is for review purposes only.



6 CHUNG, JIANG, MILLER, AND SAIBABA

the FGGK projection. We pay special attention to methods to choose regularization
parameters for the projected problem in subsection 3.3.

3.1. Majorization-Minimization (MM) approach. Various methods have
been developed for approximating the solution of ℓ1-regularized problem (2.5), rang-
ing from iterative shrinkage algorithms to iterative reweighted norms [3, 33, 15]. In
this subsection, we provide an overview of the MM approach for approximating the
solution of (2.3), which requires solving a sequence of optimization problems. For this
discussion, we assume that λ and α are fixed.

We begin with the following change of variables,

(3.1) s1 = µ1 +Qx, s2 = µ2 + ξ, and c = d−Aµ1 −Aµ2,

and get optimization problem

(3.2) min
x∈Rn, ξ∈Rn

f(x, ξ) = ‖AQx+Aξ − c‖2R−1 + λ2 ‖x‖2Q + α2 ‖ξ‖1 .

Notice that we have removed all instances of Q−1. Next to handle the ℓ1 term,
we use the MM approach to convert optimization problem (3.2) into a sequence of
reweighted least-squares problem. For some ǫ > 0, we consider |t| ≈ ϕǫ(t) =

√
t2 + ǫ

and approximate ‖ξ‖1 ≈
∑n

j=1 ϕǫ(ξj). The corresponding objective function is

fǫ(x, ξ) = ‖AQx+Aξ − c‖2R−1 + λ2 ‖x‖2Q + α2
n∑

j=1

ϕǫ(ξj).(3.3)

From Equation 1.5 in [24], we have the majorization relationship

ϕǫ(t) =
√
t2 + ǫ ≤

√
t2k + ǫ +

1

2
√
t2k + ǫ

(t2 − t2k) =: ψǫ(t | tk).

Given the current iterate (x(k), ξ(k)), we can define the surrogate function

gǫ(x, ξ | x(k), ξ(k)) = ‖AQx+Aξ − c‖2R−1 + λ2 ‖x‖2Q + α2
n∑

j=1

ψǫ(ξj | ξ(k)j ).

It is easily verified that fǫ(x
(k), ξ(k)) = gǫ(x

(k), ξ(k) | x(k), ξ(k)) and

fǫ(x, ξ) ≤ gǫ(x
(k), ξ(k) | x(k), ξ(k)) ∀x, ξ ∈ R

n.

These two conditions mean that the surrogate function gǫ(x, ξ | x(k)) matches the
objective function fǫ(x, ξ) at the current iterate and majorizes the surrogate function
for every point, respectively. This means that as long as we choose the next iterate
(x(k+1), ξ(k+1)) such that the surrogate gǫ decreases, then we ensure that this decreases
the objective fǫ since

fǫ(x
(k+1), ξ(k+1)) ≤ gǫ(x

(k+1), ξ(k+1) | x(k), ξ(k))

≤ gǫ(x
(k), ξ(k) | x(k), ξ(k)) = fǫ(x

(k), ξ(k)).

The first inequality and the final equality are due to the majorization properties of the
surrogate function gǫ. The second inequality is satisfied by choosing the next iterates
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HYBRID PROJECTION METHODS FOR SOLUTION DECOMPOSITION 7

in a manner to ensure that the surrogate is decreased; it is important to note that it
is not necessary to minimize the surrogate at each iteration.

Thus, the MM algorithm for solving (3.2) is as follows: Given initial guesses

(x(0), ξ(0)), solve the following sequence of reweighted least-squares problems

(x(k+1), ξ(k+1)) = argmin
x∈Rn,ξ∈Rn

gǫ(x, ξ | x(k), ξ(k))

= argmin
x∈Rn,ξ∈Rn

‖AQx+Aξ − c‖2R−1 + λ2 ‖x‖2Q + α2
∥∥∥D(ξ(k))ξ

∥∥∥
2

2
,(3.4)

where terms from gǫ that do not depend on x and ξ have been dropped and diagonal

matrix D(ξ) = diag

([
2
√
ξ2i + ǫ

]−1/2
)n

i=1

. To get the solution after removing the

change of variables, we get s(k+1) = µ1 +Qx(k+1) + µ2 + ξ(k+1).
The convergence of the MM scheme has been established, see e.g., [18]. However,

notice that minimizing the surrogate requires solving a large optimization problem
subsection 3.1 with 2n unknowns at each iteration. For small problems, one could
solve the corresponding normal equations. For larger problems, an iterative method
could be used to solve the reweighted least-squares problems, but this often leads to
expensive inner-outer solves [33]. Instead, we describe in the next section an approach
that avoids inner-outer schemes by exploiting flexible preconditioning techniques, fol-
lowing recent works, e.g., [14, 7]. That is, we solve optimization problem (3.1) ap-
proximately at each step.

