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Abstract

A main task in cryo-electron microscopy single particle reconstruction is to find
a three-dimensional model of a molecule given a set of its randomly oriented and
positioned noisy projection-images. In this work, we propose an algorithm for ab-initio
reconstruction for molecules with tetrahedral or octahedral symmetry. The algorithm
exploits the multiple common lines between each pair of projection-images as well as
self common lines within each image. It is robust to noise in the input images as it
integrates the information from all images at once. The applicability of the proposed
algorithm is demonstrated using experimental cryo-electron microscopy data.

1 Introduction

Cryo-electron microscopy (cryo-EM) is a method for determining the high-resolution three-
dimensional structure of biomolecules [5]. The method involves imaging frozen copies of the
investigated molecule by an electron-microscope, with each copy assuming some unknown
random orientation fixed at the moment of freezing. Due to the low electron dose that can be
applied to the imaged molecules, the projection-images produced by cryo-EM are very noisy.
Once the orientation of each of the imaged copies of the molecule has been determined, a
low-resolution ab-initio model of the molecule may be recovered from the acquired projection-
images by tomographic reconstruction algorithms. An accurate ab-initio model is crucial for
obtaining a high-resolution model, which is determined by iterative procedures from the set
of raw input projection-images. The task of finding the orientation of the molecule giving
rise to each projection-image is known as the “orientation assignment problem”, and is the
main objective of this work.

Formally, if we denote the electrostatic potential of the molecule by ψ : R3 → R, and
consider a set of N rotation matrices

Ri =

 | | |
R1
i R2

i R3
i

| | |

 ∈ SO(3), i ∈ [N ] = {1, . . . , N}, (1)

where SO(3) is the group of all rotations in R3, then the projection-image PRi
, i ∈ [N ], that

was generated by imaging ψ rotated by Ri, is given by the line integrals of ψ along the lines
parallel to R3

i (the third column of Ri), namely

PRi
(x, y) =

∫ ∞
−∞

ψ(Rir)dz =

∫ ∞
−∞

ψ(xR1
i + yR2

i + zR3
i )dz, r = (x, y, z)T . (2)

The “orientation assignment problem” is defined as finding a set of N rotation matrices
{Ri}Ni=1 such that (2) holds for all i ∈ [N ], given only the set of projection-images {PRi

}Ni=1.
An inherent ambiguity in cryo-electron microscopy stems from the fact that the handed-

ness (chirality) of the molecule cannot be resolved from its projection-images. This ambiguity
is referred to as the handedness ambiguity. Consequently, any projection-image is compati-
ble with two distinct orientations as follows. We denote by J = diag(1, 1,−1) the reflection
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Figure 1: A regular tetrahedron and a regular octahedron.

matrix through the xy-plane, and define by ψ̃(r) = ψ(Jr) the mirror image of the molecule
ψ(r), r = (x, y, z)T . Since J2 = I, ψ(r) = ψ(J2r) = ψ̃(Jr), and along with (2) we have

PRi
(x, y) =

∫ ∞
−∞

ψ(Rir)dz =

∫ ∞
−∞

ψ̃(JRir)dz =

∫ ∞
−∞

ψ̃(JRiJJr)dz.

By noting that Jr = (x, y,−z)T and using the change of variables z → z′ = −z we have

PRi
(x, y) =

∫ ∞
−∞

ψ̃((JRiJ)Jr)dz =

∫ ∞
−∞

ψ̃((JRiJ)(x, y,−z)T )dz

=

∫ ∞
−∞

ψ̃((JRiJ)(x, y, z′)T )dz′ = P̃JRiJ(x, y),

(3)

where P̃ is a projection-image generated from ψ̃. Equation (3) shows that a projection-image
of the molecule ψ at orientation Ri is identical to a projection-image of its mirror image
molecule ψ̃ at orientation JRiJ . Thus, both sets of orientations assignments {Ri}Ni=1 and
{JRiJ}Ni=1 are consistent with the same set of projection-images {PRi

}Ni=1. Biologically, only
the model reconstructed using the orientations {Ri}Ni=1 is valid, yet distinguishing whether
a reconstruction corresponds to {Ri}Ni=1 or {JRiJ}Ni=1 is impossible without utilizing other
structural information.

In this work, we propose an algorithm for solving the “orientation assignment problem”
for molecules with tetrahedral or octahedral symmetry [6], denoted by T ⊂ SO(3) and
O ⊂ SO(3), respectively. To present these symmetries, we denote by Cn the group of all
rotations by 2π/n radians around some fixed axis (rotational symmetry of order n). Then,
the elements of the tetrahedral symmetry group T are the identity, the elements of 4 C3

rotation groups whose axes pass through each vertex of the regular tetrahedron (see Fig. 1)
and the corresponding midpoint of the opposite face, and the elements of 3 C2 rotation
groups whose axes pass through the midpoints of two of its opposite edges. In total, the
tetrahedral group T has 12 elements. The elements of the octahedral symmetry group O
are the identity, the elements of 3 C4 rotation groups whose axes pass through two opposite
vertices of the regular octahedron (see Fig. 1), 4 C3 rotation groups whose axes pass through
the midpoints of two of its opposite faces, and 6 C2 rotation groups whose axe pass through
the midpoints of two of its opposite edges. In total, the octahedral group O has 24 elements.

Since the structure of a molecule is independent of its coordinate system, we choose
without loss of generality a coordinate system in which the rotational axes mentioned above
coincide with the axes listed in Table 1. In this coordinate system, the symmetry group ele-
ments of a molecule with tetrahedral symmetry are given in Appendix A.1 and the symmetry
group elements of a molecule with octahedral symmetry are given in Appendix A.2.

3



symmetry axes angles
T [1,1,1], [-1,-1,1], [-1,1,-1], [1,-1,-1] 2π/3, 4π/3

[1,0,0], [0,1,0], [0,0,1] π
[1,0,0], [0,1,0], [0,0,1] π/2, π, 3π/2

O [1,1,1], [-1,1,1], [1,-1,1], [1,1,-1] 2π/3, 4π/3
[1,1,0], [-1,1,0], [1,0,1], [-1,0,1], [0,1,1], [0,-1,1] π

Table 1: The nontrivial elements of the tetrahedral and octahedral symmetries.

To see the effect of symmetry on the orientation assigment problem, we denote by g(k)

the k-th symmetry group element of the symmetry group T or O, k ∈ [n], where n is the
number of elements in the symmetry group. Mathematically, a molecule ψ has symmetry G
(G = T or G = O) if

ψ(r) = ψ(g(k)r), k ∈ [n], (4)

for any r = (x, y, z)T . Together with (2), it holds that for any Ri ∈ SO(3) and any r =
(x, y, z)T ,

PRi
(x, y) =

∫ ∞
−∞

ψ(Rir)dz =

∫ ∞
−∞

ψ(g(k)Rir)dz = Pg(k)Ri
(x, y), (5)

for all k ∈ [n], implying that the n projection-images {Pg(k)Ri
}nk=1 are identical. Hence,

equation (5) reveals another ambiguity of the set of projection-images {PRi
}Ni=1, referred

to as the symmetry ambiguity, in which all orientation assignments of the form {giRi}Ni=1,
where gi ∈ G is an arbitrary symmetry group element, are consistent with the same set of
images {PRi

}Ni=1.
Combining the symmetry ambiguity with the handedness ambiguity described in (3), the

orientation assignment problem can be stated as finding either one of the sets of orientations
{Ri}Ni=1 or {JRiJ}Ni=1, where each Ri may be replaced by giRi, with gi ∈ G being an arbitrary
symmetry group element, independently for each i (that is independently for each rotation).

Solving the orientation assignment problem, in its broadest sense, amounts to relating
between images and rotation matrices. In this work, we introduce a common lines based
method for solving the orientation assignment problem for molecules having either tetrahe-
dral or octahedral symmetry. The common lines, defined in the following and discussed in
detail in subsequent sections, reveal useful relations between images and rotation matrices.
To define common lines, we recall the Fourier projection slice theorem [9], which provides
an important relation between the Fourier transform of ψ and the Fourier transform of PRi

(see (2)). We define the two-dimensional Fourier transform of a projection-image (2) by

P̂Ri
(ωx, ωy) =

∫∫
R2

PRi
(x, y)e−ı(xωx+yωy) dxdy,

and the three-dimensional Fourier transform of the molecule by

ψ̂(ωx, ωy, ωz) =

∫∫∫
R3

ψ(x, y, z)e−ı(xωx+yωy+zωz) dxdydz.
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Using this notation, the Fourier projection slice theorem states that

P̂Ri
(ωx, ωy) = ψ̂(ωxR

1
i + ωyR

2
i ), (ωx, ωy) ∈ R2, (6)

where R1
i and R2

i are the first and second columns of Ri, respectively. In words, the two-
dimensional Fourier transform of any projection-image PRi

is equal to the restriction of
the three-dimensional Fourier transform of the molecule ψ to the plane through the origin
spanned by R1

i and R2
i , or equivalently, to the central plane whose normal coincides with R3

i .
As any two central planes intersect along a single line through the origin (as long as the
central planes do not coincide), the central planes corresponding to any pair of Fourier-
transformed projection-images P̂Ri

and P̂Rj
intersect along such a line, and therefore, both

(Fourier transformed) images share a pair of lines on which their Fourier transforms coincide,
thus referred to as common lines. Given that P̂Ri

and P̂Rj
are images of a molecule with

tetrahedral or octahedral symmetry, each P̂g(k)Rj
, k ∈ [n], is identical to P̂Rj

(see (5)). In

addition, each P̂g(k)Rj
, k ∈ [n], also shares a common line with P̂Ri

. Since the rotations

g(k)Rj, k ∈ [n], are in general different from each other, the planes spanned by their first two

columns are also different. Thus, P̂Ri
and P̂Rj

have n common lines altogether.

2 Related work

Common lines methods for ab-initio reconstruction of macromolecules have originated with
the angular reconstitution method by Van Heel [23]. It is a sequential method in which given
a triplet of projection-images {PRi

, PRj
, PRk

}, the set of relative rotations {RT
i Rj, R

T
i Rk, R

T
j Rk}

is first estimated by detecting common lines between PRi
, PRj

, and PRk
. Then, setting Ri = I

without loss of generality, determines Rj and Rk from RT
i Rj and RT

i Rk. By applying this
method sequentially to each triplet {RT

i Rj, R
T
i Rl, R

T
j Rl} where l 6= i, j, the orientation Rl

of the image PRl
is determined from RT

i Rl simply by Rl = RT
i Rl.

