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Abstract. Consider the steady solution to the incompressible Euler equation

ū = Ae1 in the periodic tunnel Ω = Td−1 × (0, 1) in dimension d = 2, 3.
Consider now the family of solutions uν to the associated Navier-Stokes equa-

tion with the no-slip condition on the flat boundaries, for small viscosities

ν = A/Re, and initial values in L2. We are interested in the weak inviscid
limits up to subsequences uν ⇀ u∞ when both the viscosity ν converges to

0, and the initial value uν0 converges to Ae1 in L2. Under a conditional as-

sumption on the energy dissipation close to the boundary, Kato showed in
1984 that uν converges to Ae1 strongly in L2 uniformly in time under this

double limit. It is still unknown whether this inviscid limit is uncondition-

ally true. The convex integration method produces solutions uE to the Euler
equation with the same initial values Ae1 which verify at time 0 < T < T0:

‖uE(T ) − Ae1‖2L2(Ω)
≈ A3T. This predicts the possibility of a layer separa-

tion with an energy of order A3T . We show in this paper that the energy

of layer separation associated with any asymptotic u∞ obtained via double

limits cannot be more than ‖u∞(T )−Ae1‖2L2(Ω)
. A3T. This result holds un-

conditionally for any weak limit of Leray-Hopf solutions of the Navier-Stokes

equation. Especially, it shows that, even if the limit is not unique, the shear
flow pattern is observable up to time 1/A. This provides a notion of stabil-

ity despite the possible non-uniqueness of the limit predicted by the convex
integration theory. The result relies on a new boundary vorticity estimate

for the Navier-Stokes equation. This new estimate, inspired by previous work

on higher regularity estimates for Navier-Stokes, provides a nonlinear control
scalable through the inviscid limit.
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1. Introduction

For dimension d = 2, 3, we consider the periodic channel with physical boundary
at xd = 0 and xd = 1: Ω = Td−1 × (0, 1), where T = [0, 1]per denotes the unit
periodic domain. For any kinematic viscosity ν > 0, we denote uν : (0, T ) × Ω →
Rd the velocity field of an incompressible fluid confined in Ω, subject to no-slip
boundary conditions, and P ν : (0, T ) × Ω → R the associated pressure field. The
dynamic of the flow is described by the following Navier-Stokes Equation:

∂tu
ν + uν · ∇uν +∇P ν = ν∆uν in (0, T )× Ω

div uν = 0 in (0, T )× Ω

uν = 0 for xd = 0, and xd = 1.

(NSEν)

For any A > 0, we investigate the inviscid asymptotic behavior of uν when ν
converges to 0, under the condition that the initial values converge to a shear flow
of strength A:

(1) lim
ν→0
‖uν(0)−Ae1‖L2(Ω) = 0.

Note that the steady shear flow ū(t, x) = Ae1 is solution to the Euler equation with
impermeability boundary condition:

∂tū+ ū · ∇ū+∇P̄ = 0 in (0, T )× Ω

div ū = 0 in (0, T )× Ω

ū · n = 0 for xd = 0, and xd = 1,

(EE)

where n is the outer normal as shown in Figure 1. However, it is an outstanding
open question (even in dimension 2) whether, in the double limit (1) and ν →
0, the solution uν of (NSEν) converges to this shear flow Ae1. The difficulty of
this problem stems from the discrepancy between the no-slip boundary condition
for the Navier-Stokes equation and the impermeable boundary condition of the
Euler equation. Kato [Kat84] showed in 1984 a conditional result ensuring this
convergence under the a priori assumption that the energy dissipation rate in a
very thin boundary layer Γν of width proportional to ν vanishes:

lim
ν→0

ˆ T

0

ˆ
Γν

ν |∇uν |2 dxdt = 0.

This condition has been sharpened in a variety of ways (see, for instance [TW97,
Wan01, Kel07, Kel08] and Kelliher [Kel17], for a general review), and similar other
conditional results have been derived (see for instance [BTW12, CKV15, CEIV17,
CV18]). Non-conditional results of strong inviscid limits have been obtained only
for real analytic initial data [SC98], vanishing vorticity near the boundary [Mae14,
FTZ18], or symmetries [LFMNLT08, MT08]. Since [Pra04], it is expected that in
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favorable cases, the Prandtl boundary layer describes the behavior of the solution
uν up to a distance proportional to

√
ν. However, even in the simple shear flow

case, it is possible to engineer families of initial values uν(0) converging to the shear
flow, but associated to Prandtl boundary layers which are either strongly unstable
[Gre00], blow up in finite time [E00], or even ill-posed in the Sobolev framework
[GVD10, GVN12].

It is actually believed that the inviscid asymptotic limit may fail due to tur-
bulence (See Bardos and Titi [BT13]). This scenario is consistent with the non-
uniqueness pathology of the shear flow solution for the Euler system (EE). Indeed,
an adaptation to the boundary value problem (EE) of the construction based on
convex integration of Szekelyhidi in [Szé11] provides infinitely many solutions to
(EE) with initial value Ae1 (see also Bardos, Titi, Wiedemann [BTW12] for a dif-
ferent boundary geometry). More precisely, the following estimate can be proved
on this construction (see appendix A).

Proposition 1.1. For any 0 < C < 2, there exists a solution v to (EE) with initial
value Ae1 such that for any time T < 1/(2A):

‖v(T )−Ae1‖2L2(Ω) = CA3T.

The convex integration is a powerful tool introduced by De Lellis and Szekelyhidi
[DLS09] to construct spurious solutions to the Euler equation. It proved itself to be
a powerful tool to model turbulence. For instance, the technique was successfully
applied by Isett [Ise18] to prove the Onsager theorem (see also [BDLSV19] for
the construction of admissible solutions, and [CET94] for the proof of the other
direction). It shows that turbulent flows can have regularity Cα for any α up
to 1/3, a property conjectured by Onsager [Ons49]. Proposition 1.1 predicts the
possible deviation from the initial shear flow Ae1 due to turbulence, a phenomenon
called layer separation. Moreover, it provides an explicit value for the L2 norm of
this layer separation.

This article aims to provide an upper bound on the L2 norm of possible layer
separations through the double limit inviscid asymptotic. In our channel framework,
the Reynolds number is given by Re = A/ν. Our main theorem is the following.

Theorem 1.2. Let Ω be a unit periodic channel in Rd of dimension d = 2, 3. There
exists C > 0 depending on d only, such that the following is true. Let ū = Ae1 be a
constant shear flow for some A > 0, and let uν be a Leray-Hopf solution to (NSEν)
with kinematic viscosity ν > 0. For any T > 0, we have

‖uν(T )− ū‖2L2(Ω) +
ν

2
‖∇uν‖2L2((0,T )×Ω)

≤ 4 ‖uν(0)− ū‖2L2(Ω) + CA3T + CA2Re−1 log(2 + Re).

This theorem is the special case of a more general result given in Theorem 1.5
at the end of this section. By Leray-Hopf solution, we mean any weak solutions to
(NSEν) which in addition verifies the energy inequality:

1

2

d

dt
‖uν‖2L2(Ω) ≤ −ν ‖∇uν‖

2
L2(Ω) .

We have the following corollary on any weak inviscid limit, which corresponds to
the layer separation predicted by Proposition 1.1.
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Corollary 1.3. There exists a universal constant C > 0 such that the following
is true. Consider any family uν of a Leray-Hopf solutions to (NSEν) such that
uν0 converges strongly in L2(Ω) to Ae1. Then, for any weak limit u∞ of weakly
convergent subsequences of uν , we have for almost every T > 0 that

‖u∞(T )−Ae1‖2L2(Ω) ≤ CA3T.

Note that the solutions uν are uniformly bounded in L∞(R+, L2(Ω)). Therefore
they converge weakly up to a subsequence in L2

t,x.

This result bets on the fact that the double limit to Ae1 in the inviscid asymptotic
may fail, which is related to the physical relevance of the solutions constructed
by convex integration. An interesting question is whether such solutions can be
themselves obtained via double limit in the inviscid asymptotic. A first result in
this direction was provided by Buckmaster and Vicol [BV19] where they constructed
via convex integration, in the case without boundary, spurious solutions at the level
of Navier-Stokes. They show that the inviscid limit of this family of Navier-Stokes
solutions can converge to spurious solutions of Euler. However, these spurious
solutions constructed at the level of Navier-Stokes do not have enough regularity
to be Leray-Hopf solutions, and therefore do not fit in the framework of Corollary
1.3.

Non-uniqueness and pattern predictability. The non-uniqueness of solutions to the
Euler equation, as proved by convex integration, puts under question the ability
of the model itself to predict the future. Theorem 1.2 provides a first example of
how non-uniqueness and pattern predictability can be reconciled. The energy of
the shear flow is A2, while the maximum energy of the layer separation is bounded
above by CA3T . This predicts pattern visibility on a lapse of time 1/A. On
this lapse of time, the layer separation stays negligible compared to the shear flow
pattern. Especially, the smaller the pattern is (small A), the longer the prediction
stays accurate.