3.2. Flexible Generalized Golub-Kahan (FGGK) iterative method. In
this section, we describe iterative projection methods that can be used for approximat-
ing the solution for inverse problems with solution decomposition (e.g., for anomaly
detection). We exploit aspects of both the flexible and generalized Golub-Kahan pro-
jection methods and develop a solution decomposition hybrid projection approach,
henceforth dubbed sdHybr, to approximate the MAP estimate (2.3). Similar to all
hybrid projection methods that combine iterative projection methods with variational
regularization techniques, there are two main components. First, we generate a basis
for the solution (which in this case includes two sets of solution vectors) by exploit-
ing a flexible preconditioning framework integrated with a genGK bidiagonalization.
Second, we compute an approximate solution to the inverse problem by solving an
optimization problem in the projected subspace where regularization parameters can
be estimated automatically.

FGGK process. We consider solving problems of the form subsection 3.1 by in-
corporating a changing diagonal matrix, which rescales the norms, to generate a basis
for the solution. Suppose we are given A, Q, R, c, and a sequence of invertible
matrices {Dj}kj=1. We initialize the iterations with m1,1 = ‖c‖R−1 and u1 = c/m1,1;

furthermore, take v1 = A⊤R−1u1 and t1,1 = ‖v1‖Q. The FGGK iterative process
generates vectors zk, vk, and uk+1 such that at the kth iteration, we have

mk+1,kuk+1 =AQvk +AD−1
k vk −

k∑

j=1

mj,kuj(3.5)

tk+1,kvk+1 = A⊤R−1uk+1 −
k∑

j=1

tj,kvj .(3.6)

This manuscript is for review purposes only.



8 CHUNG, JIANG, MILLER, AND SAIBABA

In the first step, we expand the basis uk+1 by including the vectors AQvk and
AD−1

k vk, and we orthogonalize against the previous basis vectors u1, . . . ,uk using
Gram-Schmidt with the inner product 〈·, ·〉Q. Similarly, we expand the basis vectors
vk+1 with the vector A⊤R−1uk+1 and orthogonalize against the previous vectors
v1, . . . ,vk using the inner product 〈·, ·〉R−1 . Finally we ensure that both uj ,vj are
normalized so that ‖uj‖R−1 = ‖vj‖Q = 1, and let wj = D−1

j vj for 1 ≤ j ≤ k + 1.
For notational convenience, consider the augmented matrices

(3.7) Â =
[
A A

]
∈ R

m×2n and Q̂ =

[
Q

I

]
∈ R

(2n)×(2n).

The equations (3.5) and (3.6) can be summarized in matrix form as

(3.8) ÂQ̂Zk = Uk+1Mk and A⊤R−1Uk+1 = Vk+1Tk+1,

where the search basis Zk takes the form

(3.9) Zk =
[
z1 . . . zk

]
=

[
v1 . . . vk

w1 . . . wk

]
=

[
Vk

Wk

]
∈ R

2n×k.

Furthermore, we have two matrices Mk ∈ R
(k+1)×k and Tk+1 ∈ R

(k+1)×(k+1) that are
upper Hessenberg and upper triangular respectively. The basis vectors are collected
in the matrices Uk+1 =

[
u1 . . . uk+1

]
∈ R

m×(k+1) and Vk+1 =
[
v1 . . . vk+1

]
∈

R
n×(k+1) which satisfy the orthogonality conditions (in exact arithmetic)

(3.10) U⊤
k+1R

−1Uk+1 = Ik+1 V⊤
k+1QVk+1 = Ik+1.

Solving the LS problem. Thus far, we have described the FGGK process as an
iterative method to generate a basis for the solution. Next, we seek approximate
solutions to the least-squares problem subsection 3.1 by using the FGGK relations
above to obtain a sequence of projected LS problems. For clarity of presentation, we
assume that the parameters λ and α are fixed.

To determine the optimal coefficients f in (3.12), we plug the FGGK relations (3.8)
into the objective function to get

(3.11) fk = argmin
f∈Rk

‖Mkf −m1,1e1‖22 + λ2 ‖f‖22 + α2 ‖Wkf‖22 .

which is equivalent to

(3.12) min
x=Vkf ,y=Wkf

‖AQx+Ay − c‖2R−1 + λ2‖x‖2Q + α2‖y‖22.

Our ultimate goal is to obtain the decomposed solution s = s1+ s2. Based on the
discussion above and using the change of variables (3.1), we get

s
(k)
1 := µ1 +QVkfk s

(k)
2 := µ2 +Wkfk,

where fk ∈ R
k are the coefficients obtained by solving (3.11). In summary, an ap-

proximation to the MAP estimate at the kth iteration of the sdHybr method would
be s(k) = µ1 +QVkfk +µ2 +Wkfk where fk solves the optimization problem (3.11).

This manuscript is for review purposes only.
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Efficient QR update. Similar to what is done in [7], we can take the thin QR
factorization of Wk = QW,kRW,k, then (3.11) becomes

(3.13) fk = argmin
f∈Rk

‖Mkf −m1,1e1‖22 + λ2 ‖f‖22 + α2 ‖RW,kf‖22 .

