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Abstract

We strengthen the standard bifurcation theorems for saddle-node, transcritical,

pitchfork, and period-doubling bifurcations of maps. Our new formulation involves

adding one or two extra terms to the standard truncated normal forms with coefficients

determined by algebraic equations. These extended normal forms are differentiably

conjugate to the original maps on basins of attraction and repulsion of fixed points or

periodic orbits. This reflects common assumptions about the additional information in

normal forms despite standard bifurcation theorems being formulated only in terms of

topological equivalence.

1 Introduction

In most textbooks bifurcation theorems contain two parts: a skeleton in which the exis-
tence of particular solutions (e.g. fixed points or periodic orbits) is established as a function
of parameters, and a local equivalence in which the dynamics away from the skeleton is
described. The local equivalence is topological, but in this paper we show that it can be
made differentiably conjugate to simple polynomial normal forms.

The skeleton is usually established using the Implicit Function Theorem [4, 9, 11, 17],
although versal deformations of singularities can also provide this information [12], as can
local asymptotic expansions [5]. The local equivalence often relates the dynamics to a ‘typical’
simple example. This can either be by a rigorous change of coordinates to a simple normal
form [16], or to a truncated version of the normal form [8, 11] for which it is claimed that
the local dynamics is topologically equivalent to the general system being studied.

For the four simplest local bifurcations of one-dimensional maps, the truncated normal
forms used to describe these bifurcations are listed in the second column of Table 1. This ta-
ble also lists our modifications to the normal forms introduced below. For multi-dimensional
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Bifurcation Standard normal form Additional terms

saddle-node xn+1 = xn + ν − x2
n + ax3

n

transcritical xn+1 = xn + xn(ν − xn) + ax3
n

pitchfork xn+1 = xn + xn(ν − x2
n) + ax5

n + bνx2
n

period-doubling xn+1 = −xn − xn(ν − x2
n) + ax5

n

Table 1: Standard normal forms and additional terms that make it possible to create
differentiable conjugacies.

maps the normal forms can be obtained by first reducing to a one-dimensional centre mani-
fold.

The relationship between the two elements of the analysis, change of coordinates and
topological equivalence, is often unclear. If only topological equivalence is required, then
the continuous parameter ν of the truncated normal form of the saddle-node bifurcation,
for example, could be replaced by the sign of ν, a discrete parameter (see Theorem 2.1).
Since a topological conjugacy does not depend on the existence of derivatives, a family of
piecewise-affine maps could also be used.

Despite this, many textbooks take great care to show that the truncated normal forms of
Table 1 can be obtained by smooth changes of coordinates to leading order, e.g. [11]. Clearly
there is an unwritten assumption that the truncated normal forms carry more information
than the topological conjugacies stated in the theorems, and indeed the skeleton arguments
carry information about the parameter dependence of some solutions without recourse to the
normal form. But in that case why introduce the normal forms and changes of coordinates
as anything other than simple examples?

In this paper we will show that the normal forms, modified as in Table 1, do indeed carry
more information. More explicitly, there are local diffeomorphisms between parts of the
dynamics of the general map and the corresponding parts of the dynamics of the extended
normal form. We also provide equations connecting the new parameterisation to the param-
eter dependent coefficients of the new terms. Our proof of local differentiable equivalence
does not involve actually creating the coordinate changes, so none of the technical issues
regarding the convergence of infinitely many successive coordinate changes will be needed.

The extra information used in our analysis is the multiplier (or stability coefficient) of
a periodic orbit. The multiplier of a fixed point is the derivative of the map evaluated at
the fixed point. For a periodic orbit the multiplier is the product of the derivative evaluated
at the points on the orbit. Our method is to equate the multipliers of the fixed points of
the normal form to those of the original map and the additional terms in Table 1 allow us
to do this. Then we use local linearization theorems [2, 13, 14, 15] to show the existence
of differentiable conjugacies on the basins of attraction and basins of repulsion of the fixed
points and periodic orbits of the skeletons. This extends the standard two step analysis
(skeleton and topological equivalence) to the following four steps (once the reduction to a
one-dimensional centre manifold has been made):

• a skeleton in which the existence of particular solutions is established as a function of
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parameters;

• a normal form skeleton in which the existence of particular solutions is established
as a function of parameters of the normal form;

• multiplier equivalence in which it is shown that the multipliers of the skeleton are
equal to the multipliers of corresponding solutions of the normal form skeleton for
appropriate values of coefficients; and

• local differentiable conjugacy in which the dynamics away from the skeleton is
described via one or more differentiable conjugacies.

In the remainder of this paper we go through the standard bifurcation theorems in this
stronger format. In §2 we give the definitions and sketch the conjugacy theorems needed to
develop this approach. In §3 we give the strengthened bifurcation theorems in full; the subse-
quent four sections go through the four fundamental cases. This starts with the transcritical
bifurcation (§4) as it is in many ways the easiest to handle, and we do this without full rigour
to show how the method works. As in most expositions we do not specify neighbourhoods
as we go through the argument. A more detailed account is given in §5 where we treat the
saddle-node bifurcation. Paradoxically it is the case with no fixed points, the easiest to work
with on the whole real line, which presents the greatest challenge when restricted to a fixed
interval in space with varying parameter. We then sketch the equivalent approach for the
pitchfork bifurcation and period-doubling bifurcation in §6 and §7. We conclude in §8 with
a short summary of how our new approach fits in with other bifurcations. For each bifurca-
tion there is a tension between having the strongest dynamic equivalence given the types of
dynamics that are generated and keeping the analysis as simple as possible. We argue that
the approach here via differentiable conjugacy is optimal for the elementary bifurcations, but
that it is not so appropriate in more complicated bifurcations.

2 Topological versus differentiable conjugacies

Near local bifurcations maps are monotonic on a neighbourhood of the bifurcation point,
increasing for the saddle-node, transcritical and pitchfork bifurcations and decreasing for the
period-doubling bidurcation. In this section we bring together the technical results needed
to prove the new bifurcation theorems stated in §3.

Definition 2.1. Maps f : U → R and g : V → R are topologically conjugate if there
exists a homeomorphism (continuous bijection with continuous inverse) h : U → V such that
h ◦ f = g ◦ h. If h is a diffeomorphism then f and g are differentiably conjugate. If h is of
class Cr, r ≥ 1, then f and g are Cr-conjugate.

If x is a fixed point of f then y = h(x) is a fixed point of g and referred to as the
corresponding fixed point of g. If h is differentiable then x and y have the same multiplier:
f ′(x) = g′(y). The conjugacy h is essentially a coordinate transformation, so if yn = h(xn)
then

yn+1 = h(xn+1) = h(f(xn)) = h(f(h−1(yn))), i.e. g = h ◦ f ◦ h−1.
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Figure 1: A sketch of the increasing maps f and g of Theorem 2.1. As indicated h is
constructed so that it maps an orbit of f to an orbit of g.

The following result shows just how weak the condition of topological conjugacy is for
increasing maps of the real line. We are not sure to whom this result should be attributed,
but it is part of the folklore of the subject.

Theorem 2.1. Suppose f : R → R and g : R → R are increasing homeomorphisms with
precisely n ≥ 0 fixed points, xk and yk respectively for k = 1, . . . , n, with x0 = −∞ < x1 <

· · · < xn < ∞ = xn+1 and y0 = −∞ < y1 < · · · < yn < ∞ = yn+1. Then f and g are
topologically conjugate by an increasing homeomorphism if and only if the sign of f(x) − x

on (xk, xk+1) and the sign of g(y)− y on (yk, yk+1) is equal for each k = 0, . . . , n.

Here we prove Theorem 2.1 by constructing h on each (xk, xk+1) so that it maps an orbit
of f on this interval to an orbit of g on (yk, yk+1), as in Fig. 1.

Proof. First suppose h◦f = g ◦h for an increasing homeomorphism h. Then each fixed point
of f maps to some fixed point of g. Further h(xk) = yk for each k because h is increasing.
Thus h maps (xk, xk+1) to (yk, yk+1) for each k = 0, . . . , n. Now choose any k = 0, . . . , n and
x ∈ (xk, xk+1). The sign of f(x) − x is the same as the sign of h(f(x)) − h(x) because h is
increasing. By h ◦ f = g ◦ h this is the sign of g(y)− y where y = h(x) ∈ (yk, yk+1). Thus
f(x)− x and g(y)− y have the same sign as required.

Conversely suppose f(x)− x on (xk, xk+1) has the same sign as g(y)− y on (yk, yk+1) for
each k. Define h on the fixed points {xk}n1 by h(xk) = yk. For each k ∈ {0, . . . , n} choose
some p0 ∈ (xk, xk+1) and q0 ∈ (yk, yk+1) and let

pi = f i(p0), qi = gi(q0),

for all i ∈ Z. Suppose f(x)− x > 0 on (xk, xk+1). Then {pi} and {qi} are strictly increasing
sequences and

lim
i→−∞

pi = xk, lim
i→∞

pi = xk+1, lim
i→−∞

qi = yk, lim
i→∞

qi = yk+1 ,
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as in Fig. 1. (If f(x) − x and g(y) − y are negative the sequences are decreasing and the
limits are switched.) Now define h : [p0, p1] → [q0, q1] using any continuous strictly increasing
function, say

h(x) = q0 +
q1 − q0

p1 − p0
(x− p0).