Inviscid limit and boundary vorticity. It is well known that the possible growth
of the layer separation is closely related to the creation of boundary vorticity (see
Kelliher [Kel07] for instance). To see this, we formally compute the evolution of
the L2 distance between uν and ū:

(2)

1

2

d

dt
‖uν − ū‖2L2 = (uν − ū, ∂tuν)

= −(uν − ū, uν · ∇uν)− (uν − ū,∇P ν) + ν(uν − ū,∆uν)

= ν(uν ,∆uν)− ν(ū,∆uν)

= −ν ‖∇uν‖2L2 −
ˆ
∂Ω

J [ū] · (νων) dx′

where J [ū] = n⊥ ·ū when d = 2 and J [ū] = n×ū when d = 3, and ων is the vorticity
of uν . Since ū is a constant on the boundaries, it is crucial to estimate the mean
boundary vorticity. If the convergence νων

∣∣
∂Ω
→ 0 holds in the average sense, then

the inviscid limit would be valid. For a general static smooth solution to Euler’s
equation ū in a general domain Ω, we only need νων

∣∣
∂Ω
→ 0 in distribution. This

convergence may fail and we could lose uniqueness, but we can still control the size
of the impact from this boundary vorticity using Theorem 1.4 below.
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Figure 1. 2D Periodic Channel

Before showing the theorem, we first illustrate which estimates we may expect
and how they prove Theorem 1.2. Denote the energy dissipation by

D := ν ‖∇uν‖2L2((0,T )×Ω) .

If we take the curl of (NSEν), we have the vorticity equation,

∂tω + u · ∇ω = ν∆ω + ω · ∇u.
The main difficulties are due to the transport term u · ∇ω, and the boundary. Let
us put aside those two difficulties for now, and focus on the other terms. Then the
regularity we could expect for ω is at best

ν2
∥∥∇2ω

∥∥
L1((0,T )×Ω)

.d ν ‖ω · ∇u‖L1((0,T )×Ω) ≤ D.
Here A .d B means A ≤ C(d)B for some constant C(d) depending in dimension
d only. This is not rigorous because the parabolic regularization is false in L1, but
let us also ignore this issue for the moment. By interpolation, we have

ν
3
2

∥∥∥∇ 2
3ω
∥∥∥ 3

2

L
3
2 ((0,T )×Ω)

.d
(
ν2
∥∥∇2ω

∥∥
L1((0,T )×Ω)

) 1
2
(
ν ‖ω‖2L2((0,T )×Ω)

) 1
2

.d D.

Finally the trace theorem suggests that (again, this is the borderline case for the
trace theorem, so in no way a rigorous proof)

‖νω‖
3
2

L
3
2 ((0,T )×∂Ω)

.d D.(3)

Using this L
3
2 estimate, if we integrate (2) from 0 to T , we have

1

2
‖uν − ū‖2L2(Ω) (T ) +D

≤ 1

2
‖uν − ū‖2L2(Ω) (0) + ‖J [ū] · νων‖L1((0,T )×∂Ω)

≤ 1

2
‖uν − ū‖2L2(Ω) (0) + ‖νων‖

L
3
2 ((0,T )×∂Ω)

‖ū‖L3((0,T )×∂Ω)

≤ 1

2
‖uν − ū‖2L2(Ω) (0) +

1

2
D + CA3T |∂Ω|

for some constant C depending on d only. By absorbing 1
2D to the left we finish

the proof of Theorem 1.2. Note however, that this direct proof collapses due to the
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transport term. In dimension three, u can be controlled at best in L
10/3
t,x while the

best control of ∇ω is in the Lorentz spaces L
4/3,q
t,x for any q > 4/3 (see [VY21]).

But this is far from enough to bound the transport term u∇ω in L1
t,x. In dimension

2, the transport term can almost be controlled in L1. But the bound is in negative
power of ν and so is useless for the asymptotic limit. However, we can use blow-up
techniques inspired by [Vas10] (see also [CV14, VY21]) which naturally deplete the
strength of the transport term.

Boundary vorticity control for the unscaled Navier-Stokes equation. In the review
paper [MM18], Maekawa and Mazzucato summarized the difficulties of considering
inviscid limit with boundary:

Mathematically, the main difficulty in the case of the no-slip bound-
ary condition is the lack of a priori estimates on strong enough
norms to pass to the limit, which in turn is due to the lack of a
useful boundary condition for vorticity or pressure.

Following this remark, our proof relies on a new boundary vorticity control. This
is a regularization result for the unscaled Navier-Stokes equation. However, it is
remarkable that this estimate is rescalable through the inviscid limit ν → 0. The
strategy of looking for uniform estimates with respect to the inviscid scaling was first
introduced for 1D conservation laws in [KV21a]. It was successfully applied to ob-
tain the unconditional double limit inviscid asymptotic in the case of a single shock
[KV21b]. Note that if (uν , P ν) is a solution to (NSEν), then u(t, x) = uν(νt, νx),
P (t, x) = P ν(νt, νx) solves the Navier-Stokes equation with unit viscosity coeffi-
cient in (0, T/ν)× (Ω/ν):

∂tu+ u · ∇u+∇P = ∆u, div u = 0.(NSE)

The regularization result on the vorticity at the boundary is as follows.

Theorem 1.4 (Boundary Regularity). There exists a universal constant C > 0
such that the following holds. Let Ω be a periodic channel of period W and height
H of dimension d = 2 or 3. For any Leray-Hopf solution u to (NSE1) in (0, T )×Ω,
there exists a parabolic dyadic decomposition 1

closure
{

(0, T )× ∂Ω
}

= closure
{⋃

i

(si, ti)× B̄ri(xi)
}
,

where 0 ≤ si < ti ≤ T , 0 < ri < W
2 , xi ∈ ∂Ω, and

B̄r(y) = {(x′, xd) ∈ ∂Ω : ‖x′ − y′‖`∞ < r, xd = yd}
is a box of dimension d−1 in ∂Ω, such that the following is true. Define a piecewise
constant function ω̃ : (0, T )× ∂Ω→ R by taking averages

ω̃(t, x) =
1∣∣B̄ri∣∣

ˆ
B̄ri (x

i)

∣∣∣∣∣ 1

ti − si
ˆ ti

si
ω dt

∣∣∣∣∣dx′, for t ∈ (si, ti), x ∈ B̄ri(xi).

Then ∥∥∥ω̃1{ω̃>max{ 1
t ,

1
W2 ,

1
H2 }}

∥∥∥ 3
2

L
3
2
,∞((0,T )×∂Ω)

≤ C ‖∇u‖2L2((0,T )×Ω) .

1A dyadic decomposition into cubes of parabolic scaling. See Definition 3.2.
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This theorem provides a “scaling invariant” nonlinear estimate, that is, both
sides of the estimate have the same scaling under the canonical scaling of the Navier-
Stokes equation (t, x) 7→ εu(ε2t, εx). The bounds in the theorem do not depend on
the size of Ω or the terminal time T , and we do not require any smallness for the
initial energy.

The conclusion of this theorem is slightly different from what we hope in (3), due
to some difficulties that we overlooked in the formal argument. To begin with, the
higher regularity ∇2ω ∈ L1 is not known. As mentioned before, one reason is the
transport term u · ∇ω is indeed hard to control. Using blow-up techniques along
the trajectories of the flow first introduced in [Vas10], it was proved in [VY21]
that without boundary in Ω = R3, ∇2ω ∈ L1,q locally for q > 1 but miss the
endpoint L1. The bounded domain is even more complicated because of the lack
of convenient global control on the pressure. In turn, it means that no control
on the pressure can be brought locally through the blow-up process. This poses
problems when applying the boundary regularity theory for the linear evolutionary
Stokes equation. Indeed, a counterexample constructed in [Ser14] shows that we
cannot control that way oscillations in time. The idea which remedies this problem
consists in smoothing locally in time to gain some integrability. We can then apply
the boundary Stokes estimate for

´
udt instead of u. This justifies the construction

of ω̃ via local smoothing in Theorem 1.4. Lastly, because the maximal function is
not a bounded operator in L1, we only obtained weak L

3
2 norm instead of L

3
2 norm.

Note that because J [ū] is constant on the boundary ∂Ω, and because ω̃ is con-
structed via local smoothing on disjoint domains, we have∣∣∣∣∣

ˆ T

0

ˆ
∂Ω

J [ū] · ων dx′ dt

∣∣∣∣∣ ≤
∣∣∣∣∣
ˆ T

0

ˆ
∂Ω

J [ū] · ω̃ν dx′ dt

∣∣∣∣∣ .
We can then apply Theorem 1.4, and proceed as in the formal computation. One
last difficulty is that Theorem 1.4 is a regularization result, and so the estimate
weakens when t goes to 0. Indeed, it controls only ω̃ > max

{
1
t ,

1
W 2 ,

1
H2

}
. If we

integrate the remainder, there will be a logarithmic singularity at t = 0. To avoid
this, we apply the vorticity bound only in the time interval t ∈ (Tν , T ) for some
small time Tν ≈ ν3, and for t ∈ (0, Tν) we use a very short time stability of a stable
Prandtl layer to bridge the gap.

