
Bioinspired random projections for robust, sparse classification

Nina Dekoninck Bruhin∗ Bryn Davies†

Abstract

Inspired by the use of random projections in biological sensing systems, we present a new algorithm
for processing data in classification problems. This is based on observations of the human brain
and the fruit fly’s olfactory system and involves randomly projecting data into a space of greatly
increased dimension before applying a cap operation to truncate the smaller entries. This leads to
a simple algorithm that is very computationally efficient and can be used to either give a sparse
representation with minimal loss in classification accuracy or give improved robustness, in the sense
that classification accuracy is improved when noise is added to the data. This is demonstrated with
numerical experiments, which supplement theoretical results demonstrating that the resulting signal
transform is continuous and invertible, in an appropriate sense.

Key words: random matrix, neural processing, musical genre classification, machine learning, data
compression, support vector machine.

AMS subject classifications: 94A12, 15B52, 68T01, 92C20.

1 Introduction

Through millennia of evolution, biology has developed sensing architectures that are remarkably versatile
in the face of diverse classification problems. As a result, biological systems represent the gold standard
in many fields and are often the benchmark against which other solutions are compared. As well as giving
impressive success rates for challenging classification problems, biological systems often give very sparse
representations of data and perform well in the presence of significant noise. It is these abilities that the
simple algorithm developed in this work is designed to replicate.

The remarkable performance of biological systems is not unique to signal processing and data clas-
sification problems, and efforts to replicate their function have given rise to the science of biomimicry
[11]. The fundamental principle is to seek innovative solutions to challenging problems by taking inspira-
tion from nature’s remarkable achievements. Famous success stories include optimising the aerodynamic
design of high-speed trains, designing passive climate control systems for buildings and the invention
of hook and loop fasteners such as Velcro [11, 37]. In signal processing, there have also been numer-
ous attempts to replicate biological systems. For example, researchers have constructed sophisticated
sonar and echolocation devices [21], replicated the communication and perception of electric fish [10, 20],
designed metamaterial spectrometers that replicate the cochlea [2, 3, 32], found algorithms that retain
biological sensing invariants [12, 24, 4] and, perhaps most famously of all, designed network architectures
reminiscent of neural processing [27, 23].

In this work, we will focus our attention on the use of random projections in biological sensing systems.
It is often the case that connections between neurons are formed at random and they differ between
different organisms. The fruit fly’s olfactory system is an example that is particularly well understood
[14, 33, 34] and there is also some evidence that the human brain behaves similarly [33]. An approach
of this type has the advantage that you do not need to undertake expensive training periods in order to
learn the connections. Instead, you randomly form many connections and try to select the best ones. The
method we develop in this work will be closely inspired by the fruit fly’s olfactory system [14, 33, 34]. It
will have two steps: first, a feature vector will be projected into a high-dimensional space by multiplying
by a random matrix. This matrix will be rectangular, such that the dimension of the image space is much

∗Department of Mathematics, ETH Zurich, Switzerland
†Department of Mathematics, Imperial College London, UK

1

ar
X

iv
:2

20
6.

09
22

2v
2

 [
st

at
.M

L
]

 2
7

Ju
l 2

02
2

larger than that of the initial feature vector. Following this, we will apply a cap operation, that sets all
but the few largest entries in the vector to zero. This means the final representation can be chosen to be
suitably sparse.

Random projections have been used in a variety of computational applications, often with the aim
of reducing computational time. This is particularly the case when they are used to replace expensive
training steps. For example, they have been used in neural networks to randomly select weights [7] or
features [31]. In both cases, there is little loss of performance with a significant reduction in computation
time. Similarly, random projections have been used to reduce dimensionality, either as the first step in a
classification algorithm [6] or to approximate kernel functions [30]. In many cases, the structure of the
random projections is specifically chosen for the task in hand (e.g. to detect corners in images, as in [6]).
Conversely, the method developed in this work will be, theoretically, independent of the setting and will
treat the problem of classifying a given feature vector of arbitrary dimension.

As well as reducing computation time, there are also deep connections between the use of random
projections and classification robustness. For example, [7] shows that more robust targets (in a suitable
sense) can be more effectively compressed by being randomly projected to a lower dimensional space.
As a result, concepts that are sufficiently robust can be successfully randomly projected to a lower
dimension, where they can be classified. In this work, we explore the extent to which our bioinspired
algorithm facilitates robust classification. In particular, we show that, for the problem of musical genre
classification, the use of random projections gives an improvement in classification accuracy when random
noise is added to the signal.

This article will begin by exploring the biological motivations for our algorithm in more detail. Once
properly motivated, we will explore the mathematical properties of our bioinspired random projections
and prove results that characterise the extent to which the resulting transformation is continuous and
invertible. Finally, we will perform numerical experiments on the toy problem of musical genre classifi-
cation. These experiments demonstrate that our bioinspired transformation, when used in partnership
with a support vector machine, not only retains the classification accuracy but potentially improves on
it, particularly when noise is added to the data.

2 Biological motivations

We will develop an approach that is based on how random projections are used in biological systems. In
this section, we summarise the main observations that will influence the design of our algorithm.

2.1 The fruit fly’s olfactory system

Early processing of odors in the fruit fly’s olfactory system consists of roughly three steps. In the first
step, olfactory receptor neurons (ORNs) located in the fly’s antennae detect an odor and send a signal
to projector neurons in the antennal lobe. In the second step, the projector neurons transmit the firing
rates to parts of the fly’s brain known as the mushroom body and the lateral horn. We will focus on the
mushroom body, since this part of the fly’s brain is known to be important for learning new smells and
creating memories associated with them [25]. Here, signals are transmitted randomly to a large number
of Kenyon cells. Finally, in the third step, anterior paired lateral neurons suppress a large number of the
Kenyon cells, so that only those with the highest firing rates are uninhibited. The important parts of the
fly’s olfactory system are shown in Figure 1(a) (which is reproduced from [29]), along with a sketch of
the connections in Figure 1(b).