An efficiently update of the QR factorization of Wk is as follows. Suppose we have
have computed the thin-QR factorization

(3.14) Wk = QW,kRW,k

where Q⊤
W,kQW,k = Ik and RW,k is an upper triangular matrix. Then we can effi-

ciently update the QR factorization of Wk in O(nk) flops using Gram-Schmidt as

(3.15)

Wk+1 =
[
Wk wk+1

]

=
[
QW,kRW,k wk+1

]

=
[
QW,k (I−QW,kQ

⊤
W,k)wk+1/βk+1

]
︸ ︷︷ ︸

QW,k+1

[
RW,k Q⊤

W,kwk+1

0 βk+1

]

︸ ︷︷ ︸
RW,k+1

,

where βk+1 =
∥∥∥(I−QW,kQ

⊤
W,k)wk+1

∥∥∥
2
. For additional numerical stability, one can

use another round of Gram-Schmidt or instead use Householder QR updates. A
summary of the sdHybr method is provided in Algorithm 3.1. Parameter selection
methods to select α and λ automatically will be described in subsection 3.3. We
remark that various existing stopping criteria can be used and will be discussed shortly.

Computational Cost. Each iteration of the sdHybr method requires one matrix-
vector products with A and its adjoint (suppose we denote the cost of one matrix-
vector of this operation by TA), two matrix-vector products withQ (similarly, denoted
TQ), one matrix-vector product with R−1 (denoted TR−1), one matrix-vector product
with D−1

k (denoted TD−1

k
), the inversion of diagonal matrix Dk that is O(n) floating

point operations (flops), and additional O(k(m+n)) flops for the summation calcula-
tion in (3.5) and (3.6). To compute the solution of the projected problem (3.13), the
cost is O(k3) flops, since Mk is upper Hessenberg matrix. And the cost of forming x
and y to get s is O(k2(m+ n)) flops. Thus, the overall cost of the algorithm is

(3.16) TsdHybr = 2kTA + 2kTQ + kTR−1 +O(k2(m+ n)) +O(k4) flops.

Notice that compared to the MMmethod, the projected problem (3.11) for sdHybr
is cheaper to solve than (3.4) at each MM iteration, since it is an optimization problem
over a smaller dimensional space.

Alternative approaches. We remark that various projection methods that
combine flexible and generalized GK methods could be considered besides the sdHybr
approach; however, for stability and for proper selection of regularization parameters,
we found this projection approach (Algorithm 3.1) to be the most computationally
appealing. For example, a näıve first approach would be to use a genGK approach to
handle the Q-norm regularizer and use the flexible Golub-Kahan approach to handle
the 1-norm separately in (3.2). This would generate two solution subspaces that each
contain orthonormal columns but are not orthogonal to each other, and the num-
ber of unknowns for the projected problem would be 2k. Although an efficient QR
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Algorithm 3.1 Solution decomposition hybrid method (sdHybr)

Require: Matrix A ∈ R
m×n, positive definite matrices Q ∈ R

n×n and R ∈ R
m×m,

vector c ∈ R
m,µ1,µ2 ∈ R

n. Invertible matrix D1 = In ∈ R
n×n.

1: Initialize u1 = c/m1,1, where m1,1 = ‖c‖R−1 and v1 = 0, k = 1.
2: while stopping criteria are not satisfied do
3: w = A⊤R−1uk, tj,k = w⊤Qvj for j = 1, . . . , k − 1

4: h = h−∑k−1
j=1 tj,kvj , tk,k = ‖h‖Q, vk = h/tk,k

5: zk =

[
vk

wk

]
, Vk =

[
v1 . . . vk

]
, Wk =

[
w1 . . . wk

]
, where wk = D−1

k vk.

6: h = A(Qvk +wk), mj,k = h⊤R−1uj for j = 1, . . . , k

7: h = h−∑k
j=1mj,kuj , mk+1,k = ‖h‖R−1 , uk+1 = h/mk+1,k

8: Update QR factorization using (3.15) to obtain Wk+1 = Qk+1Rk+1

9: Solve (3.13) to get fk(λk, αk) with selected regularization parameters λk, αk.

10: s
(k)
1 = µ1 +QVkfk, s

(k)
2 = µ2 +Wkfk.

11: Dk+1 = D(Wkfk)
12: k = k + 1
13: end while
14: return Approximations s

(k)
1 and s

(k)
2 that define the sum s(k) = s

(k)
1 + s

(k)
2 .

update could be used, there are potential issues with breakdown (e.g., due to linear
dependence of subspace vectors). Furthermore, we found that this approach can be
sensitive to initializations. The FGGK process described above avoids this by working
with stacked solution vectors and a projected problem of order k.