General case. We actually do the proof in a slightly more general setting. We
will consider a periodic channel with width W and height H, where the physical
boundary are localized at xd = 0 and xd = H (see Figure 1):

Ω =
{

(x′, xd) : 0 ≤ xd ≤ H,x′ ∈ [0,W ]d−1
per

}
.

The following theorem estimates the layer separation for a more general shear flow
ū of the following form:

ū(x) =

{
Ū(x2)e1 d = 2

Ū1(x3)e1 + Ū2(x3)e2 d = 3 .

In this configuration, we define the Reynolds number as

Re =
AH

ν

where A = ‖ū‖L∞(∂Ω) is the boundary shear.



8 ALEXIS F. VASSEUR AND JINCHENG YANG

Theorem 1.5 (General Shear Flow). There exists a universal constant C > 0 such
that the following holds. Let Ω be a bounded periodic channel with period W and
height H in Rd with d = 2 or 3. Let ū be a static shear flow in Ω with bounded
vorticity, and let uν be a Leray-Hopf solution to (NSEν). For a given ū defined as
above, denote the maximum shear, boundary velocity, and kinetic energy of ū by

G := ‖∇ū‖L∞(Ω) , A := ‖ū‖L∞(∂Ω) , E := ‖ū‖2L2(Ω) .

For any T > 0, we have

sup
0≤t≤T

{
‖uν − ū‖2L2(Ω) (t) +

ν

2
‖∇uν‖2L2((0,t)×Ω)

}
≤ exp(2GT )

{
4 ‖uν(0)− ū‖2L2(Ω) + 2νG2T |Ω|+ CA2 |Ω|Re−1 log (2 + Re)

+ 2Re−1E + CA3T |∂Ω|max {H/W, 1}2
}
.

Note that Theorem 1.2 is a direct consequence of Theorem 1.5 with H = W = 1,
Ū = A for d = 2, and Ū1 = A, Ū2 = 0 for d = 3.

This paper is organized as follows. We first introduce necessary tools in Section
2. The boundary vorticity estimate and the proof of Theorem 1.4 is shown in
Section 3. In Section 4 we finish the proof of the main result, which are Theorem
1.2 and Theorem 1.5. Finally, we prove Proposition 1.1 in the appendix.

2. Notations and Preliminary

We begin with some notations. We will be working with boxes more often than
balls. For this reason, let us denote the spatial box and the space-time cube of
radius r by

Br :=
{
x ∈ Rd : ‖x‖`∞ < r

}
, Qr := (−r2, 0)×Br.

We denote the same box and cube centered at x and (t, x) by Br(x) and Qr(t, x)
respectively. Near the boundary {xd = 0}, we denote the half-box and its boundary
part by

B+
r := {(x′, xd) : ‖x′‖`∞ < r, 0 < xd < r} , B̄r := {(x′, 0) : ‖x′‖`∞ < r} ,

and denote their space-time version by

Q+
r = (−r2, 0)×B+

r , Q̄r = (−r2, 0)× B̄r.

Finally, for a bounded set Ω and f ∈ L2(Ω), we denote the average of f in Ω as
 

Ω

f dx =
1

|Ω|

ˆ
Ω

f dx.

In this section, we provide some useful preliminary results and some corollaries,
which will be used later in the paper. Most are widely known, and we do not claim
any originality in the proof, but we include them here for completeness.
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2.1. Evolutionary Stokes Equation. Let (u, P ) be the solution to the following
Stokes equation. {

∂tu+∇P = ∆u+ f in (0, T )× Ω

div u = 0 in (0, T )× Ω
.(SE)

Recall the following estimates on Stokes equations, which can be found in the book
of Seregin [Ser14].

Theorem 2.1 (Cauchy Problem, Section 4.4 Theorem 4.5). Let Ω be a bounded
domain with smooth boundary. Let 1 < p, q < ∞, and f ∈ Lp(0, T ;Lq(Ω)). There
exists a unique solution (u, P ) to (SE) such that

(1) u satisfies the zero initial-boundary condition:

u = 0 at t = 0,

u = 0 on (0, T )× ∂Ω.

(2) P satisfies the zero mean condition:ˆ
Ω

P (t, x) dx = 0 at any t ∈ (0, T ).

Moreover, we have the coercive estimate∥∥|∂tu|+ |∇2u|+ |∇P |
∥∥
Lp(0,T ;Lq(Ω))

≤ C(Ω, p, q) ‖f‖Lp(0,T ;Lq(Ω)) .

Theorem 2.2 (Local Boundary Regularity, Section 7.10 Proposition 7.10). Let

1 < p < ∞, 1 < q ≤ q′ < ∞. Assume u,∇u, P ∈ LptLqx(Q+
2 ), f ∈ LptLq

′

x (Q+
2 ) and

(u, P ) satisfy (SE) in Ω = Q+
2 . Moreover, assume

u = 0 on {xd = 0}.(4)

Then we have the local boundary estimate∥∥|∂tu|+ |∇2u|+ |∇P |
∥∥
LptL

q′
x (Q+

1 )

≤ C(p, q, q′)
(
‖|u|+ |∇u|+ |P |‖LptLqx(Q+

2 ) + ‖f‖
LptL

q′
x (Q+

1 )

)
.

Combining these two estimates, we derive the following mixed case.

Corollary 2.3. Let 1 < p2 < p1 < ∞, 1 < q1, q2 < ∞, f ∈ Lp1t L
q1
x (Q+

2 ),
u,∇u, P ∈ Lp2t L

q2
x (Q+

2 ). If (u, P ) satisfies (SE) in Q+
2 and u satisfies (4), then

u = u1+u2 satisfying for any q′ <∞, there exists a constant C = C(p1, p2, q1, q2, q
′)

such that ∥∥|∂tu1|+ |∇2u1|
∥∥
L
p1
t L

q1
x (Q+

1 )
+
∥∥|∂tu2|+ |∇2u2|

∥∥
L
p2
t Lq

′
x (Q+

1 )

≤ C
(
‖f‖Lp1t L

q1
x (Q+

2 ) + ‖|u|+ |∇u|+ |P |‖Lp2t L
q2
x (Q+

2 )

)
.

Proof. Let Ω′ be a smooth domain such that B+
3
2

⊂ Ω′ ⊂ B+
2 . Define u1 to be the

solution to the Cauchy problem in Ω′ with force f . By Theorem 2.1, we obtain∥∥|∂tu1|+ |∇2u1|+ |∇P1|
∥∥
Lp1 (−4,0;Lq1 (Ω′))

≤ C ‖f‖Lp1t L
q1
x (Q+

2 ) .

Since u1 has trace zero, P1 has mean zero, we have

‖|u1|+ |∇u1|+ |P1|‖Lp1 (−4,0;Lq1 (Ω′)) ≤ C ‖f‖Lp1t L
q1
x (Q+

2 ) .
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Now we define u2 = u− u1, P2 = P − P1. Since p1 > p2, we have

‖|u2|+ |∇u2|+ |P2|‖Lp2t L
min{q1,q2}
x (Q+

3/2
)

≤ C
(
‖f‖Lp1t L

q1
x (Q+

2 ) + ‖|u|+ |∇u|+ |P |‖Lp2t L
q2
x (Q+

2 )

)
.

Note that u2 solves (SE) with zero force term in Q+
3
2

, so the desired result follows

by applying Theorem 2.2. �

2.2. Inhomogeneous Sobolev Embedding. We show that given partial deriva-
tives bounded in inhomogeneous Lebesgue spaces, a binary function is bounded in
L∞.

Lemma 2.4 (Inhomogeneous Supercritical Sobolev Embedding). Let α ∈ (0, 1),
and Ω = {(t, z) : t ∈ [−1, 0], z ∈ [0, 1]}. Let u ∈ L1(Ω) with weak partial derivatives
bounded in inhomogeneous spaces

∂tu ∈ L1
tL
∞
z (Ω) + LqtL

1
z(Ω), ∂zu ∈ LptL∞z (Ω) + L∞t L

r
z(Ω),

with p > 1
α , q >

1
1−α , r > 1, then u ∈ C(Ω) is continuous with oscillation bounded

by

sup
Ω
u− inf

Ω
u = ‖u‖osc(Ω) ≤ C

(
‖∂tu‖L1

tL
∞
z +LqtL

1
z

+ ‖∂zu‖LptL∞z +L∞t L
r
z

)
where C = C(p, q, r) depends on p, q, r.

t

zz = 2|t|α

z = 1
2 |t|α

C

Figure 2. Inhomogeneous Sobolev Embedding

Proof. Up to cutoff and mollification, we may assume u ∈ C∞((−∞, 0] × [0,∞))
with compact support in 2Ω = (−2, 0] × [0, 2). Up to translation, we show u(0, 0)
is bounded. By the fundamental theorem of calculus, for any λ > 0, we have

0 = u(0, 0) +

ˆ ∞
0

∂

∂s
u(−s, λsα) ds.