Smells are detected when volatile molecules attach themselves to protein receptors of olfactory receptor
neurons (ORNs) in the fly’s antennae [25]. Each ORN possesses a particular set of olfactory receptors,
that determines which smells it will be activated by. There are roughly 50 different types of ORNs in
total. The activation of ORNs is dependent on the concentration of the odor. However, flies’ behaviour
has been shown to be invariant over a wide range of odor intensities [8, 34], suggesting that subsequent
steps in the fly’s olfactory system are able to partially remove this dependency on concentration. In
particular, [8] shows that increasing the concentration of an odor triggers more ORNs, that have different
sensibilities to the odor. The firing of multiple ORNs in turn activate inhibitory neurons, so that the
final firing rates of the projector neurons stay relatively stable over a large range of odor concentrations.
The consequence of this is that we elect to disregard the details of this step in our mathematical analogue
algorithm, and begin with a feature vector obtained by calculating an appropriate basis decomposition.
In our experiments, we will use the scattering transform [12].

2

ORNs

PNs

KCs

APLs

(a) (b)

Figure 1: The first steps of the fruit fly’s olfactory system, shown (a) in a sketch of the fly’s head and (b)
as a simplified schematic. Odors are detected by olfactory receptor neurons (ORNs) in the antennae and
the maxillary palps. ORNs of the same type fire to the same projector neurons (PNs) in the antennal
lobe (AL). Projector neurons then fire to the mushroom body (MB) and the lateral horn (LH). In the
MB, signals are transmitted in random combinations to a large number of Kenyon cells (KCs). Finally,
anterior paired lateral (APL) neurons inhibit the output of 95% of the KCs, leaving only those with the
largest firing rates. The image in (a) is reproduced from Perisse et al. [29] with the permission of Elsevier.

After being activated, ORNs fire to structures called glomeruli in the antennal lobe. Each glomerulus
receives the input from all ORNs of a particular type; there are therefore about 50 glomeruli. In the
glomerulus, ORNs make synaptic contact with a projector neuron. At this stage, the odor information
thus can be represented as a 50-dimensional vector, where each coefficient corresponds to the firing rate of
a single type of ORN. That signal is then projected to 2000 Kenyon cells in the mushroom body, resulting
in a 40-fold increase in signal dimension. Each Kenyon cell receives the firing rates of approximately 6
projector neurons and sums them up [14]. Crucially, the projection to Kenyon cells is random, in the
sense that the latter do not receive a signal from fixed projector neurons depending on the type of smell
detected. From one fly to the other, a similar smell triggers different Kenyon cells, even if the same types
of ORNs have been activated.

Evidence suggests that the set of Kenyon cells activated after exposure to an odor forms the odor
“tag” that allows the fly to recognize it: [13] shows that a large overlap in the firing rates of a group
of Kenyon cells is a good predictor of whether a fly will judge two smells to be similar. Moreover, the
results of [13] show that the entire population of Kenyon cells is not necessary to discriminate smells,
but rather that a subset of 25 cells gives sufficient information to predict the fly’s response. This is a
consequence of the fact that glomeruli fire randomly to Kenyon cells and the results are summed. Thus,
the entire information they project can be found in a relatively small subset of the Kenyon cells. One can
then wonder why the information is spread over 2000 Kenyon cells, when many fewer seem to provide
enough information. Stevens [33] argues that the reason for such a large, redundant representation of
smells in the mushroom body is to provide multiple representations, so that the fly can later utilise the
one containing the crucial information.

Finally, the last step in the fly’s olfactory system consists of an inhibitory process. Anterior paired
lateral (APL) neurons deactivate about 95% of Kenyon cells, leaving only those with the highest firing
rates [14, 33]. As a result, the final vector representation of the smell information is relatively large (a
vector with 2000 entries) and very sparse. This is easy to reproduce with a cap operation, that acts in
the same way by setting all but the largest entries to zero.

Altogether, those steps amount to a random projection of the initial 50-dimensional vector into a
2000-dimensional space, followed by a non-linear operation that only keeps a fixed number of the highest
coefficients. The initial 50-dimensional signal vector contains the firing rates of each type of ORN. The
projection of the glomeruli to the Kenyon cells can be described by multiplication by a random matrix

3

with size 2000 × 50 and entries drawn from {0, 1}. Each row corresponds to a particular Kenyon cell;
for each glomerulus that fires a signal to that cell, we write a 1 in the corresponding column of the row
vector. All other entries are set to 0. As only few of the projector neurons fire to the next step, the
random matrix should be sparse. We modify this formulation slightly in our algorithm, to take advantage
of other beneficial properties (e.g. when the entries have a symmetric distribution).

2.2 The human brain

Interestingly, the application of a random projection followed by an inhibitory process is not unique to
the fly’s olfactory system. In fact, such a process plays a role in three parts of the brain: the cerebellum,
the hippocampus and the olfactory system. Stevens [33] explains that the way those three structures
process information follows a similar three-step architecture to the fly’s olfactory system. In the first
stage, the information arriving from other brain areas is assembled into a neural code. In the second
stage, that code is passed on to a greatly enlarged number of neurons. Finally, in the third stage, this
code is broken down to be interpreted in further information processing steps.

The analogy is particularly clear in the functioning of the cerebellum. This is a large part of the brain
that has several important roles, including receiving information from sensory systems and integrating
these inputs to fine-tune motor activity [17]. The initial information code is provided by precerebellar
neurons, before being passed on to a much larger number of granule cells. The output of granule cells is
then passed through Golgi inhibitory neurons and fed back to the granule cells. Finally, the information
code is relayed to Purkinje cells, see [33] for more details.

