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GRADIENT-PRESERVING HYPER-REDUCTION OF NONLINEAR

DYNAMICAL SYSTEMS VIA DISCRETE EMPIRICAL

INTERPOLATION∗

CECILIA PAGLIANTINI† AND FEDERICO VISMARA†

Abstract. This work proposes a hyper-reduction method for nonlinear parametric dynamical
systems characterized by gradient fields such as Hamiltonian systems and gradient flows. The gra-
dient structure is associated with conservation of invariants or with dissipation and hence plays a
crucial role in the description of the physical properties of the system. Traditional hyper-reduction
of nonlinear gradient fields yields efficient approximations that, however, lack the gradient structure.
We focus on Hamiltonian gradients and we propose to first decompose the nonlinear part of the
Hamiltonian, mapped into a suitable reduced space, into the sum of d terms, each characterized by
a sparse dependence on the system state. Then, the hyper-reduced approximation is obtained via
discrete empirical interpolation (DEIM) of the Jacobian of the derived d-valued nonlinear function.
The resulting hyper-reduced model retains the gradient structure and its computationally complexity
is independent of the size of the full model. Moreover, a priori error estimates show that the hyper-
reduced model converges to the reduced model and the Hamiltonian is asymptotically preserved.
Whenever the evolution of the nonlinear Hamiltonian gradient requires high-dimensional DEIM ap-
proximation spaces, an adaptive strategy is performed. This consists in updating the hyper-reduced
Hamiltonian via a low-rank correction of the DEIM basis. Numerical tests demonstrate the runtime
speedups compared to the full and the reduced models.

Key words. adaptive hyper-reduction, discrete empirical interpolation, preservation of gradient
structure, nonlinear Hamiltonian systems, symplectic model order reduction
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1. Introduction. We consider parametric dynamical systems where the velocity
describing the flow is characterized by nonlinear gradient fields, that is

(1.1) ẏ(t, η) = X(y(t, η), η) for t ≥ t0,

where η ∈ Rp, p ≥ 1, is a parameter, y : (t0,∞) × Rp → Rn is the state vari-
able, and the velocity field X : R

n × R
p → R

n is assumed to be of the form
X(y, η) = S∇yH(y, η), with S in Rn×n and H a nonlinear function of the state.
Examples of such dynamical systems are gradient flows, where S is a negative semi-
definite matrix, Hamiltonian systems, where S is skew-symmetric, and dissipative
Hamiltonian systems, such as port-Hamiltonian systems, where S = J −R is the sum
of a skew-symmetric component J and a symmetric positive semi-definite component
R. The gradient structure of the velocity field X plays a crucial role in the char-
acterization of the dynamics and of the physical properties of the system since it is
associated with dissipation or preservation of quantities such as energy or entropy.

In this work we focus on Hamiltonian dynamical systems and the goal is to develop
numerical approximation methods for their efficient solution in large-scale scenarios,
i.e. when the number n of degrees of freedom is high, and for many instances of the
parameter. A major challenge in this task is to preserve the physical properties of the
dynamics and, in particular, the Hamiltonian gradient structure of the velocity field.

In the context of large-scale many-query simulations of parametric differential
problems, model order reduction (MOR) and reduced basis methods (RBM) have been
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2 C. PAGLIANTINI AND F. VISMARA

developed to provide efficient high-fidelity surrogate models on lower-dimensional spa-
ces where the bulk of the dynamics takes place. Their success notwithstanding, the
application of RBM to problems of the form (1.1) might lead to unstable and qual-
itatively wrong solution behavior since the gradient structure of the model can be
destroyed during dimension reduction. To address this issue in solving Hamiltonian
systems, structure-preserving MOR techniques have been developed in recent years
to derive reduced models that retain (at least part of) the geometric structure un-
derlying the dynamics. The first methods of this class were developed in [20] using a
Lagrangian formulation and were later extended to nonlinear parametric Lagrangian
systems in [6]; reduced models for canonical Hamiltonian systems on symplectic vector
spaces were derived in [25] using POD-type strategies and in [1] via symplectic greedy
algorithms; reduced bases that are symplectic but not orthogonal were proposed in
[3, 4]; in [13] reduced models were obtained via separate reduced spaces for the gener-
alized positions and momenta; in [29] a double projection of the original problem and
of the Hamiltonian gradient into the span of a POD basis is employed; general Hamil-
tonian systems on Poisson manifolds were tackled in [17]; in [27] operator inference
techniques are proposed to deal with linear Hamiltonian systems. We refer to [19] for
a detailed overview on structure-preserving MOR for Hamiltonian systems. Although
these methods have led to the successful construction of stable low-dimensional mod-
els, little attention has been paid to the efficient treatment of nonlinear operators.
Indeed, in the presence of Hamiltonian functions with general nonlinear dependence
on the state, the computational cost of solving the reduced model might still depend
on the size of the underlying full model, resulting in simulation times that hardly im-
prove over the original system simulation. This is a well-known issue in model order
reduction and has led to the so-called hyper-reduction methods, which are usually
based on approximations of the high-dimensional nonlinear operators using sparse
sampling via interpolation among samples. Traditional hyper-reduction techniques,
however, do not preserve gradient fields. This implies that hyper-reduced models of
Hamiltonian systems are no longer Hamiltonian. As real-world processes tend to be
nonlinear, a lack of efficient and physically compatible dimension reduction of general
nonlinearities comes to the fore.

To the best of our knowledge, only a few works have considered hyper-reduction
methods aimed at preserving Hamiltonian structures [6, 12, 8, 30, 18]. Although
these techniques introduce interesting ideas, they appear tailored to specific problems
or lack a rigorous theoretical analysis of the suggested approximations. In [6] the re-
duced Hamiltonian is approximated with a Taylor polynomial expansion truncated at
the second term. As reported by the authors, the scheme is only effective for asymp-
totically stable systems and when the expansion is performed around an equilibrium
point. These assumptions rule out many important cases and are generally not met
by evolution problems stemming from the semi-discretization of partial differential
equations. A cubature approach, the Energy-Conserving Sampling and Weighting
(ECSW) scheme, is presented in [12]: the nonlinear vector field obtained from the
semi-discretization of a Hamiltonian PDE is approximated with a weighted average of
the field components on a coarser mesh. The method is, however, limited to finite ele-
ment discretization of Hamiltonian PDEs, and requires a very expensive offline phase,
especially for parametric problems. A variation of the discrete empirical interpolation
method (DEIM) [2, 9] has been proposed in [8]: the nonlinear Hamiltonian gradient
is approximated in the space where the DEIM projection is orthogonal. The Hamil-
tonian structure is preserved since orthogonal projections preserve gradients, but the
method does not guarantee that the resulting approximation is accurate. A suitable
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combination of DEIM and dynamic mode decomposition (DMD) is proposed in [18]
to deal with the nonlinear operators of the Hamiltonian systems resulting from a
particle-based discretization of the Vlasov–Poisson kinetic plasma model. In a recent
preprint [30], DEIM hyper-reduction is applied to a nonlinear vector-valued function
G obtained by decomposing the Hamiltonian into the Euclidean product of G with a
constant vector. The gradient of the resulting operator provides an approximation of
the original Hamiltonian gradient but there is no guarantee on the accuracy of such
approximation nor on asymptotic convergence as the DEIM space is enlarged.

In this work we propose a novel gradient-preserving hyper-reduction strategy to
construct surrogate models that: (i) are Hamiltonian; (ii) can be solved at a compu-
tational cost independent of the size of the full model; (iii) are provably accurate; and
(iv) ensure preservation of the full order Hamiltonian asymptotically. The proposed
approach targets the reduced nonlinear operator, in contrast to traditional hyper-
reduction techniques where the nonlinear high-dimensional function is approximated
first and then the resulting approximation is projected onto a reduced space. In par-
ticular, we first map the full order nonlinear Hamiltonian gradient into the reduced
space via a structure-preserving (here symplectic) projection. Then, the nonlinear
part of the reduced Hamiltonian is written as the sum of d terms, where d is typically
of the order of the size of the full model. Although a similar decomposition is used in
[30], here we do not approximate the resulting d-valued nonlinear function but rather
the Hamiltonian gradient. This is done by projecting the Jacobian of the nonlinear
function using discrete empirical interpolation (DEIM) [2, 9]. We derive a priori error
estimates of the error between the full model solution and its hyper-reduced approx-
imation and of the error in the conservation of the Hamiltonian. These results show
that the hyper-reduced model is asymptotically as accurate as the reduced model.
Since the target accuracy is the one of the reduced model, the hyper-reduction allows
to obtain accurate solutions and to ensure exact Hamiltonian conservation with DEIM
sizes much smaller than d and, hence, at a significantly reduced computational cost.