Another natural approach to combine flexible and generalized GK methods would
be to reformulate the problem such that the genGK vectors include the flexible precon-
ditioner. This approach is described in Appendix A and provides a nice alternative,
but the main caveat is that selecting regularization parameters in a hybrid framework
becomes more challenging. In particular, a hybrid framework based on the projection
method described in Appendix A requires formulating one regularization parameter
as a fixed scalar multiple of the other or utilizing more expensive optimization pro-
cedures. This is due to the inability to simplify the norm for the regularizer when
different regularization parameters. In contrast, the FGGK procedure leads to a
projected problem (3.11) for which existing parameter selection approaches can be
naturally applied, as described in the next section.

Remarks on solution decomposition method. The FGGK process was de-
signed to solve the sequence of optimization problems (3.4) involving a diagonal
weighting matrix that changes at each iteration. We make a few comments when
the weighting matrix is fixed at each iteration. Recall that the Krylov subspace asso-
ciated with the matrix E and vector g is defined as

Kk(E,g) ≡ Span{g,Eg, . . . ,Ek−1g}.

Assume that Dj with j = 1, . . . , k are fixed, that is D1 = · · · = Dk = D̂, and

furthermore, assume D̂ is invertible. For the FGGK process, based on the relations
in (3.5) and (3.6), it can be shown that the columns of Uk Vk respectively form
R−1-orthogonal and Q-orthogonal (c.f., (3.10)) bases for the Krylov subspaces as
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follows
Span{Uk} = Kk(A(Q+ D̂−1)A⊤R−1, c)

Span{Vk} = Kk(A
⊤R−1A(Q+ D̂−1),A⊤R−1c)

respectively. This means that when the diagonal weighting matrices are fixed, FGGK
turns into a Krylov subspace method.

3.3. Selecting regularization parameters. In this section, we describe vari-
ous methods for selecting regularization parameters λ and α for the projected problem
(3.13). Notice that the solution to this problem is given by

fk(λ, α) = (M⊤
k Mk + λ2I+ α2R⊤

W,kRW,k)
−1M⊤

k β1e1.

We write fk(λ, α) to denote the explicit dependence of fk on the regularization pa-
rameters λ and α.

Let Ck(λ, α) = (M⊤
k Mk + λ2I+ α2R⊤

W,kRW,k)
−1M⊤

k , and denote the projected
residual

rprojk (λ, α) = Mkfk(λ, α) − β1e1.

We use hybrid regularization techniques to estimate the regularization parameters
in the projected space similar to [6]. However, the key difference is that (2.3) is no
longer a Tikhonov type problem, so the techniques do not apply directly. Therefore,
the parameter selection techniques used on the projected problem we present below
are heuristics inspired by [6].

In order to provide a benchmark for comparing the parameter selection methods,
we define the optimal parameters as

(3.17) (λproj, αproj) = argmin
λ,α

‖sk(λ, α) − strue‖22 ,

where strue is the true solution that is not available in practice. As was mentioned,
we use it merely to test the performance of the parameter selection methods. We can
select parameters λ, α using the unbiased predictive risk estimation (UPRE) method
for the projection problem, where

(3.18) (λproj, αproj) = argmin
λ,α

1

k

∥∥∥rprojk (λ, α)
∥∥∥
2

2
+

2

k
tr(MkCk(λ, α)) − 1.

Notice that the noise level of the problem should be included in the definition of R.
Another common approach is to use the Discrepancy Principle (DP), where parame-
ters λ, α are selected such that

(3.19) (λproj, αproj) = argmin
λ,α

∣∣∣
∥∥∥rprojk (λ, α)

∥∥∥
2

2
−mτ

∣∣∣,

where τ ≥ 1 is a safety factor. Without a priori knowledge of the noise level, another
option is to use an extension of the weighted generalized cross validation (WGCV)
method. The basic idea is to select parameters,

(3.20) (λproj, αproj) = argmin
λ,α

∥∥∥rprojk (λ, α)
∥∥∥
2

2

(tr(Ik − ωMkCk(λ, α)))2
,

where ω = k/m [32]. Various parameter choice methods can be used here since
the projected problem is small. We point the interested reader to other works on
regularization parameter selection in the context of hybrid methods [7].
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12 CHUNG, JIANG, MILLER, AND SAIBABA

Motivated by the approaches described in [8, 9], we introduce three stopping
criteria for the FGGK process in the solution decomposition hybrid approach. The
iterative process is terminated if either of these conditions is satisfied: (i) a maxi-
mum number of iterations is attained, (ii) the GCV function defined in terms of the
iteration,

(3.21) Ĝ(k) =
k
∥∥∥rprojk (λ, α)

∥∥∥
2

2

(tr(Ik −MkCk(λ, α)))2

reaches the minimum or flattens out. In addition to these criteria, one could also
consider stopping if the gradient of the objective function (3.3) is sufficiently small;
however, we did not need this in our implementation.