A related model of the brain, which uses random projections and cap operations, was developed by
Papadimitriou and Vempala [28] and is worth mentioning at this point. It has been shown that we learn
complicated concepts or create memories thanks to the action of assemblies of neurons, where an assembly
is defined as a set of densely interconnected neurons that fire almost simultaneously when the associated
concept or idea is thought about [28]. Aiming to describe the brain’s function with such assemblies,
Papadimitriou and Vempala [28] define notions of projection and capping, which explain experimental
data. They describe projection as the repetitive firing of an assembly to a different part of the brain, in
order to eventually form a new assembly. Once that link is formed, the firing of the parent assembly will
trigger the firing of the child assembly. Their version of a cap operator, which prevents all neurons in a
brain area from firing except the k with highest synaptic input, is similar to the fly’s inhibitory process.
This model takes the form of a bipartite directed Gn,p graph, which Papadimitriou and Vempala [28]
assume fires at discrete time steps. This gives a sequence of successive graphs, which evolve over time as
the system learns and connections are formed and then reinforced. It can be show that, under suitable
assumptions, this sequence will converge in the sense that no new neurons will fire after a sufficient
number of time steps.

This model of projection is much more complex than the one we will consider, as the initial stimulus
fires repetitively instead of only once, and the triggered set of neurons in turn fires, further complicating
the model. However, both models share some significant similarities. Firstly, they are both random, in the
sense that edges in the graph presented by Papadimitriou and Vempala exist randomly and independently
with a given probability. Additionally, their use of a cap operation, which prevents all neurons in a brain
area from firing except the k with highest synaptic input, is very similar to the fly’s inhibitory process.

3 Mathematical properties

Motivated by the above discussion, we will consider the transformation A : Rm → Rn given by

A(s) = ck(Ms), (1)

where M ∈ Rn×m is a random matrix and ck : Rn → Rn is a cap operation that keeps the k largest (in
magnitude) entries of a vector and sets all the others to zero. Implicitly, we need k ≤ n. On top of this,
we will focus on the case n� m, to replicate the random projection from few projector neurons to many
Kenyon cells in the fly’s olfactory system. We will choose M ∈ Rn×m to be such that is a random matrix
whose entries mij are independent and identically distributed and given by the difference between two
independent Bernoulli random variables:

mij = Xij − Yij , i = 1, . . . , n, j = 1, . . . ,m, (2)

4

where Xij and Yij are independent Bernoulli random variables with parameter p ∈ (0, 1):

Xij , Yij =

{
1 with probability p

0 with probability 1− p.
(3)

This choice of random matrix is motivated by the way that, in the fly’s olfactory system, each Kenyon cell
receives the firing rates of multiple projector neurons and sums them up. However, we have added the
extra feature that each entry of M should have mean zero, which will yield several useful mathematical
properties using the existing literature on properties of random matrices. Similar matrices with symmetric
distributions were considered e.g. by [1, 6, 7, 19]. We will choose p ∈ (0, 1) to be small, such that M is
likely to be sparse. This will improve the speed of calculations, especially when M is very large.

Intuitively, we would like our transformation A to satisfy certain characteristics. Firstly, we want it
to be continuous in the sense that similar signals should still be close after transformation. On the other
hand, we want signals that are different enough to be further apart after being transformed by A. While
the latter is a bit more complex to guarantee, we will be able to show that, with high probability, our
transformation preserves similarities between vectors.

3.1 Properties of the random projections

We begin by exploring the properties of multiplication by the random matrix M . The following lemma
describes the distribution of the entries of the matrix M :

Lemma 3.1. If mij ∼ X − Y , where X,Y are Bernoulli random variables with parameter p ∈ (0, 1),
then it holds that E(mij) = 0, P(mij = 0) = 2p2 − 2p+ 1 and Var(mij) = 2p(1− p).

Proof. Let Z = X − Y where X,Y are Bernoulli random variables with parameter p ∈ (0, 1). Then, the
expectation follows by a simple calculation: E(Z) = E(X−Y) = E(X)−E(Y) = p−p = 0. Similarly, we
can calculate that P(Z = 0) = P(X = 0, Y = 0) + P(X = 1, Y = 1) = (1− p)2 + p2. For the variance, we
note that since Z ∈ {−1, 0, 1}, we have Z2 ∈ {0, 1}. Thus E(Z2) = P(Z2 = 1) = 1−P(Z = 0) = 2p(1−p).
Since E(Z) = 0, we have Var(Z) = E(Z2) = 2p(1− p).

We first present a theorem that bounds the operator norm of the random matrix M with high
probability:

Theorem 3.2 (Upper tail estimates). Given the matrix M ∈ Rn×m, whose entries are each the difference
of independent and identically distributed Bernoulli random variables, there exist real-valued constants C
and c > 0 such that

P(‖M‖op > D
√
n) ≤ C exp (−cDn),

for all D ≥ C. In particular, we have ‖M‖op = O(
√
n) with probability that is exponentially close to 1.

Proof. This theorem and its proof can be found in [35, Theorem 2.1.3], for the more general case where
M is any matrix with entries that are independent and identically distributed, have zero mean and are
uniformly bounded by 1. From Lemma 3.1 and by inspection, we can see that this holds for our specific
choice of M .