Whenever the dynamics of the problem does not allow for small DEIM approx-
imations and, hence, enough computational savings, we let the proposed gradient-
preserving hyper-reduction change in time. We derive an adaptive approach that ex-
tends to gradient fields the adaptive discrete empirical interpolation method (ADEIM)
introduced in [24]. The DEIM basis is updated in time with the low-rank factor that
minimizes a residual of the nonlinear Jacobian at suitably chosen sampling points. In
particular, we extend the method of [24] to updates of general rank and to matrix-
valued nonlinear terms. We also derive an algorithm for the optimal choice of the
sampling points. A detailed analysis of the computational complexity of the adaptive
hyper-reduction shows that, if the adaptation is implemented in an efficient way, the
complexity reduction due to a smaller DEIM basis (compared to the non-adaptive
algorithm) outweighs the extra computational cost of constructing the update.

The remainder of the paper is organized as follows. In Section 2 we introduce
Hamiltonian dynamical systems and discuss their symplectic model order reduction.
Section 3 concerns the structure-preserving DEIM hyper-reduction of the Hamiltonian
gradient. Section 4 is devoted to the adaptive gradient-preserving hyper-reduction
method and a summary of the scheme is presented in Algorithm 4.3. In Section 5 the
proposed methods are tested on a set of numerical experiments. Some conclusions
and open questions are presented in Section 6.

2. Full order system and its model order reduction. Let T := (t0, T ] ⊂ R

be a temporal interval, let P ⊂ Rp, with p ≥ 1, be a compact set of parameters, and
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let V2n ⊂ R2n be the phase space. For each η ∈ P , we consider the Hamiltonian
dynamical system: given y0(η) ∈ V2n, find y(·, η) ∈ C1(T ;V2n) such that

(2.1)

{
ẏ(t, η) = J2n∇yH(y(t, η), η), t ∈ T ,

y(t0, η) = y0(η),

where y : T ×P → V2n is the state variable and the matrix J2n ∈ R2n×2n, the so-called
canonical Poisson tensor, is defined as

J2n =

(
0n In
−In 0n

)
.

The function H : V2n × P → R is the Hamiltonian of the system and we write it in
the following general form

(2.2) H(y, η) =
1

2
y⊤L(η)y + y⊤f(η) + G(η) +N (y, η),

where L(η) ∈ R2n×2n is a symmetric positive semi-definite matrix, f(η) ∈ Rn,
G(η) ∈ R and N (·, η) is a nonlinear function of the state variable. The Hamiltonian is
a conserved quantity of system (2.1), namely it remains constant along solution trajec-
tories. Moreover, the phase space of Hamiltonian systems has a symplectic geometric
structure. Here we focus on symplectic vector spaces: this means that the space V2n

can be endowed with a local basis {ei}2ni=1 which is symplectic and orthonormal [5,
Chapter 12], that is e⊤i J2nej = (J2n)i,j and (ei, ej) = δi,j for all i, j = 1 . . . , 2n, where
(·, ·) is the Euclidean inner product. We refer to [21, Chapter 10] for a detailed intro-
duction to Hamiltonian systems. To ensure well-posedness of (2.1) we assume that,
for each parameter η ∈ P , the Hamiltonian gradient ∇yH(·, η) is Lipschitz continuous
in the Euclidean norm uniformly with respect to time.

Throughout the paper, we use the symbols ‖·‖ and ‖·‖2 to denote the vector and
matrix 2-norm, respectively, while ‖·‖F refers to the Frobenius norm.

2.1. Symplectic model order reduction. When the number n of degrees of
freedom in (2.1) is large and the system needs to be solved for many instances of
the parameter η, model order reduction can be used to reduce the complexity of
the original system and thus to speed up the resulting numerical simulations. Among
model order reduction techniques, we consider reduced basis methods, which construct
an approximation space of low dimension, the so-called reduced space, from a collection
of simulation data corresponding to full order solutions at sampled values of time and
parameters. A low-dimensional model is then obtained via a suitable projection of
the full order dynamics onto the reduced space.

More in details, the state y is approximated as

yrb(t, η) =

2k∑

i=1

zi(t, η)ai = Az(t, η), for all t ∈ T , η ∈ P ,

where k ≪ n, A = [a1 . . . a2k] ∈ R2n×2k is the reduced basis and z(t, η) ∈ R2k is
the vector of expansion coefficients. In order to preserve the Hamiltonian structure
of the full model, the matrix A is enforced to be symplectic, that is, A⊤J2nA = J2k,
and orthogonal, that is, A⊤A = I2k. If A is an orthogonal symplectic matrix, then
A⊤J2n = J2kA

⊤, see e.g. [25, Lemma 3.3]. Projecting the full order model (2.1) onto



GRADIENT-PRESERVING HYPER-REDUCTION VIA DEIM 5

the space V2k spanned by the columns of A yields the reduced model: for any η ∈ P ,
find z(·, η) ∈ C1(T ;V2k) such that

(2.3)

{
ż(t, η) = J2k∇zHr(z(t, η), η), t ∈ T ,

z(t0, η) = z0(η) := A⊤y0(η),

where the reduced Hamiltonian is obtained from (2.2) as

Hr(z, η) := H(Az, η) =
1

2
z⊤Lr(η)z + z⊤fr(η) + G(η) +Nr(z, η),

with Lr(η) := A⊤L(η)A ∈ R2k×2k, fr(η) := A⊤f(η) ∈ R2k and Nr := N ◦A.
An orthogonal and symplectic reduced basis can be constructed from a set of full

model solutions using SVD-type strategies, such as cotangent lift, complex SVD, or
nonlinear programming [25], or with the symplectic greedy algorithm of [1].

3. Hyper-reduction of the Hamiltonian gradient. Assuming the affine sep-
arability of the operators L(η) and f(η) in (2.2), the major computational cost in
solving the reduced model (2.3) comes from the nonlinear term Nr of the Hamilton-
ian. If standard hyper-reduction techniques are applied to the reduced Hamiltonian
gradient ∇zHr, the resulting approximate function is generally no longer a gradient
field, which might lead to unstable or inaccurate approximations. Numerical evidence
of this behavior is reported e.g. in [25]. To address this shortcoming we first consider
a decomposition of the nonlinear part of the reduced Hamiltonian as

(3.1) Nr(z, η) =
d∑

i=1

vihi(Az, η) = v⊤h(Az, η), for all z ∈ V2k, η ∈ P ,

where d ∈ N, v ∈ Rd is a constant vector and h : V2n × P → Rd. A decomposition of
the Hamiltonian of the form (3.1) has appeared also in [30] and holds in many cases
of interest. For example, the Hamiltonian given by the energy of a system of particles
can be written as the sum of the contribution of each particle; or, if (2.1) results
from the semi-discretization of a PDE via a local approximation, e.g. finite element
or finite volume schemes, hi represents the contribution of the ith mesh element to
the total Hamiltonian. We refer to [21] and [15, Chapter I] for several examples of
Hamiltonian in this form and we will further comment on this aspect in Remark 3.1.

Using the decomposition (3.1), the gradient of the nonlinear term Nr reads

(3.2) ∇zNr(z, η) = A⊤J⊤
η,h(Az)v, for all z ∈ V2k, η ∈ P ,

where Jη,h(·) ∈ Rd×2n is the Jacobian of h(·, η). The idea is then to use discrete empir-
ical interpolation to approximate the term Jη,h(A·)A ∈ Rd×2k, namely the Jacobian
mapped to the reduced space. The projected reduced Jacobian is

(3.3) PJη,h(A·)A, where P := U(P⊤U)−1P⊤ ∈ R
d×d.

Here, U ∈ Rd×m is the so-called DEIM basis with m ≪ d, and P := [eβ(1), . . . , eβ(m)],

where ei is the ith unit vector of Rd and {β(1), . . . , β(m)} ⊂ {1, . . . , d} are interpo-
lation indices [9]. The DEIM projection introduced in (3.3) can be equivalently seen
as an approximation of the nonlinear term Nr in (3.1) by

(3.4) Nhr(z, η) := v⊤Ph(Az, η) for all z ∈ V2k, η ∈ P .
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With the nonlinear term of the Hamiltonian approximated as in (3.4), the resulting
hyper-reduced model reads: for any η ∈ P , find z(·, η) ∈ C1(T ;V2k) such that

(3.5)

{
ż(t, η) = J2k∇zHhr(z(t, η), η), t ∈ T ,

z(t0, η) = z0(η) := A⊤y0(η),

The dynamical system (3.5) is still Hamiltonian, with the hyper-reduced Hamiltonian
defined as

Hhr(z, η) =
1

2
z⊤Lr(η)z + z⊤fr(η) + G(η) +Nhr(z, η),

and its gradient is given by ∇zHhr(z, η) = Lr(η)z + fr(η) +A⊤J⊤
η,h(Az)P

⊤v.