4. Numerical results. In this section, we investigate the performance of the
proposed sdHybr method using various examples from imaging processing. In subsec-
tion 4.1, we consider a hypothetical atmospheric transport problem where the goal is
to recover emissions maps that cover North America for detecting anomalies. Then,
in subsection 4.2 we consider dynamic spherical means tomography reconstruction,
where the true image combines moving smooth components and sparsely positioned
dots. Finally, in subsection 4.3 we consider a more challenging case study from
NASA’s Orbiting Carbon Observatory 2 (OCO-2) satellite that includes an atmo-
spheric transport model and dynamic data. For the last example, the true solution is
not synthetically generated as a sum of random fields. For each of the case studies, we
show that sdHybr methods are able to capture both smooth and sparse components.

We compare the performance of sdHybr methods to that of generalized hybrid
methods and flexible hybrid algorithms, denoted by genHyBR and fHybr respectively.
For the hybrid methods, we consider regularization parameters selected using the
UPRE method, the DP method and the WGCV method. For sdHybr, this cor-
responds to solving nonlinear constrained optimization problems (3.18), (3.19) and
(3.20) respectively. For this task, we use a Quasi-Newton method as implemented in
MATLAB’s fminunc function with an initial guess of λ = −0.5 and γ = −0.5. For
the stopping criteria for sdHybr, the iterative method is terminated if either of the
following two criteria is satisfied: (i) a maximum number of iterations is reached; (ii)

the GCV stopping function Ĝ defined in (3.21) reaches the minimum or flattens out.
The following experiments ran on a laptop computer with Intel i5 CPU 2GHz and
16G memory.

4.1. Case study 1: A hypothetical atmospheric transport problem. We
investigate a synthetic atmospheric transport problem, where observations d ∈ R

98880

are generated as in (1.1) with A ∈ R
98880×3222 representing a forward atmospheric

model and s representing the true emissions map which is a summation of a randomly-
generated smooth image and an image with sparse anomalies. Henceforth, we denote
the true emissions vector as strue ∈ R

3222. See Figure 1. The smooth image is gener-
ated by a Matérn kernel [39, Equation (4.14)] with parameters ν = 2.5 and ℓ = 0.05.
For the image with sparse speckles, a few of the speckles acquire the maximum value,
whereas the remaining have varying values. The goal is to reconstruct the unknown
set of states or fluxes in space, where the spatial resolution is 1o × 1o. This reso-
lution is coarser than ideal for detecting super-emitters but provides a nice testbed
example. In this case study, the observations d are sampled at the locations and
times of OCO-2 observations during July through mid-August 2015, and the atmo-
spheric model A is from NOAA’s CarbonTracker-Lagrange project [30, 27]. Specif-
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HYBRID PROJECTION METHODS FOR SOLUTION DECOMPOSITION 13

ically, these atmospheric modeling simulations are from the Weather Research and
Forecasting (WRF) Stochastic Time-Inverted Lagrangian Transport Model (STILT)
modeling system [26, 31]. Note that we do not use realistic CO2 emissions in this case
study (c.f., case study 3). Instead, we use randomly-generated emissions to create a
relatively simple, initial test case for the algorithms proposed here. We add Gaussian

white noise corresponding to a 4% noise level to the observations, i.e.,
‖δ‖

2

‖Astrue‖2

= 0.04.
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Fig. 1: Atmospheric transport example, case study 1. The true emissions image
strue provided on the left is the sum of smooth image s1 and sparse image s2, i.e.,
strue = s1 + s2. Colormaps for all images are the same.

We obtain reconstructions using the proposed sdHybrmethod and provide relative
reconstruction error norms per iteration. These are computed as

‖sk − strue‖2 / ‖strue‖2 ,

where sk is the reconstruction at the kth iteration. In the left plot of Figure 2, we
provide relative reconstruction error norms per iteration using the optimal regular-
ization parameter at each iteration, which is not available in practice. In the right
plot, we see that similar results are obtained using the DP-selected regularization
parameters. Results for sdHybr with WGCV and UPRE are very similar, so we do
not provide them here. For comparison, we provide the relative reconstruction er-
ror norms per iteration of genHyBR and fHybr for both the optimal and DP-selected
regularization parameters. For genHyBR and sdHybr, we let Q represent a Matérn
kernel with ν = 0.5 and ℓ = 0.5. All considered hybrid methods include a variety of
stopping criteria. The tolerance for the GCV function was set to δGCV = 10−6 and
the maximum number of iterations is 50. The diamonds denote the (automatically-
selected) stopping iterations. sdHybr with different parameter selection resulted in
similar stopping points.

We observe that sdHybr reconstructions produce smaller relative reconstruction
errors than genHyBR and fHybr, demonstrating that our solution decomposition can
be beneficial. This result is also evident in the image reconstructions displayed in
Figure 3. In the top row of Figure 3, we provide the overall sdHybr-dp reconstruc-
tion, along with the computed estimates of s1 and s2. In the bottom row, we provide
the reconstructions obtained using genHyBR-dp and fHybr-dp. We observe that the
genHyBR reconstruction captures the smooth regions but fails to reconstruct the anom-
alies, while the fHybr reconstruction captures the anomalies but lacks smoothness in
the background.