Detecting common lines between a pair of images is typically done by finding the pair of
central lines in the Fourier transforms of the images that have the highest correlation [19]. In
cryo-EM, the images are contaminated with high levels of noise, thus making the detection of
common lines error prone. Consequently, the relative rotations in the angular reconstitution
method are estimated with errors, which render the method not robust to noise.

A common lines based approach for molecules without symmetry that is robust to noisy
input images is the synchronization method [17, 11]. In this approach, all relative rotations
{RT

i Rj}i<j∈[N ] are first estimated using common lines (robust estimation of common lines
is described in [19, 7]). Then, the rotations {Ri}i∈[N ] are estimated simultaneously, by
constructing a 3N × 3N matrix whose (i, j) block of size 3 × 3 contains the estimate for
RT
i Rj, and factorizing this matrix using SVD. However, this method is not applicable to

symmetric molecules due to the symmetry ambiguity described by (5). Specifically, consider
a pair of images PRi

and PRj
, i < j ∈ [N ], of a molecule with tetrahedral or octahedral

symmetry. By the discussion above, there are n pairs of common lines between the images,
corresponding to n pairs of projection planes, but it is unknown which pair of common lines
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corresponds to which pair of projection planes. As a result, the best one can estimate from
a single pair of common lines between the images is the relative rotation RT

i gijRj, where gij
is an unknown arbitrary symmetry group element. In such a case, factorizing the 3N × 3N
matrix whose blocks are RT

i gijRj does not give Ri (more precisely giRi for some arbitrary gi),
unless we are able to carefully choose gij.

Two robust common lines based methods which are applicable to symmetric molecules
are described in [12] for molecules with Cn symmetry and in [16] for molecules with D2

symmetry. In both methods, all common lines between each pair of images are utilized
to estimate a set {RT

i gijRj}i<j∈[N ], with gij being an unknown symmetry group element
of the Cn or D2 symmetry groups. Once the set {RT

i gijRj}i<j∈[N ] has been estimated,
the methods exploit the symmetry group properties to obtain the set of rotation matrices
{Ri}i∈[N ], with each rotation matrix satisfying Ri ∈ {gkRi}nk=1. Unfortunately, the methods
in [12, 16] are not applicable to molecules with T or O symmetries. Specifically, the method
in [12] for molecules with Cn symmetry uses the property that the average of the group
elements of Cn is the matrix diag(0, 0, 1). This property doesn’t hold for molecules with T
or O symmetry, as the average over all group elements of the groups T and O is the zero
matrix. As for the method in [16] for molecules with D2 symmetry, this method assumes
that the rotational symmetry axes of the molecule coincide with the x, y and z axes, which
does not hold for T and O symmetries.

While we propose a method that is based on common lines, there exist algorithms for
finding ab-initio models that are based on casting the reconstruction problem as an opti-
mization problem [13, 26, 22, 3]. Such algorithms use some general-purpose optimization
algorithm (such as stochastic gradient descent, stochastic hill climbing, projection-matching,
and simulated annealing, to name a few), on a subset of the data or its class averages. All
these methods boil down to a non-convex optimization, which is susceptible to getting stuck
in a local minimum corresponding to a structure that is inconsistent with the investigated
molecule. Yet, these methods are widely used in practice and many times produce satisfac-
tory initial models. In Section 5 we show an example of both a success as well as a failure
of such a method.

The paper is organized as follows. In Section 3, we formally define the common lines,
introduce the notion of self common lines and derive basic properties of common lines and
self common lines. In Section 4, we describe our algorithm for estimating the orientations of
a given set of projection-images. Then, in Section 5, we report some numerical experiments
we conducted using simulated and experimental data sets, demonstrating the robustness and
effectiveness of our proposed method. Finally, in Section 6, we discuss possible future work.

3 Common lines and self common lines

Formally, for each k ∈ [n], the unit vector

qkRi,Rj
=

R3
i × g(k)R3

j

||R3
i × g(k)R3

j ||
(7)
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gives the direction of the common line between the central planes of P̂Ri
and P̂g(k)Rj

, since

it is perpendicular to the normal vectors of both of them. We can express qkRi,Rj
using its

local coordinates on both central planes by

qkRi,Rj
= cos(αk,1Ri,Rj

)R1
i + sin(αk,1Ri,Rj

)R2
i = cos(αk,2Ri,Rj

)g(k)R1
j + sin(αk,2Ri,Rj

)g(k)R2
j , (8)

where αk,1Ri,Rj
and αk,2Ri,Rj

are the angles between qkRi,Rj
and the local x-axes of the planes.

Using this notation along with (6), we have that for any ξ ∈ R and k ∈ [n],

P̂Ri
(ξ cos(αk,1Ri,Rj

), ξ sin(αk,1Ri,Rj
)) =ψ̂(ξ cos(αk,1Ri,Rj

)R1
i + ξ sin(αk,1Ri,Rj

)R2
i )

=ψ̂(ξqkRi,Rj
)

=ψ̂(cos(αk,2Ri,Rj
)g(k)R1

j + sin(αk,2Ri,Rj
)g(k)R2

j )

=P̂g(k)Rj
(ξ cos(αk,2Ri,Rj

), ξ sin(αk,2Ri,Rj
))

=P̂Rj
(ξ cos(αk,2Ri,Rj

), ξ sin(αk,2Ri,Rj
)).

(9)

Following (9), we express the set of common lines between the pair of images P̂Ri
and P̂Rj

by the set of local coordinates {(αk,1Ri,Rj
, αk,2Ri,Rj

)}k∈[n]. In particular, αk,1Ri,Rj
and αk,2Ri,Rj

may be

recovered from the entries of RT
i g

(k)Rj using

αk,1Ri,Rj
= atan2

(
(RT

i g
(k)Rj)1,3,−(RT

i g
(k)Rj)2,3

)
,

αk,2Ri,Rj
= atan2

(
−(RT

i g
(k)Rj)3,1, (R

T
i g

(k)Rj)3,2
)
.

(10)

Note that in (7), the vector R3
j is multiplied by the symmetry group element g(k), k ∈ [n],

while R3
i is not. Since this choice is arbitrary, we show in the following that we get the same

common lines if we multiply R3
i by g(k) instead. In other words, we show in the following

that the set of local coordinates {(αk,1Ri,Rj
, αk,2Ri,Rj

)}k∈[n] for the common lines between the pair

of images P̂Ri
and P̂Rj

is well defined.
Similarly to (7), for each l ∈ [n], the unit vector

q̃lRi,Rj
=

g(l)R3
i ×R3

j

||g(l)R3
i ×R3

j ||
(11)

gives the direction of the common line between the central planes of the Fourier transformed
images P̂g(l)Ri

and P̂Rj
. As G is a group, for each l ∈ [n] there is k ∈ [n] such that (g(k))T =

g(l). Then, using (7), it holds that

(g(k))T qkRi,Rj
= (g(k))T

R3
i × g(k)R3

j

||R3
i × g(k)R3

j ||
=

g(l)R3
i ×R3

j

||R3
i × g(k)R3

j ||
=

g(l)R3
i ×R3

j

||g(l)R3
i ×R3

j ||
= q̃lRi,Rj

, (12)

where the second equality follows since for any rotation R it holds that R(a×b) = (Ra)×(Rb),
and the third equality follows from the latter property along with the anti-commutative
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property of the cross product, i.e., a × b = −(b × a), and the invariance of the 2-norm to
orthogonal transformations. By multiplying (8) by (g(k))T from the left we get using (12)

q̃lRj ,Ri
= cos(αk,1Ri,Rj

)g(l)R1
i + sin(αk,1Ri,Rj

)g(l)R2
i = cos(αk,2Ri,Rj

)R1
j + sin(αk,2Ri,Rj

)R2
j . (13)

Equation (13) implies that αk,1Ri,Rj
and αk,2Ri,Rj

are also the angles between q̃lRi,Rj
and the local

x-axes of the planes of the Fourier transformed images P̂g(l)Ri
and P̂Rj

. Then, similarly to (9),

P̂Ri
(ξ cos(αk,1Ri,Rj

), ξ sin(αk,1Ri,Rj
)) =P̂g(l)Ri

(ξ cos(αk,1Ri,Rj
), ξ sin(αk,1Ri,Rj

))

=ψ̂(ξq̃lRi,Rj
)

=P̂Rj
(ξ cos(αk,2Ri,Rj

), ξ sin(αk,2Ri,Rj
)).

(14)

Thus, the set of local coordinates for the common lines is well defined, as the same set is
obtained from the two equivalent definitions (7) and (11).

Another important property of projection-images of symmetric molecules, and in par-
ticular of molecules with tetrahedral or octahedral symmetry, is the existence of self com-
mon lines, which are common lines between any two (identical) images P̂Ri

and P̂g(k)Ri
,

k ∈ {2, . . . , n}. The direction vector of the self common line between P̂Ri
and P̂g(k)Ri

is

qkRi,Ri
=

R3
i × g(k)R3

i

||R3
i × g(k)R3

i ||
. (15)

When expressing qkRi,Ri
by the local coordinates (αk,1Ri,Ri

, αk,2Ri,Ri
), we get similarly to (9) that

P̂Ri
(ξ cos(αk,1Ri,Ri

), ξ sin(αk,1Ri,Ri
)) = P̂Ri

(ξ cos(αk,2Ri,Ri
), ξ sin(αk,2Ri,Ri

)), (16)

and αk,1Ri,Ri
and αk,2Ri,Ri

may be recovered from the entries of RT
i g

(k)Ri using

αk,1Ri,Ri
= atan2

(
(RT

i g
(k)Ri)1,3,−(RT

i g
(k)Ri)2,3

)
,

αk,2Ri,Ri
= atan2

(
−(RT

i g
(k)Ri)3,1, (R

T
i g

(k)Ri)3,2
)
.

(17)

Thus, the set of self common lines of the image P̂Ri
is expressed by the set of local coordinates

{(αk,1Ri,Ri
, αk,2Ri,Ri

)}k∈{2,...,n}.