Remark 3.1. A key role in this approach is played by the decomposition (3.1),
which is not unique, and by the choice of d. Indeed, let us assume that, for fixed
z ∈ V2k and η ∈ P , each entry of h(y, η), with y := Az, depends on s1 ≤ n components
among the first n entries of y and on s2 ≤ n components among the last n entries of y.
Then, every row of Jη,h has at most s1 + s2 non-zero elements. This implies that the
evaluation of the gradient (3.2) of the reduced Hamiltonian has complexity O((s1 +
s2)dk), while the cost of computing the gradient of the hyper-reduced Hamiltonian
(3.4) is of order O((s1 + s2)mk). Based on this observation, one might be tempted to
choose a decomposition (3.1) with a small d and bypass the hyper-reduction entirely.
This choice is however often associated with large values of s1 and s2 since typically
(s1+s2)d is, at least, of the order of n. The choice of the decomposition should instead
be driven as to maximize the sparsity of the Jacobian matrix Jη,h ∈ Rd×2n, hence
maximizing the efficacy of the hyper-reduction. We refer to the numerical experiments
in Section 5 for concrete examples of such decomposition.

3.1. Construction of the DEIM projection. As anticipated in (3.3), we
propose an approximation that minimizes the DEIM projection error of the reduced
Jacobian, Jη,h(A·)A ∈ Rd×2k, once the reduced basis A has been constructed. The
algorithm of [30] seeks instead to approximate the factor h in (3.1), but this comes
with no guarantee on the accuracy of the approximation of the reduced Hamiltonian
gradient and, in turn, on the quality of the hyper-reduced model (3.5).

To build the DEIM projection, we compute snapshots in the reduced space V2k

as {A⊤yℓi(ηj)}i,j for j = 1, . . . , Np and i = 1, . . . , Ns, where yℓi(ηj) is the full model
solution at time tℓi and parameter ηj . We collect the corresponding snapshots of the
reduced Jacobian in the matrix

(3.6) MJ = [Jη1,h(AA
⊤yℓ1(η1))A . . . JηNp ,h

(AA⊤yℓNs (ηNp
))A] ∈ R

d×2kNsNp .

The DEIM basis U ∈ Rd×m in (3.3) is obtained from MJ via proper orthogonal
decomposition (POD). Observe that the snapshot matrix MJ can have a potentially
large number of columns: to curb the high computational cost to derive the DEIM
basis from MJ , one could make use of randomized algorithms [16].

Once the DEIM basis is fixed, there are several ways to select the DEIM inter-
polation indices so that P⊤U is non-singular. In this work we focus on the greedy
algorithm of [9, Algorithm 1]. An alternative choice is, for example, QDEIM [11]
which is based on a QR factorization with column pivoting of the matrix U .

Remark 3.2. In principle, one may approximate the full Jacobian Jη,h rather than
the reduced Jacobian Jη,h(A·)A. However, there are (at least) two major issues in
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dealing with the full Jacobian. First, the snapshot matrix MJ has 2nNsNp columns
instead of 2kNsNp, where n ≫ k. In many applications, already for one-dimensional
problems, this matrix is too large to be stored, and the cost of computing its sin-
gular values and vectors is prohibitive. This is particularly relevant in the adaptive
approach, see Section 4, when the DEIM projection is updated online. Second, the
full Jacobian Jη,h usually exhibits diagonal (or sparsity) patterns so that the asso-
ciated snapshot matrix has (almost) full rank. This implies that one has to select
m ≈ d DEIM basis functions to achieve a sufficiently accurate approximation, making
hyper-reduction basically ineffective. On the contrary, when the reduced Jacobian
is considered, it is found in practice that the singular values of MJ exhibit a much
faster decay, which allows for an efficient hyper-reduction. We refer to Figure 4 in
Subsection 5.2 for a numerical example that shows this behavior.

3.2. A priori convergence estimates. The error between the full order and
hyper-reduced solution can be bounded by the error between the full order solution
and its projection onto the reduced space and by the DEIM projection error of the
reduced Jacobian. The following theorem extends to our setting the result in [10,
Theorem 3.1].

Theorem 3.3. For any η ∈ P, let y(·, η) ∈ C1(T , V2n) be the solution of the full

model (2.1) and let z(·, η) ∈ C1(T , V2k) be the solution of the hyper-reduced system

(3.5). Let P be the DEIM projection (3.3). Assume that, for every η ∈ P, the Jacobian

Jη,h of h (3.1) is Lipschitz continuous in the 2-norm with constant Lh(η). Then,

(3.7)
‖y −Az‖2L2(T ×P;V2n)

≤C1(T )
∥∥y −AA⊤y

∥∥2
L2(T ×P;V2n)

+ C2(T )
∥∥(I − P)Jη,h(AA

⊤y)A
∥∥2
L2(T ×P;V2n)

,

where C1(T ) := ∆T maxη∈P

(
Cη(T )α

2(η)
)
+1 and C2(T ) := ∆T ‖v‖2 maxη∈P Cη(T ),

Cη(T ) :=

{
β−1(η)

(
e2β(η)(T−t0) − 1

)
, if β(η) 6= 0,

2(T − t0), if β(η) = 0,

with α(η) :=
∥∥A⊤K(η)

∥∥
2
+ LN (η), LN (η) Lipschitz continuity constant of ∇N (·, η),

β(η) := µ(K(η))+Lh(η)
∥∥(P⊤U)−1

∥∥
2
‖v‖, and µ(K(η)) logarithmic norm of K(η) :=

J2nL(η) with respect to the 2-norm, i.e., µ(K) := supx 6=0
(x,Kx)
(x,x) .

Proof. Let us fix the parameter η ∈ P . The error at each t ∈ T can be split as

e(t, η) := y(t, η)−Az(t, η) = ep(t, η) + eh(t, η),

where ep := y −AA⊤y is the projection error and eh := AA⊤y −Az. Differentiating
eh with respect to time, using (2.1) and (3.5), and the symplecticity of A results in

ėh(t, η) = AA⊤ẏ(t, η)−Aż(t, η) = AA⊤K(η)eh(t, η) + s(t, η),

where s(t, η) := AA⊤K(η)ep(t, η) +AJ2k
(
A⊤∇yN (y, η)−∇zNhr(z, η)

)
and K(η) :=

J2nL(η). The norm of s can be bounded as

(3.8) ‖s(t, η)‖ ≤
∥∥A⊤K(η)

∥∥
2
‖ep(t, η)‖+

∥∥A⊤∇yN (y, η)−∇zNhr(z, η)
∥∥ .



8 C. PAGLIANTINI AND F. VISMARA

The second term in (3.8) can be split as follows,
∥∥A⊤∇yN (y, η)−∇zNhr(z, η)

∥∥ ≤
∥∥A⊤∇yN (y, η)−A⊤∇yN (AA⊤y, η)

∥∥(3.9)

+
∥∥A⊤∇yN (AA⊤y, η)−∇zNhr(A

⊤y, η)
∥∥

+
∥∥∇zNhr(A

⊤y, η)−∇zNhr(z, η)
∥∥ .

We consider the three terms on the right-hand side separately. First observe that, if
∇yH(·, η) is Lipschitz continuous in the 2-norm with constant LH(η), then ∇N (·, η)
is also Lipschitz continuous with constant LN (η) ≤ LH(η) + ‖L(η)‖2. This gives

∥∥A⊤∇yN (y, η)−A⊤∇yN (AA⊤y, η)
∥∥ ≤ LN (η) ‖ep(t, η)‖ .

Moreover, using the decomposition of the Hamiltonian in (3.1) results in

∥∥A⊤∇yN (AA⊤y, η)−∇zNhr(A
⊤y, η)

∥∥ =
∥∥A⊤J⊤

η,h(AA
⊤y)v −A⊤J⊤

η,h(AA
⊤y)P⊤v

∥∥

≤ ‖v‖
∥∥(I − P)Jη,h(AA

⊤y)A
∥∥
2
,

and similarly
(3.10)∥∥∇zNhr(A

⊤y, η)−∇zNhr(z, η)
∥∥ =

∥∥A⊤J⊤
η,h(AA

⊤y)P⊤v −A⊤J⊤
η,h(Az)P

⊤v
∥∥

≤ Lh(η)
∥∥AA⊤y −Az

∥∥ ∥∥P⊤v
∥∥ ≤ γ(η) ‖eh(t, η)‖ ,

where γ(η) := Lh(η)
∥∥(P⊤U)−1

∥∥
2
‖v‖. We can now substitute these three bounds

into (3.9) and (3.8) to obtain

(3.11) ‖s(t, η)‖ ≤ α(η) ‖ep(t, η)‖ + γ(η) ‖eh(t, η)‖ + ‖v‖ ‖W (t, η)‖2 ,

where α(η) :=
∥∥A⊤K(η)

∥∥
2
+ LN (η), and W (t, η) := (I − P)Jη,h(AA

⊤y(t, η))A.
The time derivative of the error norm gives

(3.12)
d

dt
‖eh(t, η)‖ =

1

‖eh(t, η)‖

(
(AA⊤K(η)eh(t, η), eh(t, η)) + (s(t, η), eh(t, η))

)
.

The first term on the right-hand side of (3.12) can be bounded as in [10, Theorem 3.1],
by µ(K(η)) ‖eh(t, η)‖, using the fact that (AA⊤K(η)eh, eh) = (AA⊤K(η)Aẽh, Aẽh) ≤
µ(A⊤KA) ‖ẽh‖2, with ẽh := A⊤y − z.