This theorem gives us a bound on

‖Mx‖ ≤ ‖M‖op‖x‖, (4)

which guarantees that, with high probability, a vector’s norm won’t blow up due to multiplication by the
random matrix M , even as the dimension of M becomes very large. Throughout this article, we will use
‖ · ‖ to denote the Euclidean norm (i.e. ‖ · ‖2). In particular, it holds that

‖Mx−My‖ ≤ ‖M‖op‖x− y‖ (5)

for any x, y ∈ Rm.
We will however be able to give further bounds on ‖Mx−My‖ by modifying a famous result by Johnson

and Lindenstrauss, which states that a set of points in Rd can be mapped to Rk while approximately
preserving distances between pairs of points, as long as k is large enough. Most of the literature focuses
on the case where k < d, as this allows for data compression; however, this lemma is still informative to

5

us, as it shows that we can map data points to a different dimension while more or less retaining their
pairwise distances. Note that the standard formulation of this lemma only states that such a mapping
exists, and does not specify what it might look like. The Johnson-Lindenstrauss lemma can be found in
[1, Lemma 1.1] and says the following:

Theorem 3.3 (Johnson-Lindenstrauss Lemma). Given ε > 0 and an integer n, let k be a positive integer
such that k ≥ k0 = O(ε−2 log n). For every set P of n points in Rd there exists f : Rd −→ Rk such that
for all u, v ∈ P

(1− ε)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε)‖u− v‖2.

The next theorem shows that multiplication by a random matrix R, whose entries follow a distribution
that is symmetric around zero and has unit variance, preserves the norm of vectors up to a scaling
constant, with high probability. This constant depends on

√
n, where n is the dimension of the space

into which M ∈ Rn×m projects. The theorem and its proof come from [7, Theorem 1].

Theorem 3.4. Let R ∈ Rn×m be a random matrix, with each entry rij chosen independently from a
distribution that is symmetric about the origin with E(r2ij) = 1.

1. Suppose B = E(r4ij) <∞. Then, for any ε > 0,

P
(
‖ 1√

n
Ru‖2 ≤ (1− ε)‖u‖2

)
≤ exp

(
− (ε2 − ε3)n

2(B + 1)

)
for all u ∈ Rm.

2. Suppose ∃L > 0 such that for any integer k > 0, E(r2kij) ≤ (2k)!
2kk!

L2k. Then, for any ε > 0,

P
(
‖ 1√

n
Ru‖2 ≥ (1 + ε)L2‖u‖2

)
≤ exp

(
−(ε2 − ε3)

n

4

)
for all u ∈ Rm.

As shown in Lemma 3.1, our matrix M satisfies E(m2
ij) = 2p(1 − p) 6= 1, therefore we need the

following corollary to extend Theorem 3.4 to settings with matrix entries drawn from a distribution with
rescaled variance.

Corollary 3.5. Let M ∈ Rn×m be a random matrix whose entries mij are sampled independently and
randomly from a distribution that is symmetric around the origin with E(m2

ij) = σ2 > 0.

1. Suppose B = E(m4
ij) <∞. Then, for any ε > 0,

P
(
‖ 1√

n
Mu‖2 ≤ σ2(1− ε)‖u‖2

)
≤ exp

(
− (ε2 − ε3)n

2(1
σ4B + 1)

)
, for all u ∈ Rm.

2. Suppose ∃L > 0 such that for any integer k > 0, E(m2k
ij) ≤ σ2k (2k)!

2kk!
L2k. Then, for any ε > 0,

P
(
‖ 1√

n
Mu‖2 ≥ σ2(1 + ε)L2‖u‖2

)
≤ exp

(
−(ε2 − ε3)

n

4

)
, for all u ∈ Rm.

Proof. 1. Let R be the n × m matrix defined as R := 1
σM . Then clearly the entries rij = 1

mij
of R

are sampled from a distribution symmetric around 0. Moreover, E(r2ij) = E(1
σ2m

2
ij) = σ2

σ2 = 1. Finally,

E(r4ij) = E(1
σ4m

4
ij) = 1

σ4B <∞. Hence R satisfies the conditions of Theorem 3.4, and we have

P(‖ 1√
n
Ru‖2 ≤ (1− ε)‖u‖2) ≤ exp

(
− (ε2 − ε3)n

2(1
σ4B + 1)

)
. (6)

The left hand side can be rewritten as

P
(
‖ 1√

n

1

σ
Mu‖2 ≤ (1− ε)‖u‖2

)
= P

(
‖ 1√

n
Mu‖2 ≤ σ2(1− ε)‖u‖2

)
. (7)

2. Once again, let R = 1
σM . Clearly, for every integer k, we have

E
(
r2kij
)

= E
(

1

σ2k
m2k
ij

)
≤ 2k!

2kk!
L2k. (8)

6

Hence R satisfies the conditions of Theorem 3.4 and we have

P
(
‖ 1√

n
Ru‖2 ≥ (1 + ε)L2‖u‖2

)
≤ exp

(
−(ε2 − ε3)

n

4

)
. (9)

The left hand side of this equation is equal to

P
(
‖ 1√

n

1

σ
Mu‖2 ≥ (1 + ε)L2‖u‖2

)
= P

(
‖ 1√

n
Mu‖2 ≥ σ2(1 + ε)L2‖u‖2

)
. (10)

Finally, we can use these results to prove an analogous theorem about the effect of multiplying by the
random matrix M .

Theorem 3.6. Given the matrix M ∈ Rn×m, whose entries are each the difference of independent and
identically distributed Bernoulli random variables with parameter p ∈ (0, 1), it holds for any ε > 0 that

P
(

(1− ε)‖u− v‖2 ≤ 1

nσ2
‖Mu−Mv‖2 ≤ (1 + ε)‖u− v‖2

)
≥ 1− e−(ε

2−ε3)n4 − e
− (ε2−ε3)n

2(1
σ2

+1) ,

for all u, v ∈ Rm, where σ2 = 2p(1− p).

Proof. First, we need to show that our matrix M satisfies the conditions of Corollary 3.5. We’ve shown
before that E(m2

ij) = 2p(1− p). When p ∈ (0, 1), it holds that 2p(1− p) > 0. Since m2
ij ∈ {0, 1}, we have

that (m2
ij)

k = m2
ij for any integer k. Therefore E(m2k

ij) = E(m2
ij) = 2p(1− p) for all positive integers k.