Then define h inductively for x ∈ [pi, pi+1], i ≥ 1 by

h(x) =
(

g ◦ h ◦ f−1
)

(x),

and for x ∈ [p−(i+1), p−i], i ≥ 0 by

h(x) =
(

g−1 ◦ h ◦ f
)

(x).

By construction this is continuous on the images and preimages of p0, continuous and strictly
increasing at all other points, and g ◦ h = h ◦ f .

The remarks in §1 about the inadequacies of topological conjugation stem from this
theorem. Stronger results of course need more conditions. These are supplied by an extension
of Sternberg’s linearization result [15] due to Belitskii [2].

Theorem 2.2. (Belitskii) Suppose f : R → R and g : R → R are strictly increasing
Cr diffeomorphisms, r ≥ 1, and both maps have precisely n ≥ 1 fixed points, xk and yk
respectively for k = 1, . . . , n, with x0 = −∞ < x1 < · · · < xn < ∞ = xn+1 and y0 = −∞ <

y1 < · · · < yn < ∞ = yn+1. Suppose in addition that

f ′(xk) = g′(yk) 6= 1, for all k = 1, . . . , n.

Then f restricted to (xk−1, xk+1) and g restricted to (yk−1, yk+1) are Cr−1-conjugate for each
k = 1, . . . , n.

An outline of a proof of this result is given in Appendix A. If f and g have no fixed points
then a minor variation of the construction in the proof of Theorem 2.1 shows that there is a
topological conjugacy which is smooth everywhere except at the ‘boundary’ points pi (these
are the points of an orbit of f). Since there are no fixed points we cannot use Sternberg’s
result [15] to generate intervals on which both pi and f(pi) or f−1(pi) are contained in an
open set on which they are both continuously differentiable. It is possible to use a lemma
due originally to Borel (see e.g. [14]) based on formal power series and Taylor’s theorem to
prove that the conjugating function can be chosen to be continuously differentiable at these
end points. Here we adopt a slightly different, and simpler, strategy.

Theorem 2.3. Suppose that f : R → R and g : R → R are increasing Cr diffeomorphisms,
r ≥ 1, with no fixed points, and that both f(x)− x and g(x)− x have the same sign. Then
there exists an increasing Cr-conjugacy h : R → R with g ◦ h = h ◦ f .

Proof. Suppose f(x) − x > 0 so the images and preimages {f i(x)}∞−∞ form an increasing
sequence. Choose any point, for example x = 0, and define the conjugating function from
an open neighbourhood U of 0 to a neighbourhood V of 0, say by letting h(x) = x on U .
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By choosing U smaller if necessary we may assume that the closures of the images f i(U) are
disjoint for all i ∈ Z. Now define h on f i(U), i ∈ Z, by

h(x) =
(

gi ◦ h ◦ f−i
)

(x).

This immediately implies h = g◦ [gi−1◦h◦f−(i−1)]◦f−1 and since the composition of maps in
square brackets is simply h on f i−1(U) the functions h defined in this way satisfy h◦f = h◦g.

Now write f i(U) = (ui, u
′
i). Using a C∞ jump function extend h on [u′

0, u1] so that h

is a Cr diffeomorphism on (u0, u
′
1). We can now push h forwards and backwards as in the

proof of Theorem 2.1, and the Cr differentiability of h follows from the fact that f and g are
Cr.

The non-hyperbolic case is more subtle and is treated by Takens [16] in the C∞ case and
Kuczema et al. [10] (Theorem 8.4.5) in the C2 case, see also [18].

Theorem 2.4. ([10, 16]) Suppose that f and g are C2 and

f(x) = x+ axp +O(xp+1), g(x) = x+ bxp +O(xp+1), p = 2, 3, . . . .

Then if ab > 0 there is a C1 increasing conjugacy between f and g on neighbourhoods of the
origin, and in particular f is differentiably conjugate to y → y + sign(a)yp. If f is C∞ then
there is a C∞ increasing conjugacy to

yn+1 = yn + sign(a)ypn + αpy
p+1
n ,

where, if f (r)(x) is the rth derivative of f , αp =
(

p!
|f(p)(0)|

)
p

p−1 f(p+1)(0)
(p+1)!

.

Note that

α2 =
2fxxx
3f 2

xx

∣

∣

∣

x=0
, α3 =

√

3

8

fxxxx

|fxxx|
3
2

∣

∣

∣

∣

∣

x=0

, (2.1)

which are quantities that appear in our results below.
To the best of our knowledge it is not known whether the conjugacy can be made smoother

under the assumption that f and g are Cr, 3 ≤ r < ∞. The statement of Kuczema et al. [10]
allows for non-integer values of p but we have stated the result for the cases needed below.
However, their construction is for the half neighbourhood [0, a) and to extend to (−a, 0] as a
C1 function the transformation x → −x can be used giving coefficents (−1)p+1a and (−1)p+1b

which lead to the same derivative for the conjugating function at 0 when transformed back
to x ≤ 0.

As mentioned in §1, the main tool for proving the existence and persistence of periodic
orbits is the Implicit Function Theorem. This comes in many forms. For our purposes the
statement below, from [3] (Theorem 2.1), gives the important smoothness conditions we need.

Theorem 2.5. (Implicit Function Theorem) Let U be an open neighbourhood of (x0, y0) ∈
R

p×R
q. Let F : U → R

q be a Cr function where 1 ≤ r ≤ ∞ and suppose that F (x0, y0) = 0.
If DFy(x0, y0) is non-singular then there exists an open neighbourhood V of (x0, y0) with
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V ⊆ U , such that DFy(x, y) is non-singular for all (x, y) ∈ V and an open neighbourhood of
x = x0, W ⊂ R

p, and a unique function f : W → R
q which is Cr such that f(x0) = y0 and,

for all x ∈ W ,
(x, f(x)) ∈ V and F (x, f(x)) = 0.

Moreover,
Df(x0) = −[DFy(x0, y0)]

−1DFx(x0, y0).

If p = q = 1 the condition that DFy(x0, y0) is non-singular, i.e. det(DFy(0, 0)) 6= 0, is
equivalent to ∂F

∂y
(x0, y0) 6= 0 in which case y = f(x) = f ′(x0)(x − x0) + o(|x − x0|) locally,

with

f ′(x0) = −
(

∂F

∂y
(x0, y0)

)−1
∂F

∂x
(x0, y0).

To summarise, given q Cr real equations in p + q variables, the Implicit Function Theorem
provides conditions under which there is a locally unique Cr function determining q of the
variables as a function of the remaining p variables on which the original q real equations are
satisfied.

3 Bifurcation Theorems

The conditions of Belitskii’s Theorem do not imply the existence of global conjugacies, so
the best we can hope for in general is local. This is reflected in the theorems below.

Each theorem concerns a map xn+1 = f(xn, µ) and an extended normal form. For the
saddle-node bifurcation this form is

yn+1 = g(yn, ν, a) = yn + ν − y2n + ay3n . (3.1)

Theorem 3.1. (Saddle-node bifurcation) Suppose f is Cr, r ≥ 4, and

f(0, 0) = 0, fx(0, 0) = 1, fµ(0, 0) > 0, and fxx(0, 0) < 0. (3.2)

Let g be the truncated normal form (3.1). There exists a neighbourhood N of x = 0 and
µ0 > 0 such that if µ ∈ (−µ0, 0) then f has no fixed points in N , and if µ ∈ (0, µ0) then f

has two fixed points in N . Moreover, there exists a neighbourhood M of y = 0 and continuous
functions ν(µ) and a(µ) with

ν(0) = 0, lim
µ→0+

ν ′(µ) = −fµfxx

2

∣

∣

∣

(0,0)
, a(0) =

2fxxx
3f 2

xx

∣

∣

∣

(0,0)
, (3.3)

such that with g̃(y, µ) = g(y, ν(µ), a(µ)),

i) if µ ∈ (−µ0, 0) then f |N is Cr-conjugate to g̃|M ,

ii) if µ = 0 then f |N is C1-conjugate to g̃|M , and
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iii) if µ ∈ (0, µ0) then f |N and g̃|M are Cr−1-conjugate on the basins of attraction/repulsion
of their corresponding fixed points.

Note that the signs of fµ(0, 0) and fxx(0, 0) (provided they are non-zero) can be chosen as
stated without loss of generality by using the orientation-reversing transformations x 7→ −x

and µ 7→ −µ where necessary. The extra differentiablility (Cr, r ≥ 4) is required for the
application of the Implicit Function Theorem to obtain the parameters ν and a of the normal
form as a function of µ. The maps remain Cr so the conjugacies in neighbourhoods of the
fixed points are Cr−1 by Theorem 2.2.