Using (3.11) for the second term of (3.12) yields

d

dt
‖eh(t, η)‖ ≤ β(η) ‖eh(t, η)‖+ b(t, η),

where β(η) := µ(K(η)) + γ(η), and b(t, η) := α(η) ‖ep(t, η)‖ + ‖v‖ ‖W (t, η)‖2.
A standard application of the Gronwall inequality [14] yields the conclusion.

The dependence of the constants in the bound (3.7) on the norm of the vector v can
be avoided by a suitable normalization of the decomposition (3.1). Observe that the
first term on the right-hand side of (3.7) is controlled via the reduced space, while
the second term can be minimized in the construction of the DEIM basis. Indeed,
the error of the approximation of the reduced Jacobian given by the DEIM projection
(3.3) can be bounded analogously to [9, Lemma 3.2] as

∥∥(I − P)Jηj ,h(AA
⊤ysi(ηj))A

∥∥
2
≤

∥∥(P⊤U)−1
∥∥
2

√√√√
rank(MJ )∑

ℓ=m+1

σ2
ℓ ,
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for any i = 1, . . . , Ns, and j = 1, . . . , Np, where {σℓ}ℓ are the singular values of MJ .
For Jacobian matrices having a particular structure, the Lipschitz continuity as-

sumption of Jη,h in Theorem 3.3 might not be needed. An example often encountered
in applications is when the ith entry of h(y, η) only depends on the ith pair of sym-
plectic variables, namely on the ith and (i + n)th components of y, for any y ∈ V2n.
In this case, d = n and Jη,h ∈ Rn×2n is formed of two n × n diagonal blocks. This
implies that ∇zNhr = J⊤

η,hP
⊤v is of the form D∇N where

D := diag((P⊤v)1, . . . , (P
⊤v)n, (P

⊤v)1, . . . , (P
⊤v)n) ∈ R

2n×2n.

Therefore, the bound in (3.10) becomes
∥∥∇zNhr(A

⊤y, η)−∇zNhr(z, η)
∥∥ =

∥∥A⊤D
(
∇yN (AA⊤y, η)−∇yN (Az, η)

)∥∥

≤ ‖D‖2 LN (η)
∥∥AA⊤y −Az

∥∥ ,

where ‖D‖2 ≤
∥∥P⊤v

∥∥
2
≤

∥∥(P⊤U)−1
∥∥
2
‖v‖. Hence, (3.10) holds with the constant

γ(η) := LN (η)
∥∥(P⊤U)−1

∥∥
2
‖v‖ and no Lipschitz continuity of Jη,h is required.

3.3. Conservation of the Hamiltonian. In this section we assess the error
in the conservation of the Hamiltonian introduced by the hyper-reduction. In the
following result we show that the error between the Hamiltonian evaluated at the full
model solution and at the hyper-reduced solution is bounded by the approximation
error of N . This implies that the hyper-reduced model guarantees preservation of
the Hamiltonian for sufficiently large DEIM bases, that is, when the accuracy of the
hyper-reduced model reaches the accuracy of the reduced model and up to errors due
to the time integration scheme. We refer to Section 5 for several numerical tests that
corroborate this result.

Proposition 3.4. Let η ∈ P be fixed. Let yj(η) be an approximation of the

solution y(tj , η) of the full order system (2.1) at time tj, with j = 1, . . . , Nt, obtained

with a user-defined numerical time integrator. Similarly, let zj(η) be an approximation

of the solution z(tj, η) of the hyper-reduced system (3.5) at time tj. Assume that

y0(η) ∈ Col(A) and h(AA⊤y0(η), η) ∈ Col(U), where Col denotes the column space.

Then, the error ∆Hj(η) := |H(yj(η), η)−H(Azj(η), η)| satisfies

∆Hj(η) ≤ |v⊤(I − P)h(Azj(η), η)|+ ε
[t0,tj]
H + ε

[t0,tj ]
Hhr

,

where ε
[t0,tj ]
H := |H(yj)−H(y0)| and ε

[t0,tj ]
Hhr

:= |Hhr(z
j)−Hhr(z

0)| are the errors

in the Hamiltonian conservation, in the temporal interval [t0, tj ], associated with the

chosen temporal integrator.

Proof. In this proof we omit the dependence of yj, zj and H on η. The Hamil-
tonian error at the generic time instant tj can be bounded as

(3.13)
∆Hj(η) ≤ |H(yj)−H(y0)|+ |Hhr(z

j)−Hhr(z
0)|

+ |H(Az0)−Hhr(z
0)|+ |H(Azj)−Hhr(z

j)|+∆H0(η).

The first two terms in (3.13) measure the Hamiltonian conservation with respect to
the initial value in the full and hyper-reduced systems. These quantities only depend
on the time integration scheme. The term |H(Az0)−Hhr(z

0)| = |v⊤(I − P)h(Az0)|
vanishes since h(Az0) ∈ Col(U) by assumption. Similarly, the term ∆H0(η) vanishes
due to the injectivity of the linear map A and the assumption y0 ∈ Col(A).

The conclusion follows by the definition of the full and reduced Hamiltonian.
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The bound on the Hamiltonian error hinges on the assumptions that y0(η) ∈
Col(A) and h(AA⊤y0, η) ∈ Col(U) for any value of the parameter η ∈ P . These
conditions can be enforced via a shifting of the state variable and of the operator
h. Let us introduce the variable ys(t, η) := y(t, η) − y0(η) and the shifted operator
hs(y(t, η), η) := h(y(t, η), η)− h(y0(η), η), for any t ∈ T and η ∈ P . Substituting into
the expression of the Hamiltonian (2.2) gives

(3.14) Hs(ys, η) := H(ys+ y0, η) =
1

2
y⊤s L(η)ys+ y⊤s fs(η)+Gs(η)+ v⊤hs(ys+ y0, η),

where fs(η) := f(η) + L(η)y0 and Gs(η) = G(η) + 1/2(y0)⊤L(η)y0 + (y0)⊤f(η) +
v⊤h(y0, η). Then, the shifted state ys satisfies an Hamiltonian system with Hamil-
tonian Hs as in (3.14) and initial condition ys(t0, η) = 0. Since y0s(η) = 0 and
hs(AA

⊤y0s + y0, η) = hs(y
0, η) = h(y0, η) − h(y0, η) = 0 for any η ∈ P , the shifted

system satisfies the hypotheses of Proposition 3.4. The shifted system is the one we
consider as full order model in all numerical tests of Section 5.

4. Adaptive gradient-preserving hyper-reduction. In many cases of inter-
est, such as convection-dominated phenomena and conservative dynamics, it is known
that the solution space, under variation of time and parameter, has poor global re-
ducibility properties. An analogous property is observed when considering the space
of Hamiltonian gradients, although a rigorous connection between the reducibility of
the two spaces is not know. We refer to Subsection 5.2 for numerical evidence of these
considerations.

To address this lack of global reducibility, we derive an adaptive strategy for the
hyper-reduction of (2.1) where the DEIM projection is updated in time while preserv-
ing the gradient structure of the Hamiltonian vector field. The proposed approach is
inspired by the method introduced in [24, 23].

For the sake of exposition, we assume that basis and interpolation points are
adapted every δ time instants starting from tδ0 , where δ, δ0 > 1 are fixed hyper-
parameters. Assuming that Nt − δ0 is a multiple of δ, the number of adaptations
is Na = δ−1(Nt − δ0) and the adaptations are performed at time instants {tℓj}Na

j=1,

where ℓj := δ0 + (j − 1)δ. We define ℓ0 := 0 and note that tℓNa+1 = tNt = T . In
principle, Na does not need to be fixed a priori and it may be determined during
time evolution of the hyper-reduced system based on e.g. suitable error criteria. In
the proposed adaptive hyper-reduction algorithm, the basis update is performed for
each instance of the test parameter. Let us then fix the problem parameter η ∈ P .

Between two updates the local hyper-reduced system to be solved in the temporal
interval [tℓj , tℓj+1 ] reads

(4.1)

{
ż(t, η) = J2k∇zHj

hr(z(t, η), η), t ∈ (tℓj , tℓj+1 ],

z(tℓj , η) = zℓj(η),

for j = 0, . . . , Na, where the local hyper-reduced Hamiltonian is given by

Hj
hr(z, η) :=

1

2
z⊤Lr(η)z ++z⊤fr(η) + G(η) + v⊤Pjh(Az, η),

and Pj := Uj(P
⊤
j Uj)

−1P⊤
j is the local DEIM projection.

Starting from a DEIM basis U0 ∈ Rd×m and interpolation matrix P0 ∈ Rd×m, the
idea of the adaptive hyper-reduction is to perform a rank-r update of the DEIM basis
to adapt the DEIM pair (Uj , Pj) to (Uj+1, Pj+1) for j = 0, . . . , Na − 1. The initial
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DEIM basis U0 is constructed in the offline phase from snapshots of the full model
solutions in the first δ0 time steps, namely

MJ = [Jη,h(AA
⊤y1(η))A . . . Jη,h(AA

⊤yδ0(η))A] ∈ R
d×2kδ0 .

Observe that one might also construct the initial DEIM pair (U0, P0) from a set of
training parameters.