Picking L = [2p(1− p)]−1/2 gives the relation

E(m2k
ij) = 2p(1− p) ≤ 1 ≤ [2p(1− p)]k (2k)!

2kk!
L2k, (11)

so that the condition in the second part of Corollary 3.5 is satisfied.
Finally, we can apply Corollary 3.5 to the vector (u− v) to obtain the result, using the fact that

P
(

(1− ε)‖u− v‖2 ≤ 1

nσ2
‖Mu−Mv‖2 ≤ (1 + ε)‖u− v‖2

)
= 1− P

(
1

n
‖Mu−Mv‖2 < (1− ε)σ2‖u− v‖2

)
− P

(
1

n
‖Mu−Mv‖2 > (1 + ε)σ2‖u− v‖2

)
,

(12)

and the choice L2 = 1/σ2.

An easy way to guarantee that the multiplication of a vector with a matrix y = Mx does not lose any
information is to require that the matrix must be invertible, so that the initial vector x can be retrieved
exactly from y. Of course, in our case, M has dimensions n × m with n � m, and thus can not be
invertible. However, we can still ensure that M has maximum rank m. In particular, we will show that
with high probability any m×m submatrix of our random matrix M will be invertible. This is based on
modifying a result from [36, Theorem 8.9].

Theorem 3.7 (Invertibility). Given the matrix M ∈ Rn×m, where n > m, whose entries are each the
difference of independent and identically distributed Bernoulli random variables with parameter p ∈ (0, 1),
let M∈ Rm×m be any square submatrix of M . Then, it holds for any ε > 0 that

P
(
|det(M)| ≥ (2p(1− p))m/2

√
m! exp(−m1/2+ε)

)
= 1− o(1),

as m→∞. In particular, a submatrix M is invertible with probability at least 1− o(1) as m→∞.

Proof. The matrix R = 1
σM has entries that are bounded and have mean zero and variance one. This

means it satisfies the hypotheses of [36, Theorem 8.9], so we can conclude that

P
(
|det(R)| ≥

√
m! exp(−m1/2+ε)

)
= 1− o(1), (13)

as m→∞. Using the fact that σ =
√

2p(1− p) and det(R) = σ−m det(M) gives the result.

7

Figure 2: The probability of a submatrix of the random matrix M being invertible. When the dimension
of the square submatrix is arbitrarily large, the probability that it is invertible approaches one. However,
for finite matrix dimensions, very high probabilities of invertibility can be obtained with relatively small
matrices.

Theorem 3.7 says that the matrix M ∈ Rn×m has submatrices that are likely to be invertible if the
smaller dimension is sufficiently large. That is, they are likely to be invertible if the dimension of the
feature vector that is the input to the transformation is sufficiently large. In practice, of course, any
matrices will have finite size. In Figure 2 we calculate the probability (averaged over 104 independent
realisations) of a given submatrix of M being invertible, for two different values of p. For both p = 0.05
and p = 0.1, we see that a submatrix is invertible at least 99% of the time when the dimension m = 100
(in fact, when p = 0.1, the 99% threshold is reached when m = 48). Since the dimension of the initial
feature vector is likely to be large, any submatrices are highly likely to be invertible. In Section 4, we
will generally use p = 0.05 and m = 433, in which case the submatrices are almost guaranteed to be
invertible (the probability of being singular is negligibly small).

3.2 Properties of the cap operator

The second part of the transformation A, defined in (1), is the application of a cap operator. This is a
map ck : Rn → Rn that retains the k largest (in magnitude) entries of a vector and sets all the others to
zero. A cap operator is a crude way to sparsify a vector, with a degree of sparsity that can be controlled
by varying the parameter k.

It is trivially the case that if 1 ≤ k ≤ n, then for any x ∈ Rn and any p ∈ (0,∞), it holds that

‖x‖∞ ≤ ‖ck(x)‖p ≤ ‖x‖p. (14)

In fact, if x is sufficiently sparse, in the sense that ‖x‖p is small when p is small, then ck(x) is close to
x. Various results along these lines exist, we prove one such statement below. A different version can be
found in [16], for example.

Theorem 3.8. Let ck : Rn −→ Rn be the cap operation that retains the k largest (in magnitude) entries
of a vector and sets all the others to zero. Then, for any p ∈ (0, 2),

‖x− ck(x)‖2 ≤ ‖x‖p(k + 1)p+1, for all x ∈ Rn.

Proof. We show this by induction on k. First, consider the case where k = 0. By definition of the cap
operation, ck(x) is then simply the zero vector, and we have ‖x‖2 ≤ ‖x‖p for 0 < p < 2 by monotonicity
of the norms.

Suppose now that the property holds for k − 1. Let c∗k(x) be the vector obtained from x by keeping
its k’th largest entry intact and setting all others to zero. We then have

‖x− ck(x)‖2 = ‖x− ck−1(x)− c∗k(x)‖2 ≤ ‖x− ck−1(x)‖2 + ‖c∗k(x)‖2.

From the inductive hypothesis, we have that ‖x− ck−1(x)‖2 ≤ ‖x‖pkp+1. Moreover, ‖c∗k(x)‖2 ≤ ‖x‖2 ≤
‖x‖p for p ∈ (0, 2). We obtain

‖x− ck(x)‖2 ≤ ‖x‖pkp+1 + ‖x‖p ≤ ‖x‖p(k + 1)p+1,

8

where the final inequality holds from the fact that the function f(x) = (x + 1)p+1 − xp+1 − 1 satisfies
f ′(x) = (p + 1)[(x + 1)p − xp] > 0 for x > 0 and f(0) = 0, meaning that f(x) > 0 for all x > 0. The
result then follows by induction.