One can show that ν(µ) is C1 except possibly at µ = 0. The value of the derivative ν ′(µ)
as µ approaches 0 from the right is well-defined and takes the value −fµfxx

2

∣

∣

(0,0)
as indicated

above. This value represents the rate at which µ unfolds the bifurcation relative to ν in the
extended normal form. Furthermore, as evident in the proof below, for µ ∈ (0, µ0) if we treat
ν and a as functions of m =

√
µ, then ν is Cr−2 and a is Cr−3. The value of a(0) is precisely

Takens’ α2 in (2.1).
For the remaining bifurcations we make the (standard) simplification of assuming the

origin is always a fixed point. Specifically we assume

f(0, µ) = 0, for all µ in a neighbourhood of 0. (3.4)

For transcritical the extended normal form is

yn+1 = g(yn, ν, a) = yn + νyn − y2n + ay3n . (3.5)

Theorem 3.2. (Transcritical bifurcation) Suppose f is Cr, r ≥ 4, satisfying (3.4) and

fx(0, 0) = 1, fxx(0, 0) < 0, and fxµ(0, 0) > 0. (3.6)

Let g be the truncated normal form (3.5). There exists a neighbourhood N of x = 0 and
µ0 > 0 such that if µ ∈ (−µ0, µ0) \ {0} then f has two fixed points in N . Moreover, there
exists a neighbourhood M of y = 0, a Cr−1 function ν(µ), and a Cr−3 function a(µ) with

ν(0) = 0, ν ′(0) = fxµ(0, 0), a(0) =
2fxxx
3f 2

xx

∣

∣

∣

(0,0)
, (3.7)

such that with g̃(y, µ) = g(y, ν(µ), a(µ)),

i) if µ ∈ (−µ0, µ0) \ {0} then f |N and g̃|M are Cr−1-conjugate on the basins of attrac-
tion/repulsion of their corresponding fixed points, and

ii) if µ = 0 then f |N is C1-conjugate to g̃|M .

Next we consider the pitchfork bifurcation. This bifurcation involves one more fixed point
than the last two cases so we need an extra parameter in our extended normal form in order
to be able to match the derivatives of all the fixed points. Specifically we use the form

yn+1 = g(yn, ν, a, b) = yn + νyn − y3n + ay5n + bνy2n . (3.8)
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In this form the bifurcation is supercritical in that the pair of fixed points that bifurcate from
zero are stable. Unlike the previous cases, the subcritical bifurcation, in which the non-trivial
fixed points are unstable, cannot be obtained from transformations of the supercritical case.
The methods are of course analogous and we will not go through the argument again here.

Theorem 3.3. (Supercritical pitchfork bifurcation) Suppose f is Cr, r ≥ 7, satisfying (3.4)
and

fx(0, 0) = 1, fxx(0, 0) = 0, fxµ(0, 0) > 0, and fxxx(0, 0) < 0. (3.9)

Let g be the truncated normal form (3.8). There exists a neighbourhood N of x = 0 and
µ0 > 0 such that if µ ∈ (−µ0, 0) then f has one fixed point in N (x = 0 which is stable),
and if µ ∈ (0, µ0) then f has three fixed points in N (x = 0 which is unstable and two stable
fixed points). Moreover, there exists a neighbourhood M of y = 0, a C1 function ν(µ), and
continuous functions a(µ) and b(µ) with

ν(0) = 0, ν ′(0) = fxµ(0, 0),

a(0) =
(

3fxxxxx
10f2

xxx

− 3f2
xxxx

8f3
xxx

)
∣

∣

∣

(0,0)
, b(0) =

√

6
−fxxx

(

fxxxx
4fxxx

+ fxxµ
2fxµ

)
∣

∣

∣

(0,0)
,

(3.10)

such that with g̃(y, µ) = g(y, ν(µ), a(µ), b(µ)),

i) if µ ∈ (−µ0, µ0) \ {0} then f |N and g̃|M are Cr−1-conjugate on the basins of attrac-
tion/repulsion of their corresponding fixed points, and

ii) if µ = 0 then f |N is C1-conjugate to g̃|M .

Finally we treat period-doubling for which

yn+1 = g(yn, ν, a) = −yn − νyn + y3n + ay5n . (3.11)

Theorem 3.4. (Supercritical period-doubling bifurcation) Suppose f is Cr, r ≥ 7, satisfying
(3.4) and

fx(0, 0) = −1,
(

3f 2
xx + 2fxxx

)
∣

∣

(0,0)
> 0, and fxµ(0, 0) < 0. (3.12)

Let g be the truncated normal form (3.11). There exists a neighbourhood N of x = 0 and
µ0 > 0 such that for all µ ∈ (−µ0, µ0) f has one fixed point in N (x = 0 which is stable for
µ < 0 and unstable for µ > 0), and if µ ∈ (0, µ0) then f has a stable period-2 solution in N .
Moreover, there exists a neighbourhood M of y = 0, a C1 function ν(µ), and a continuous
function a(µ) with

ν(0) = 0, ν ′(0) = −fxµ(0, 0),

a(0) =
1

(3f 2
xx + 2fxxx)

2

(

45

4
f 4
xx +

39

2
f 2
xxfxxx + 9fxxfxxxx +

6

5
fxxxxx

)
∣

∣

∣

∣

(0,0)

,
(3.13)

such that with g̃(y, µ) = g(y, ν(µ), a(µ)),

i) if µ ∈ (−µ0, 0) then f |N and g̃|M are Cr−1-conjugate on N ,
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ii) if µ = 0 then f |N is C1-conjugate to g̃|M , and

iii) if µ ∈ (0, µ0) then f |N and g̃|M are Cr−1-conjugate on the basins of repulsion of their
fixed points, and Cr−1-conjugate on the basins of attraction of their stable period-2
solutions.

In the case of the period-2 solution the basin of attraction is all points in N\{0}.

4 The transcritical bifurcation

The transcritical bifurcation provides an instructive first example of our approach. Following
most textbooks we treat the case in which the bifurcation occurs at µ = 0 and x = 0 is
constrained to be a fixed point for all values of µ in a neighbourhood of 0. To make the main
idea of our approach clear, we will not specify neighbourhoods and other details for the local
results to be true (again, this follows the standard textbook approach). In the next section
when the saddle-node bifurcation is described it will be necessary to be careful about how
local neighbourhoods are defined.

Suppose f is Cr (r ≥ 4) satisfying (3.4). A transcritical bifurcation occurs at (x, µ) =
(0, 0) assuming

fx(0, 0) = 1, fxµ(0, 0) 6= 0, and fxx(0, 0) 6= 0. (4.1)

By the transformations x → −x and/or µ → −µ if necessary we may assume

fxx(0, 0) < 0, and fxµ(0, 0) > 0. (4.2)

The standard normal form (or truncated normal form) for this bifucation up to reversal of the
x-direction is x 7→ x+x(ν−x), see Table 1. We will add a cubic term and look for functions
ν(µ) and a(µ) for which (3.5) is not just a convenient form, but a map that is (locally)
differentiably conjugate to f . We cannot expect to obtain a differentiable conjugacy on the
whole of the neighbourhood we are working on, unless µ = 0, because there are two fixed
points; but there will be two open sets whose union is the whole neighbourhood and such
that on each of these sets the dynamics is differentiably conjugate to the corresponding set.
This formalizes the idea that it is not just the location of fixed points, but the details of the
dynamics which is captured by the normal form, and that this is the result of a differentiable
change of coordinates. The functions ν(µ) and a(µ) are solutions of explicit equations and
the proof of their existence follows from the Implicit Function Theorem, so no new technical
apparatus needs to be introduced for this part of the analysis.

4.1 Step 1: the standard skeleton

By definition x = 0 is a fixed point for all µ. A standard application of the Implicit Function
Theorem shows that there is a unique Cr−1 curve of non-trivial fixed points x(µ) (see e.g. [4,
17]). By a routine calculation (see Appendices B and C for details),

x(µ) = −2fxµ
fxx

∣

∣

∣

∣

(0,0)

µ− 1

3f 3
xx

(

4fxxxf
2
xµ − 6fxxµfxµfxx + 3fxµf

2
xx

)

∣

∣

∣

(0,0)
µ2 +O(µ3). (4.3)

10



The derivative of the map evaluated at the origin (i.e. the multiplier of the fixed point x = 0)
is

D0(µ) = 1 + fxµ(0, 0)µ+
1

2
fxµµ(0, 0)µ

2 +O(µ3). (4.4)

Similarly the multiplier of x(µ) is

D1(µ) = 1− fxµ(0, 0)µ+

(

2fxxxf
2
xµ

3f 2
xx

− 1

2
fxµµ

)
∣

∣

∣

∣

(0,0)

µ2 +O(µ3), (4.5)

and both D0 and D1 are Cr−1 functions.