Next, at time instant tℓj+1 , with j = 0, . . . , Na − 1, the DEIM pair (Uj , Pj) is
updated based on the snapshots of the nonlinear Hamiltonian in a past temporal
window of size w ∈ N, with w < δ0. More in details, consider the snapshot matrix of
the reduced Jacobian in the temporal window [tℓj+1−w+1, tℓj+1 ], namely let

Fj := [Jη,h(Az
ℓj+1−w+1)A . . . Jη,h(Az

ℓj+1)A] ∈ R
d×w,

where w := 2kw. The residual of the DEIM approximation of the columns of Fj is
given by Rj = UjCj − Fj ∈ Rd×w, where Cj ∈ Rm×w is the DEIM coefficient matrix
Cj := (P⊤

j Uj)
−1P⊤

j Fj . Analogously to [24], we update the DEIM basis matrix Uj to
Uj+1 via a rank-r correction, that is

(4.2) Uj+1 = Uj +αjb
⊤
j

with αj ∈ Rd×r and bj ∈ Rm×r of rank r ∈ N, r ≤ m. The update αjb
⊤
j is

defined as the rank-r matrix that minimizes the Frobenius norm of the residual at
the sampling points collected in the matrix Sj = [e

s
(j)
1

. . . e
s
(j)
ms

] ∈ Rd×ms where

s
(j)
1 , . . . , s

(j)
ms ∈ {1, . . . , d}, namely it minimizes

∥∥S⊤
j (Uj+1Cj − Fj)

∥∥2
F
=

∥∥S⊤
j Rj + S⊤

j αjb
⊤
j Cj

∥∥2
F
.

With the change of variable aj := S⊤
j αj ∈ Rms×r, the update (4.2) boils down to

solving the minimization problem

(4.3) (aj ,bj) = argmin
(a,b)∈Vr(ms,m)

∥∥S⊤
j Rj + ab⊤Cj

∥∥2
F
,

over the space of rank-r matrices defined as

(4.4) Vr(ms,m) := {(a,b) ∈ R
ms×r × R

m×r : rank(a) = rank(b) = r}.

The number ms of sampling points is taken such that ms ≥ m and ms ≪ d. The
first requirement ensures that the minimization problem (4.3) has a non-trivial solu-
tion, while the second condition is enforced to avoid working in the potentially high
dimension d. Notice that, since only ms of the d rows of Sjaj ∈ Rd×r are non-zero,
the update (4.2) only modifies ms rows of the DEIM basis Uj , that is

(4.5) Š⊤
j Uj+1 = Š⊤

j Uj where Šj := [e
s
(j)
ms+1

. . . e
s
(j)
d

] ∈ R
d×(d−ms),

and {s(j)ms+1, . . . , s
(j)
d } := {1, . . . , d} \ {s(j)1 , . . . , s

(j)
ms}.

4.1. Rank-r update of the DEIM basis. The minimization problem (4.3) has
been already considered in [24, Lemma 3.5] for rank-1 updates of the DEIM basis.
We extend the result to the general case of rank r > 1.
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Theorem 4.1. Let r ≤ m and assume that Cj ∈ Rm×w has full row-rank m. Let

Vr(ms,m) be defined as in (4.4). Then, the solution of the minimization problem

(4.6) min
(a,b)∈Vr(ms,m)

∥∥S⊤
j Rj + ab⊤Cj

∥∥2

F
,

is given by a = [a1 . . . ar] ∈ Rms×r and b = [b1 . . . br] ∈ Rm×r where b1, . . . , br are

the eigenvectors of the generalized eigenvalue problem

(4.7) Cj(S
⊤
j Rj)

⊤(S⊤
j Rj)C

⊤
j v = λCjC

⊤
j v,

corresponding to the r largest eigenvalues λ1 ≥ · · · ≥ λr ≥ 0, and

(4.8) ai = − 1
∥∥C⊤

j bi
∥∥2S

⊤
j RjC

⊤
j bi i = 1, . . . , r.

Moreover, the solution (a,b) ∈ Vr(ms,m) of (4.6) satisfies

(4.9)
∥∥S⊤

j Rj + ab⊤Cj

∥∥2
F
=

∥∥S⊤
j Rj

∥∥2
F
−

r∑

i=1

λi.

Proof. Let Oj denote the objective function of the minimization problem (4.6),

namely Oj(a,b) :=
∥∥S⊤

j Rj + ab⊤Cj

∥∥2
F
. We recast problem (4.6) in the space

V̂r(ms,m) := {(a,b) ∈ R
ms×r × R

m×r : rank(a) = rank(b) = r, a⊤a diagonal}.

Assume that the pair (c,d) ∈ Vr(ms,m) minimizes (4.6). Let c = fZ be the thin
QR factorization of c without normalization, where f ∈ Rms×r and Z ∈ Rr×r is
upper triangular with ones on the main diagonal. Define g := dZ⊤ ∈ R

m×r. Then
(f ,g) ∈ V̂r(ms,m) and fg⊤Cj = cd⊤Cj , which implies

min
(a,b)∈Vr(ms,m)

∥∥S⊤
j Rj + ab⊤Cj

∥∥2

F
= min

(a,b)∈V̂r(ms,m)

∥∥S⊤
j Rj + ab⊤Cj

∥∥2
F
,

and we can restrict our search to the case where the vectors ai are orthogonal.
In V̂r, the objective function can be expanded as

(4.10) Oj(a,b) =
∥∥S⊤

j Rj

∥∥2
F
+

r∑

i=1

‖ai‖2
∥∥C⊤

j bi
∥∥2 + 2

r∑

i=1

tr
(
(S⊤

j Rj)
⊤aib

⊤
i Cj

)
.

Imposing the gradient of (4.10) to vanish leads to decoupled equations for each pair
(ai, bi). In particular, for each i = 1, . . . , r, the resulting problem boils down to the
rank-1 minimization of [24, Lemma 3.5]. For a fixed index i, ai is given by (4.8), and
bi is eigenvector of the generalized eigenvalue problem

Cj(S
⊤
j Rj)

⊤(S⊤
j Rj)C

⊤
j v = λCjC

⊤
j v.

The corresponding eigenvalue λi ∈ R can be written as

λi =

∥∥S⊤
j RjC

⊤
j bi

∥∥2
∥∥C⊤

j bi
∥∥2 .
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So far we know that if b1, . . . , br are any r eigenvectors of (4.7) and a1, . . . , ar are

obtained from bi using (4.8), then (a,b) ∈ V̂r is a stationary point of (4.6). We
now want to identify the global minimum. Starting from (4.10) and inserting the
expression for ai, the second term on the right-hand side of (4.10) becomes

r∑

i=1

‖ai‖2
∥∥C⊤

j bi
∥∥2 =

r∑

i=1

∥∥S⊤RC⊤
j bi

∥∥2
∥∥C⊤

j bi
∥∥2 =

r∑

i=1

λi,

while the third term of (4.10) is

r∑

i=1

tr
(
(S⊤R)⊤aib

⊤
i Cj

)
=

r∑

i=1

− 1
∥∥C⊤

j bi
∥∥2 tr(b

⊤
i Cj(S

⊤R)⊤(S⊤R)C⊤
j bi) = −

r∑

i=1

λi.

Hence, the objective function (4.10) in V̂r satisfies (4.9). Since b is required to have
column-rank r, the global minimum of (4.6) is obtained by choosing as b1, . . . , br the
eigenvectors of (4.7) corresponding to the r largest eigenvalues.

If the matrix Cj does not have full row-rank, that is, rC := rank(Cj) < m,
one can proceed as suggested in [24, Lemma 3.4] by performing a rank-revealing QR
decomposition of Cj , i.e., Cj = QjZj where Qj ∈ Rm×rC has orthogonal columns
and Zj ∈ RrC×w. Introducing z = Q⊤

j b, Theorem 4.1 gives the matrices (a, z) ∈
Vr(ms, rC) that minimize

∥∥S⊤
j Rj + az⊤Zj

∥∥2

F
, and b can be recovered as b = Qjz.

The steps to update the DEIM basis are summarized in Algorithm 4.1.

Algorithm 4.1 Adaptation of the DEIM projection

1: procedure (Uj+1, Pj+1) = adaptBasis({zℓj+1−w+1, . . . , zℓj+1}, A, Uj , Pj , Sj , r)
2: Compute the matrix Fj at the interpolation and sampling points: P⊤

j Fj , S
⊤
j Fj .

3: Compute the DEIM coefficients Cj = (P⊤
j Uj)

−1(P⊤
j Fj).

4: Compute the DEIM residual at the sampling points: S⊤
j Rj = S⊤

j UjCj − S⊤
j Fj .

5: Solve the generalized eigenvalue problem (4.7).
6: Set b1, . . . , br as the eigenvectors corresponding to the r largest eigenvalues.
7: Compute a1, . . . , ar using (4.8).
8: Set aj = [a1 . . . ar] and bj = [b1 . . . br].
9: S⊤

j Uj+1 ← S⊤
j Uj + ajb

⊤
j and Š⊤

j Uj+1 ← Š⊤
j Uj .