Taking average for λ ∈
(

1
2 , 2
)

yields

|u(0, 0)| ≤
ˆ 2

1
2

ˆ ∞
0

|∂tu|+ λαsα−1 |∂zu|dsdλ.
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The Jacobian of (t, z) = (s, λsα) is

D(t, z)

D(s, λ)
= det

[
−1 0

λαsα−1 sα

]
= sα = |t|α ∼ z,

thus we can bound u(0, 0) via a change of variable by

|u(0, 0)| ≤
ˆ

C

(
|∂tu|+ αz |t|−1 |∂zu|

)
|t|−α dz dt

=

ˆ
C

|t|−α |∂tu|+ αλ |t|−1 |∂zu|dz dt.

where C is the region illustrated in Figure 2.

Now we compute inhomogeneous norms of |t|−1
and |t|−α in C :

ˆ 2|t|α

1
2 |t|α

|t|−α dz =
3

2
∈ L∞t (−2, 0),∥∥∥|t|−α∥∥∥

L∞z ( 1
2 |t|α,2|t|α)

= |t|−α ∈ Lq
′

t (−2, 0),

ˆ 2|t|α

1
2 |t|α

|t|−1
dz =

3

2
|t|α−1 ∈ Lp

′

t (−2, 0),

‖1/t‖Lr′z ( 1
2 |t|α,2|t|α) = |t|−1

(
3

2
|t|α
) 1
r′

. |t| αr′−1 ∈ L1
t (−2, 0).

Here p′ < 1
α , q
′ < 1

1−α , r
′ < ∞ are the Hölder conjugate of p, q, r respectively. In

conclusion, |t|−1
and |t|−α are bounded in spaces

|t|−α ∈ L∞t L1
z ∩ Lq

′

t L
∞
z , |t|−1 ∈ Lp

′

t L
1
z ∩ L1

tL
r′

z ,

which completes the proof of this lemma by Hölder inequality. �

2.3. Parabolic Maximal Function. Let us introduce the following notion of
maximal function adapted to the parabolic scaling.

Definition 2.5 (Parabolic Maximal Function). For f ∈ L1
loc(R × Rd), we define

the parabolic maximal function by taking the greatest mean values

Mf(t, x) := sup
r>0

 t+r2

t−r2

 
Br(x)

|f(s, y)|dy ds.

For f ∈ L1((0, T ) × Ω) where Ω ⊂ Rd is a bounded set, we can define Mf by
applying the previous definition on the zero extension of f in R× Rd.

Recall the classical weak type (1, 1) bound on the maximal function M:

‖Mf‖L1,∞ ≤ Cd ‖f‖L1 .

2.4. Lipschitz Decay of 1D Heat Equation. We end this section by reminding
the readers that solutions to the 1D heat equation have a decay rate of t−

3
4 in the

Lipschitz norm. It will be useful to control the Prandtl layer in a small initial time
of order O(ν3). This result is very elementary. We give the proof for the sake of
completeness.
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Lemma 2.6. For z > 0 we have
∞∑
n=1

n2e−n
2z < z−

3
2 .

Proof. We can approximate this infinite series by

∞∑
n=1

n2e−n
2z = z−

3
2

∞∑
n=1

(
√
zn)2e−(

√
zn)2
√
z

= z−
3
2

(ˆ ∞
0

x2e−x
2

dx+O(
√
z)

)
=

√
π

4
z−

3
2 +O(z−1),

when z → 0 is small, and

∞∑
n=1

n2e−n
2z ≤

∞∑
n=1

n2e−nz =
d2

dz2

( ∞∑
n=1

e−nz
)

=
d2

dz2

(
1

ez − 1

)
=

(ez + 1)ez

(ez − 1)3
≈ e−z

when z → ∞ is large. This proves that the left hand side is bounded by Cz−
3
2

for some constant C, which can be easily determined by carefully examine the
estimates. �

Using this lemma, we can compute the decay rate.

Lemma 2.7. Let ν > 0, H > 0, and suppose v(t, xd) solves the following 1D heat
equation in [0, H]: 

∂tv = νvxx in (0,∞)× (0, H)

v = 0 on (0,∞)× {0, H}
v = v0 at t = 0

with v0 ∈ L2(0, H). Then

‖∇v(t)‖L∞ ≤
1

2
(νt)−

3
4 ‖v0‖L2 .

Proof. We can write the solutions explicitly in terms of Fourier series. We expand
v0 by sine series as

v0(x) =

∞∑
n=1

bn sin
(nπx
H

)
,

with
∞∑
n=1

b2n =
2

H
‖v0‖2L2 <∞.

The solution can be explicitly written as

v(t, x) =

∞∑
n=1

bn sin
(nπx
H

)
e−ν

n2π2

H2 t,
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so the derivative is bounded by

|∂xv(t, x)| ≤
∣∣∣∣∣
∞∑
n=1

bn cos
(nπx
H

)(nπ
H

)
e−ν

n2π2

H2 t

∣∣∣∣∣
≤
( ∞∑
n=1

b2n

) 1
2
( ∞∑
n=1

(nπ
H

)2

e−2ν n
2π2

H2 t,

) 1
2

≤
(

2

H
‖v0‖2L2

) 1
2 ( π

H

)(2νπ2t

H2

)− 3
4

≤ 1

2
(νt)−

3
4 ‖v0‖L2

using the previous lemma. �

3. Boundary Regularity for the Navier-Stokes Equation

The goal of this section is to prove the boundary regularity for the Navier-Stokes
equation with unit viscosity constant: Theorem 1.4. This relies on the following
local estimate.

Proposition 3.1. Suppose (u, P ) is a weak solution to the Navier-Stokes equation
(NSE) with forcing term f ∈ L1(−4, 0;L2(B+

2 )), such that u ∈ L∞(−4, 0;L2(B+
2 )),

∇u ∈ L2(Q+
2 ), and in distribution they satisfy

∂tu+ u · ∇u+∇P = ∆u+ f in Q+
2

div u = 0 in Q+
2

u = 0 on Q̄2

.

If we denote

c0 :=

ˆ 0

−4

‖∇u(t)‖2L2(B+
2 ) + ‖f‖L2(B+

2 ) dt,

then we can bound the average-in-time vorticity on the boundary by
ˆ
B̄1

∣∣∣∣ˆ 0

−1

ω(t, x′, 0) dt

∣∣∣∣dx′ ≤ C(c0 + c
1
2
0 ).

Proof. For t ∈ (−3, 0), we define

U(t, x) =

ˆ t

t−1

u(s, x) ds.

As explained in the introduction, this is needed to tame the time oscillation of the
local pressure, which comes from ∂tu. This allows us to apply the local Stokes
estimate at the boundary. Denote ρ(t) = 1[0,1](t), then U = u ∗t ρ, where ∗t stands
for convolution in t variable only. If we denote Q = P ∗t ρ, and F = (f−u ·∇u)∗t ρ,
then U satisfies the following system:{

∂tU +∇Q = ∆U + F in (−3, 0)×B+
2

U = 0 on {xd = 0} .
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The proof of this theorem can be divided into three steps: the first two estimate
terms in this system, and the last step uses the Stokes estimate and the Sobolev
embedding.

Step 1. Estimates on u, U, ∂tU,∆U . We have via Sobolev embedding and using
that u = 0 on Q̄2 that

‖u‖L2
tL

6
x(Q

+
2 ) ≤ Cc

1
2
0(5)

for both dimension 2 and 3. Since ∂tU(t, x) = u(t, x)− u(t− 1, x), we have

‖∂tU‖L2
tL

6
x((−3,0)×B+

2 ) ≤ Cc
1
2
0 ,

On the other hand, the Laplacian of U is bounded by

‖∆U‖L∞t H−1
x ((−3,0)×B+

2 ) ≤ C ‖∆u‖L2
tH
−1
x (Q+

2 ) ≤ C ‖∇u‖L2(Q+
2 ) ≤ Cc

1
2
0 .

Step 2. Estimates on F and Q. Applying Hölder’s inequality, by (5) we have

‖u · ∇u‖
L1
tL

3
2
x (Q+

2 )
≤ Cc0.

Also by (5) we have by embedding that

‖div(u⊗ u)‖L1
tW
−1,3
x (Q+

2 ) ≤ Cc0.
for both dimension 2 and 3. By convolution, we bound F by

‖F‖
L∞t L

3
2
x ((−3,0)×B+

2 )
, ‖F‖L∞t W−1,3

x ((−3,0)×B+
2 ) ≤ Cc0.