4.2 Step 2: fixed points of the normal form

The normal form (3.5) has

gxν(0, 0) = 1, gxx(0, 0) = −2, gxxx(0, 0) = 12a,

and all other derivatives are zero. Thus expressions for the fixed points of g and their
multipliers can be read off from the previous subsection. The multiplier of y = 0 is

d0(ν, a) = 1 + ν, (4.6)

with no error terms. The non-trivial fixed point is

y(ν) = ν + aν2 +O(ν3),

with multiplier
d1(ν, a) = 1 + ν − 2y + 3ay2. (4.7)

4.3 Step 3: multiplier equivalence

A necessary condition for the existence of a differentiable conjugacy between two maps is
that the multipliers at corresponding fixed points are equal, i.e.

d0(ν, a) = D0(µ), d1(ν, a) = D1(µ).

We can view this as a pair of equations to be solved for ν and a in terms of µ. The first of
these equations yields an immediate relationship between ν and µ:

ν(µ) = fx(0, µ)− 1 = fxµ(0, 0)µ+
1

2
fxµµ(0, 0)µ

2 +O(µ3). (4.8)

The second equation also needs to be satisfied, and this is where the new normal form
parameter a comes in. Let

D(a, µ) = d1(ν(µ), a)−D1(µ) =

(

af 2
xµ −

2fxxxf
2
xµ

3f 2
xx

)
∣

∣

∣

∣

(0,0)

µ2 +O(µ3),
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so multipliers at the non-trivial fixed points are equal if D(a, µ) = 0. The Implicit Function
Theorem cannot be applied to this equation directly so we use the standard trick and consider
the zeros of

G(a, µ) =

{

D(a,µ)
µ2 µ 6= 0

1
2
∂2D
∂µ2 (a, 0) µ = 0.

This is now is well-defined locally and Cr−3 with

∂G

∂µ
(a, 0) =

1

6

∂3D

∂µ3
(a, 0).

The function G is amenable to a standard application of the Implicit Function Theorem
provided we choose a(0) = a0 such that G(a0, 0) = 0 and ensure G is at least C1, i.e. r ≥ 4.
This implies

a0 =
2f 2

xxx

3f 2
xx

∣

∣

∣

∣

(0,0)

, (4.9)

and since
∂G

∂a
(a0, 0) = fxµ(0, 0)

2 6= 0,

the Implicit Function Theorem guarantees a unique branch of Cr−3 solutions transversely
through (a0, 0).

4.4 Step 4: differentiable conjugacies

If µ = 0 then the map f is x 7→ x + 1
2
fxxx

2 + O(x3) and so it is differentiably conjugate to
x 7→ x+ x2 (the normal form (3.5) with ν = 0) by Theorem 2.4 [10, 14, 16, 18]. This is the
source of the common view of normal form theory: the non-hyperbolic cases, having only
one fixed point, are smoothly conjugate to the normal form on an open neighbourhood of
the fixed point; there is no need for conjugacies on different subsets of the neighbourhood.

Suppose all the conditions described hold. If µ > 0 then there is a neighbourhood N of
x = 0 such that if µ ∈ (−µ0, µ0)\{0} there are two fixed points x1 < x2 in N . Similarly there
a neighbourhood W of y = 0 such that the modified normal form has corresponding fixed
points y1 < y2 in W if ν 6= 0. Moreover there are Cr−3 functions ν(µ) and a(µ) such that by
Belitskii’s Theorem (Theorem 2.2) for each µ locally there is a Cr−1-conjugacy between the
two maps at corresponding values of µ and ν on N ∩ {x < x2} and N ∩ {x > x1}; these sets
are the basins of attraction and repulsion of the fixed points in N .

Remark: Although the differentiable conjugacy is on two intervals if µ 6= 0, rather than
one for the non-hyperbolic case µ = 0, it can be smoother on its domain of definition. There
are obstructions to making the local differentiable conjugacy C2 in the non-hyperbolic case
which are not present in the hyperbolic cases [18].

It could be argued that the expressions here are complicated by the fact that we chose to
have a coefficient of unity on the x2-term of the normal form. This does indeed complicate
the calculation of the connection between the two maps, but retains the simplicity of the
normal form as far as possible and we prefer not to add further constants into the normal
form.
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5 The saddle-node bifurcation

In this section we provide an alternative approach to the saddle-node bifurcation theorem.
This relies on the standard approach to the existence of fixed points using the Implicit
Function Theorem (IFT) but then uses the results of §2 to create a differentiable conjugacy
on different neighbourhoods of the bifurcation point.

Suppose
xn+1 = f(xn, µ), f(0, 0) = 0, fx(0, 0) = 1, (5.1)

where f is Cr with r ≥ 4. If fµ(0, 0) and fxx(0, 0) are both non-zero, the standard genericity
conditions for the saddle-node bifurcation, then by a change of the sign of x and µ where
necessary we may assume that

fxx(0, 0) < 0, fµ(0, 0) > 0. (5.2)

5.1 Step 1: the standard skeleton

We start with a standard result regarding the fixed points of f , though usually the Implicit
Function Theorem is used to obtain µ(x) instead of x(µ). See Appendix D for the full
calculation.

Lemma 5.1. Consider (5.1) satisfying (5.2). There is a neighbourhood N0 of (0, 0) such that
for (x, µ) ∈ N0 the only fixed points of (5.1) are two branches in µ ≥ 0 which can be written
as functions of m ≥ 0, m2 = µ, with, for k ∈ {1, 2},

xk(m) = (−1)k

√

−2fµ
fxx

∣

∣

∣

∣

∣

(0,0)

m+

(

fµfxxx − 3fxµfxx
3f 2

xx

)
∣

∣

∣

∣

(0,0)

m2 +O(m3). (5.3)

Moreover, their multipliers are

fx(xk(m), m2) = 1 + (−1)k+1
√

−2fµfxx
∣

∣

(0,0)
m− 2

3

fµfxxx

fxx

∣

∣

∣

∣

(0,0)

m2 +O(m3). (5.4)

5.2 Step 2: fixed points of the normal form

The normal form (3.1) has

g(0, 0) = 0, gy(0, 0) = 1, gν(0, 0) = 1, gyy(0, 0) = −2, gyyy(0, 0) = 6a.

So applying the results of the previous section we have for ν = n2, n ≥ 0, fixed points

yk(n) = (−1)kn +
1

2
an2 +O(n3),

for k ∈ {1, 2}. Moreover from (5.4) their multipliers are

gy(yk(n), n
2) = 1 + (−1)k+12n+ 2an2 +O(n3). (5.5)
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5.3 Step 3: multiplier equivalence

The two equations that equate the multipliers of the corresponding fixed points of f and g

are
fx(xk(m), m2) = gy(yk(n), n

2), k = 1, 2.

We wish to solve these equations to obtain n = n(m) and a = a(m). However, the Implicit
Function Theorem cannot be applied directly to these equations as the first derivatives vanish,
so we use a standard trick (e.g. [9]) and set n(m) = mp(m). Let

Kk(a, p,m) = gy
(

yk(pm), (pm)2
)

− fx(xk(m), m2), k = 1, 2.

Then our problem is to solve these equations for solutions a(m) and p(m). Yet the Implicit
Function Theorem cannot be applied directly to the equations K1 = 0 and K2 = 0, as these
have a similar structure, so we instead consider the combination K1 = 0 and K1 +K2 = 0.
Set

P (a, p,m) =

{

K1(a,p,m)
m

if m 6= 0,
∂K1

∂m
(a, p,m) if m = 0.

Then from (5.4) and (5.5)

P (a, p,m) = 2p−
√

−2fµfxx
∣

∣

(0,0)
+

(

2ap2 +
2fµfxxx
3fxx

)
∣

∣

∣

∣

(0,0)

m+O(m2).

Thus P (a, p0, 0) = 0 if p(0) = p0 with

p0 =
1

2

√

−2fµfxx
∣

∣

(0,0)
6= 0. (5.6)

Similarly write

4Q(a, p,m) =

{

K1+K2

m2 if m 6= 0,
1
2

∂2

∂m2 (K1 +K2) if m = 0.

From (5.4) and (5.5),

Q(a, p,m) = ap2 +
fµfxxx

3fxx

∣

∣

∣

∣

(0,0)

+O(m),

and so Q(a0, p0, 0) = 0 if

a0 = − 1

p20

(

fµfxxx

3fxx

)
∣

∣

∣

∣

(0,0)

=
2fxxx
3f 2

xx

∣

∣

∣

∣

(0,0)

. (5.7)

We now look for solutions to the pair P (a, p,m) = 0 and Q(a, p,m) = 0 through (a0, p0).
This pair is at least C1 because K1 and K2 are Cr−1, so P and Q are Cr−2 and Cr−3

respectively, and by assumption r ≥ 4. For the matrix of partial derivatives,

det

([

∂P
∂a

∂P
∂p

∂Q

∂a

∂Q

∂p

])

= −2p20 6= 0,

so the Implicit Function Theorem can indeed be applied resulting in unique local Cr−3 solu-
tions a(m) and p(m) with a(0) = a0 and p(0) = p0.
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5.4 Step 4: differentiable conjugacies

The previous subsections establish the conditions that allow Belitskii’s Theorem (Theo-
rem 2.2) to be applied directly to give the following corollary if µ > 0.