10: Compute the DEIM indices Pj+1 associated with Uj+1.

11: end procedure

For each value of the parameter, the complexity of updating the DEIM basis, as
described in Algorithm 4.1, is O(mskw(s1+s2))+O(m2ms)+O(msmkw). In greater
detail, under the assumption that the Jacobian Jη,h has at most s1 + s2 non-zero
entries per row, the computation of P⊤

j Fj = P⊤
j Jη,h(Az

i)A for all w hyper-reduced

solutions zi in the temporal window has complexity O((s1 + s2)mkw). Analogously,
S⊤
j Fj ∈ Rms×w requires O((s1 + s2)mskw) operations. Next, the matrix-matrix

multiplications involved in the computation of Cj ∈ Rm×w (line 3) and of S⊤
j Rj ∈

Rms×w (line 4) require O(m3) + O(m2kw) + O(msmkw) operations. The solution
of the generalized eigenvalue problem (4.7) has arithmetic complexity O(msmkw) +
O(m2ms)+O(m3). Finally, the total complexity of computing the matrix a ∈ Rms×r

via (4.8) is O(rmms + rmkw). The update of the DEIM interpolation points (line
11) can be performed, for example, by means of the greedy algorithm described in [9]
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with complexity is O(m3)+O(m2d), cf. [11]. This cost is linear in d because, at each
iteration of [9, Algorithm 1], the norm of the d-dimensional DEIM residual needs to
be computed. To reduce the computational burden of this step, one can update only
the indices associated with the DEIM basis vectors that have undergone the largest
rotations in the DEIM basis update from Uj to Uj+1, as suggested in [24, Section 4.1].

4.2. Sampling points update. A crucial aspect of Algorithm 4.1 is the defi-
nition of the sampling matrix Sj . To determine the best possible choice of sampling
points, we analyze the reduction in the residual associated with the DEIM update
and the distance of the DEIM space to the best approximation space at a given time.
To this end, we first show that the DEIM update minimizes the projection error of
the residual at the sampling points onto the space spanned by the rows of Cj .

Lemma 4.2. Let r be the rank of the matrix S⊤
j RjC

⊤
j ∈ R

ms×m and assume that

the DEIM coefficient matrix Cj ∈ Rm×w has full row-rank. Let Uj+1 be the rank-r
update given by Algorithm 4.1. If Cj = C⊤

j (CjC
⊤
j )−1Cj ∈ Rw×w, then

∥∥S⊤
j (Uj+1Cj − Fj)

∥∥
F
=

∥∥S⊤
j Rj(I − Cj)

∥∥
F
.

Proof. For all i = 1, . . . , r, the eigenpairs (λi, bi) satisfy the generalized eigenvalue
problem (4.7), i.e. Cj(S

⊤
j Rj)

⊤(S⊤
j Rj)C

⊤
j b = CjC

⊤
j bΛ, where Λ = diag(λ1, . . . , λr).

Since Cj has full row-rank, the matrix CjC
⊤
j is symmetric and positive definite, thus

admitting the Cholesky decomposition CjC
⊤
j = LjL

⊤
j , where Lj ∈ Rm×m is lower

triangular. We introduce the change of variables c = L⊤
j b, so that the eigenvalue

problem becomes L−1
j Cj(S

⊤
j Rj)

⊤(S⊤
j Rj)C

⊤
j L−⊤

j c = cΛ. This means that the eigen-
values of the generalized problem (4.7) coincide with the squared singular values of
the matrix Mj := S⊤

j RjC
⊤
j L−⊤

j ∈ Rms×m. Then, equation (4.9) can be written as

(4.11)
∥∥S⊤

j Rj + ab⊤Cj

∥∥2

F
=

∥∥S⊤
j Rj

∥∥2
F
−

r∑

ℓ=1

σ2
ℓ ,

where σ1 ≥ · · · ≥ σr > 0 are the singular values ofMj. Since r = rank(S⊤
j RjC

⊤
j L−⊤

j ),

∥∥S⊤
j Rj + ab⊤Cj

∥∥2
F
=

∥∥S⊤
j Rj

∥∥2
F
−
∥∥S⊤

j RjC
⊤
j L−⊤

j

∥∥2
F
.

Moreover, by the cyclic property of the trace, it holds

∥∥S⊤
j Rj

∥∥2
F
−
∥∥S⊤

j RjC
⊤
j L−⊤

j

∥∥2
F
= tr((I − C⊤

j (CjC
⊤
j )−1Cj)(S

⊤
j Rj)

⊤(S⊤
j Rj)).

Since Cj = C⊤
j and C2

j = Cj , we have I − Cj = (I − Cj)(I − Cj)
⊤, and

∥∥S⊤
j Rj + ab⊤Cj

∥∥2

F
= tr((I − Cj)(I − Cj)

⊤(S⊤
j Rj)

⊤(S⊤
j Rj)),

which concludes the proof.

The number of non-zero eigenvalues in the generalized eigenvalue problem (4.7)
coincides with the number r of non-zero singular values of S⊤

j RjC
⊤
j L−⊤

j . Further-
more, owing to (4.11), including eigenvectors of (4.7) corresponding to zero eigenvalues
as columns of b will have no effect on the value of the objective function (4.6). This
suggests that the rank r of the update should be chosen so that r ≤ r.

In the following result we study the distance between the DEIM space resulting
from the update described in Algorithm 4.1 and the best possible approximation space,
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namely the one spanned by the columns of Fj , for j = 0, . . . , Na. The resulting bound
gives us an indication on how the sampling matrix can be chosen to minimize the error.
Note that the result in the following theorem is analogous to [23, Proposition 2].

Theorem 4.3. Assume that Cj ∈ Rm×w has full row-rank. Let Uj+1 = Uj+αjβ
⊤
j

be the rank-r update of Uj obtained with Algorithm 4.1. Let Uj+1 be the space spanned

by the columns of Uj+1, and let the columns of Fj belong to the m-dimensional space

Uj+1. Then, the distance between U j+1 and Uj+1 is bounded as

(4.12) d(Uj+1,Uj+1) :=
∥∥U j+1 − Uj+1U

⊤
j+1U j+1

∥∥2
F
≤

ρ2j
σ2
min(Fj)

where σmin(Fj) is the smallest nonzero singular value of Fj and

ρ2j := ‖Rj(I − Cj)‖2F +
∥∥Š⊤

j RjCj

∥∥2
F
= ‖Rj‖2F −

∥∥S⊤
j RjCj

∥∥2
F
.

Proof. First note that the update αjβ
⊤
j only changes the rows of Uj corresponding

to the sampling points Sj as shown in (4.5). Lemma 4.2 yields

‖Uj+1Cj − Fj‖2F =
∥∥S⊤

j Rj(I − Cj)
∥∥2

F
+
∥∥Š⊤

j Rj

∥∥2
F

= ‖Rj(I − Cj)‖2F −
∥∥Š⊤

j Rj(I − Cj)
∥∥2
F
+
∥∥Š⊤

j Rj

∥∥2
F
.

(4.13)

The linearity and cyclic property of the trace, together with the fact that Cj is

a projection, give
∥∥Š⊤

j Rj

∥∥2

F
−

∥∥Š⊤
j Rj(I − Cj)

∥∥2
F

=
∥∥Š⊤

j RjCj

∥∥2
F
. Hence, equation

(4.13) yields ‖Uj+1Cj − Fj‖2F = ρ2j .

Let the columns of U j+1 form an orthonormal basis of Uj+1. Since the columns

of Fj belong to Uj+1, there is a matrix F̃j ∈ Rm×w such that Fj = U j+1F̃j . Hence,

∥∥Fj − Uj+1U
⊤
j+1Fj

∥∥2
F
=

∥∥∥(U j+1 − Uj+1U
⊤
j+1U j+1)F̃j

∥∥∥
2

F

≥
∥∥U j+1 − Uj+1U

⊤
j+1U j+1

∥∥2
F
σ2
min(F̃j),

(4.14)

and σmin(F̃j) = σmin(Fj) since U j+1 is orthonormal. The conclusion follows by com-

bining (4.14) with the bound
∥∥Fj − Uj+1U

⊤
j+1Fj

∥∥2
F
≤ ‖Fj − Uj+1Cj‖2F .

If ρj = 0 in (4.12), then the spaces Uj+1 and Uj+1 coincide, and the adapted
DEIM basis Uj+1 can exactly represent all snapshots Fj of the reduced Jacobian
in the window. This observation suggests that the ideal set of sample indices Sj is
the one that minimizes ρj . In particular, since Rj and Cj are fixed, we choose the
Sj that minimizes

∥∥ŠjRjCj

∥∥
F

or, equivalently, maximizes ‖SjRjCj‖F , as described
in Algorithm 4.2. We remark the adaptive method proposed in [23] is based on a
different update of the DEIM basis, performed via SVD of the residual matrix Rj

(see [23, Algorithm 3]), and the sampling matrix Sj is chosen to minimize
∥∥ŠjRj

∥∥
F
.