In the bottom row of Figure 3, we also provide a reconstruction using Alter-wgcv,
which is an alternating optimization approach Algorithm 2.1. Both sdHybr and
Alter-wgcv capture the sparse anomalies as well as the smooth background. The
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Fig. 2: Atmospheric transport, case study 1: Relative reconstruction error norms
per iteration of sdHybr, genHyBR, and fHybr. Results in the left plot correspond to
selecting the optimal regularization parameters at each iteration, and results in the
right plot correspond to the DP-selected regularization parameters.
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Fig. 3: Atmospheric transport, case study 1: Reconstructions with relative recon-
struction error norms provided in the titles. Decomposed solutions computed using
sdHybr-dp.

maximum number of iterations for Alter-wgcv was 200. We found that the Alter

approach requires high accuracy of the algorithms used to compute solutions in the
alternating framework, hence the larger number of iterations for each solve within
Alter and the overall longer CPU times: sdHybr took 19.15 seconds and Alter took
253.97 seconds. Furthermore, we observed that Alter is very sensitive to the accuracy
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of the initial guess. Moreover, only WGCV was able to provide Alter reconstructions
that could distinguish anomalies.

4.2. Case study 2: Dynamic spherical means tomography. In this exper-
iment, we consider a dynamic tomography setup where the goal is to reconstruct a
sequence of images from a sequence of projection datasets. Such scenarios are com-
mon in dynamic photoacoustic or dynamic electrical impedance tomography, where
the underlying parameters change during the data acquisition process [38, 36, 16].
Reconstruction is particularly challenging for nonlinear or nonparametric deforma-
tions and often requires including a spatiotemporal prior [11, 35]. In spatiotemporal
inversions, classic approaches (e.g., those based on parametric covariance families or
separable covariance functions) may not be rich enough to capture the phenomena of
interest alone, and multiple priors may be required to enforce different spatiotemporal
properties.

In this example, we consider a sequence of 20 true images (e.g., time points),
where each image is 128× 128 and represents a sum of a smooth image and a sparse
image. That is, the true image at the t-th time point can be represented as the sum of
two images: the smooth image s1 was generated using a truncated Karhunen-Loéve
expansion using 30 basis vectors, with a Matérn covariance kernel defined with two
spatial and one temporal dimensions (see, for example, [11, Section]). We will refer
to this as a 3D Matérn kernel. We also take ν = 0.2 and ℓ = 0.2. The sparse image
s2 was generated using a star cluster example, and the two images were summed
together. In Figure 4, we provide three of the true image decompositions (i.e., for
time points t = 1, 10, 20). Notice that although sparsely distributed, the spots in s2
take pixel values in a larger range compared to pixel values in s1.

t=1

 s
1

t=10 t=20

-2
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1

 s
2

2
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8
10
12

Fig. 4: Dynamic spherical tomography example, case study 2. We provide three true
images corresponding to time points t = 1, 10, 20. For each time point the true image
is a sum of a true image plus a sparse image.

We consider a linear problem of the form (1.1), where where

A =



F1

. . .

F20


 ∈ R

18∗181×1282 ,
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16 CHUNG, JIANG, MILLER, AND SAIBABA

where Ft represents a spherical projection matrix corresponding to 18 equally spaced
angles between t and 340+ t for t = 1, . . . , 20, and d ∈ R

20∗18∗181 contains projection
data. For this, we use the PRspherical test problem from the IRTools toolbox [13, 17],
and to simulate measurement error we add 2% Gaussian noise. The collection of 20
observed sinograms are concatenated and provided in Figure 5. For the reconstruc-
tions, we used prior covariance matrixQ representing a 3D Matérn kernel with ν = 0.5
and ℓ = 0.4.
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Fig. 5: Dynamic spherical tomography example, case study 2. There are 20 observed
sinograms corresponding to 20 time points.

We focus on a comparison of methods using optimal regularization parame-
ters, and we provide relative reconstruction error norms computed per iteration for
sdHybr-opt, genHyBR-opt, and fHybr-opt in the left plot of Figure 6. We observe
that sdHybr-opt can achieve smaller overall reconstruction error norms compared
to genHyBR-opt and fHybr-opt. In the right plot of Figure 6, we provide relative
reconstruction errors for s1 and s2 separately. An interesting observation is that in
early iterations, the sdHybr-opt method seems to reconstruct better approximations
of s1, and in later iterations, reconstructions seem to capture features in s2.
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Fig. 6: Dynamic spherical tomography example, case study 2. Relative reconstruction
error norms per iteration are provided in the left plot for sdHybr-opt, genHyBR-opt,
and fHybr-opt. In the right plot, we provide the relative reconstruction errors for
s1 (left axis) and s2 (right axis) separately. The relative reconstruction errors for
sdHybr-opt from the left plot are provided again for reference.
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The main benefit of the solution decomposition approach can be seen in the recon-
structions. For time point t = 1, we provide image reconstructions in Figure 7, along
with the corresponding true image. We observe that sdHybr-opt can reconstruct
better solutions than genHyBR-opt and fHybr-opt. Moreover, the solution decom-
position approach can simultaneously solve for both components, which means that
we have two separate image reconstructions s1 and s2. Notice that the sdHybr-opt