Corollary 5.2. There exist X0 > 0 and M0 > 0 such that if 0 < µ < M0 and x ∈ [−X0, X0]
then the map xn+1 = f(xn, µ) with f being Cr, r ≥ 4, satisfying (5.1) and (5.2) has a stable
fixed point x1(µ) and an unstable fixed point x2(µ) in [−X0, X0]. Moreover there exists a
Cr−2 change of parameter ν(µ) and a Cr−2 function a(µ) such that the map is differentiably
conjugate to yn+1 = ν(µ) + yn − y2n + a(µ)y3n on the basin of attraction of x1 in [−X0, X0]
and the basin of attraction of the corresponding fixed point of the normal form on a suitably
chosen interval [−Y0, Y0], and another differentiable conjugacy on the basin of repulsion of
x2.

Now we need to consider the case µ < 0. The issue here is the number of iterates the
right hand end-point of the neighbourhood of x = 0 takes to leave the neighbourhood.

Lemma 5.3. Suppose that the conditions on f of Corollary 5.2 hold. Then there exist
X0 > 0, N > 0 and M1 > 0 such that fN(X0,−M1) = −X0 and there exists a unique
increasing sequence µn ∈ (−M1, 0) such that fn(X0, µn) = −X0 with µn → 0 as n → ∞. Let
Y0, V1 and νn be equivalent quantities for the normal form map (3.1). Then there exists a C∞

function ν : [−M1, 0) → [−V1, 0) with ν(µn) = νn for all n > N such that the normal form
with a(µ) = a0 defined by (5.7) on [−Y0, Y0] is differentiably conjugate to f on [−X0, X0].

Proof. First note thatX0 andM1 can be chosen so that fµ(x, µ) and fx(x, µ) are both positive
and f(x, µ) < x for all (x, µ) ∈ [−X0, X0]× [−M1, 0). Thus by the mean value theorem

f(x, µ̃1) < f(x, µ̃2) if µ̃1 < µ̃2;
f(x1, µ) < f(x2, µ) if x1 < x2; and so
fn(x, µ̃1) < fn(x, µ̃2) if µ̃1 < µ̃2, n ≥ 1.

(5.8)

These imply that there exists N > 0 such that fN(X0,−M1) ≤ −X1. If the inequality is
strict, then fN(X0, 0) > 0 and the intermediate value theorem imply that there exists µN >

−M1 such that fN(X0, µN) = −X0. Redefining M1 by µN = −M1 implies that the statement
about M1 is true. The existence of the values µn, n > N follow by a similar argument,
using the intermediate value theorem inductively to show that fn+1(X0, µn) < −X0 and
fn+1(X0, 0) > 0 > −X0 implies that there exists µn+1 > µn such that fn+1(X0, µn+1) = −X0.
The uniqueness follows from the third inequality of (5.8).

Of course, the analogous statements hold equally for the saddle-node normal form map
on [−Y0, Y0], so for each µ ∈ (µn, µn+1) the map is differentiably conjugate to the saddle-node
map for any ν ∈ (νn, νn+1) using the construction of the sketch proof of Theorem 2.3 with
initial intervals (f(X0), X0) and (g(Y0), Y0).

Now let ν : [−M1, 0) → [−V1, 0) be any C∞ function such that ν(µn) = νn and note that
limµ↑0 ν(µ) = 0. For each µ in [−M1, 0) the map f is differentiably conjugate to the normal
form with parameters ν(µ) and a0.

If µ = 0 then the map is differentiably conjugate to the normal form map by standard
results for non-hyperbolic fixed points, Theorem 2.4.
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6 The pitchfork bifurcation

As in the case of the transcritical bifurcation we make the simplifying assumption (3.4) that
x = 0 is a fixed point of f for all sufficiently small values of µ. This enables us to write

xn+1 = f(xn, µ) = xn + xnK(xn, µ) (6.1)

with
K(0, 0) = Kx(0, 0) = 0, Kµ(0, 0) > 0, Kxx(0, 0) < 0. (6.2)

These are equivalent to the constraints (3.9) on f and assume a change in the sign of µ
has possibly been applied. (Note the analysis for the subcritical pitchfork bifurcation is
essentially the same, but in that case fxµfxxx > 0.)

6.1 Step 1: the standard skeleton

Fixed points of (6.1) are x = 0 and solutions to K(x, µ) = 0. The function K(x, µ) satisfies
the same conditions as f(x, µ)− x in the saddle-node bifurcation setting except has one less
degree of differentiability. So for µ > 0 we set µ = m2 and in Lemma 5.1 replace derivatives
of f with those of K to obtain Cr−2 non-trivial fixed points

xk(m) = (−1)k
√

−2Kµ

Kxx

∣

∣

∣

∣

∣

(0,0)

m+

(

KµKxxx − 3KxµKxx

3K2
xx

)
∣

∣

∣

∣

(0,0)

m2 +O(m3), (6.3)

for k ∈ {1, 2}. The cubic term in (6.3) will be needed below and a derivation of its coefficient
is outlined in Appendix E. The multiplier of the trivial fixed point x = 0 is

fx(0, µ) = 1 +K(0, µ) = 1 + fxµ(0, 0)µ+
1

2
fxµµ(0, 0)µ

2 +O(µ3). (6.4)

Similarly the multipliers of xk(m) are

fx(xk(m), m2) = 1 + xk(m)Kx(xk(m), m2),

since K(xk(m), m2) is identically zero by definition. By using (6.3) and re-expressing the
multipliers in terms of the derivatives of f ,

fx(xk(m), m2) = 1− 2fxµ(0, 0)m
2 + (−1)kBm3 + Cm4 +O(m5), (6.5)

where

B =

√

−3fµx
8f 3

xxx

(fxµfxxxx + 2fxxxfxxµ)
∣

∣

∣

(0,0)
, (6.6)

and C is a function of the derivatives of f given in Appendix E.
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6.2 Step 2: fixed points of the normal form

The corresponding normal form g, given by (3.8), has trivial fixed point y = 0 with multiplier

gy(0, ν) = 1 + ν. (6.7)

For the non-trivial fixed points of g, we assume ν > 0 and set ν = n2, then apply the formula
(6.3) to g to obtain

yk(n) = (−1)kn+
b

2
n2 +O(n3). (6.8)

It should not come as a surprise that we need coefficents on two nonlinear terms. This is
because there are three fixed points if ν > 0 and so three multipliers need to be matched.
We achieve this by solving for ν, a, and b in the matching equations. Possibly the surprising
choice for our normal form is y5n rather than say y4n. This is because if a y4n term is included
then the equations for the coefficients at µ = 0 are quadratic rather than linear. By separating
out the orders of the terms in the normal form we can solve for b0 at order m

3 and then for a0
at m4 without needing to solve nonlinear equations. This does mean however that the fixed
points need to be computed to third order. As mentioned above this calculation is outlined
in Appendix E. The result for the normal form is

yk(n) = (−1)kn+
b

2
n2 + (−1)k

1

8
(4a+ b2)n3 +O(n4), (6.9)

and the multipliers are

gy(yk(n), n
2) = 1− 2n2 + (−1)k+1bn3 +

1

2
(4a− b2)n4 +O(n5). (6.10)

6.3 Step 3: multiplier equivalence

Equating the multipliers (6.4) and (6.7) of the trivial fixed points gives a simple relationship
for ν as function of µ:

ν = K(0, µ) = fxµ(0, 0)µ+
1

2
fxµµ(0, 0)µ

2 +O(µ3). (6.11)

By substituting this into (6.10) we eliminate n so now the multipliers of the non-trivial fixed
points of g are

Dk(a, b,m) = 1− 2fxµ(0, 0)m
2 + (−1)k+1bfxµ(0, 0)

3
2m3

+

(

1

2
(4a− b2)fxµ(0, 0)

2 − fxµµ(0, 0)

)

m4 +O(m5). (6.12)

To equate the multipliers at corresponding fixed points we match (6.5) and (6.12) for each
k ∈ {1, 2}. That is, we seek zeros of

Jk(a, b,m) = Dk(a, b,m)− fx(xk(m), m2)

= (−1)k+1
(

bfxµ(0, 0)
3
2 +B

)

m3

+

(

1

2
(4a− b2)fxµ(0, 0)

2 − fxµµ(0, 0)− C

)

m4 +O(m5), (6.13)
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for k ∈ {1, 2}. To use the Implicit Function Theorem we will adopt the strategy in §5 and
define

R(a, p,m) =

{

J1
m3 if m 6= 0,
1
3!

∂3J1
∂m3 if m = 0,

and

S(a, p,m) =

{

J1+J2
m4 if m 6= 0,

1
4!

∂4

∂m4 (J1 + J2) if m = 0.