Next we estimate Q. Using ∇Q = ∆U + F − ∂tU we have

‖∇Q‖L2
tH
−1
x
≤ Cc0 + Cc0 + Cc

1
2
0 ≤ C(c0 + c

1
2
0 ).

Without loss of generality we assume that the average of Q is zero at every t. Then
by Nečas theorem (see [Ser14], Section 1.4),

‖Q‖L2
t,x
≤ C(c0 + c

1
2
0 ).

Step 3. Stokes estimates and Trace theorem. By Corollary 2.3, we can split
U = U1 + U2, where for any p <∞, we have∥∥|∂tU1|+

∣∣∇2U1

∣∣∥∥
LptL

3
2
x (Q+

1 )
+
∥∥|∂tU2|+

∣∣∇2U2

∣∣∥∥
L2
tL

p
x(Q+

1 )
≤ C(c0 + c

1
2
0 ).

Denote Ω(t, xd) :=
´
B̄1
|∇U(t, x′, xd)|dx′, then ∂xdΩ is bounded in

∂xdΩ ∈ L2
tL

p
xd

+ LptL
3
2
xd((−1, 0)× (0, 1)).

for any p <∞. Note that

∂tΩ =

ˆ
|∇u|dx′ ∈ L2

t,xd
((−1, 0)× (0, 1)).

Since by interpolation, L1
tL
∞
xd
∩ L∞t L1

xd
⊂ L2

t,xd
, by duality ∂tΩ is bounded in

L2
t,xd
⊂ L1

tL
∞
xd

+ L∞t L
1
xd

. Similarly, ∂xdΩ is bounded in

∂xdΩ ∈ L2
tL

p
xd

+ LptL
3
2
xd((−1, 0)× (0, 1)) ⊂ LrtL∞xd + L∞t L

r
xd

((−1, 0)× (0, 1))
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for any p > 3 and r > 1 sufficiently small. Now we can use Lemma 2.4 to show Ω
is continuous up to the boundary with oscillation bounded by

‖Ω‖osc((−1,0)×(0,1)) ≤ C(c0 + c
1
2
0 ).

Since the average of Ω is also bounded asˆ
Ω dxd dt =

ˆ
Q+

1

|∇u|dx dt ≤ Cc
1
2
0 ,

we have Ω is bounded in L∞, in particularˆ
B̄1

∣∣∣∣ˆ 0

−1

∇u(t, x′, 0) dt

∣∣∣∣dx′ = Ω(0, 0) ≤ C0(c0 + c
1
2
0 ).

This concludes the proof of this proposition. �

The proof of Theorem 1.4 relies on a domain decomposition inspired by the
Calderón–Zygmund decomposition introduced for the study of singular integrals
(see [SM93]). We first define the parabolic dyadic decomposition.

Definition 3.2 (Parabolic Dyadic Decomposition). Let L > 0, and let Ω be a
periodic channel of period W and height H. We define the parabolic dyadic de-
composition of (0, L)× Ω as below. Denote

R0 = min

{√
L,
W

2
,
H

2

}
.(6)

Then we can find positive integer kL, kW , kH , such that

L = 4kLL0, W = 2 · 2kWW0, H = 2 · 2kHH0,

where L0,W0, H0 satisfy

R0 ≤
√
L0,W0, H0 ≤ 2R0.

First, we evenly divide (0, L)×Ω into 4kL ·2kW+1 ·2kH+1 cubes of length L0, width
W0 and height H0, and denote Q0 to be this set of cubes. For each Q ∈ Q0, we
can divide Q into 4×2d subcubes with length L0/4, width W0/2, and height H0/2.
This set is denoted by Q1. For each cube in Q1, we can continue to dissect it
into 4 × 2d smaller cubes with a quarter the length, half the width, and half the
height. We denote the resulted family by Q2. We proceed indefinitely and define
Q = ∪k∈NQk to be the parabolic dyadic decomposition of (0, L)× Ω.

Proof of Theorem 1.4. The partition of (0, T )×Ω is constructed as follows. Among
the parabolic dyadic decomposition of (0, T )×Ω, we first select a family of disjoint
cubes, denoted by Q◦, according to the following rule:

a) For any integer k ≥ 1, in
{

4−kL0 ≤ t ≤ 4−k+1L0

}
, we pick every parabolic cube

in Qk, which are cubes of size 4−kL0 × 2−kW0 × 2−kH0.
b) In {t ≥ L0}, we pick every parabolic cube in Q0.

The selection of these cubes ensures enough gap from the initial time t = 0, which
allows the local parabolic regularization to apply around these cubes. As shown
in Figure 3 and Figure 4, they form a partition of (0, T )×Ω. Figure 3 corresponds
to when R0 = min

{
W
2 ,

H
2

}
<
√
L0, and figure 4 corresponds to when R0 =

√
L0 =√

T , in which case b) does not happen.
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We are interested in cubes that touch the boundary, i.e., having zero distance
from ∂Ω. We call these cubes the “boundary cubes”. Given a boundary cube
Q ∈ Qk that meets the boundary {xd = 0}, we denote its length as l = 4−kL0, width
as w = 2−kW0, and height as h = 2−kH0. Thus for some (t, x′, 0) ∈ (0, T )× ∂Ω, Q

√
t

x1

0
√
L0 2

√
L0

. . .

2W0

W0

· · ·

· · ·

· · ·

Figure 3. Initial Partition Q◦ of a Long Channel (0, L)× Ω

√
t

x1

0 1
4

√
L0

1
2

√
L0

√
L0

1
2W0

W0

...

...
...

...

Figure 4. Initial Partition Q◦ of a Wide Channel (0, L)× Ω
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can be expressed as

Q = (t− l, t)× B̄w/2(x′)× (0, h), B̄w/2(x′) = {y′ : ‖x′ − y′‖`∞ < w/2}
Let us denote

2Q = (t− 2l, t)× B̄w(x′)× (0, 2h).

Similar definition applies to boundary cubes that touch {xd = H}. A boundary
cube Q ∈ Qk is said to be suitable if it satisfies 

2Q

|∇u|2 dxdt ≤ c0(2−kR0)−4(S)

for some c0 to be determined.

Starting from Q◦, we decompose the boundary cubes based on the following
rules. For each boundary cube in the initial partition Q◦ that is not suitable, we
dyadically dissect it into 4×2d smaller parabolic cubes. For each smaller boundary
cube, we continue to dissect it until the suitability condition (S) is satisfied. This
process will finish in finitely many steps almost everywhere because ∇u is bounded
in L2 for any Leray-Hopf solutions, so all sufficiently small cubes are suitable.

The final partition will contain a subcollection of dyadic boundary cubes
{
Qi
}
i∈Λ
⊂

Q that are suitable, mutually disjoint, and verify closure
{

(0, T )×∂Ω
}

= closure
{⋃

i Q̄i
}

.

For each boundary cube Qi ∈ Qk centered at (t(i), x(i)), we denote its length as
li = 4−kL0, width as wi = 2−kW0, and height as hi = 2−kH0. Thus Qi can be
expressed as

Qi = (t(i) − li, t(i))× B̄i × (0, hi), B̄i = B̄wi/2(x(i)).

It is easy to see from our construction that 2Qi ⊂ (0, T )× Ω. Denote ri = 2−kR0,
then from Definition 3.2 we have

ri ≤
√
li, wi, hi ≤ 2ri.

Suitability (S) of Qi implies  
2Qi
|∇u|2 dxdt ≤ c0r−4

i .

Using the canonical scaling of the Navier-Stokes equation ur(t, x) := ru(r2t, rx),
Proposition 3.1 implies that

ω̃|Q̄i =

 
B̄i

∣∣∣∣∣
 t(i)

t(i)−li
ω(t, x′, 0) dx′

∣∣∣∣∣ dt ≤ C(c0 + c
1
2
0 )r−2

i =: c1r
−2
i .

We can use this Proposition because Qi is comparable to a parabolic cube.

Now we separate three cases:

(1) If Qi ∈ Q◦ ∩ Qk with k ≥ 1, then by condition a), any (t, x) ∈ Qi satisfies
t < 4li ≤ 16r2

i , thus in Q̄i we have

ω̃ ≤ 16c1
t
.

We can select c0 small enough such that 16c1 = 1.
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(2) If Qi ∈ Q◦ ∩ Q0, then by condition b), any (t, x) ∈ Qi satisfies L0 = li <
t < T , ri = R0, thus in Q̄i we have

ω̃ ≤ c1R−2
0 =

1

16
R−2

0 ,

Note that this case only happen when T > L0 ≥ R2
0, so in fact we know

R0 = min {W,H} /2, thus ω̃ ≤ min {W,H}−2
.