The consequence of these results is that, thanks to (14), the effect of the cap operation is always
bounded (in the sense that ‖ck‖op < 1) and, thanks to Theorem 3.8, if the initial feature vector has
some sparsity, then this effect will in fact be correspondingly small (in the sense that ck(x) is close to
x). Conversely, in the numerical experiments presented in the following section, we will show that the
algorithm performs well on classification problems even when the data (and also the projected data) are
not sparse. This shows that the random projections succeed in encoding the important information in a
small number of the coefficients (as will be demonstrated by the fact that if the random projection step
is removed, then the classification accuracy drops).

4 Numerical experiments

We would like to explore the extent to which the bioinspired transformation (1), which yields sparse
representations of signals through the use of random projections and a cap operation, can be used in
classification problems. Recall that the main inspiration for this transformation was the function of the
fruit fly’s olfactory system, where the corresponding system’s role is to facilitate the classification of odors.
As a demonstrative classification problem, we chose to attempt musical genre classification. We used the
GTZAN dataset [38] which consists of 30-second long extracts of music from 10 different genres. We used
the scattering transform as a first step to obtain a suitable feature vector. The scattering transform is
a cascading sequence of alternating wavelet transforms and modulus operators that outputs coefficients
that are locally invariant to translations and stable to deformations [4]. The software for the scattering
transform can be found online at [5].

4.1 Methods

First, the scattering transform is applied to the dataset. The entire dataset contains 1000 music extracts
in total, 100 from each genre. The scattering transform returns a 433×20000 array of coefficients, that is
organized as an array of 433×20 scattering coefficients, for each of the 1000 samples. The first dimension
is a feature dimension, while the second is a time dimension. To perform classification, we took the mean
of the feature arrays in the time dimension, so that we ended up with feature vectors of length 433. This
allowed us to deal with feature vectors that do not possess a time dimension, and could thus be projected
without fear of mixing up time-scale information.

To obtain the random matrix used for projection, we first sampled two random matrices whose entries
were independent Bernoulli random variables with parameter p and then computed the difference of those
two matrices. This gives the desired random matrix whose coefficients have mean zero, as described in
Section 3. After random projection, we applied the cap operation to the feature vectors, retaining the
k entries that were largest in absolute value and setting all others to zero. Given the resulting vector,
classification was performed using a support vector machine. The linear support vector machine from
Matlab’s Classification Learner App was used.

We performed several experiments to understand the role of the parameters of the transformation A.
In particular, n is the dimension of the space into which our random matrix projects the signal vectors.
The parameter p corresponds to the Bernoulli parameter we use to sample the random matrix and, finally,
the parameter k indicates how many coefficients we keep intact after the cap operation.

4.2 Results

We initially performed classification on the feature vectors without the bioinspired transformation, as a
point of reference, to see if the random projection and cap operation improved or worsened the results.
The resulting accuracy was consistently around 77%. This is shown by the dotted lines in Figures 3, 4
and 5.

Our next experiment was to add a random projection and understand the effect of varying the dis-
tribution parameter p. We performed those experiments both for both smaller (n = 433) and larger
(n = 2000) image spaces, to see if there was a clear advantage to projecting the feature vectors into a
much higher dimensional space. The results can bee seen in Figure 3, which suggest that there is no

9

Figure 3: The classification accuracy is approximately preserved when random projections (RPs) are
introduced and is not significantly affected by the Bernoulli parameter p. The classification accuracy is
computed when using random projection of fixed dimension n, while varying the Bernoulli parameter
and not using any cap operation.

Figure 4: The classification accuracy is approximately preserved when random projections (RPs) are
introduced and is not significantly affected by the dimension of the space into which we project. The
classification accuracy is computed when using random projection of varying dimension n, fixed Bernoulli
parameter p = 0.05 and no cap operation.

clear relation between the Bernoulli parameter p and classification accuracy. As shown in Section 3, the
entries of our random matrix M are zero with probability P(mij = 0) = 2p2 − 2p + 1. This expression
is strictly decreasing for p < 0.5, so the entries of M are less likely to be zero when p is larger. It is
therefore in our interest to keep p small in subsequent experiments, so that our random matrix is likely
to be sparser, which speeds up the calculations. In the following experiments, given that the effect on
classification appears to be minimal, we fix the value p = 0.05.

As well as suggesting that the value of p does not greatly influence the classification accuracy, Figure 3
may suggest that applying a random projection slightly improves the classification accuracy. This is
particularly the case for the larger dimension n = 2000, where the average success rate was more than
a percentage point higher than for the classification without any random projection. However, this
difference is not significant enough to be able to draw convincing conclusions at this point.

To evaluate the effect of the projection dimension n, we fixed the Bernoulli parameter at p = 0.05
and increased the dimension of the random matrix from n = 433 (the dimension of the feature vectors
output by the scattering transform) up to n = 2833, adding 100 rows every time. The results can be seen
in Figure 4. The accuracy is relatively stable across all values of n, and is similar to the performance of
the original feature vectors without random projection. This result is maybe not surprising, as we’re not
adding information with the random projection, but instead merely randomly shuffling it. It is however
reassuring to observe that information isn’t lost or corrupted by adding a random projection. Once again,
there appears to even be a slight improvement in classification accuracy, thanks to the introduction of

10

Figure 5: For sufficiently large cap parameter k, the introduction of a cap operation does not greatly
influence the classification accuracy. This holds even when k is significantly smaller than the dimension
of the initial feature vector (433). Classification accuracy is computed when using random projections
(RPs) of fixed dimensions 433 and 2000, Bernoulli parameter p = 0.05 and a varying cap parameter k.