By (6.13),

R(a, b,m) = bfxµ(0, 0)
3
2 −B +O(m),

S(a, b,m) = (4a− b2)fxµ(0, 0)
2 − 2fxµµ(0, 0)− 2C +O(m),

(6.14)

and these are Cr−5 and Cr−6 respectively because (6.3) is Cr−2. We can solve R(a0, b0, 0) =
S(a0, b0, 0) = 0 for a0 and b0 by using (6.14) and our formulas for B (6.6) and C (given in
Appendix E). The result is that a0 and b0 are given by the values in (3.10). At (a0, b0, 0),

det

([

∂R
∂a

∂R
∂b

∂Q

∂a

∂Q

∂b

])

= −4fxµ(0, 0)
7
2 6= 0,

so by the Implicit Function Theorem there exist locally unique Cr−6 functions a(m) and b(m)
with a(0) = a0 and b(0) = b0 such that if µ > 0 then R(a(m), b(m), m) = S(a(m), b(m), m) =
0. With this the corresponding fixed points of f and g have the same multipliers for suffi-
ciently small values of µ > 0.

6.4 Step 4: differentiable conjugacies

Since the multipliers are the same, the µ > 0 part of Theorem 3.3 follows from Theorem 2.2.
For µ < 0 we only need to impose (6.11) to match the multipliers of the trivial fixed points
and this case too follows from Theorem 2.2. Finally the µ = 0 part of Theorem 3.3 follows
from Theorem 2.4 with p = 3.

7 The period-doubling bifurcation

Period-doubling bifurcations occur as a multiplier of a fixed point (possibly of an iterate
of a map) passes through −1, so restricted to the one-dimensional centre manifold we have
a decreasing map. The only periodic orbits of a decreasing map have periods one or two,
and there is at most one fixed point. Within an open interval that maps into itself there is
precisely one fixed point.

If f is a decreasing map with a fixed point, then f 2 is an increasing map and so the results
of §2 can be applied to the second iterate. Monotonicity implies that fixed points of f 2 which
are not fixed points of f come in pairs which are images of each other under f , and if there
are n hyperbolic orbits of period two then these are ordered so that

z−n < · · · < z−1 < z0 < z1 < · · · < zn
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with f(z−k) = zk, k = −n, . . . , n. As in §2 we write z−(n+1) = −∞, zn+1 = ∞, and
Uk = (zk−1, zk+1), k = −n, . . . , n. The monotonic nature of f implies that f(U0) = U0,
f(Uk) = U−k, 0 < |k| < n, and f(U−(n+1)) ⊆ Un+1 and f(Un+1) ⊆ U−(n+1). Belitskii’s
Theorem (Theorem 2.2) implies that for any two maps f and g with the same structure
of periodic points, multipliers of f 2 at the periodic points and sign of f 2(x) − x on each
corresponding interval Uk, the second iterates f 2 and g2 are smoothly conjugate on Uk.
The first question for the period-doubling bifurcation is therefore to determine whether a
differentiable conjugacy between f 2 and g2 implies a differentiable conjugacy between f and
g. This question has been answered in detail in [13] for more general maps allowing the fixed
points of f 2 to be non-hyperbolic (and even non-isolated).

We will start with some preliminary remarks. First note that if f 2 and g2 are differentiably
conjugate on some domains then

f 2 = h−1 ◦ g2 ◦ h = h−1 ◦ g ◦ (h ◦ h−1) ◦ g ◦ h = (h−1 ◦ g ◦ h)2

in other words f 2 = w2 where w = h−1 ◦ g ◦ h is differentiably conjugate to g. This function
w can be used to show that g and f are differentiably conjugate.

Theorem 7.1. Suppose that f and g are Cr strictly decreasing functions, r ≥ 1, and f 2 and
g2 satisfy the conditions of Theorem 2.2. Let Uk be the intervals (zk−1, zk+1) defined above and
Vk the corresponding intervals for g. Then if 1 ≤ k ≤ n there exists ĥ : U−k ∪Uk → V−k ∪ Vk

which is Cr on each component such that ĥ ◦ f = g ◦ ĥ, i.e. f and g are Cr conjugate on
corresponding pairs of intervals. Moreover, f and g are also Cr conjugate on U0.

Proof. Fix k > 0. Let h : U−k ∪ Uk → V−k ∪ Vk be the Cr conjugacy between f 2 and g2 of
Belitskii’s Theorem (Theorem 2.2) and let w = h−1 ◦ g ◦ h. Then, as noted above, f 2 = w2.
Define h1 : U−k ∪ Uk → U−k ∪ Uk by

h1(x) = x, x ∈ Uk, h1(x) = w ◦ f−1(x), x ∈ U−k.

Note that f−1 : U−k → Uk and w : Uk → U−k so h1(Uk) = Uk and h1(U−k) = U−k. Then
since f(x) ∈ U−k if x ∈ Uk and f(x) ∈ Uk if x ∈ U−k (k > 0) then

if x ∈ U−k then h1 ◦ f(x) = f(x) ∈ Uk, and

if x ∈ Uk then h1 ◦ f(x) = w ◦ f−1 ◦ f(x) = w(x) ∈ U−k.

Similarly (remember k > 0)

if x ∈ Uk then w ◦ h1(x) = w(x) ∈ U−k, and

if x ∈ U−k then w ◦ h1(x) = w2 ◦ f−1(x) = f 2 ◦ f−1(x) = f(x) ∈ Uk.

Hence w ◦ h1 = h1 ◦ f . Thus f is Cr conjugate to w which is Cr conjugate to g.
In the case of the remaining interval, W0 which contains the fixed point z0 of f there

is an added complication: the conjugating function h1 is defined on W0 ∩ {x ≥ z0} and
W0 ∩ {x < z0} but the Cr differentiability needs to extend to the point z0 itself. This
involves a further technicality described in detail in [13]: the functions x and w ◦ f−1 to be
equal up to Cr terms at the origin, which is enough to imply that f and w are Cr conjugate.
Details of this part of the proof can be found in [13] and we will not go through the argument
here.
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Having established the foundations of decreasing maps, we can move on to the period-
doubling bifurcation. As above we assume x = 0 is a fixed point for all small µ (3.4). This
allows us to write

xn+1 = f(xn, µ) = −xn + xnP (xn, µ). (7.1)

For a period-doubling bifurcation we require

fx(0, 0) = −1,
(

3f 2
xx + 2fxxx

)
∣

∣

(0,0)
6= 0, fxµ(0, 0) 6= 0. (7.2)

We shall choose to work with maps f giving a supercritical period-doubling bifurcation and
non-trivial fixed points existing for µ > 0 which means

(

3f 2
xx + 2fxxx

)
∣

∣

(0,0)
> 0, fxµ(0, 0) < 0, (7.3)

as in (3.12). As with the pitchfork bifurcation, the subcritical case can be treated almost
identically.

7.1 Step 1: the standard skeleton

The trivial fixed point x = 0 has multiplier

fx(0, µ) = −1 + fxµ(0, 0)µ+
1

2
fxµµ(0, 0)µ

2 +O(µ3). (7.4)

The second iterate f 2 is increasing, at least locally. From (7.1) we can write

xn+2 = xn + xnG(xn, µ),

where
G(x, µ) = −P (x, µ) + (−1 + P (x, µ))P

(

− x+ xP (x, µ), µ
)

.

From this formula we find that

Gxx(0, 0) = −1

3

(

3f 2
xx + 2fxxx

)
∣

∣

(0,0)
< 0,

Gµ(0, 0) = −2fxµ(0, 0) > 0.
(7.5)

Non-trivial fixed points of f 2 (these are period-two points of f) satisfy G(x, µ) = 0. In
view of (7.5) the problem of solving for these fixed points is the same as in the pitchfork
case. Thus f 2 for µ > 0 has non-trivial fixed points xk(m), for k ∈ {1, 2} and with µ = m2,
given by (6.3), but with G instead of K.

The subsequent manipulations are now equivalent to those of §6 although there are some
interesting aspects of the iterated map in terms of dependence on µ rather than m =

√
µ.

These are described in Appendix F.
In particular the points x1(m) and x2(m) have the same multiplier because they form

a period-two solution for f . For brevity we denote this multiplier D(m). This is a Cr−2

function of m with first few terms

D(m) = 1 + 4fxµ(0, 0)m
2 +Mm4 +O(m5), (7.6)

where a formula for M is given in Appendix F.
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7.2 Step 2: periodic orbits of the normal form

The normal form (3.11) has trivial fixed point y = 0 with multiplier

gy(0, ν) = −1− ν. (7.7)

The second iterate g2 is close to the normal form of the (supercritical) pitchfork bifurcation.
For ν > 0 it has two non-trivial fixed points yk(n), for k ∈ {1, 2} and with ν = n2. By
applying the general formula (7.6) to the normal form we find that the multiplier of each
yk(n), write it as d(a, n), is

d(a, n) = 1− 4n2 + 4(1− a)n4 +O(n5). (7.8)

7.3 Step 3: multiplier equivalence

By equating the multipliers (7.4) and (7.7) of the trivial fixed points of f and g, we obtain
ν as a function of µ with

ν = −fxµ(0, 0)µ− 1

2
fxµµ(0, 0)µ

2 +O(µ3), (7.9)

and recall fxµ(0, 0) < 0 by assumption.
Next we equate the multipliers of the non-trivial fixed points of f 2 and g2. Already

n = n(m) via (7.9), so our task is to solve V (a,m) = d(a, n(m))−D(m) for a in terms of m.
By subtracting (7.8) from (7.6) and using (7.9),

V (a,m) =
(

4(1− a)fxµ(0, 0)
2 + 2fxµµ(0, 0)−M

)

m4 +O(m5).