Algorithm 4.2 Adaptation of the sampling indices

1: procedure Sj+1=adaptSampleIndices({zℓj+1−w+1, . . . , zℓj+1}, A, Uj , Pj , ms)
2: Build the snapshot matrix Fj of the reduced Jacobian in the window.
3: Compute RjCj = UjCj − FjC

⊤
j (CjC

⊤
j )−1Cj .

4: Take as new sampling indices the indices of the ms rows of RjCj with largest norm.

5: end procedure
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To analyze the computational cost of Algorithm 4.2, we first observe that some of
the quantities involved are already available from the basis update (Algorithm 4.1).
The operations required are the computation of the d−m entries of Fj not available
from P⊤

j Fj , at a cost of order O((d−m)kw(s1+s2)). To construct Cj one can use the

SVD of Cj = UjΣjV⊤
j so that Cj = ṼjṼ⊤

j , where Ṽj ∈ Rw×m is obtained by selecting

the first m columns of Vj . In this case, RjCj = UjCj − Fj ṼjṼ⊤
j can be computed

with O(dmkw) operations. The arithmetic complexity of Algorithm 4.2 is then linear
in d. Since d typically scales with the full dimension n (see discussion in Remark 3.1),
the update of the sampling indices turns out to be too expensive to be performed
at each adaptation step. In particular, solving the adaptive hyper-reduced system
may become computationally demanding for large values of w or m, as observed in
the numerical experiments, Table 4 and Figure 7 in particular. For this reason, it is
preferable to perform the update of the sampling indices every γ steps, where γ = νδ
and ν > 1. Moreover, instead of being fixed a priori, the number of sampling indices
ms may be determined at each adaptation until

∥∥ŠjRjCj

∥∥
F

is below a threshold
tolerance. We refer to Subsection 5.2 for a numerical study regarding these aspects.

The gradient-preserving adaptive DEIM scheme is summarized in Algorithm 4.3.

Algorithm 4.3 Gradient-preserving adaptive DEIM

1: procedure GP-ADEIM(A, δ0, δ, w, γ, ms, r)
2: Compute (U0, P0) from snapshots Jη,h(AA⊤yℓ(η)) for ℓ = 0, . . . , δ0.
3: j ← 0
4: for τ = 1, . . . , Nt − 1 do

5: Compute zτ by solving (4.1) with Uj and Pj .
6: if mod(τ − δ0, δ) = 0 then

7: Collect reduced trajectories in the window: Z = {zδ0+jδ−w+1, . . . , zδ0+jδ}.
8: if mod(τ − δ0, γ) = 0 then

9: Sj ←adaptSampleIndices(Z, A, Uj , Pj , ms) with Algorithm 4.2.
10: else

11: Sj ← Sj−1

12: end if

13: (Uj+1, Pj+1)← adaptBasis(Z, A, Uj , Pj , Sj , r) with Algorithm 4.1.
14: j ← (τ − δ0)/δ + 1
15: end if

16: end for

17: end procedure

4.3. Conservation of the Hamiltonian. Similarly to the study conducted
in Subsection 3.3 for the non-adaptive hyper-reduction, we assess the error in the
conservation of the Hamiltonian due to its approximation via local hyper-reduction.
In the following result we show that the error between the Hamiltonian evaluated at
the full model solution and at the hyper-reduced solution at a given time is bounded
by the sum of the local hyper-reduction error of h at all previous updates.

Proposition 4.4. Let η ∈ P be fixed. Let yℓj (η) be an approximation of the

solution y(tℓj , η) of the full order system (2.1) at time tℓj , with j = 1, . . . , Na + 1,
obtained with a user-defined numerical time integrator. Similarly, let zℓj (η) be an

approximation of the solution z(tℓj , η) of the hyper-reduced system (3.5) at time tℓj .
Assume that y0(η) ∈ Col(A) and h(AA⊤y0(η), η) ∈ Col(U0). Furthermore, assume

that the basis is updated so that h(Azℓj(η), η) ∈ Col(Uj) for all j = 1, . . . , Na. Then,
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the error ∆Hj(η) := |H(yℓj (η), η)−H(Azℓj (η), η)| satisfies

(4.15) ∆Hj(η) ≤
j−1∑

i=0

(
|v⊤(I − Pi)h(Az

ℓi+1(η), η)|+ ε
[tℓi ,tℓi+1 ]

Hi
hr

)
+ ε

[t0,tℓj ]
H ,

where ε
[tℓj ,tℓj+1]

Hj

hr

:= |Hj
hr(z

ℓj+1)−Hj
hr(z

ℓj )| and ε
[t0,tℓj ]
H := |H(yℓj )−H(y0)| are the

errors in the Hamiltonian conservation in the specified interval and associated with

the chosen temporal integrator.

Proof. In this proof we omit the dependence of yℓj , zℓj , and of H on η. The
Hamiltonian error at the generic time instant tℓj can be bounded as

∆Hj(η) ≤ |H(yℓj )−H(y0)|+ |H(y0)−H(Az0)|+ |H(Az0)−H(Azℓj )|.

The first term on the right-hand side is ε
[t0,tℓj ]
H and only depends on the time integra-

tion scheme. Moreover, the second term is zero since y0 ∈ Col(A) by assumption. As
shown in Subsection 3.3, this assumption can be easily enforced by a suitable shift of
the initial condition. The third term can be bounded as

|H(Az0)−H(Azℓj )| ≤ |H(Az0)−H0
hr(z

0)|+
j−1∑

i=0

|Hi
hr(z

ℓi+1)−Hi
hr(z

ℓi)|

+

j−2∑

i=0

|Hi+1
hr (zℓi+1)−Hi

hr(z
ℓi+1)|+ |Hj−1

hr (zℓj)−H(Azℓj)|.

The first term on the right-hand side vanishes if h(Az0) ∈ Col(U0). Furthermore, the

quantity |Hi
hr(z

ℓi)−Hi
hr(z

ℓi+1)| = ε
[tℓi ,tℓi+1 ]

Hi
hr

only depends on the temporal integrator.

The third term can be further split as follows, for all i = 0, . . . , j − 2,

|Hi
hr(z

ℓi+1)−Hi+1
hr (zℓi+1)| ≤ |Hi

hr(z
ℓi+1)−H(Azℓi+1)|+ |H(Azℓi+1)−Hi+1

hr (zℓi+1)|,

where the second term vanishes if h(Azℓi+1) ∈ Col(Ui+1).
The conclusion follows from the definition of the Hamiltonians involved.

5. Numerical experiments. To numerically assess the performances of the
proposed methods, we consider two test problems: the 2D shallow water equations
and the 1D nonlinear Schrödinger equation. As numerical time integration schemes we
compare the implicit midpoint rule (IMR), which is a symplectic time integrator [15],
and the Average Vector Field (AVF), which is not symplectic but exactly preserves
the Hamiltonian [26, 7]. The tolerance of the Newton method used within the implicit
timestepping is set to 10−10. In all the numerical tests, we evaluate the accuracy of
the reduced and hyper-reduced solutions by means of the following relative errors:

(5.1) EL2 =

√√√√
∑Nt

i=0 ‖yi −Azi‖2
∑Nt

i=0 ‖yi‖
2

, Efin =

∥∥yNt − AzNt

∥∥
‖yNt‖ .

We shall distinguish between ER
L2 , ER

fin and EHR
L2 , EHR

fin according to whether zi is the
reduced or the hyper-reduced solution at time ti, respectively.
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5.1. Two-dimensional shallow water equations. The two-dimensional shal-
low water equations (2D-SWE) [28] in the rectangular domain Ω = [−Lx1, Lx1 ] ×
[−Lx2, Lx2 ] ⊂ R2 reads

(5.2)




∂tχ+ γ∇ · (χ∇Φ), in Ω× (0, T ],

∂tΦ+
γ

2
|∇Φ|2 + γχ = 0, in Ω× (0, T ],

where ∂t is short-hand notation for the temporal derivative, ∇· and ∇ denote the
divergence and gradient operators in x = (x1, x2) ∈ Ω, respectively; χ = χ(x, t; η)
is the height of the free surface and Φ = Φ(x, t; η) is the scalar velocity potential,
that is, ∇Φ is the horizontal velocity normalized by the characteristic speed; γ ∈ R

is a constant-valued parameter. We complement the problem with periodic boundary
conditions and initial conditions. Problem (5.2) admits a Hamiltonian formulation
with Hamiltonian

Ĥ(χ, φ) =
γ

2

∫

Ω

(χ|∇φ|2 + χ2) dx.

We discretize the spatial differential operators in (5.2) using centered second-order
finite differences. To this end, we introduce a uniform Cartesian mesh on the domain
Ω with ((x1)i, (x2)j) = (−Lx1 +i∆x1,−Lx2+j∆x2), for i = 0, . . . , nx1 , j = 0, . . . , nx2

and ∆x1 = 2Lx1/nx1, ∆x2 = 2Ly/nx2 . Let n := nx1nx2 and Dx1 , Dx2 ∈ Rn×n be
the matrices corresponding to the finite-difference discretization of the spatial deriv-
atives. Defining the vectors χ(t, η) = (χ1, . . . , χn)

⊤, and Φ(t, η) = (Φ1, . . . ,Φn)
⊤,

approximating the nodal values of χ and Φ respectively, we obtain the discretized
system

{
χ̇+ γ [Dx1(χ⊙Dx1Φ) +Dx2(χ⊙Dx2Φ)] = 0,

Φ̇+ γχ+ γ
2

[
(Dx1Φ)2 + (Dx2Φ)2

]
= 0.