4 Algorithm

In this section, we derive our method for solving the orientation assignment problem for
molecules with tetrahedral or octahedral symmetry. Throughout this section, we denote
by G either the group T or the group O. Our method consists of two steps; first, we assign
to each pair of projection-images PRi

and PRj
(see (2)) , i < j ∈ [N ], of a molecule whose
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symmetry group is G, a pair of rotation matrices (R̃ij, R̃ji) which is an estimate to a pair of
rotation matrices (Rij, Rji) which satisfies

{RT
ijg

(k)Rji}nk=1 = {RT
i g

(k)Rj}nk=1, g(k) ∈ G. (18)

Then, we estimate the orientations of all projection-images {PRi
}i∈[N ] from the set of rotation

matrices {(R̃ij, R̃ji)}i<j∈[N ].

To find the rotations R̃ij and R̃ji which estimate Rij and Rji of (18), we follow the
maximum likelihood approach described in [12, 16] as follows. First, we construct a function
πij(Qr, Qs), which for any two rotations Qr, Qs ∈ SO(3) computes a score that indicates how
well {QT

r g
(k)Qs}nk=1 approximates {RT

i g
(k)Rj}nk=1. Since it is impossible to find efficiently the

optimum of πij over SO(3)×SO(3), we show in Appendix C how to construct a finite subset
SOG(3) ⊂ SO(3) on which we search for the optimum of πij. In particular, the subset
SOG(3) takes advantage of the fact that the underlying molecule is symmetric, to reduce
the number of rotations in SOG(3), while maintaining high accuracy of our algorithm. We
use the pair (Qr, Qs) ∈ SOG(3)× SOG(3) that attains the highest score πij as our estimate
(R̃ij, R̃ji) for (Rij, Rji) of (18).

We next describe the construction of the function πij : SOG(3) × SOG(3) → [0, 1] for
each pair of images PRi

and PRj
. We denote by

νi,θ(ξ) = P̂Ri
(ξ cos θ, ξ sin θ), ξ ∈ (0,∞) (19)

the half line (known as a Fourier ray) in the direction which forms an angle θ with the x-axis
of the Fourier transformed image P̂Ri

, i ∈ [N ], and by

ρij(θ, φ) = <
∫ ∞
0

(νi,θ(ξ))
∗νj,φ(ξ)dξ

||νi,θ(ξ)||L2||νj,φ(ξ)||L2

(20)

the real part of the normalized cross correlations between νi,θ(ξ) and νj,φ(ξ). Note that due

to (9), it holds that ρij(α
k,1
Ri,Rj

, αk,2Ri,Rj
) = 1 for all k ∈ [n], where {(αk,1Ri,Rj

, αk,2Ri,Rj
)}k∈[n] is the

set of common lines between P̂Ri
and P̂Rj

.
Now, consider a pair of rotations Qr, Qs ∈ SOG(3). Analogously to (10), we compute the

set of local coordinates {(αk,1Qr,Qs
, αk,2Qr,Qs

)}k∈[n] from the set {QT
r g

(k)Qs}nk=1 using

αk,1Qr,Qs
= atan2

(
(QT

r g
(k)Qs)1,3,−(QT

r g
(k)Qs)2,3

)
,

αk,2Qr,Qs
= atan2

(
−(QT

r g
(k)Qs)3,1, (Q

T
r g

(k)Qs)3,2
)
.

(21)

If {QT
r g

(k)Qs}nk=1 = {RT
i g

(k)Rj}nk=1, then (21) along with (10) imply that the set of local co-

ordinates {(αk,1Qr,Qs
, αk,2Qr,Qs

)}k∈[n] is the set of common lines of the pair of images PRi
and PRj

,

i.e, it is equal to {(αk,1Ri,Rj
, αk,2Ri,Rj

)}k∈[n]. The score function πij is thus defined as

πij(Qr, Qs) =
∏
k∈[n]

ρij(α
k,1
Qr,Qs

, αk,2Qr,Qs
), (22)
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satisfying πij(Qr, Qs) = 1 if {QT
r g

(k)Qs}nk=1 = {RT
i g

(k)Rj}nk=1. We note that we define πij
in (22) as a product to enforce that all n correlations are large simultaneously. Each
ρij(α

k,1
Qr,Qs

, αk,2Qr,Qs
) is a proxy to the probability that (αk,1Qr,Qs

, αk,2Qr,Qs
) is a common line between

PRi
and PRj

, and we want all these probabilities to be large simultaneously.
In practice, since πij is computed using noisy images, and since SOG(3) is only a finite

subset of SO(3), πij(Qr, Qs) is unlikely to be exactly 1. Thus, the pair of candidates Qr, Qs ∈
SOG(3) with the highest score πij(Qr, Qs) is used to construct {QT

r g
(k)Qs}nk=1, which serves

as an estimate for {RT
i g

(k)Rj}nk=1.
In order to achieve a more robust estimate of {RT

i g
(k)Rj}nk=1, we also combine the set of

self common lines into the score function πij of (22). Specifically, as {(αk,1Ri,Ri
, αk,2Ri,Ri

)}k∈{2,...,n}
and {(αk,1Rj ,Rj

, αk,2Rj ,Rj
)}k∈{2,...,n} are the sets of self common lines of PRi

and PRj
respectively

(see (16) and its following paragraph), we define

πij(Qr, Qs) =
∏
k∈[n]

ρij(α
k,1
Qr,Qs

, αk,2Qr,Qs
)
∏

k∈{2,...,n}

ρii(α
k,1
Qr,Qr

, αk,2Qr,Qr
)ρjj(α

k,1
Qs,Qs

, αk,2Qs,Qs
). (23)

Using the score function πij of (23), we choose for each i < j ∈ [N ] the pair (R̃ij, R̃ji)
that satisfies

(R̃ij, R̃ji) = arg max
(Qr,Qs)∈SOG(3)×SOG(3)

πij(Qr, Qs), (24)

and use it as an estimate for (Rij, Rji). The procedure for computing the set {(R̃ij, R̃ji)}i<j∈[N ]

is summarized in Algorithm 1.

Algorithm 1 Computing {(R̃ij, R̃ji)}i<j∈[N ] for molecules with T or O symmetry

1: Input: (i) SOG(3) (ii) Images P̂Ri
, i ∈ [N ]

2: for i < j = 1, . . . , N do
3: (R̃ij, R̃ji)← arg max

(Qr,Qs)∈SOG(3)×SOG(3)

πij(Qr, Qs) . See (24)

4: end for
5: Output: {(R̃ij, R̃ji)}i<j∈[N ]

The Fourier projection-slice theorem (6) relies on the stipulation that the centers of all
projection-images coincide with the center of the three-dimensional molecule. In practice, it
is unlikely that all projection-images are simultaneously aligned with respect to a common
three-dimensional origin, making the Fourier projection-slice theorem, as stated in (6), not
applicable to pairs of experimental projection-images. Thus, the procedure for detecting
common lines between projection-images needs to be modified in order to handle the presence
of unknown shifts, as we now describe. Since each input image is centered differently, we do
not observe PRi

(x, y) that follows (2), but rather PRi
(x −∆xi, y −∆yi) for some unknown

(∆xi,∆yi). This results in the Fourier ray (19) in the direction of a common line being
multiplied by some phases that correspond to a one-dimensional shift along the common
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line, though the directions of the common lines (10) do not change (see [20] for a detailed
derivation). Thus, we replace in (23) each ρij (see (20)) by

ρij(θ, φ) = max
s
<
∫ ∞
0

(νsi,θ(ξ))
∗νj,φ(ξ)dξ

||νsi,θ(ξ)||L2||νj,φ(ξ)||L2

,

where νsi,θ(ξ)) is the Fourier ray νi,θ(ξ) (see (19)) multiplied by the phases that correspond
to a shift of the common line by s. In practice, we maximize over a finite set of values of s
(for example, up to 10% of the size of the image in steps of 1 pixel). We make a similar
change in ρii and ρjj in (23).

Due to the inherent handedness ambiguity of (3), the images P̂Ri
and ˆ̃PJRiJ are identical.

Thus, the common line between each pair of projection-images P̂Ri
and P̂g(k)Rj

, i < j ∈ [N ],

k ∈ [n], is identical to the common line between the pair of projection-images ˆ̃PJRiJ and
ˆ̃PJg(k)RjJ , and so the set of common lines between P̂Ri

and P̂Rj
is identical to the set of

common lines between ˆ̃PJRiJ and ˆ̃PJRjJ . Similarly, the self common lines of each projection-

image P̂Ri
are identical to the self common lines of the projection-image ˆ̃PJRiJ . Since by a

direct calculation it can be shown for the symmetry group G that {Jg(k)J}nk=1 = {g(k)}nk=1,
it holds that

{(JRiJ)Tg(k)JRjJ}nk=1 = {JRT
i g

(k)RjJ}nk=1.

According to (10) and (17), we note that the set {JRT
i g

(k)RjJ}nk=1 produces the same set
of local coordinates as the set {RT

i g
(k)Rj}nk=1, and thus also maximizes πij of (23). As a

result, the pair (R̃ij, R̃ji) estimates either the pair (Rij, Rji) or the pair (JRijJ, JRjiJ), yet
it is impossible to distinguish between the two. Moreover, the estimate for each pair of
indices (i,j) is independent from other pairs of indices. Therefore, we apply the handedness
synchronization procedure [11] in order to partition the set {(R̃ij, R̃ji) | i < j ∈ [N ]} into
two subsets, given by

A = {(R̃ij, R̃ji) | (R̃ij, R̃ji) estimates (Rij, Rji)},
B = {(R̃ij, R̃ji) | (R̃ij, R̃ji) estimates (JRijJ, JRjiJ)}.

(25)

Then we choose either one of the subsets, and replace each estimate (R̃ij, R̃ji) in it with
(JR̃ijJ, JR̃jiJ). Since J2 = I, all estimates are now consistent with the same hand. From
now on, we assume without loss of generality that each pair (R̃ij, R̃ji) computed by Algo-
rithm 1, i < j ∈ [N ], estimates (Rij, Rji).

Once we have computed (R̃ij, R̃ji) for all i < j ∈ [N ] (using Algorithm 1), which esti-
mate (Rij, Rji) satisfying (18), in the second step of the proposed method, we estimate the
orientations of all projection-images {PRi

}i∈[N ]. This step relies on the following two propo-
sitions and corollary, showing that Rij and Rji which satisfy (18) are not unique, and may
be expressed by Ri and Rj of (18) up to a symmetry group element in O. As a result, the
pair (R̃ij, R̃ji) of (24) is also not unique, in the sense that it may estimate any pair (Rij, Rji)
which satisfies (18).