(3) If Qi /∈ Q◦ is not one of the initial cubes in the grid, then its antecedent

cube Q̃i is also a boundary cube and is not suitable, so 
2Q̃i
|∇u|2 dxdt > c0(2ri)

−4,

By the definition of the maximal function M (recall Definition 2.5), this
implies

min
Qi
M(|∇u|2) ≥ c2r−4

i .

for some c2 comparable to c0.

Combining these three cases, for any r? = 2lR0 with l ∈ Z, we have{
(t, x′) ∈ (0, T )× ∂Ω : ω̃ > max

{
c1r
−2
? , t−1,W−2, H−2

}}
⊂
⋃
i

{
Q̄i : ri < r?

}
⊂
⋃
i

∞⋃
k=1

{
Q̄i : ri = 2−kr?

}
.

Therefore the measure of the upper level set is controlled by the total measure of
these suitable boundary cubes, that is∣∣∣{ω̃ > max

{
c1r
−2
? , t−1,W−2, H−2

}}∣∣∣ ≤ ∞∑
k=1

∑
ri=2−kr?

∣∣Q̄i∣∣
≤
∞∑
k=1

2k

r?

∑
ri=2−kr?

∣∣Qi∣∣ .
Note that ⋃

i

{
Qi : ri = 2−kr?

}
⊂
{
M(|∇u|2) ≥ c2(2−kr?)

−4
}
,

which implies that∣∣∣{ω̃ > max
{
c1r
−2
? , t−1,W−2, H−2

}}∣∣∣
≤
∞∑
k=1

2k

r?

∣∣∣{M(|∇u|2) ≥ c2(2−kr?)
−4
}∣∣∣

.
∞∑
k=1

2k

r?

∥∥∥M(|∇u|2)
∥∥∥
L1,∞

loc ((0,T )×Ω)
(2−kr?)

4

.
∥∥∥|∇u|2∥∥∥

L1((0,T )×Ω)
r3
?.

By the definition of Lorentz space, this shows∥∥∥ω̃1{ω̃>max{ 1
t ,

1
W2 ,

1
H2 }}

∥∥∥ 3
2

L
3
2
,∞((0,T )×∂Ω)

. ‖∇u‖2L2((0,T )×Ω) .
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This completes the proof of the theorem. �

4. Proof of the Main Result

This section is dedicated to the proof of Theorem 1.5. Theorem 1.4 provides
a control on the large part of ω̃, but it leaves a remainder in the region ω̃ < 1

t ,
whose integral has a logarithmic singularity at t = 0. To avoid this singularity, we
should apply Theorem 1.4 only away from t = 0, and near t = 0 we should adopt
a different strategy.

Let uνPr be a shear solution to (NSEν) with initial value uνPr

∣∣
t=0

= ū (the pressure

term is 0). Then uνPr can be written as

uνPr(t, x) =

{
UνPr(t, x2)e1 d = 2

UνPr1(t, x3)e1 + UνPr2(t, x3)e2 d = 3
,

where UνPr solves the Prandtl layer equation,
∂tU

ν
Pr = ν∂xdxdU

ν in (0, T )× (0, H)

UνPr = 0 on (0, T )× {0, H}
UνPr = Ū at t = 0

.(Prν)

We choose a small positive number Tν < T to be determined later, and separate
the evolution into two parts: in a short period (0, Tν), we compare uν and ū with
the Prandtl layer uνPr, while in the remaining time (Tν , T ), we compare uν and ū
using the boundary vorticity.

Before we proceed, let us remark on a few useful computations and estimates
that will be used repeatedly in this section. If v, w are two divergence-free vector
fields in (0, T )×Ω satisfying the no-slip boundary condition v = 0 and the no-flux
boundary condition w · n = 0 on ∂Ω respectively, then we have the following three
estimates:

(v − w, v · ∇v − w · ∇w) = (v − w, v · ∇(v − w)) + (v − w, (v − w) · ∇w)(7)

≤ ‖∇w‖L∞ ‖v − w‖
2
L2 ,

(v − w,∇P ) =

ˆ
∂Ω

P (v − w) · n dS = 0,(8)

(v − w,∆v) = −‖∇v‖2L2(Ω) + (∇w,∇v)−
ˆ
∂Ω

w · ∂nv dS(9)

≤ −1

2
‖∇v‖2L2 +

1

2
‖∇w‖L2 −

ˆ
∂Ω

J [w] · curl v dS.

Here J [w] is a rotation of w and curl v is the vorticity of v defined by

J [w] :=

{
n⊥ · w d = 2

n× w d = 3
, curl v :=

{
∇⊥ · v d = 2

∇× v d = 3
,

where n⊥ is the rotation of the normal vector counterclockwise by a right angle,
and ∇⊥ = (−∂x2 , ∂x1). Moreover, note that w · ∇w = 0 in (7) when w is a shear
flow.
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4.1. Prandtl Timespan. To compute the evolution of uν − uνPr, first we subtract
their equations and obtain

∂t(u
ν − uνPr) + uν · ∇uν +∇P ν = ν∆(uν − uνPr).

The evolution of uν − uνPr can be computed using (7)–(9) as

1

2

d

dt
‖uν − uνPr‖2L2 + ν ‖∇(uν − uνPr)‖2L2 ≤ −(uν − uνPr, u

ν · ∇uν)

≤ ‖∇uνPr‖L∞ ‖uν − uνPr‖2L2 .

By Lemma 2.7, the Lipschitz norm of the Prandtl layer at time t is

‖∇uνPr‖L∞ (t) = ‖∇UνPr‖L∞ ≤
1

2
(νt)−

3
4

(
E

|∂Ω|

) 1
2

.

Integrating in time, we have

2 ‖∇uνPr‖L1(0,Tν ;L∞(Ω)) ≤
ˆ Tν

0

(νt)−
3
4

(
E

|∂Ω|

) 1
2

dt ≤ log 2(10)

if we choose Tν small enough such that

Tν ≤ T∗ :=

(
log 2

4

)4

E−2|∂Ω|2ν3.(11)

By Grönwall’s inequality, we have for any 0 < t < Tν ,

1

2
‖uν − uνPr‖2L2(Ω) (t) + ν ‖∇(uν − uνPr)‖2L2((0,t)×Ω) ≤ ‖uν − ū‖

2
L2(Ω) (0).(12)

The evolution of uνPr − ū can be computed using (9) as

1

2

d

dt
‖uνPr − ū‖2L2(Ω) = (uνPr − ū, ∂tuνPr) = (uνPr − ū, ν∆uνPr)

≤ −ν
2
‖∇uνPr‖2L2 +

ν

2
‖∇ū‖2L2 − ν

ˆ
∂Ω

ū · ∂nuνPr dx′

where ‖∇ū‖2L2 ≤ G2|Ω| and∣∣∣∣ˆ
∂Ω

ū · ∂nuνPr dx′
∣∣∣∣ ≤ ‖∇uνPr‖L∞(∂Ω) ‖ū‖L∞(∂Ω) |∂Ω|.

Integration in time gives for any 0 < t < Tν , we have

1

2
‖uνPr − ū‖2L2(Ω) (t) +

ν

2
‖∇uνPr‖2L2((0,t)×Ω)

≤ ν

2
G2|Ω|t+Aν|∂Ω| ‖∇uνPr‖L1(0,Tν ;L∞(Ω))

≤ ν

2
G2|Ω|t+

1

2
A2 |Ω|Re−1

where the last inequality used (10).

Combined with (12), we have for any 0 < t ≤ Tν ,

(13)

1

2
‖uν − ū‖2L2(Ω) (t) +

ν

2
‖∇uν‖2L2((0,t)×Ω)

≤ 2 ‖uν − ū‖2L2(Ω) (0) + νG2|Ω|t+A2 |Ω|Re−1.
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4.2. Main Timespan. The evolution of uν − ū can be computed using (7)–(9) as

1

2

d

dt
‖uν − ū‖2L2 = (uν − ū, ∂tuν)

≤ −(uν − ū, uν · ∇uν)− (uν − ū,∇P ν) + ν(uν − ū,∆uν)

≤ ‖∇ū‖L∞ ‖uν − ū‖
2
L2 −

1

2
ν ‖∇uν‖2L2 +

1

2
ν ‖∇ū‖2L2

−
ˆ
∂Ω

J [ū] · (νων) dx′.

Since ū is a constant on each connecting component of ∂Ω, by integrating from Tν
to T , we have

1

2
‖uν − ū‖2L2(Ω) (T ) +

ν

2
‖∇uν‖2L2((Tν ,T )×Ω)

≤ 1

2
‖uν − ū‖2L2(Ω) (Tν) +G

ˆ T

Tν

‖uν − ū‖2L2(Ω) (t) dt+
ν

2
G2(T − Tν)|Ω|

+A

(∣∣∣∣∣
ˆ T

Tν

ˆ
{xd=0}

νων dx′ dt

∣∣∣∣∣+

∣∣∣∣∣
ˆ T

Tν

ˆ
{xd=H}

νων dx′ dt

∣∣∣∣∣
)
.