Thus we define

W (a,m) =

{

V (a,m)
m4 if m 6= 0,

1
4!

∂4V
∂m4 if m = 0.

This function is Cr−6 and W (a0, 0) = 0 if

a0 = 1 +
2fxµµ(0, 0)−M

4fxµ(0, 0)2
. (7.10)

Since ∂W
∂a

(a0, 0) = −4fxµ(0, 0)
2 6= 0 and r ≥ 7, the Implicit Function Theorem implies the

existence of a unique Cr−6 function a(m), with a(0) = a0, such that W (a(m), m) = 0 for all
sufficiently small values of m.

7.4 Step 4: differentiable conjugacies

We can now complete the proof of Theorem 3.4. For µ > 0 we have identified functions ν(µ)
and a(m) (which can be reinterpreted as a function of µ) such that, locally, the fixed points
of f 2 and g2 have the same multipliers. Thus there is a differentiable conjugacy with the
dynamics on the interval with the origin removed, and on the interval between the points of
period two by Belitskii’s Theorem (Theorem 2.2) and Theorem 7.1. Moreover, the formulas
(3.13) follow from (7.9) and (7.10) where M is given in Appendix F.

If µ < 0 there is a local differentiable conjugacy between f and g by Sternberg’s Theorem
and the extension of Taken’s Theorem to the decreasing case.
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8 Conclusion

In this paper we have shown how the reasonable expectation that truncated normal forms
provide information that is more than simply topological is realised. By introducing one or
two extra terms in the most simple ‘normal forms’ (Table 1) we have shown that the resulting
maps are typically locally differentiably conjugate to the general maps under consideration.
These additional terms and their coefficients satisfy simple equations which mean that they
can be calculated explicitly (at least from a numerical point of view). This amounts to a
differentiable conjugacy on basins of attraction and repulsion, so the different invariant re-
gions have their own differentiable conjugacies. Global differentiable conjugacies are unusual
because of the multiple conditions on multipliers that need to hold (see [7] for an interesting
example), so the reduction to local conjugacies is natural.

A calculation of the coefficients of the new terms we have introduced in practical problems
should give some sense of how far the map is from the standard truncated normal forms of
the literature, and hence they provide additional information about how close the bifurcation
behaves to that of the standard form. A similar analysis is possible in the continuous time
case, and we will report on this separately [6].

The differentiably conjugate normal forms we consider are not unique. We have chosen
the standard truncated normal forms to have coefficients which are as simple as possible; we
could have chosen coefficients that meant they were as close as possible to the Taylor series of
the general system, though this adds extra special coefficients to the normal forms. Equally,
there is an element of choice about the additional terms used.

Our belief is that the calculation of these higher order coefficients and their dependency
on parameters should become a natural part of investigating important bifurcations; they
give a more nuanced description of the dynamics than topological equivalence used hitherto.
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A Sketch proof of Belitskii’s Theorem

Sternberg [15] proves that for every hyperbolic fixed point xk of f there exists a neighbour-
hood U of xk and a neighbourhood V of 0 such that f on U is differentiably conjugate to
the linear map λx on V where λ = f ′(xk) 6= 1. Belitskii [2] uses a slight generalization of the
push-forward argument of the previous theorem to extend this to a diffeomorphism on the
whole of Uk = (xk−1, xk+1).

Fix k and suppose f(x) − x > 0 on (xk, xk+1), so xk is unstable and orbits are strictly
increasing in (xk, xk+1). Suppose a ∈ U ∩ (xk, xk+1), so f−1(a) ∈ U ∩ (xk, xk+1) but f(a) may
not be in U ∩ (xk, xk+1). By the definition of U , h is continuously differentiable at a and we
will extend h to (a, f(a)) by defining

h(x) =
(

g ◦ h ◦ f−1
)

(x), x ∈ (a, f(a)).
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Thus for x ∈ (a, f(a))

h′(x) =
g′(h(f−1(x)))h′(f−1(x))

f ′(f−1(x))
, (A.1)

and

lim
x↓a

h′(x) =
g′(h(f−1(a))h′(f−1(a))

f ′(f−1(a))
. (A.2)

But in (f−1(a), a), h ◦ f = g ◦ h and h is differentiable as it is in U , so

h′(f(x))f ′(x) = g′(h(x))h′(x),

and so to evaluate the limit of h′(a) from below we consider the limit of this equation with
x → f−1(a) from below, giving the same expression as the right hand side of (A.2). Hence h is
differentiable at a and is differentiable by construction on (a, f(a)). Thus the neighbourhood
on which h is a diffeomorphism can be extended out to the open interval with upper limit f(a).
The same argument on (f(a), f 2(a)) shows that h can be extended as a diffeomporphism to
an open interval with upper bound f 2(a), and then by induction to the open interval with
upper bound limi→∞ f i(a) = xk+1.

The argument if f(x)− x < 0 and on the interval (xk−1, xk) is analogous.
�

Note that in general the differentiable conjugacy cannot be extended beyond Uk. This is
because the convergence rates of iterates of λx (or its inverse) do not generally match the
convergence rates of other fixed points of the map when these exist. Belitskii and others (see
[13]) have developed invariants which determine whether the conjugacies can be extended to
include more fixed points, but since these conditions are not generic we will not pursue this
possibility. Theorem 2.2 does not deal with the case in which there are no fixed points.

B Calculations for the Transcritical Bifurcation

Here we derive formulas for the fixed points of f and their multipliers in the transcritical
bifurcation case. This is done by directly manipulating power series. In the next section we
illustrate how the calculations can instead be done by implicit differentiation.

We write the map as f(x, µ) = x+ xH(x, µ) where

H(x, µ) = c1x+ c2µ+ c3x
2 + c4µx+ c5µ

2 +O
(

(|x|+ |µ|)3
)

, (B.1)

with c1 < 0 and c2 > 0. In terms of the derivatives of f ,

c1 =
1

2
fxx(0, 0), c2 = fxµ(0, 0), c3 =

1

6
fxxx(0, 0),

and so on. Fixed points are x = 0 and x(µ) solving H(x(µ), µ) = 0. Since H is Cr−1 and
c1 6= 0, the Implicit Function Theorem guarantees a unique local Cr−1 solution

x(µ) = −c2

c1
µ+

(

−c22c3

c31
+

c2c4

c21
− c5

c1

)

µ2 +O(µ3), (B.2)
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where the coefficients are obtained by matching terms in a power series. In terms of f the
coefficients are,

−c2

c1
= −2fxµ

fxx

∣

∣

∣

∣

(0,0)

and

−c22c3

c31
+

c2c4

c21
− c5

c1
= − 1

3f 3
xx

(

4fxxxf
2
xµ − 6fxxµfxµfxx + 3fxµµf

2
xx

)

∣

∣

∣

(0,0)
.

The derivative of the map is

fx(x, µ) = 1 +H(x, µ) + xHx(x, µ)

= 1 + 2c1x+ c2µ+ 3c3x
2 + 2c4µx+ c5µ

2 +O
(

(|x|+ |µ|)3
)

. (B.3)

We evaluate this at the fixed points to obtain

fx(0, µ) = 1 + c2µ+ c5µ
2 +O(µ3), (B.4)

fx(x(µ), µ) = 1− c2µ+

(

c22c3

c21
− c5

)

µ2 +O(µ3). (B.5)

Once again we can write these in terms of f and its derivatives:

fx(0, µ) = 1 + fxµ(0, 0)µ+
1

2
fxµµ(0, 0)µ

2 +O(µ3), (B.6)

fx(x(µ), µ) = 1− fxµ(0, 0)µ+

(

2f 2
xµfxxx

3f 2
xx

− 1

2
fxµµ

)
∣

∣

∣

∣

(0,0)

µ2 +O(µ3). (B.7)

C Transcritical Bifurcation: implicit differentiation

Since many textbooks use implict differentiation to determine coefficients of expansions in
bifurcation problems, for comparison here we repeat the first steps of the analysis of the
transcritical bifurcation using this method.

Assume there exists a solution x(µ) to f(x, µ)− x = 0. By differentiating this equation
with respect to µ we obtain

fxx
′ + fµ − x′ = 0.