solution can better capture the larger values in s2 while simultaneously capturing the
smooth features in s1.
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Fig. 7: Dynamic spherical tomography example, case study 2. For time point t = 1,
the sdHybr-opt solution is provided along with reconstructed solutions s1 and s2 in
the top row. In the bottom row, the true image along with genHyBR, and fHybr

reconstructions with the optimal regularization parameter are provided.

We obtained similar results for the automatic parameter selection techniques, so
we omit those here. Also, we acknowledge that the choice of hyperparameters will
be important for the overall reconstruction. Additional investigation is necessary to
determine appropriate hyperparameters for the prior covariance matrix, and this is a
topic of future work.

4.3. Case study 3: Atmospheric inverse modeling based on NASA’s
OCO-2 satellite. For this case study, we consider a more realistic atmospheric in-
verse model, where the goal is to estimate CO2 fluxes across North America using
observations from NASA’s OCO-2 satellite. The setup parallels that in [30, 27], so
we just provide an overview here.

We consider a linear model of the form (1.1), where the aim is to estimate CO2

fluxes at 3-hourly temporal resolution over 41 days (approximately 6 weeks from late
June through July 2015) and at 1◦ × 1◦ latitude-longitude spatial resolution. This
setup corresponds to 3, 222 unknowns per 3-hour time interval; hence, s ∈ R

328·3222.
For strue, we use CO2 fluxes from NOAA’s CarbonTracker product (version 2019b).
Although a decomposition of strue = s1 + s2 is not available, we observe that, similar
to actual atmospheric models, the true fluxes contain a combination of large, sparsely
distributed values which correspond to anomalies (e.g., fires, anthropogenic emissions,
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Fig. 8: OCO-2 example, case study 3. In the top row, we provide the averaged
computed reconstruction for sdHybr, along with the average reconstructions for s1
and s2. In the bottom row, we provide the averaged true fluxes for reference, along
with the reconstructions obtained using genHyBR and fHybr. Relative reconstruction
error norms for the spatiotemporal fluxes are provided in the titles, and all results
correspond to using the DP selected regularization parameters.

or anomalies in biospheric fluxes) and smooth, broad regions of surface fluxes with
small-scale variability. Synthetic satellite observations given in d ∈ R

19,156 are gener-
ated as in (1.1), where A represents the atmospheric transport simulation described
in subsection 4.1 and δ is added noise to represent measurement errors. The noise
covariance matrix R is σ2I, where σ = 0.5648, which corresponds to a noise level of
50%. More specifically, for n ∼ N (0, I) the noise level of the observation corresponds

to adding ǫ = σn where σ = nlevel · ‖Astrue‖2

‖n‖2
. Notice that this inverse problem is

significantly under-determined, and thus, appropriate prior information plays a key
role.

Similar to previous approaches [41, 30], we consider prior covariance matrix, Q =
λ−2Qt⊗Qs whereQt represents the temporal covariance andQs represents the spatial
covariance in the fluxes. These covariance matrices are defined by kernel functions

kt(dt; θt) =

{
1− 3

2

(
dt

θt

)
+ 1

2

(
dt

θt

)3

if dt ≤ θt,

0 if dt > θt,
(4.1)

ks(ds; θs) =

{
1− 3

2

(
ds

θs

)
+ 1

2

(
ds

θs

)3

if ds ≤ θs,

0 if ds > θs,
(4.2)

where dt is day difference between two unknowns, ds is spherical distance between
two unknowns, and θt, θg are kernel parameters. In this setting, we set θt = 9.854
and θs = 555.42, as in [30].

We compute spatiotemporal reconstructions using sdHybr, genHyBR, and fHybr,
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all using the automatically selected regularization parameters using the discrepancy
principle. We provide in Figure 8 the overall average image of flux reconstructions,
along with the average true image. We observe that genHyBR does fairly well at
estimating the broad regions of flux estimates, and fHybr is not able to capture a
good reconstruction. The average reconstruction of our proposed sdHybr method
results best captures of both sources and sinks presented in the true average image.
Furthermore, a significant benefit of sdHybr is the ability to obtain the solution
decomposition. The reconstructions of s1 and s2 from sdHybr are provided in the top
row of Figure 8.

The results of this case study demonstrate that sdHybr can yield accurate results
for complex, spatiotemporal atmospheric inverse modeling. The proposed method
enables anomaly detection, due to the simultaneous reconstruction of two separate
reconstructions, one containing smooth, broad regions and another capturing sparsely
distributed anomalies. Moreover, the use of efficient hybrid projection methods means
that these methods can be paired with the adjoint of an atmospheric model (where
explicit construction of A is replaced with efficient matrix-vector products with A
and A⊤) and with automatic selection of regularization parameters.