11



We start by recalling that the normalizer of a subgroup G̃ in a group H̃ (G̃ ⊆ H̃) is given
by

NH̃(G̃) = {h̃ ∈ H̃ : h̃T G̃h̃ = G̃}.

Proposition 1. Let Rij, Rji and Ri, Rj be two pairs of rotations satisfying (18), i < j ∈ [N ].
Then Rij, Rji and Ri, Rj satisfy

Rij = hijRi and Rji = hjiRj, hij, hji ∈ NSO(3)(G). (26)

Proof. Since Rij, Rji, Ri, Rj ∈ SO(3), there exist hij, hji ∈ SO(3) such that

Rij = hijRi and Rji = hjiRj. (27)

Substituting (27) into (18) and multiplying both sides of the resulting equation by Ri from
the left and by RT

j from the right results in

{hTijg(k)hji}nk=1 = {g(k)}nk=1. (28)

Since I ∈ G (the identity element of G), we deduce from (28) that there exists gji ∈ G such
that

hTijIhji = hTijhji = gji

and thus
hji = hijgji, (29a)

hTij = gjih
T
ji. (29b)

Plugging (29a) and (29b) into (28) results in

{hTijg(k)hijgji}nk=1 = {g(k)}nk=1, (30a)

{gjihTjig(k)hji}nk=1 = {g(k)}nk=1. (30b)

Since G is a finite group, it holds that {g(k)gTji}nk=1 = {gTjig(k)}nk=1 = {g(k)}nk=1. Thus, by
multiplying (30a) by gTji from the right and by multiplying (30b) by gTji from the left, we get

{hTijg(k)hij}nk=1 = {g(k)}nk=1,

{hTjig(k)hji}nk=1 = {g(k)}nk=1.
(31)

Equation (31) implies that hij and hji belong to the normalizer of the group G in SO(3),
i.e, hij, hji ∈ NSO(3)(G). �

Proposition 2. NSO(3)(T) = O and NSO(3)(O) = O.

The proof of Proposition 2 is given in Appendix D.
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Corollary 3. Let Rij, Rji and Ri, Rj be two pairs of rotations satisfying (18), i < j ∈ [N ].
For the symmetry group T it holds that

Rij = hijgijRi and Rji = hijgjiRj, gij, gji ∈ T, hij ∈ O. (32)

For the symmetry group O it holds that

Rij = gijRi and Rji = gjiRj, gij, gji ∈ O. (33)

Proof. For the symmetry group T, by (29a) and Proposition 2, there exist gji ∈ T and
hji, hij ∈ O such that hji = hijgji. Thus by (26), Rji = hjiRj = hijgjiRj and Rij = hijRi =
hijgijRi with gij = I ∈ T, implying (32). For the symmetry group O, (33) follows directly
from (26) and Proposition 2. �

We now describe the second step of our proposed method, i.e. how to estimate the
orientations of the projection-images {PRi

}i∈[N ] from the set of rotations {(R̃ij, R̃ji)}i<j∈[N ]

computed by Algorithm 1. This step fundamentally relies on the choice of axes in Table 1,
which implies that the matrices corresponding to the group elements of T (Appendix A.1)
and O (Appendix A.2) all have exactly one nonzero entry in each row and each column
which is equal to either 1 or −1. A key property of these symmetry group elements is that
they may be represented uniquely using addition and subtraction of single entry matrices,
defined as follows.

Definition 4. A single-entry matrix, denoted by eij ∈ R3×3, is a matrix whose (i, j) element
is one and the rest of its elements are zero. Moreover, we define

e(−i)(−j) = eij, e(−i)j = ei(−j) = −eij.

Definition 5. Given a symmetry group element g from Appendix A.1 for T or Appendix A.2
for O, we define the one-line notation of g by the vector σ = (σ(1) σ(2) σ(3)) given by

σT = g

1
2
3

 .

In words, we multiply the matrix that corresponds to a group element by the vector
(1, 2, 3)T .

Lemma 6. Each symmetry group element g from Appendix A.1 for T or Appendix A.2 for O
may be represented uniquely by the sum

g = e1σ(1) + e2σ(2) + e3σ(3),

where σ is the one-line notation of g, and emσ(m), m = 1, 2, 3, are given in Definition 4.

Proof. By a direct calculation using the representation given in Appendix A.1 for T and
Appendix A.2 for O. �
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Recall that due to the symmetry ambiguity (discussed in Section 1), all orientations
assignments of the form {giRi}Ni=1 , where gi ∈ G is an arbitrary symmetry group element,
are consistent with the same set of images {PRi

}i∈[N ]. Hence, there are nN valid assignments
while only one of them is required. Therefore, our method is designed to obtain one arbitrary
valid assignment {giRi}Ni=1 from this set of nN valid assignments.

The key idea of our method for obtaining a valid assignment {giRi}Ni=1 to the set of
projection-images {PRi

}i∈[N ], is to estimate one of the rows of all matrices giRi simultane-
ously, then another row, and finally the last row, and then assemble the matrices giRi from
these estimations. Note that we do not know which row of the matrices (first, second, or
third) we estimate at each step, as explained below.

Let {giRi}Ni=1 be any valid assignment to the set of projection-images {PRi
}i∈[N ], and let

m = 1, 2, 3. We denote the one-line notation of each gi ∈ G, i ∈ [N ], from {giRi}Ni=1 by σi
(see Definition 5), and define σ = (σ1, σ2, . . . , σN). We also denote the mth row of Ri by

v
(m)
i , and for simplicity, we denote by v

(−m)
i the vector −v(m)

i , i.e., the minus of the mth row

of Ri. In particular, v
(σi(m))
i is the mth row of giRi since

giRi = (e1σi(1) + e2σi(2) + e3σi(3))

− v
(1)
i −

− v
(2)
i −

− v
(3)
i −

 =

− v
(σi(1))
i −

− v
(σi(2))
i −

− v
(σi(3))
i −

 ,

where the first equality follows by expressing gi using Lemma 6 and the second equality
follows by a direct calculation. Moreover, let τ denote a one-line notation corresponding to
an arbitrary symmetry group element gτ ∈ O. Then v

(σi(τ(m)))
i is the τ(m)th row of giRi.

Finally, denote by vσ,τ(m) the concatenation (as a row vector of length 3N) of the τ(m)th
row of each giRi, i ∈ [N ], i.e.

vσ,τ(m) = (v
(σ1(τ(m)))
1 , . . . , v

(σN (τ(m)))
N ), (34)

and define
Hσ,m = vTσ,τ(m)vσ,τ(m). (35)

Then Hσ,m is a rank-1 3N × 3N block matrix whose (i, j) 3× 3 block is given by the rank-1

matrix v
(σi(τ(m)))T

i v
(σj(τ(m)))
j .

Once we construct the three matrices Hσ,m, m = 1, 2, 3, then factorizing each matrix
Hσ,m using SVD results in either the vector vσ,τ(m) or the vector −vσ,τ(m), which we denote
by sm · vσ,τ(m), sm ∈ {−1, 1}. Note that− s1 · vσ,τ(1) −

− s2 · vσ,τ(2) −
− s3 · vσ,τ(3) −

 = S ·

− vσ,τ(1) −
− vσ,τ(2) −
− vσ,τ(3) −

 = S · gτ ·

− vσ,1 −
− vσ,2 −
− vσ,3 −


= S · gτ ·

v
(σ1(1))
1 , . . . , v

(σN (1))
N

v
(σ1(2))
1 , . . . , v

(σN (2))
N

v
(σ1(3))
1 , . . . , v

(σN (3))
N

 ,
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where S = diag(s1, s2, s3). The latter equation together with (34) and (35) means that if
we are able to construct the matrices Hσ,m, then factorizing each of these matrices gives us
simultaneously the rows of all matrices giRi, up to multiplication by the matrix O = S · gτ ,
O ∈ O(3). If det(OgiRi) = −1, we simply multiply OgiRi by −1, and thus, we may assume
without loss of generality that O is a rotation. The matrix O is an inherent degree of freedom
of the orientation assignment problem, with {OgiRi}Ni=1 being a valid solution.

Next, we describe how to construct three rank-1 matrices Hσ,m, m = 1, 2, 3, given a set of
matrices {(Rij, Rji)}i<j∈[N ] where each (Rij, Rji) satisfies (18). Since by Proposition 1 there
are many sets of matrices {(Rij, Rji)}i<j∈[N ] satisfying (18), there are also many possible
triplets of matrices Hσ,m, m = 1, 2, 3, and our algorithm will return one of these triplets.
Overall, we will obtain a valid assignment to the set of projection-images {PRi

}i∈[N ].
We start by showing how to recover from the pair (Rij, Rji) of (18) the rank-1 3× 3 ma-

trices (v
(σij(τij(m)))
i )Tv

(σji(τij(m)))
j , m = 1, 2, 3, i < j ∈ [N ], where v

(σij(τij(m)))
i and v

(σji(τij(m)))
j

are the τij(m)th rows of gijRi and gjiRj, with gij, gji ∈ G, whose one-line notations are σij,
σji respectively, and τij is a one-line notation corresponding to a symmetry group element
in O. These matrices are the building blocks from which the three rank-1 3N × 3N block
matrices Hσ,m, m = 1, 2, 3, will be constructed. We will use the following lemma, whose
proof is given in Appendix B.

Lemma 7. Let g1, g2 be any two symmetry group elements from Appendix A.1 for T or
Appendix A.2 for O, with σ1, σ2 being their one-line notations, respectively. Then,

gT1 emmg2 = eσ1(m)σ2(m), m = 1, 2, 3, (36)

gT1 emmg1 = eσ1(m)σ1(m), m = 1, 2, 3, (37)

{±gT1 emrg2}3m,r=1 = {±emr}3m,r=1. (38)

Using Lemma 7, we prove the following proposition, which relates (Rij, Rji) of (18) with

the rank-1 3× 3 matrices (v
(σij(τij(m)))
i )Tv

(σji(τij(m)))
j , m = 1, 2, 3.