At the origin fx(0, 0) = 1 and fµ(0, 0) = 0 so this equation is automatically satisfied. Differ-
entiating again gives

fxxx
′ 2 + 2fxµx

′ + fxx
′′ + fµµ − x′′ = 0,

and evaluating at µ = 0 (giving fµµ(0, 0) = 0 because the origin is constrained to be a fixed
point), either

x′(0) = 0 or x′(0) = −2fxµ
fxx

∣

∣

∣

∣

(0,0)

.

The first possibility is the value for the trivial fixed point, the second describes x′(0) for the
nontrivial fixed point and matches the coefficient of µ given in the previous section. Finally,
differentiating again gives

fxxxx
′ 3 + 3fxxµx

′ 2 + 3fxxx
′x′′ + 3fxµµx

′ + 3fxµx
′′ + fµµµ + fxx

′′′ − x′′′ = 0.
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By substituting the expression for x′(0) into this equation and noting that fµµµ(0, 0) = 0 we
recover the second coefficient given above.

Calculations of the multipliers can be achieved in the same way.

D Calculations for the Saddle-node Bifurcation

We write the map as f(x, µ) = x+H(x, µ) where

H(x, µ) = c2µ+ c3x
2 + c4µx+ c5µ

2 + c6x
3 + · · · , (D.1)

with c2 = fµ(0, 0) > 0 and c3 =
1
2
fxx(0, 0) < 0. To find fixed points of f we solve H(x, µ) = 0.

Since c2 6= 0 the Implicit Function Theorem could immediately be used to solve H = 0 for
µ. But we wish to solve for x, and this requires a little more work.

We first assume µ ≥ 0 and write µ = m2. Then write x = mz and define

G(z,m) =

{

H(mz,m2)
m2 , m 6= 0,

1
2

∂2

∂m2H(mz,m2), m = 0.

Since H is Cr, this function is Cr−2 and using (D.1) we obtain

G(z,m) = c2 + c3z
2 + c4zm+ c6z

3m+O(m2). (D.2)

Since c3 6= 0 the Implicit Function Theorem can be applied to obtain z = z(m) solving
G(z,m) = 0 provided we choose z(0) = z0 such that G(z0, 0) = 0. There are two choices,

z0 = ±
√

−c2
c3

, and with either z(m) is Cr−2.

By multiplying each z(m) by m we obtain the desired fixed points, call them x1(m) and
x2(m). These are Cr−1 and by using (D.2) and matching terms of power series we readily
arrive at

xk(m) = (−1)k
√

−c2

c3
m+

c2c6 − c3c4

2c23
m2 +O(m3), (D.3)

for k ∈ {1, 2}. By substituting c4 = fµx(0, 0) and c6 =
1
6
fxxx(0, 0) (also c2 and c3 given above)

we obtain the expression for xk(m) given in the main article.
By (D.1), the derivative of the map is

fx(x,m
2) = 1 + 2c3x+ c4m

2 + 3c6x
2 +O

(

(|x|+ |m|)3
)

, (D.4)

and by substituting (D.3)

fx(xk(m), m2) = 1 + 2(−1)k+1
√
−c2c3m− 2c2c6

c3
m2 +O(m3). (D.5)
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E Calculations for the Pitchfork Bifurcation

The map is f(x, µ) = x+ xK(x, µ) and we write

K(x, µ) = c2µ+ c3x
2 + c4µx+ c5µ

2 + c6x
3 + c7µx

2 + c8x
4 + · · · , (E.1)

with c2 = fxµ(0, 0) > 0 and c3 = 1
6
fxxx(0, 0) < 0. In (E.1) we have included only the terms

that are fourth order or lower in x and m, where µ = m2.
The trivial fixed point is x = 0; the non-trivial fixed points, valid for small µ > 0, are

xk(m), k ∈ {1, 2}, satisfying K(xk(m), m2) = 0. This last equation is identical to that in the
saddle-node case, so by importing (D.3) we have

xk(m) = (−1)k
√

−c2

c3
m+

c2c6 − c3c4

2c23
m2 + (−1)kLm3 +O(m4), (E.2)

for some L ∈ R. For the pitchfork case we unfortunately need a formula for L, so substitute
(E.2) into K(xk(m), m2) to obtain

K(xk(m), m2) =

[

2(−1)kc3

√

−c2

c3
L+

(c2c6 − c3c4)
2

4c33
+

c2c4c6 − c3c
2
4

2c23

+ c5 −
3c2c6(c2c6 − c3c4)

2c33
− c2c7

c3
+

c22c8

c23

]

m4 +O(m5). (E.3)

We then set the m4 coefficient to zero to obtain

L =
1

2
√−c2c3

[

−5c22c
2
6

4c23
+

3c2c4c6
2c23

− c24
4c3

+ c5 −
c2c7

c3
+

c22c8

c23

]

.

We now evaluate the multipliers of the fixed points. The derivative of the map is

fx(x,m
2) = 1 +K(x,m2) + xKx(x,m

2)

= 1 + c2m
2 + 3c3x

2 + 2c4m
2x+ c5m

4 + 4c6x
3 + 3c7m

2x2 + 5c8x
4

+O
(

(|x|+ |m|)5
)

.

We evaluate this at the fixed points to obtain (after simplification involving substituting in
the above formula for L):

fx(0, m
2) = 1 + c2m

2 + c5m
4 +O(m5), (E.4)

fx(xk(m), m2) = 1− 2c2m
2 + (−1)kBm3 + Cm4 +O(m5), (E.5)

where

B =

√−c2

c33
(c2c6 + c3c4), (E.6)

C = −3c22c
2
6

2c33
+

c2c4c6

c23
+

c24
2c3

− 2c5 +
2c22c10
c23

. (E.7)

These are easily rewritten in terms of the derivatives of f at (x, µ) = (0, 0) by using (E.1).
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F Calculations for the Period-doubling Bifurcation

The map is f(x, µ) = −x+ xP (x, µ) and we write

P (x, µ) = b1x+ b2µ+ b3x
2 + b4µx+ b5µ

2 + b6x
3 + b7µx

2 + b8x
4 + · · · , (F.1)

where, as in the pitchfork case, we have included only the terms that are fourth order or
lower in x and m, where µ = m2. The trivial fixed point is x = 0 with multiplier

fx(0, m
2) = −1 + b2m

2 + b5m
4 +O(m5). (F.2)

By direct calculations we obtain f 2(x, µ) = x+ xG(x, µ) where

G(x, µ) = c2µ+ c3x
2 + c4µx+ c5µ

2 + c6x
3 + c7µx

2 + c8x
4 + · · · , (F.3)

with

c2 = −2b2 = −2fxµ > 0,

c3 = −2(b21 + b3) = −1

6
(3f 2

xx + 2fxxx) < 0,

c4 = −b1b2 = −1

2
fxxfxµ ,

c5 = b22 − 2b5 = f 2
xµ + fxµµ) ,

c6 = b1(b
2
1 + b3) =

1

24
fxx(3f

2
xx + 2fxxx),

c7 = −2b7 − 4b1b4 + 2b21b2 + 4b2b3

=
1

12
(3fxxfxxµ + 6f 2

xxfxµ + 8fxµfxxx − 8fxxxµ) ,

c8 = −2b10 − 6b1b6 − b21b3 + 3b23

= − 1

60
fxxxxx −

1

8
fxxfxxxx +

1

12
f 2
xxx −

1

24
f 2
xxfxxx ,

(F.4)

where all derivatives of f are evaluated at (x, µ) = (0, 0). The non-trivial fixed points of f 2

are given by (E.2) with (E.4). They have the same multiplier, call it D(m), given by (E.5).
By substituting (F.4) into (E.5) we obtain

D(m) = 1 + 4b2m
2 +Mm4 +O(m5), (F.5)

where the m3 term has vanished because c2c6 + c3c4 = 0, and

M = 4b5 −
b22

(b21 + b3)2
(

b41 + 5b21b3 − 4b23 + 12b1b6 + 4b8
)

. (F.6)

The normal form g has b2 = −1, b3 = 1, and b8 = a. By substituting these into the above
formulas we find that the trivial fixed point of g has multiplier −1 − ν and the non-trivial
fixed points of g2 have multiplier d(a, n) = 1− 4n2 +4(1− a)n4 +O(n5) (where ν = n2). By
matching the multipliers of the trivial fixed points we obtain

ν = −b2µ− b5µ
2 +O(µ3). (F.7)
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By using this and equating the multipliers of the non-trivial fixed points we obtain

0 =
(

4(1− a)b22 + 4b5 −M
)

m4 +O(m5).

In order for the m4 term to vanish we must have

a = 1 +
4b5 −M

4b22

=
1

(b21 + b3)2

(

5

4
b41 +

13

4
b21b3 + 3b1b6 + b8

)

+O(m)

=
1

(3f 2
xx + 2fxxx)

2

(

45

4
f 4
xx +

39

2
f 2
xxfxxx + 9fxxfxxxx +

6

5
fxxxxx

)
∣

∣

∣

∣

(0,0)

.
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