5. Conclusions. We have described hybrid projection methods for efficiently
computing solutions to large-scale inverse problems, where the solution consists of
two characteristically different solutions. We focus on the scenario where the de-
sired solution is a sum of a sparse solution and a smooth solution (e.g., a framework
that can be used for anomaly detection) and describe a flexible, generalized Golub-
Kahan hybrid iterative approach that confers several advantages. The approaches are
efficient, in part because they converge quickly, they exploit efficient matrix-vector
multiplications, and they avoid expensive inner-outer optimization schemes by lever-
aging recent work on flexible preconditioning techniques. These methods are also
automatic since hyperparameters and stopping criteria can be determined as part of
the iterative algorithm. We describe various problems and alternative formulations
that also fit within our framework, so these methods can be utilized for a wide range
of problems. Numerical results from various applications, including dynamic inverse
problems and atmospheric inverse modeling, demonstrate the benefits and potential
for our approach.

Future work includes extending and applying the proposed method for real satel-
lite data, that when coupled with the GEOS-Chem chemical transport model, requires
a reformulation to handle the adjoint. In addition, techniques for uncertainty quan-
tification can be extended to this framework by utilizing a linearization approach to
approximate the posterior at the MAP estimate with a Gaussian distribution [2, 4]
or by exploiting previously computed bases for the solution subspaces as described in
[34].

Appendix A. Alternative to FGGK. Here we briefly derive an alternative
to FGGK. Recall that we have to solve the sequence of systems (3.4) where now

Dk = D(ξ(k)). Let y = Dkξ, so that the optimization problem can be recast as

(A.1) min
x, y

∥∥∥∥ÂQ̂

[
I

D−1
k

] [
x
y

]
− c

∥∥∥∥
2

2

+

∥∥∥∥
[
λI

αI

] [
x
y

]∥∥∥∥
2

Q̂

where Â and Q̂ were defined in (3.7). We can derive a similar process as before, where
after k iterations of this process, we obtain

(A.2) ÂQ̂Zk = Uk+1Gk and Â⊤Uk+1 = Vk+1Hk+1,
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where

• Zk =
[
z1 . . . zk

]
=

[
L1v1 . . . Lkvk

]
∈ R

2n×k with Li =

[
I

D−1
i

]
∈

R
2n×2n contains solution basis vectors,

• Gk = [gi,j]i=1,...,k+1;j=1,...,k ∈ R
(k+1)×k is upper Hessenberg,

• Hk+1 = [hi,j ]i,j=1,...,k+1 ∈ R
(k+1)×(k+1) is upper triangular,

• Uk+1=
[
u1 . . . uk+1

]
∈R

m×(k+1) with u1 = c/ ‖c‖2, and
• Vk+1 =

[
v1 . . . vk+1

]
∈ R

2n×(k+1) such that

U⊤
k+1R

−1Uk+1 = Ik+1 V⊤
k+1Q̂Vk+1 = Ik+1.

The specific algorithm is given in Algorithm A.1.

Algorithm A.1 Alternative flexible, generalized Golub–Kahan process

1: Initialize u1 = c/ ‖c‖R−1

2: for i = 1, . . . , k do
3: w = Â⊤R−1ui, hj,i = w⊤Q̂vj for j = 1, . . . , i− 1

4: w = w −∑i−1
j=1 hj,ivj , hi,i = ‖w‖

Q̂
, vi = w/hi,i

5: zi =

[
I

D−1
i

]
vi

6: w = ÂQ̂zi, gj,i = w⊤R−1uj for j = 1, . . . , i

7: w = w −∑i
j=1 gj,iyj , gi+1,i = ‖w‖R−1 , ui+1 = w/gi+1,i

8: end for

Next, assume that we seek solution

[
x
y

]
∈ R(Zk), i.e.,

[
x
y

]
= Zkf for some f ∈ R

k.

Then the projected problem,

(A.3) min

x
y



∈R(Zk)

∥∥∥∥ÂQ̂

[
x
y

]
− c

∥∥∥∥
2

2

+

∥∥∥∥
[
λI

αI

] [
x
y

]∥∥∥∥
2

Q̂

becomes

min
f∈Rk

‖Gkf − ‖c‖R−1 e1‖22 +
∥∥∥∥
[
λI

αI

]
Zkf

∥∥∥∥
2

Q̂

.

The important point here is that, while the projected problem is in a smaller dimen-
sional space, it is not obvious how to simultaneously estimate the projected parameters
λ and α. One choice would be to assume α = λλα, where λα is fixed and estimate
λ using techniques similar to subsection 3.3. However, the choice we made in sub-
section 3.2 allows for the estimation of both parameters within the projected space,
while maintaining the same computational cost. This highlights the novelty of the
proposed approach.
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