Proposition 8. Let Rij, Rji and Ri, Rj be two pairs of rotations satisfying (18), i < j ∈ [N ].
Then, for m = 1, 2, 3,

RT
ijemmRji = (v

(σij(τij(m)))
i )Tv

(σji(τij(m)))
j , (39)

where the matrices emm, m = 1, 2, 3, are single entry matrices defined in Definition 4,

v
(σij(τij(m)))
i and v

(σji(τij(m)))
j are the τij(m)th rows of gijRi and gjiRj, with gij, gji ∈ G, whose

one-line notations are σij and σji respectively, and τij is a one-line notation corresponding to
a symmetry group element in O (see Definition 5 for the definition of a one-line notation).

Proof. For any two symmetry group elements gij, gji ∈ G, it holds by (36) that for m = 1, 2, 3

gTijemmgji = eσij(m)σji(m), (40)

where σij, σji are the one-line notations of gij, gji ∈ G, respectively. For any hij ∈ O, it holds
by (37) that for m = 1, 2, 3

hTijemmhij = eτij(m)τij(m), (41)
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where τij is the one-line notation of hij.
For the symmetry group T, we get by (32) that for m = 1, 2, 3

RT
ijemmRji = RT

i g
T
ijh

T
ijemmhijgjiRj = RT

i g
T
ijeτij(m)τij(m)gjiRj

= RT
i eσij(τij(m))σji(τij(m))Rj = (v

(σij(τij(m)))
i )Tv

(σji(τij(m)))
j ,

where the second equality follows from (41), the third equality follows from (40), and the
last equality follows by a direct calculation. For the symmetry group O, we get by (33) that
for m = 1, 2, 3

RT
ijemmRji = RT

i g
T
ijemmgjiRj = RT

i eσij(m)σji(m)Rj = (v
(σij(m))
i )Tv

(σji(m))
j ,

where the second equality follows from (40), and the last equality follows by a direct calcu-
lation. For convenience only, we write for the symmetry group O

RT
ijemmRji = (v

(σij(m))
i )Tv

(σji(m))
j = (v

(σij(τij(m)))
i )Tv

(σji(τij(m)))
j ,

where τij(m) = m, so we use consistent notation for both symmetry groups T and O. �

We next construct the 3N × 3N matrices Hσ,m, m = 1, 2, 3, by setting their 3× 3 blocks
one by one using Proposition 8, making sure at each step that each Hσ,m is a rank-1 matrix
satisfying Hσ,m = vTσ,τ(m)vσ,τ(m), where vσ,τ(m) is the concatenation of the τ(m)th row of giRi,

i ∈ [N ], each gi ∈ G is an arbitrary symmetry group element, and τ is a one-line notation
corresponding to an arbitrary symmetry group element in O.

We start by setting the (1, 2) blocks of the matrices Hσ,m, m = 1, 2, 3, though the method
may be adjusted to start with any other block (i, j), i < j ∈ [N ]. We set the (1, 2) block of
the matrix Hσ,m to be

H(1,2)
σ,m := RT

12emmR21. (42)

By Proposition 8, it holds that H
(1,2)
σ,m = (v

(σ12(τ12(m)))
1 )Tv

(σ21(τ12(m)))
2 where v

(σ12(τ12(m)))
1 and

v
(σ21(τ12(m)))
2 are the τ12(m)th rows of g12R1 and g21R2, respectively, with σ12, σ21 being the

one-line notations corresponding to g12, g21 ∈ G, and τ12 is a one-line notation corresponding
to a symmetry group element in O. Thus, the (1, 2) block of Hσ,m is a rank-1 3× 3 matrix
which encodes the τ12(m)th row of g12R1 and g21R2.

Once the (1, 2) blocks of the matrices Hσ,m, m = 1, 2, 3 have been set, to ensure that the
matrices Hσ,m are of rank-1, the (1, i) and (2, i) blocks of each matrix Hσ,m, i = 3, . . . , N ,

must be of the form (v
(σ12(τ12(m)))
1 )Tv

(σi(τ12(m)))
i and (v

(σ21(τ12(m)))
2 )Tv

(σi(τ12(m)))
i , respectively,

where σi is a one-line notation corresponding to a symmetry group element gi ∈ G. Without
loss of generality, we continue by setting the (1, i) blocks of the matrices Hσ,m, i = 3, . . . , N
(i.e., we could also continue by setting the (2, i) blocks instead).

By Proposition 8, we can compute from R1i, Ri1 which satisfy (18), i = 3, . . . , N , the three

rank-1 3 × 3 matrices (v
(σ1i(τ1i(r)))
1 )Tv

(σi1(τ1i(r)))
i , r = 1, 2, 3, where v

(σ1i(τ1i(r)))
1 and v

(σi1(τ1i(r)))
i

are the τ1i(r)th rows of g1iR1 and gi1Ri, respectively, with σ1i, σi1 being the one-line notations
corresponding to g1i, gi1 ∈ G, and τ1i is a one-line notation corresponding to a symmetry
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group element in O. Since each product (v
(σ1i(τ1i(r)))
1 )Tv

(σi1(τ1i(r)))
i is some row of R1 (or minus

some row of R1) times some row of Ri (or minus some row of Ri), it must belong to one of

the Hσ,m. We therefore show how to find which matrix (v
(σ1i(τ1i(r)))
1 )Tv

(σi1(τ1i(r)))
i , r = 1, 2, 3,

belongs to which Hσ,m, m = 1, 2, 3.

By noting that v
(s)
1 , s = 1, 2, 3, are the rows of the orthogonal matrix R1, we have that

for m, r = 1, 2, 3

H(1,2)T

σ,m RT
1ierrRi1 = (v

(σ12(τ12(m)))T

1 v
(σ21(τ12(m)))
2 )

T
(v

(σ1i(τ1i(r)))
T

1 v
(σi1(τ1i(r)))
i )

= v
(σ21(τ12(m)))T

2 v
(σ12(τ12(m)))
1 v

(σ1i(τ1i(r)))
T

1 v
(σi1(τ1i(r)))
i

=

{
±v(σ21(τ12(m)))T

2 v
(σi1(τ1i(r)))
i if σ12(τ12(m)) = ±σ1i(τ1i(r))

03×3 else

=

{
v
(σ21(τ12(m)))T

2 v
(±σi1(τ1i(r)))
i if σ12(τ12(m)) = ±σ1i(τ1i(r))

03×3 else

(43)

where H
(1,2)
σ,m has already been set by (42), and thus

‖H(1,2)T

σ,m RT
1ierrRi1‖F 6= 0 ⇐⇒ v

(σ12(τ12(m)))
1 v

(σ1i(τ1i(r)))
T

1 = ±1

⇐⇒ σ12(τ12(m)) = ±σ1i(τ1i(r)).
(44)

Take r ∈ {1, 2, 3} for which ‖H(1,2)T

σ,m RT
1ierrRi1‖F 6= 0. Then

RT
1ierrRi1 = v

(σ1i(τ1i(r)))
T

1 v
(σi1(τ1i(r)))
i = v

(±σ12(τ12(m)))T

1 v
(σi1(τ1i(r)))
i

= ±v(σ12(τ12(m)))T

1 v
(σi1(τ1i(r)))
i = v

(σ12(τ12(m)))T

1 v
(±σi1(τ1i(r)))
i ,

where the first equality follows by Proposition 8 and the second equality follows by (44).
Next, by (44), τ1i(r) = ±σ−11i (σ12(τ12(m))), where σ−11i denotes the one-line notation

corresponding to g−11i ∈ G, and thus, σ−11i (σ12) is the one-line notation corresponding to
g−11i g12 ∈ G. Then

RT
1ierrRi1 = v

(σ12(τ12(m)))T

1 v
(±σi1(τ1i(r)))
i = v

(σ12(τ12(m)))T

1 v
(±σi1(±σ−1

1i (σ12(τ12(m)))))
i

= v
(σ12(τ12(m)))T

1 v
(σi1(σ

−1
1i (σ12(τ12(m)))))

i ,

where σi1(σ
−1
1i (σ12)) is the one-line notation corresponding to gi1g

−1
1i g12 ∈ G. In order to

simplify the notation, we define for i = 3, . . . , N , g∗i = gi1g
−1
1i g12 ∈ G, and denote by σ∗i its

one-line notation. Thus

RT
1ierrRi1 = v

(σ12(τ12(m)))T

1 v
(σi1(σ

−1
1i (σ12(τ12(m)))))

i = v
(σ12(τ12(m)))T

1 v
(σ∗

i (τ12(m)))
i ,

implying that for r ∈ {1, 2, 3} which satisfies ‖H(1,2)T

σ,m RT
1ierrRi1‖F 6= 0, the matrix RT

1ierrRi1

is the 3× 3 rank-1 matrix which is the (1, i) block of the matrix Hσ,m.
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Hence, we set the (1, i) blocks of the matrices Hσ,m, m = 1, 2, 3, i = 3, . . . , N , as

H(1,i)
σ,m := arg max

M∈{RT
1ierrRi1}r=1,2,3

‖H(1,2)T

σ,m M‖F . (45)

Thus, for i = 2, . . . , N , each (1, i) block of Hσ,m is given by the rank-1 3 × 3 matrix

v
(σ∗

1(τ12(m)))T

1 v
(σ∗

i (τ12(m)))
i (for notation consistency, we also denote by σ∗1 and σ∗2 the one-line

notations σ12 and σ21, respectively).
At this point, we note that as each Hσ,m, m = 1, 2, 3, must be of rank-1, the (i, j) block

of Hσ,m, i, j ∈ [N ], must be equal to the 3 × 3 rank-1 matrix v
(σ∗

i (τ12(m)))T

i v
(σ∗

j (τ12(m)))

j . This
implies that the (i, 1) block of Hσ,m, i = 2, . . . , N , is defined as

H(i,1)
σ,m := H(1,i)T

σ,m , (46)

the (1, 1) block of Hσ,m is defined as

H(1,1)
σ,m := H(1,2)

σ,m H(1,2)T

σ,m , (47)

and the (i, j) block of Hσ,m, i, j = 2, . . . , N , is defined as

H(i,j)
σ,m := H(1,i)T

σ,m H(1,j)
σ,m . (48)

Overall, we showed that given the set {(Rij, Rji)}i<j∈[N ], we can construct three rank-1
3N ×3N block matrices Hσ,m, m = 1, 2, 3, with each Hσ,m satisfying Hσ,m = vTσ,τ12(m)vσ,τ12(m)

where
vσ,τ12(m) = (v

(σ∗
1(τ12(m)))

1 , . . . , v
(σ∗

i (τ12(m)))
i , . . . , v

(σ∗
N (τ12(m)))

N ).