Figure 6: The application of a random projection (RP) together with a cap consistently shows higher
accuracy than the use of a cap alone. On the other hand, a simple random projection to a space
of smaller dimension performs similarly to the random projection and cap. All three methods show
relatively good classification accuracy, as long as the cap/dimension of compression is above 100. Both
random projections in this figure were performed with a Bernoulli parameter p = 0.05.

the random projection.
The effect of the cap operation on the classification accuracy can also be tested. We kept the Bernoulli

parameter at p = 0.05 and added a cap operation with varying parameter k. We recorded classification
accuracy for two different random projections; one with dimension n = 433 and the other with n = 2000.
The results can be found in Figure 5. For very small values of k, the classification accuracy drops away
quickly (down to a limiting value of 10% when k = 0, in which case the ten classes are allocated without
any retained information). However, the accuracy is rather stable for larger values of k. In particular,
k ≈ 200 is sufficient in both cases to attain a classification accuracy above 75%. This result is noteworthy
as k = 200 is less than half the size of the initial feature vectors outputted by the scattering transform.
As previously with Bernoulli parameter p, it is in our interest to keep k small, so that the final feature
vector is as sparse as possible. However, it is worth noting that our experiments revealed that increasing
the cap parameter k did not dramatically decrease the training time of the support vector machine: with
the Bernoulli parameter set at p = 0.05 and no cap operation the training time was 24.0 seconds, while
setting a cap of k = 200 led to a training time of 23.3 seconds. This is because the linear support vector
machine is not set up to be able to take advantage of the sparsity.

Taken together, these experiments show that projecting randomly into a space of seemingly arbitrary
dimension with a matrix with small Bernoulli parameter before capping to leave just a couple of hundred
entries gives an algorithm with good classification accuracy. In particular, we take projection into a
space with dimension n = 2000, with Bernoulli parameter p = 0.05 and cap parameter k = 200 as

11

Figure 7: The classification accuracy shows improved robustness to noise when random projections (RPs)
are introduced. This effect is, however, lost when a cap operator is added. Classification accuracy is
computed when adding Gaussian noise of mean zero and varying standard deviation to the initial feature
vectors.

our gold standard. Figure 6 shows the comparison of this transformation with the application of a
cap alone. The full transformation (with random projection followed by the cap) consistently performs
better than the cap alone, showing that the application of a random projection is important for retaining
information when the vectors are truncated using the cap operator. We also compared the performance
of our transformation A with a simple random compression. This random compression was performed
by multiplying by the same random matrix used in our bioinspired transformation, with a Bernoulli
parameter p = 0.05, but with the dimension decreased. The image dimension of the random compression
is shown on the horizontal axis of Figure 6, so that it can be compared to the cap parameter in the two
other algorithms. All three sets of results show that the accuracy does not drop significantly as long as
the number of coefficients retained is above 100, thus suggesting that we can easily decrease the dimension
of the feature vectors (which initially have 433 entries), thus making them sparser, without impeding our
ability to classify them.

Our final experiment focused on determining whether the addition of the bioinspired transformation
A could improve the robustness of the classification. We added random Gaussian noise to the feature
vectors outputted by the scattering transform and compared three cases: classifying the noisy vectors
directly without any transformation, classifying the noisy vectors that have been randomly projected to
a space of dimension n = 2000 and, finally, classifying the noisy vectors after applying both the random
projection and a cap operation with a parameter k = 200. The results for these three cases are reported
in Figure 7. In each case the noise was generated independently with zero mean and increasing standard
deviation. It is clear from Figure 7 that adding the random projection increases the robustness of the
classification. Classification with the projected vectors consistently performs a few percent better than
without any random projection. Conversely, the addition of a cap operation seems to yield slightly worse
results, suggesting that there is a trade off between robustness and sparsity.

5 Conclusions

Our results demonstrate yet another successful application of biomimicry, this time to a classification
problem. We designed a two-step signal transform that used random projections and a cap operation,
inspired by the function of the fruit fly’s olfactory system. This transformation, when paired with a
support vector machine, gives you the ability to sparsify the data while preserving the classification
accuracy. Our experiments showed that it also leads to robustness benefits, giving improved classification
accuracy when random errors are added to the data. Perhaps most importantly, the signal transform
is very simple and requires very little computational power to execute, giving a distinct advantage over
more intricate approaches.

Sparsity and robustness are important properties for biological sensing systems. Animals have limited
neural bandwidth so need to be able to encode information as efficiently as possible. Sparsifying data is
one way of achieving this. Other strategies include the using compressive nonlinearities to rescale data
[22] and using known statistical properties of target data sets to obtain low-dimensional representations

12

[2, 9, 18]. Robustness is similarly important for an animal’s ability to understand its noisy environment
and there are many examples of biological systems demonstrating remarkable robustness properties,
see e.g. [15, 18, 26]. These outstanding properties should motivate further studies of biological and
biologically inspired systems, with the aim of understanding the fundamental mechanisms, so that they
can be implemented into novel solutions to challenging problems.

Acknowledgements

The work of BD was partly supported by the EC-H2020 FETOpen project BOHEME under grant agree-
ment No. 863179.

Data availability

The code used for the numerical experiments in this work is available at https://doi.org/10.5281/

zenodo.6642660.

References

[1] D. Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J.
Comput. Syst. Sci., 66(4):671–687, 2003.

[2] H. Ammari and B. Davies. Asymptotic links between signal processing, acoustic metamaterials and
biology. arXiv preprint arXiv:2005.12794, 2020.

[3] H. Ammari and B. Davies. Mimicking the active cochlea with a fluid-coupled array of subwavelength
Hopf resonators. Proc. R. Soc. A, 476(2234):20190870, 2020.

[4] J. Andén and S. Mallat. Deep scattering spectrum. IEEE T. Signal Proces., 62(16):4114–4128, 2014.

[5] J. Andén, L. Sifre, S. Mallat, M. Kapoko, V. Lostanlen, and E. Oyallon. ScatNet v0.2. https:

//www.di.ens.fr/data/software/scatnet/download/, 2013. Accessed on 2021-10-21.

[6] R. Arriaga, D. Rutter, M. Cakmak, and S. Vempala. Visual categorization with random projection.
Neural Comput., 27(10):1–16, 2015.