Adding (13) at t = Tν , we have for any T > Tν that

(14)

1

2
‖uν − ū‖2L2(Ω) (T ) +

ν

2
‖∇uν‖2L2((0,T )×Ω)

≤ 2 ‖uν − ū‖2L2(Ω) (0) +G

ˆ T

Tν

‖uν − ū‖2L2(Ω) (t) dt+ νG2T |Ω|+A2 |Ω|Re−1

+A

(∣∣∣∣∣
ˆ T

Tν

ˆ
{xd=0}

νων dx′ dt

∣∣∣∣∣+

∣∣∣∣∣
ˆ T

Tν

ˆ
{xd=H}

νων dx′ dt

∣∣∣∣∣
)
.

4.3. Proof of Theorem 1.5. We first note that Theorem 1.5 is only interesting
when the initial kinetic energy ‖uν(0)‖L2 and ‖ū‖L2 are comparable.

Lemma 4.1. Let ū ∈ L2(Ω), and let uν be a Leray-Hopf solution to (NSEν), so
the energy inequality holds:

1

2
‖uν(T )‖2L2(Ω) + ν ‖∇uν‖2L2((0,T )×Ω) ≤

1

2
‖uν(0)‖L2(Ω) .

For any C ′ > 1, there exists C > 0 such that if ‖uν(0)‖L2(Ω) > C ‖ū‖L2(Ω) or

‖ū‖L2(Ω) > C ‖uν(0)‖L2(Ω), then

‖uν(T )− ū‖2L2(Ω) + 2ν ‖∇uν‖2L2((0,T )×Ω) ≤ C ′ ‖uν(0)− ū‖2L2(Ω) .
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Proof. If ‖uν(0)‖L2 > C ‖ū‖L2(Ω), by energy inequality we can bound

‖uν(T )− ū‖2L2(Ω) ≤
(

1 +
1

C

)(
‖uν(T )‖2L2(Ω) + C ‖ū‖2L2(Ω)

)
=

(
1 +

1

C

)
‖uν(0)‖2L2(Ω) − 2

(
1 +

1

C

)
ν ‖∇uν‖2L2((0,T )×Ω)

+ (C + 1) ‖ū‖2L2(Ω)

≤
(

1 +
1

C

)2 (
‖uν(0)− ū‖2L2(Ω) + C ‖ū‖2L2(Ω)

)
− 2ν ‖∇uν‖2L2((0,T )×Ω) + (C + 1) ‖ū‖2L2(Ω) .

Since ‖uν(0)‖L2 > C ‖ū‖L2 implies ‖ū‖L2 < 1
C−1 ‖uν(0)− ū‖L2 , we conclude

‖uν(T )− ū‖2L2(Ω) + 2ν ‖∇uν‖2L2((0,T )×Ω) ≤ C ′ ‖uν(0)− ū‖2L2(Ω)

for some C ′ → 1+ as C →∞. If ‖uν(0)‖L2 < 1
4 ‖ū‖L2 , then by the energy inequality

we can estimate

‖uν(T )− ū‖2L2(Ω) ≤
(

1 +
1

C

)(
C ‖uν(T )‖2L2(Ω) + ‖ū‖2L2(Ω)

)
≤ (1 + C) ‖uν(0)‖2L2(Ω) − 2(1 + C)ν ‖∇uν‖2L2((0,T )×Ω)

+

(
1 +

1

C

)
‖ū‖2L2(Ω)

≤
(

1 +
1

C

)2 (
‖uν(0)− ū‖2L2(Ω) + C ‖uν(0)‖2L2(Ω)

)
− 2ν ‖∇uν‖2L2((0,T )×Ω) + (1 + C) ‖uν(0)‖2L2(Ω) .

Since ‖ū‖L2 > C ‖uν(0)‖L2 implies ‖uν(0)‖L2 < 1
C−1 ‖uν(0)− ū‖L2 , we again have

‖uν(T )− ū‖2L2(Ω) + 2ν ‖∇uν‖2L2((0,T )×Ω) ≤ C ′ ‖uν(0)− ū‖2L2(Ω)

and the result also follows. �

Because of this lemma, from here we assume

E

C
≤ ‖uν(0)‖2L2(Ω) ≤ CE

for some universal constant C. Under this assumption, we see there is a trivial
upper bound on layer separation as

1

2
‖uν(T )− ū‖2L2(Ω) + ν ‖∇uν‖2L2((0,T )×Ω) ≤ CE(15)

again using the energy inequality.

Next we study the rescaled boundary vorticity. Since uν solve (NSEν) in (0, T )×
Ω, its rescale u(t, x) = uν(νt, νx) solves (NSE) in (0, T/ν)× (Ω/ν). Moreover,

∇u(t, x) = ν∇uν(νt, νx), ω(t, x) = νων(νt, νx).

Now we apply Theorem 1.4 on u, and we have a rescaled estimate on uν as∥∥∥∥νω̃ν1{
νω̃ν>max

{
ν
t ,

ν2

W2 ,
ν2

H2

}}∥∥∥∥ 3
2

L
3
2
,∞((0,T )×∂Ω)

≤ Cν ‖∇uν‖2L2((0,T )×Ω) .(16)
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Proof of Theorem 1.5. We choose Tν = 4−KT for some integer K such that

1

4
T∗ ≤ Tν ≤ T∗

where T∗ is defined in (11). The average of ων in (Tν , T ) is thus bounded by the
average of ω̃ν . To estimate the boundary vorticity in (14), we split it as

(17)

∣∣∣∣∣
ˆ T

Tν

ˆ
{xd=0}

νων dx′ dt

∣∣∣∣∣ ≤
ˆ T

Tν

ˆ
{xd=0}

νω̃ν dx′ dt

≤
ˆ T

Tν

ˆ
{xd=0}

νω̃ν1{
νω̃ν>max

{
ν
t ,

ν2

W2 ,
ν2

H2

}} dx′ dt

+

ˆ T

Tν

ˆ
{xd=0}

max

{
ν

t
,
ν2

W 2
,
ν2

H2

}
dx′ dt.

For the first term in (17), we apply (16) and obtain

(18)

ˆ T

Tν

ˆ
{xd=0}

Aνω̃ν1{
νω̃ν>max

{
ν
t ,

ν2

W2 ,
ν2

H2

}} dx′ dt

≤
∥∥∥∥νω̃ν1{

νω̃ν>max
{
ν
t ,

ν2

W2 ,
ν2

H2

}}∥∥∥∥
L

3
2
,∞((0,T )×∂Ω)

‖A‖L3,1((0,T )×∂Ω)

≤ 1

8
ν ‖∇uν‖2L2((0,T )×Ω) + CA3T |∂Ω| .

For the second term in (17), it is bounded by

A

ˆ T

Tν

ˆ
{xd=0}

max

{
ν

t
,
ν2

W 2
,
ν2

H2

}
dx′ dt

≤ A
ˆ T

Tν

ˆ
{xd=0}

ν

t
dx′ dt+A

ˆ T

Tν

ˆ
{xd=0}

max

{
ν2

W 2
,
ν2

H2

}
dx′ dt

≤ Aν log

(
T

Tν

)
|∂Ω|+Aν2 min {W,H}−2

T |∂Ω|

≤ A2 |Ω|Re−1 log

(
4T

T∗

)
+A3T |∂Ω|Re−2 max {H/W, 1}2 .

Since 1
T∗

= CE2 |∂Ω|−2
ν−3 = C

(
E

A2|Ω|

)2

Re3 A
H , we separate the log as

log

(
4T

T∗

)
≤ 3 logRe + 2

(
E

A2 |Ω|

)
+
AT

H
+ C.

Thus the second term in (17) is bounded by

(19)

A

ˆ T

Tν

ˆ
{xd=0}

max

{
ν

t
,
ν2

W 2
,
ν2

H2

}
dx′ dt

≤ A2 |Ω|Re−1 log (Re + C) + 2Re−1E

+A3T |∂Ω|
(
Re−1 + Re−2 max {H/W, 1}2

)
.
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Plugging (18)-(19) into (17) and applying to (14) (naturally for {xd = H} the
same estimate), we conclude for every T > Tν that

‖uν − ū‖2L2(Ω) (T ) +
ν

2
‖∇uν‖2L2((Tν ,T )×Ω)

≤ 4 ‖uν − ū‖2L2(Ω) (0) + 2G

ˆ T

Tν

‖uν − ū‖2L2(Ω) (t) dt

+ 2νG2T |Ω|+A2 |Ω|Re−1 log (Re + C) + 2Re−1E

+ CA3T |∂Ω|
(

1 + Re−2 max {H/W, 1}2
)
.