Note that the construction of Hσ,m, m = 1, 2, 3, described above uses only part of the data
{(Rij, Rji)}i<j∈[N ], namely, it uses only the pairs {(R1i, Ri1)}Ni=2 to construct the matrices

Hσ,m, m = 1, 2, 3. Since in practice the set {(R̃ij, R̃ji)}i<j∈[N ] computed by Algorithm 1 is
only an estimate of the set {(Rij, Rji)}i<j∈[N ], we only obtain an estimate to each matrix

Hσ,m, m = 1, 2, 3, which we denote by H̃σ,m. Thus, we next show how to modify our
construction such that all pairs {(Rij, Rji)}i<j∈[N ] are considered. This way, constructing

H̃σ,m, m = 1, 2, 3, using {(R̃ij, R̃ji)}i<j∈[N ] would result in more robust estimates to the
orientations of the projection-images {PRi

}Ni=1. The main idea of the modification is to
compute the (i, j) blocks of Hσ,m, m = 1, 2, 3 from (Rij, Rji), i, j = 2, . . . , N , i 6= j, as
follows.

First, for i, j = 2, . . . , N , i 6= j, we have that H
(i,j)
σ,m as defined in (48) is equal to the 3×3

rank-1 matrix v
(σ∗

i (τ12(m)))T

i v
(σ∗

j (τ12(m)))

j . Note that v
(σ∗

i (τ12(m)))T

i v
(σ∗

j (τ12(m)))

j ∈ {±(v
(k)
i )Tv

(l)
j }3k,l=1,

as the set of 3×3 rank-1 matrices {±(v
(k)
i )Tv

(l)
j }3k,l=1 consists of all possible products between

the rows of Ri and the rows of Rj. In the following proposition, we show how to obtain the

set {±(v
(k)
i )Tv

(l)
j }3k,l=1 from (Rij, Rji).
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Proposition 9. Let Rij, Rji and Ri, Rj be two pairs of rotations satisfying (18), i < j ∈ [N ].
Then

{±RT
ijeklRji}3k,l=1 = {±(v

(k)
i )Tv

(l)
j }3k,l=1,

where the matrices ekl, k, l = 1, 2, 3, are single entry matrices defined in Definition 4, v
(k)
i is

the kth row of Ri and v
(l)
j is the lth row of Rj.

Proof.

{±RT
ijeklRji}3k,l=1 = {±RT

i h
T
ijeklhjiRj}3k,l=1 = {±RT

i eklRj}3k,l=1 = {±(v
(k)
i )Tv

(l)
j }3k,l=1,

where the first equality is due to (26), the second equality is due to (38), and the last equality
follows by a direct calculation. �

Thus there exist k, l ∈ {1, 2, 3} such that either RT
ijeklRji or −RT

ijeklRji is equal to

v
(σ∗

i (τ12(m)))T

i v
(σ∗

j (τ12(m)))

j . As the current (i, j) blocks of Hσ,m, m = 1, 2, 3, are given by

H
(1,i)T

σ,m H
(1,j)
σ,m (equation (48)), we replace them with

H(i,j)
σ,m := arg min

M∈{±RT
ijeklRji}3k,l=1

‖M −H(1,i)T

σ,m H(1,j)
σ,m ‖F , (49)

where H
(1,i)T

σ,m , H
(1,j)
σ,m are defined in (45).

Finally, we describe how to construct the three matrices H̃σ,m, m = 1, 2, 3, from all
estimates {(R̃ij, R̃ji)}i<j∈[N ] computed by Algorithm 1 (replacing {(Rij, Rji)}i<j∈[N ] used

above). Denoting by H̃
(i,j)
σ,m the estimate of the 3× 3 block H

(i,j)
σ,m , m = 1, 2, 3, i, j ∈ [N ], we

have by (42)
H̃(1,2)
σ,m := R̃T

12emmR̃21, (50)

by (45)

H̃(1,i)
σ,m := arg max

M∈{R̃T
1ierrR̃i1}r=1,2,3

‖H̃(1,2)T

σ,m M‖F , i = 3, . . . , N, (51)

by (46)

H̃(i,1)
σ,m := H̃(1,i)T

σ,m , i = 2, . . . , N, (52)

and by (49)

H̃(i,j)
σ,m := arg min

M∈{±R̃T
ijeklR̃ji}3k,l=1

‖M − H̃(1,i)T

σ,m H̃(1,j)
σ,m ‖F , i, j = 2, . . . , N, i 6= j. (53)

Lastly, we note that for i ∈ [N ], each H̃
(j,i)T

σ,m H̃
(j,i)
σ,m , where H̃

(j,i)
σ,m was computed by (53), is an

estimate to H
(i,i)
σ,m , j ∈ [N ] \ {i}. Thus, we get a more robust estimate for the (i, i) block of

Hσ,m by computing the average

H̃(i,i)
σ,m :=

1

N − 1

N∑
j=1
j 6=i

H̃(j,i)T

σ,m H̃(j,i)
σ,m (54)
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followed by computing the best rank-1 approximation of each (i, i) block of H̃σ,m using SVD.
To conclude, we estimated three 3N × 3N block matrices H̃σ,m, m = 1, 2, 3, whose (i, j)

3×3 block is an estimate to the rank-1 matrix v
(σ∗

i (τ12(m)))T

i v
(σ∗

j (τ12(m)))

j which is estimated from

(R̃ij, R̃ji). We then factorize each matrix using SVD and obtain the estimates {Og∗iRi}Ni=1

for the orientations of the projection-images {PRi
}Ni=1, where O is a rotation and g∗i ∈ G.

The construction of H̃σ,m, m = 1, 2, 3, and the estimation of the orientations of all
projection-images {PRi

}Ni=1 from the set {(R̃ij, R̃ji)}i<j∈[N ] is summarized in Algorithm 2.
The computational complexity of Algorithm 1 is quadratic in both the number of images

as well as in the size of SOG(3) (constructed in Appendix C). The computational complexity
of Algorithm 2 is quadratic in the number of images.

5 Experimental results

We implemented the proposed algorithm in MATLAB, and tested it on both simulated and
experimental data. We start with testing the algorithm on simulated data in Section 5.1, to
assess its robustness to noise. Then, in Section 5.2, we test the algorithm on experimental
cryo-electron microscopy data. All tests were executed on a dual Intel Xeon E5-2683 CPU
(32 cores in total), with 768GB of RAM running Linux, and one nVidia GTX TITAN XP
GPU (used for Algorithm 1). The implementation of the algorithms is available as part of the
ASPIRE software package [1]. To assess the actual memory consumption of the algorithm,
we monitored it through the operating system during its execution. The maximal amount
of memory used by the algorithm is on the order of storing the reconstructed volume.

5.1 Simulated data

To test the performance of our algorithm in the presence of noise, we applied it to noisy
simulated projection-images as follows. For O symmetry, we downloaded from EMDB the
map EMD-4905 [10], generated from it clean projection-images of size 129 × 129 pixels,
and added to the clean images Gaussian noise with zero mean and variance that results in
signal to noise ratio (SNR) of the images the is equal to 1000 (considered as clean images for
reference), 1, 1/2, and 1/4 (the signal to noise ratio is defined as the ratio between the energy
of the signal in the image and the energy of the noise). Figure 2 shows several examples of
projection-images of EMD-4905 at these noise levels.

We then applied our algorithm on sets of N = 25, 50, 100, 200 images at these noise levels.
For each group of N images, we plot in Fig. 3 the Fourier shell correlation curve (FSC) [24]
of the volume reconstructed by our algorithm relative to the ground truth volume. In a
nutshell, the FSC measures the size of the smallest feature in the reconstructed volume that
can be resolved. Figure 3 shows that increasing the number of input images improves the
performance of the algorithm in terms of the achieved resolution. Moreover, we see that the
algorithm fails for some of the noise levels (achieved resolution worse than 30 Å), but as we
increase the number of images, the algorithm successfully reconstructs a three-dimensional
model of the molecule, with resolution of about 20 Å. To further demonstrate this point, we
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Algorithm 2 Estimating Ri, i = 1, . . . , N , for molecules with T or O symmetry.

1: Input: {(R̃ij, R̃ji)}i<j∈[N ] estimated by Algorithm 1.

2: Initialize: Matrices H̃σ,m, m = 1, 2, 3, of size 3N × 3N , with all entries set to
zero.

3: {(R̃ij, R̃ji)}i<j∈[N ] ← handedness synchronization({(R̃ij, R̃ji)}i<j∈[N ])
4: for m = 1, 2, 3 do
5: H̃

(1,2)
σ,m = R̃T

12emmR̃21. . H̃
(i,j)
σ,m denotes the (i, j) 3× 3 block of H̃σ,m. See (50).

6: for i = 3, . . . , N do

7: H̃
(1,i)
σ,m = arg max

M∈{R̃T
1ierrR̃i1}r=1,2,3

‖H̃(1,2)T

σ,m M‖F . . See (51).

8: end for
9: for i < j = 2, . . . , N do

10: H̃
(i,j)
σ,m = arg min

M∈{±R̃T
ijeklR̃ji}k,l=1,2,3

‖M − H̃(1,i)T

σ,m H̃
(1,j)
m ‖F . . See (53).

11: end for
12: H̃σ,m ← H̃σ,m + H̃T

σ,m

13: for i = 1, . . . , N do

14: H̃
(i,i)
σ,m = 1

N−1
∑N

j=1,j 6=i H̃
(j,i)T

σ,m H̃
(j,i)
σ,m . See (54).

15: end for
16: Vm = argmax

||v||=1

vT H̃σ,mv . Vm is the eigenvector of the leading eigenvalue of H̃σ,m.

17: end for
18: for i = 1, . . . , N do
19: for m = 1, 2, 3 do
20: v

(m)
i = Vm(3i−2:3i)

||Vm(3i−2:3i)|| . v
(m)
i is the mth row of the orthogonal matrix R̃i.