[7] R. I. Arriaga and S. Vempala. An algorithmic theory of learning: Robust concepts and random
projection. Mach. Learn., 63:161–182, 2006.

[8] K. Asahina, M. Louis, S. Piccinotti, and L. B. Vosshall. A circuit supporting concentration-invariant
odor perception in drosophila. J. Biol., 8(9), 2009.

[9] H. Attias and C. Schreiner. Coding of naturalistic stimuli by auditory midbrain neurons. Advances
in neural information processing systems, 10, 1997.

[10] L. Baldassari and A. Scapin. Multi-scale classification for electrosensing. SIAM J. Imaging Sci.,
14(1):26–57, 2021.

[11] J. M. Benyus. Biomimicry: Innovation Inspired by Nature. Morrow New York, 1997.

[12] J. Bruna and S. Mallat. Invariant scattering convolution networks. IEEE T. Pattern Anal.,
35(8):1872–1886, 2013.

[13] R. A. Campbell, H. Qin, K. Honegger, and W. Li. Imaging a population code for odor identity in
the drosophila mushroom body. J. Neurosci., 33(25):10568–10581, 2013.

[14] S. Dasgupta, C. F. Stevens, and S. Navlakha. A neural algorithm for a fundamental computing
problem. Science, 358(6364):793–796, 2017.

[15] B. Davies and L. Herren. Robustness of subwavelength devices: a case study of cochlea-inspired
rainbow sensors. Proc. R. Soc. A, 478(2262):20210765, 2022.

13

https://doi.org/10.5281/zenodo.6642660
https://doi.org/10.5281/zenodo.6642660
https://www.di.ens.fr/data/software/scatnet/download/
https://www.di.ens.fr/data/software/scatnet/download/

[16] D. L. Donoho. Compressed sensing. IEEE T. Inform. Theory, 52(4):1289–1306, 2006.

[17] E. J. Fine, C. C. Ionita, and L. Lohr. The history of the development of the cerebellar examination.
Semin. Neurol., 22(04):375–384, 2002.

[18] J. Gervain and M. N. Geffen. Efficient neural coding in auditory and speech perception. Trends
Neurosci., 42(1):56–65, 2019.

[19] N. Goel, G. Bebis, and A. Nefian. Face recognition experiments with random projection. Proc.
SPIE, 5779, Biometric Technology for Human Identification II, 2005.

[20] M. Gottwald, H. Herzog, and G. von der Emde. A bio-inspired electric camera for short-range object
inspection in murky waters. Bioinspir. Biomim., 14(3):035002, 2019.

[21] R. P. Hodges. Underwater Acoustics: Analysis, Design and Performance of Sonar. John Wiley &
Sons, 2011.

[22] A. J. Hudspeth, F. Jülicher, and P. Martin. A critique of the critical cochlea: Hopf—a bifurcation—is
better than none. J. Neurophysiol., 104(3):1219–1229, 2010.

[23] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

[24] S. Mallat. Group invariant scattering. Commun. Pure Appl. Math., 65(10):1331–1398, 2012.

[25] N. Y. Masse, G. C. Turner, and G. S. Jefferis. Olfactory information processing in drosophila. Curr.
Biol., 19(16):R700–R713, 2009.

[26] N. Mesgarani, S. V. David, J. B. Fritz, and S. A. Shamma. Mechanisms of noise robust representation
of speech in primary auditory cortex. P. Natl. Acad. Sci. USA, 111(18):6792–6797, 2014.

[27] M. A. Nielsen. Neural Networks and Deep Learning, volume 25. Determination Press San Francisco,
CA, USA, 2015.

[28] C. H. Papadimitriou and S. S. Vempala. Random Projection in the Brain and Computation with
Assemblies of Neurons. In A. Blum, editor, 10th Innovations in Theoretical Computer Science
Conference (ITCS 2019), volume 124 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 57:1–57:19, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[29] E. Perisse, C. Burke, W. Huetteroth, and S. Waddell. Shocking revelations and saccharin sweetness
in the study of Drosophila olfactory memory. Curr. Biol., 23(17):R752–R763, 2013.

[30] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In J. Platt, D. Koller,
Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems, volume 20.
Curran Associates, Inc., 2007.

[31] A. Rahimi and B. Recht. Weighted sums of random kitchen sinks: Replacing minimization with
randomization in learning. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances
in Neural Information Processing Systems, volume 21. Curran Associates, Inc., 2008.

[32] M. Rupin, G. Lerosey, J. de Rosny, and F. Lemoult. Mimicking the cochlea with an active acoustic
metamaterial. New J. Phys., 21(9):093012, 2019.

[33] C. F. Stevens. What the fly’s nose tells the fly’s brain. P. Natl. Acad. Sci. USA, 112(30):9460–9465,
2015.

[34] C. F. Stevens. A statistical property of fly odor responses is conserved across odors. P. Natl. Acad.
Sci. USA, 113(24):6737–6742, 2016.

[35] T. Tao. Topics in Random Matrix Theory, volume 132 of Graduate Studies in Mathematics. American
Mathematical Society, 2012.

[36] T. Tao and V. Vu. On random ±1 matrices: singularity and determinant. Random Struct. Algor.,
28(1):1–23, 2006.

14

[37] The Biomimicry Institute. Biomimicry Examples. https://biomimicry.org/examples/. Accessed:
2012-05-26.

[38] G. Tzanetakis and P. Cook. Musical genre classification of audio signals. IEEE T. Speech Audi P.,
10(5):293–302, 2002.

15

https://biomimicry.org/examples/

	1 Introduction
	2 Biological motivations
	2.1 The fruit fly's olfactory system
	2.2 The human brain

	3 Mathematical properties
	3.1 Properties of the random projections
	3.2 Properties of the cap operator

	4 Numerical experiments
	4.1 Methods
	4.2 Results

	5 Conclusions