Combined with (13) we see indeed that the above inequality is true for any T > 0,
so applying Grönwall’s inequality yields

sup
0≤t≤T

{
‖uν − ū‖2L2(Ω) (t) +

ν

2
‖∇uν‖2L2((0,t)×Ω)

}
≤ exp(2GT )

{
4 ‖uν(0)− ū‖2L2(Ω) + CA3T |∂Ω|

(
1 + Re−2 max {H/W, 1}2

)
+Rν

}
,

where the remainder terms Rν is defined as

Rν = 2νG2T |Ω|+A2 |Ω|Re−1 log (Re + C) + 2Re−1E.

Finally, if Re is sufficiently small, then the estimate holds true automatically by
Re−1E term according the trivial bound (15). Otherwise, by Re−2 ≤ C and
Re−1 log(Re + C) ≤ C log(2 + Re) we complete the proof. �

Proof of Theorem 1.2. In this particular setting, G = 0, E = A2|Ω|, W/H = 1.
Therefore we can bound

Rν ≤ CA2 |Ω|Re−1 log(2 + Re) + 2Re−1E ≤ CA2 |Ω|Re−1 log(2 + Re)

which finishes the proof of the theorem. �

Appendix A. Construction of Weak Solutions to the Euler Equation
with Layer Separation

This appendix is dedicated to the proof of Proposition 1.1. In [Szé11], Székelyhidi
constructed weak solutions to (EE) with strictly decreasing energy profile with
vortex sheet initial data in a unit torus Ω = Td, by means of convex integration
introduced in [DLS10].

We will first construct a weak (distributional) solution (v, P ) to (EE) in a two-

dimensional set T × (0, 1), such that v = e1 at t = 0 and 1
2 ‖v‖

2
L2 (t) = 1

2 − rt
at a constant rate r > 0 for small t. To achieve this, we follow the ideas of
[Szé11]. However, we first construct a subsolution v̄ on a bigger domain Ω̃ =
T× [−1, 2], that we will convex integrate only on T× (0, 1). The result function v
is a solution to (EE) only inside T× (0, 1), but it keeps the global incompressibility
div v = 0 in T× [−1, 2], together with v = 0 on T× (−1, 0) ∪ (1, 2). This provides
the impermeability condition needed at the boundary. More precisely, consider
(v̄, ū, q̄) : (0, T )× Ω̃→ R2×S2×2

0 ×R with respect to some ē : (0, T )× Ω̃→ [0,∞),
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satisfying v̄ ∈ L2
loc, ū ∈ L1

loc, q̄ ∈ D′, and in the distribution sense{
∂tv̄ + div ū+∇q̄ = 0

div v̄ = 0
(20)

and almost everywhere

v̄ ⊗ v̄ − ū ≤ ē Id.

Here S2×2
0 is the space of trace-free two-by-two matrices.

To achieve this, we set

v̄ = (α, 0), ū =

(
β γ
γ −β

)
, q̄ = β

for some α(t, x2), β(t, x2), γ(t, x2) to be fixed. With this choice, we need

∂tα+ ∂x2
γ = 0,

(
ē− α2 + β γ

γ ē− β

)
≥ 0.

The second constraint can be simplified to

2ē− α2 ≥ 0, (ē− α2 + β)(ē− β) ≥ γ2.

Denote f̄ = ē− 1
2α

2, δ = β − 1
2α

2, then{
f̄ ≥ 0

(f̄ + δ)(f̄ − δ) ≥ γ2
⇒ f̄ ≥

√
γ2 + δ2 ⇒ ē ≥ 1

2
α2 +

√
γ2 + δ2 ≥ 1

2
α2 + |γ|,

which will be the only constraint by setting β = 1
2α

2 thus δ = 0. It suffices to find
(α, γ) that solves ∂tα + ∂x2

γ = 0, i.e. we require the conservation of momentum
and need

d

dt

ˆ
α dx2 = 0, γ =

ˆ x2

0.5

∂tα dx2, ē ≥ 1

2
α2 + |γ|.

Let us mimic the strategy in [Szé11] and work with a different vortex-sheet initial
data:

α(0, x2) =

{
1 0 ≤ x2 ≤ 1

0 otherwise

and let α(t, x2) be the piecewise linear function interpolating (−1, 0), (0, 0), (λt, 1),
(1− λt, 1), (1, 0), (2, 0) for some fixed λ > 0 to be determined as in Figure A.

x2

α

−1 0 1 2

−1

0

1
α(0, x2)

α(t, x2)
1
λγ(t, x2)

λt

Figure 5. The graph of α(t, x2), 1
λγ(t, x2) for a fixed 0 ≤ t < T = 1

2λ
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Under this setup, it is simple to see that

∂x2
γ = −∂tα = λα|∂x2

α|,
from which we can recover

γ(t, x2) =

{
−λ2

(
1− α2(t, x2)

)
−1 ≤ x2 ≤ 1

2
λ
2

(
1− α2(t, x2)

)
otherwise

and as a consequence, we need

ē ≥ 1

2
α2 + |γ| = 1

2
α2 +

λ

2
(1− α2) =

1

2
− 1

2
(1− λ)(1− α2).

Let us fix λ, ε ∈ (0, 1), and set

ē =
1

2
− ε

2
(1− λ)(1− α2).(21)

Then ē > 1
2α

2 + |γ| in the space-time region U := (0, T )× T× (0, 1) ∩ {α < 1}.
We are now ready to apply Theorem 1.3 of [Szé11] when convex integrating in

(0, T ) × T × (0, 1) only. This provides infinitely many (ṽ, ũ) ∈ L∞loc((0, T ) × Ω̃)

with ṽ ∈ C(0, T ;L2
weak(Ω̃) such that (ṽ, ũ, 0) satisfies (20), (ṽ, ũ) = 0 a.e. in Uc =

(0, T )× T× ((−1, 0) ∪ (1, 2)) ∪ {α = 1}, and v := v̄ + ṽ, u := ū+ ũ satisfy

v ⊗ v − u = ē Id a.e. in (0, T )× T× (0, 1).

From the second equation of (20), ∂x2
v2 = −∂x1

v1, and v2 ∈ Cx2
(W−1,∞

x1
). But

since we didn’t convex integrate on (0, T )×T×((−1, 0)∪(0, 1)), we still have v2 = 0
at x2 = 0 and x2 = 1. This provides the impermeability boundary conditions at
these points.

Then (v, P ) satisfies (EE) with the impermeability conditions in (0, T )×T×(0, 1)
in the distributional sense for P = q̄− ē, and 1

2 |v|2 = ē matches the energy density
profile given in (21) (note that the constructed solution is not solution to (EE) in
the domain (0, T )× T× (−1, 2)). Now, we have on (0, T )× T× (0, 1):

d

dt

ˆ |v|2
2

dx = ε(1− λ)

ˆ
α∂tα dx2 = −ελ(1− λ)

ˆ
α2|∂x2

α|dx2 = −2

3
ελ(1− λ),

i.e. 1
2 ‖v‖

2
L2 decreases linearly at rate r := 2

3ελ(1− λ).

We consider the deviation from initial value. Since ṽ = 0 a.e. at t = 0, we know
v(0) = v̄(0) = ±e1, and

1

2

d

dt

ˆ
|v(t)− v(0)|2 dx =

d

dt

ˆ |v(t)|2
2

dx− d

dt

ˆ
v(t) · v(0) dx

= −r −
ˆ
∂tv(t) · v(0) dx

= −r +

ˆ
div u(t) · v(0) dx.

The quantity ē and q̄ depend only on t, x2, so the equation on v1 from (20) has no
pressure and verify:

∂x2
u12 = −∂tv1 − ∂x1

u11.
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Especially, u12 ∈ Cx2
(W−1,∞

t,x1
). Therefore,ˆ

div u(t) · v(0) dx =

ˆ
T
−u12(t, x1, 0) + u12(t, x1, 1) dx1

=

ˆ
T
−ū12(t, x1, 0) + ū12(t, x1, 1) dx1

= −γ(t, 0) + γ(t, 1) = λ.

This gives

1

2

d

dt

ˆ
|v(t)− v(0)|2 dx = λ− r = λ− 2

3
ελ(1− λ).

This rate converges to 1 by setting λ→ 1 and ε→ 0, thus

1

2
‖v(t)− e1‖2L2(T×[0,1]) = Ct, ∀t ∈

(
0,

1

2λ

)
.

Moreover, v = 0 on {x2 = 0, 1}.
Now for some A > 0, define (v∗, P ∗) : (0, 1

2λA )× Ω → R2 × R by time rescaling

v∗(t, x) = Av(At, x), P ∗(t, x) = A2P (At, x), where Ω = T×[0, 1] is the unit channel.
Then v∗(0) = Ae1 in Ω, v∗(t) = 0 on ∂Ω and

1

2
‖v(t)−Ae1‖2L2(T×[0,1]) = CA3t, ∀t ∈

(
0,

1

2λA

)
for some C, λ satisfying 0 < C < λ < 1.
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