21: end for

22: R̃i ←

− v
(1)
i −

− v
(2)
i −

− v
(3)
i −


23: if det R̃i < 0 then
24: R̃i ← −R̃i

25: end if
26: end for
27: Output: R̃i, i = 1, . . . , N .
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Figure 2: Examples of simulated projection-images of EMD-4905 [10] (O symmetry) with
signal to noise ratio of (from left to right) 1000, 1, 1/2, 1/4.
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N 25 50 100 200
Time (sec) 282 852 2,842 11,177

Table 2: Timing (in seconds) for O symmetry.

N 25 50 100 200
Time (sec) 397 1,352 5,178 20,228

Table 3: Timing (in seconds) for T symmetry.

show in Figure 4 the Fourier shell correlation curves for a fixed SNR and a variable number
of images. As before, increasing the number of images improves the achieved resolution. The
timing (in seconds) of the algorithm is summarized in Table 2. These timings were computed
by averaging for each N the timing results for all SNRs (as the running time is independent
of the noise level).

The results of the same experiment for T symmetry with projections generated from
EMD-10835 [14] are shown in Figs. 5, 6 and 7. The timing for T symmetry is summarized
in Table 3.

5.2 Experimental data

Next, we applied our algorithm to two experimental data sets – EMPIAR-10272 and EMPIAR-
10389 from the EMPIAR repository [8]. The EMPIAR-10272 data set corresponds to EMD-
4905 [10] that has O symmetry, and the EMPIAR-10389 data set corresponds to EMD-
10835 [14] that has T symmetry. For comparison, we also generated an ab-initio models
from these data sets using Relion [26].

The EMPIAR-10272 data set consists of 480 micrographs, each comprised of 38 raw
unaligned movie frames, with pixel size of 0.65 Å/pixel. We first applied motion correc-
tion to the movie frames using MotionCor2 [25], resulting in aligned micrographs, to which
we applied CTF estimation [5] using CTFFind4 [15]. All subsequent processing steps were
executed in Relion [26]. We used Laplacian auto-picking followed by one round of 2D clas-
sification to generate templates for template-based picking. Auto-picking resulted in 80,806
particles, which were subjected to 15 rounds of 2D classification, until 24,540 particles in 13
classes were retained. These 13 classes (Fig. 8) were the input to our algorithm, and resulted
in an ab-initio model whose resolution is 6.45 Å (compared to the ground-truth density map
EMD-4905 [10]). For comparison, we generated a three-dimensional ab-initio model using
Relion, using as an input the same particles that were used to generate the class averages for
our algorithm. The resolution of the model estimated by Relion 22.84 Å (also compared to
the ground-truth density map EMD-4905 [10]). The Fourier shell correlation curves [24] for
the initial models generated by our algorithm and by Relion are shown in Fig. 9. To assess
visually the two models, we show in Fig. 10 a two-dimensional view of the ground-truth
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Figure 3: Fourier shell correlation curves for volumes reconstructed from simulated
projection-images of EMD-4905 (O symmetry). Each volume is reconstructed from a set
of images whose size is specified in the caption of the panels.
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Figure 4: Fourier shell correlation curves for volumes reconstructed from simulated
projection-images of EMD-4905 (O symmetry). Each panel corresponds to a given SNR,
and a number of projections as appears in the legend.
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Figure 5: Examples of simulated projection-images of EMD-10835 [14] (T symmetry) with
signal to noise ratio of (from left to right) 1000, 1, 1/2, 1/4.
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Figure 6: Fourier shell correlation curves for volumes reconstructed from simulated
projection-images of EMD-10835 (T symmetry). See Fig. 3 for details.
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Figure 7: Fourier shell correlation curves for volumes reconstructed from simulated
projection-images of EMD-10835 (T symmetry). See Fig.4 for details.
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Figure 8: Class averages used to generate an ab-initio model for EMPIAR-10272.

volume, the volume reconstructed by our algorithm (denoted ASPIRE in the figure), and
the volume reconstructed by Relion. It can be observed that for this data set, the initial
model generated by Relion is clearly inferior to the one generated by our algorithm.

Next, we tested our algorithm on the EMPIAR-10389 data set, which has T symmetry.
The EMPIAR-10389 data set consists of 4,313 dose-weighted micrographs with pixel size of
0.639 Å/pixel. Automatic particle picking was done using the KLT picker [4], resulting in
164,183 particles of size 512 × 512 pixels. (We note that for the EMPIAR-10272 data set
discussed above, we used Relion’s particle picker, as it gave superior results.) The particles
were then imported into Relion [26], and were subjected to 5 rounds of 2D classification, until
63,057 particles remained in 30 classes. These classes were used as the input to our algorithm,
and are shown in Fig. 11. The resolution of the resulting ab-initio model compared to the
ground-truth density map EMD-10835 [14] is 7.31 Å. Using Relion’s initial model algorithm
on the particles of these 30 classes resulted in a resolution of 10 Å (also compared to the
ground-truth density map EMD-10835). The Fourier shell correlation curves for the initial
models generated by our algorithm and by Relion are shown in Fig. 12. As before, we
show in Fig. 13 two-dimensional views of the ground-truth volume EMD-10835, the volume
reconstructed by our algorithm, and the volume reconstructed using Relion.
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Figure 9: Fourier shell correlation curves for ab-initio models for EMPIAR-10272.

(a) Reference (b) ASPIRE (c) Relion

Figure 10: Ab-initio models for EMPIAR-10272.
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Figure 11: 16 of the class averages used to generate an ab-initio model for EMPIAR-10389.
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Figure 12: Fourier shell correlation curves for ab-initio models for EMPIAR-10389.
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(a) Reference (b) ASPIRE (c) Relion

Figure 13: Ab-initio models for EMPIAR-10389.

6 Future work

In this work, we proposed a method for estimating the orientations corresponding to a given
set of projection-images of a molecule with tetrahedral or octahedral symmetry. The method
relies on the observation that the elements of the tetrahedral and octahedral symmetry groups
may be represented as rotation matrices with exactly one nonzero entry in each row and each
column which is equal to either 1 or -1.

A future extension of this work would be to generalize it to molecules with icosahedral
symmetry denoted by I. Since the elements of the icosahedral symmetry group cannot be
represented as rotation matrices with exactly one nonzero entry in each row and each column
which is equal to either 1 or -1, the method suggested in this work is not applicable to this
symmetry.
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Appendices

Appendix A Symmetry group elements

A.1 Tetrahedral group T

element matrix axis angle single-entry sum one-line notation
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g(1)

1 0 0
0 1 0
0 0 1

 any 0 e11 + e22 + e33 σ1 =
(
1 2 3

)
g(2)

0 0 1
1 0 0
0 1 0

 [1,1,1] 2π/3 e13 + e21 + e32 σ2 =
(
3 1 2

)
g(3)

0 1 0
0 0 1
1 0 0

 [1,1,1] 4π/3 e12 + e23 + e31 σ3 =
(
2 3 1

)
g(4)

0 0 −1
1 0 0
0 −1 0

 [-1,-1,1] 2π/3 −e13 + e21 − e32 σ4 =
(
−3 1 −2

)
g(5)

 0 1 0
0 0 −1
−1 0 0

 [-1,-1,1] 4π/3 e12 − e23 − e31 σ5 =
(
2 −3 −1

)
g(6)

 0 0 −1
−1 0 0
0 1 0

 [1,-1,-1] 2π/3 −e13 − e21 + e32 σ6 =
(
−3 −1 2

)
g(7)

 0 −1 0
0 0 1
−1 0 0

 [1,-1,-1] 4π/3 −e12 + e23 − e31 σ7 =
(
−2 3 −1

)
g(8)

 0 0 1
−1 0 0
0 −1 0

 [-1,1,-1] 2π/3 e13 − e21 − e32 σ8 =
(
3 −1 −2

)
g(9)

0 −1 0
0 0 −1
1 0 0

 [-1,1,-1] 4π/3 −e12 − e23 + e31 σ9 =
(
−2 −3 1

)
g(10)

1 0 0
0 −1 0
0 0 −1

 [1,0,0] π e11 − e22 − e33 σ10 =
(
1 −2 −3

)
g(11)

−1 0 0
0 1 0
0 0 −1

 [0,1,0] π −e11 + e22 − e33 σ11 =
(
−1 2 −3

)
g(12)

−1 0 0
0 −1 0
0 0 1

 [0,0,1] π −e11 − e22 + e33 σ12 =
(
−1 −2 3

)

A.2 Octahedral group O

element matrix axis angle single-entry sum one-line notation
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g(1)

1 0 0
0 1 0
0 0 1

 any 0 e11 + e22 + e33 σ15 =
(
1 2 3

)
g(2)

0 −1 0
1 0 0
0 0 1

 [0,0,1] π/2 −e12 + e21 + e33 σ1 =
(
−2 1 3

)
g(3)

 0 1 0
−1 0 0
0 0 1

 [0,0,1] 3π/2 e12 − e21 + e33 σ2 =
(
2 −1 3

)
g(4)

1 0 0
0 0 −1
0 1 0

 [1,0,0] π/2 e11 − e23 + e32 σ3 =
(
1 −3 2

)
g(5)

1 0 0
0 0 1
0 −1 0

 [1,0,0] 3π/2 e11 + e23 − e32 σ4 =
(
1 3 −2

)
g(6)

0 −1 0
0 0 −1
1 0 0

 [1,-1,1] 2π/3 −e12 − e23 + e31 σ5 =
(
−2 −3 1

)
g(7)

 0 0 1
−1 0 0
0 −1 0

 [1,-1,1] 4π/3 e13 − e21 − e32 σ6 =
(
3 −1 −2

)
g(8)

 0 −1 0
0 0 1
−1 0 0

 [-1,1,1] 2π/3 −e12 + e23 − e31 σ7 =
(
−2 3 −1

)
g(9)

 0 0 −1
−1 0 0
0 1 0

 [-1,1,1] 4π/3 −e13 − e21 + e32 σ8 =
(
−3 −1 2

)
g(10)

0 1 0
0 0 1
1 0 0

 [-1,-1,-1] 2π/3 e12 + e23 + e31 σ9 =
(
2 3 1

)
g(11)

0 0 1
1 0 0
0 1 0

 [-1,-1,-1] 4π/3 e13 + e21 + e32 σ10 =
(
3 1 2

)
g(12)

 0 0 1
0 1 0
−1 0 0

 [0,1,0] π/2 e13 + e22 − e31 σ11 =
(
3 2 −1

)
g(13)

0 0 −1
0 1 0
1 0 0

 [0,1,0] 3π/2 −e13 + e22 + e31 σ12 =
(
−3 2 1

)
g(14)

 0 1 0
0 0 −1
−1 0 0

 [1,1,-1] 2π/3 e12 − e23 − e31 σ13 =
(
2 −3 −1

)
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g(15)

0 0 −1
1 0 0
0 −1 0

 [1,1,-1] 4π/3 −e13 + e21 − e32 σ14 =
(
−3 1 −2

)
g(16)

−1 0 0
0 −1 0
0 0 1

 [0,0,1] π −e11 − e22 + e33 σ16 =
(
−1 −2 3

)
g(17)

−1 0 0
0 0 −1
0 −1 0

 [0,1,-1] π −e11 − e23 − e32 σ17 =
(
−1 −3 −2

)
g(18)

1 0 0
0 −1 0
0 0 −1

 [1,0,0] π e11 − e22 − e33 σ18 =
(
1 −2 −3

)
g(19)

 0 −1 0
−1 0 0
0 0 −1

 [1,-1,0] π −e12 − e21 − e33 σ19 =
(
−2 −1 −3

)
g(20)

−1 0 0
0 1 0
0 0 −1

 [0,1,0] π −e11 + e22 − e33 σ20 =
(
−1 2 −3

)
g(21)

0 1 0
1 0 0
0 0 −1

 [1,1,0] π e12 + e21 − e33 σ21 =
(
2 1 −3

)
g(22)

−1 0 0
0 0 1
0 1 0

 [0,1,1] π −e11 + e23 + e32 σ22 =
(
−1 3 2

)
g(23)

0 0 1
0 −1 0
1 0 0

 [1,0,1] π e13 − e22 + e31 σ23 =
(
3 −2 1

)
g(24)

 0 0 −1
0 −1 0
−1 0 0

 [1,0,-1] π −e13 − e22 − e31 σ24 =
(
−3 −2 −1

)

Appendix B Proof of Lemma 7

Proof. First, note that for the matrices eij and ekl defined in Definition 4, it holds that

eijekl =


eil if k = j,
−eil if k = −j,
03×3 else.

(55)

35



In addition, for any single entry matrix defined in Definition 4, it follows by a direct calcu-
lation that eTij = eji. By expressing g1 and g2 using Lemma 6, we have

g1 = e1σ1(1) + e2σ1(2) + e3σ1(3), g2 = e1σ2(1) + e2σ2(2) + e3σ2(3).

For (36), we have that for m = 1, 2, 3

gT1 emmg2 = (e1σ1(1) + e2σ1(2) + e3σ1(3))
T emm(e1σ2(1) + e2σ2(2) + e3σ2(3))

= (eσ1(1)1 + eσ1(2)2 + eσ1(3)3)emm(e1σ2(1) + e2σ2(2) + e3σ2(3))

= eσ1(m)σ2(m),

where the last equality follows by (55). For (37), we use (36) and obtain

gT1 emmg1 = eσ1(m)σ1(m).

For (38),

{gT1 emrg2}3m,r=1 = {(e1σ1(1) + e2σ1(2) + e3σ1(3))
T emr(e1σ2(1) + e2σ2(2) + e3σ2(3))}3m,r=1

= {(eσ1(1)1 + eσ1(2)2 + eσ1(3)3)emr(e1σ2(1) + e2σ2(2) + e3σ2(3))}3m,r=1

= {eσ1(m)σ2(r)}3m,r=1,

where the last equality follows by (55), and thus

{±gT1 emrg2}3m,r=1 = {±eσ1(m)σ2(r)}3m,r=1 = {±emr}3m,r=1.

�

Appendix C Constructing SOG(3)

We denote by SOG(3) ⊂ SO(3) the finite subset of rotations for the symmetry group G
on which we search for the optimum of the score function πij of (23). A naive choice for

SOG(3) would be an almost equally spaced grid of rotations from SO(3), denoted as S̃O(3)
and defined below. However, the symmetry of G allows us to significantly reduce the number
of rotations in this naive set while maintaining the same accuracy of our algorithm. Note
that for any Qr, Qs ∈ SO(3) and g ∈ G, it holds that {QT

r g
(k)Qs}nk=1 = {QT

r g
(k)gQs}nk=1, and

so the set of local coordinates {(αk,1Qr,Qs
, αk,2Qr,Qs

)}k∈[n] is equal to the set of local coordinates

{(αk,1Qr,gQs
, αk,2Qr,gQs

)}k∈[n]. Thus, keeping both Qs and gQs in SOG(3) is redundant. Conse-

quently, our objective is to find all pairs of rotations Qs, Ql ∈ S̃O(3) for which there exists

g(k) ∈ G \ I such that Qs = g(k)Ql, and filter either Qs or Ql from S̃O(3). The resulting set
would be SOG(3).

Since S̃O(3) is finite, an exact equality between Qs and g(k)Ql is unlikely. Therefore, the
proximity between Qs and g(k)Ql is determined up to pre-defined thresholds, based on their
representation using viewing direction and in-plane rotation (see [18]) as follows. The viewing
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directions of Qs and g(k)Ql are given by their third columns Q3
s and (g(k)Ql)

3, respectively.
If Qs and g(k)Ql are two rotations with the same viewing direction, i.e., 〈Q3

s, (g
(k)Ql)

3〉 = 1,
then the rotation matrix Qs

Tg(k)Ql is an in-plane rotation matrix which has the formcos(θ
(k)
sl ) − sin(θ

(k)
sl ) 0

sin(θ
(k)
sl ) cos(θ

(k)
sl ) 0

0 0 1

 , (56)

where θ
(k)
sl ∈ [0, 360°) is the in-plane rotation angle (see [18]). If θ

(k)
sl = 0, then Qs

Tg(k)Ql = I,
and so Qs = g(k)Ql. Hence, we define two thresholds; the viewing direction threshold ε1,
and the in-plane rotation angle threshold ε2. For the viewing direction threshold, we define
ε1 = 5° along with the condition

〈Q3
s, (g

(k)Ql)
3〉 > cos(ε1). (57)

Satisfying condition (57) implies that the rotations Qr and g(k)Qs have nearby viewing
directions, and so it is reasonable to assume that the angle

θ̃
(k)
sl = arctan

(
(Qs

Tg(k)Ql)2,1

(Qs
Tg(k)Ql)1,1

)
(58)

approximates the in-plane rotation angle θ
(k)
sl of (56). We therefore define ε2 = 5° along with

the condition
θ̃
(k)
sl < ε2. (59)

Once both conditions (57) and (59) hold, the proximity between Qs and g(k)Ql is sufficient

to remove either Qs or Ql from S̃O(3).
Of course, it is possible to replace the proximity measure we have used above with any

other proximity measure. The advantage of the measure we use is its simple geometric
interpretation, which allows to easily set and interpret its thresholds.

It remain to show how to construct the set S̃O(3), which is the input of the above pruning
procedure. To that end, we let L be a positive integer, and let τ, θ, ϕ denote Euler angles.
We construct S̃O(3) by sampling the Euler angles in equally spaced increments as follows.
First, we sample τ ∈ {0, . . . , π

2
} at bL

4
c points. Then, for each τ , we sample θ ∈ {0, . . . , π} at

bL
2

sin(τ)c points. Finally, for each pair (τ, θ), we sample ϕ ∈ {0, . . . , 2π} at bL
2

sin(τ) sin(θ)c
points. For each (τ, θ, ϕ) on this grid, we compute a corresponding rotation matrix R by

R = Rz(τ)Ry(θ)Rx(ϕ),
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where

Rz(τ) =

cos τ − sin τ 0
sin τ cos τ 0

0 0 1

 ,

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 ,

Rx(ϕ) =

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 .

Appendix D NSO(3)(T) = O and NSO(3)(O) = O
Proof. A classification of the closed subgroups of SO(3) is given in [6], stating that every
closed subgroup of SO(3) is conjugate to one of SO(3), O(2), SO(2), Dn(n ≥ 2), Cn(n ≥ 2),
T, O, I (the icosahedral symmetry), 1 (the trivial group). Moreover, T and O are closed
subgroups of SO(3). Since for topological groups the normalizer of a closed subgroup is
closed (Lemma 10 below) and since SO(3) is indeed a topological group, the normalizers
of the closed subgroups T and O in SO(3), i.e. NSO(3)(T) and NSO(3)(O), are also closed
subgroups, thus conjugate to one of the closed subgroups of SO(3).

By definition of the normalizer, G ⊆ NSO(3)(G), which precludes O(2), SO(2), Dn(n ≥ 2),
Cn(n ≥ 2) and 1 from being the normalizers of T or O, since each has at most one symmetry
axis of order larger than 2, while both T and O have more than one such axis. In addition,
SO(3) and I are simple groups [21, 2], and so have no non-trivial normal subgroups. By
definition of the normalizer, G is a normal subgroup of NSO(3)(G). Thus, since SO(3) and I
have no non-trivial normal subgroups, neither T nor O are normal subgroups of I or SO(3),
which precludes SO(3) and I from being the normalizers of T or O. Since T is normal in O [2],
we have that O ⊆ NSO(3)(T) and thus it must hold that NSO(3)(T) = O and NSO(3)(O) = O.
�

Lemma 10. Suppose H̃ is a topological group. Then, the normalizer of a closed subgroup G̃
of H̃

NH̃(G̃) = {h̃ ∈ H̃ : h̃−1G̃h̃ = G̃}
is a closed subgroup.

Proof. Fix g̃ ∈ G̃ and define the map fg̃ : H̃ → H̃ by fg̃(h̃) = h̃−1g̃h̃. Since H̃ is a topological
group, fg̃ is continuous as the composition of multiplication and inversion maps. Thus, the
preimage of the closed subgroup G̃ under fg̃, defined by f−1g̃ (G̃) = {h̃ ∈ H̃ : fg̃(h̃) ∈ G̃} =

{h̃ ∈ H̃ : h̃−1g̃h̃ ∈ G̃}, is closed. As any intersection of closed sets is closed, the intersection⋂
g̃∈G̃

f−1g̃ (G̃) = {h̃ ∈ H̃ : h̃−1g̃h̃ ∈ G̃ ∀g̃ ∈ G̃} = NH̃(G̃)
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is closed.
�
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