Here, the symbol ⊙ denotes the pointwise product of vectors. This is a Hamiltonian
system of the form (2.1) with y(t, η) = (χ⊤(t, η),Φ⊤(t, η))⊤ ∈ R2n and

N (y, η) =
γ

2

n∑

i=1

χi

[
(Dx1Φ)2i + (Dx2Φ)2i

]
= v⊤h(y, η),

where v ∈ Rn is the vector having all entries equal to one and h(y, η) ∈ Rn is defined
as (h(y, η))i :=

γ
2χi

[
(Dx1Φ)2i + (Dx2Φ)2i

]
for all i = 1, . . . , n. Note that, in this case,

the decomposition of N has d = n.
In the following experiments we set Lx1 = Lx2 = 2 and take nx1 = nx2 =

50 grid points per direction, corresponding to ∆x1 = ∆x2 = 0.08 and n = 2500.
The final time is T = 10 and the time step is ∆t = 0.005. The initial condition
is Φ(x, 0) = 0, while the vertical displacement χ is a Gaussian profile of the form

χ(x, 0; η) = 1 + 1
2e

−β|x|2. The problem parameter is η = (β, γ) and it ranges in the
set P = [1.1, 1.7]× [0.7, 1.3] ⊂ R

2. The shift described in Subsection 3.3 is performed
on the initial condition.

For this test case, we compare the performances of the full model, the reduced
model and the hyper-reduced model obtained with the non-adaptive algorithm. To
construct the reduced model, the full system is solved, in the offline phase, for 5
equispaced values of β and γ, for a total of 25 training parameters in the training
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set Ph. Next, the reduced basis is built via complex SVD using all Nt temporal
snapshots for every training parameter. We choose two different dimensions of the
reduced space, namely 2k = 80 and 2k = 160. For the hyper-reduced problem, we
build the DEIM basis via POD on snapshots of the reduced Jacobian at every 20 time
steps for each training parameter.

We test the reduced model (2.3) and the hyper-reduced model (3.5) for the ran-
domly selected parameter η = (1.6435, 0.7762) /∈ Ph. In Figure 1 we report the
relative errors (5.1) of the hyper-reduced model vs. the size m of the DEIM basis,
obtained with the AVF and IMR time integrators and for the two sizes 2k ∈ {80, 160}
of the reduced space. As expected, the error of the hyper-reduced model converges to
the error of the reduced model as m increases. Moreover, as the size 2k of the reduced
model increases, a larger number of DEIM bases are required to approach the limit
value. The errors obtained with the two numerical time integration schemes are very
similar.

50 100 150
10−4

10−3

10−2

m

EHR
fin , AVF ER

fin, AVF EHR
fin , IMR ER

fin, IMR

EHR
L2 , AVF ER

L2 , AVF EHR
L2 , IMR ER

L2 , IMR

100 200 300

10−2

10−3

10−4

10−5

m

Fig. 1. 2D-SWE. Errors (5.1) of the reduced and hyper-reduced models vs. size m of the DEIM
space. The size of the reduced model is 2k = 80 (left) and 2k = 160 (right). Comparison of AVF
and IMR for time integration.

The computational times required by the reduced and hyper-reduced models
solved using the AVF and the IMR time integrator are reported in Table 1. For
2k = 80, solving the hyper-reduced system with, e.g., m = 150 is about 37 times
faster than solving the reduced system for AVF, and about 34 times faster for IMR.
For 2k = 160, solving the hyper-reduced system with m = 300 is about 18 times faster
than solving the reduced system for AVF, and about 15 times faster for IMR. Note
that, in this test case, AVF is more computationally expensive than IMR, because an
integral needs to be numerically evaluated at each time step.

We then consider the conservation of the Hamiltonian for a fixed parameter
η = (1.6435, 0.7762), whose dependence we omit in the following. In particular, we
monitor the error |H(y0)−H(Azj)| for all time indices j = 0, . . . , Nt. This quantity
is bounded, in turn, by the error ∆Hj in approximating the reduced Hamiltonian
with the hyper-reduced one: as derived in Subsection 3.3, it holds

|H(y0)−H(Azj)| ≤ ε
[t0,tj ]
H +∆Hj for all j = 0, . . . , Nt.

Figure 2 shows the three terms involved in the bound at every time instant tj when

the reduced space has dimension 2k = 160. The error ε
[t0,tj ]
H in the conservation of
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Table 1

2D-SWE. Computational times of the online phases of the reduced and hyper-reduced systems,
2k = 80 and 2k = 160. The computational time required to solve the full order system is 414.10 s
for AVF, 297.29 s for IMR. The reported times are computed as averages over 3 runs.

Reduced model Hyper-reduced model

AVF

2k = 80 m = 25 m = 50 m = 75 m = 100 m = 125 m = 150
276.02 s 2.78 s 3.86 s 5.20 s 5.81 s 7.10 s 7.44 s

2k = 160 m = 50 m = 100 m = 150 m = 200 m = 250 m = 300
307.02 s 7.44 s 9.85 s 12.16 s 13.55 s 16.08 s 17.12 s

IMR

2k = 80 m = 25 m = 50 m = 75 m = 100 m = 125 m = 150
128.22 s 1.08 s 1.60 s 2.54 s 2.96 s 3.40 s 3.71 s

2k = 160 m = 50 m = 100 m = 150 m = 200 m = 250 m = 300
146.67 s 5.25 s 6.26 s 7.19 s 8.13 s 9.36 s 10.04 s

the full order Hamiltonian (black line in Figure 2) only depends on the timestep-
ping and reaches the tolerance of the Newton solver for AVF, while it depends on
∆t for IMR. The error in the conservation of the Hamiltonian associated with the
hyper-reduced model decreases as m increases, that is, as the quality of the ap-
proximation of the Hamiltonian improves. For m sufficiently large, in this test case
m ≥ 350, the error due to the time integration is dominating over the error intro-
duced by the Hamiltonian hyper-reduction. The reason is that the hyper-reduced
model with m ≥ 350 is as accurate as the reduced model and, hence, the Hamiltonian
is exactly preserved up to the error of the temporal integrator. As a further confir-
mation of the relationship between the conservation and the hyper-reduction of the
Hamiltonian stated in Proposition 3.4, we also plot the DEIM approximation error
|Hhr(z

j)−H(Azj)| = |v⊤(Ph(Azj)− h(Azj))| for all j = 0, . . .Nt.

0 1 2 3 4 5 6 7 8 9 10
10−15

10−13

10−11

10−9

10−7

10−5

10−3

tj

∆Hj ,m = 200 |H(y0)−H(Azj)|,m = 200 |Hhr(z
j)−H(Azj)|, m = 200

∆Hj ,m = 250 |H(y0)−H(Azj)|,m = 250 |Hhr(z
j)−H(Azj)|, m = 250

∆Hj ,m = 300 |H(y0)−H(Azj)|,m = 300 |Hhr(z
j)−H(Azj)|, m = 300

∆Hj ,m = 350 |H(y0)−H(Azj)|,m = 350 |Hhr(z
j)−H(Azj)|, m = 350
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Fig. 2. 2D-SWE. Conservation of the Hamiltonian over time for different choices of m. The

solid black lines with circles correspond to the error ε
[t0,tj ]
H

in the conservation of the full Hamiltonian
due to the timestepping. AVF (left) and IMR (right) for time integration. The reduced model has
dimension 2k = 160 and the test parameter is η = (1.6435, 0.7762).
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5.2. Nonlinear Schrödinger equation. As a second test case, we consider the
nonlinear Schrödinger equation (NLS)

(5.3) ı ∂tu+ ∂xxu+ ǫ|u|2u = 0, x ∈ [−L,L], t ∈ (0, T ],

with initial condition u(x, 0; η) =
√
2(coshx)−1 exp

(
ıx2

)
and periodic boundary con-

ditions. Here ∂xx denotes the second order derivative with respect to the spatial
variable, and ǫ = η ∈ R is a parameter ranging in the set P = [0.9, 1.1]. Writing
u(x, t; η) = q(x, t; η) + ıp(x, t; η), for all (x, t) ∈ [−L,L]× [0, T ], problem (5.3) admits
a Hamiltonian formulation with Hamiltonian given by

Ĥ(q, p) =
1

2

∫ L

−L

(
(∂xp)

2
+ (∂xq)

2 − ǫ

2
(q2 + p2)2

)
dx.

Consider the uniform computational grid xi = −L + i∆x, for i = 0, . . . , n and
∆x = 2L/n. Let Dxx ∈ Rn×n be the matrix corresponding to the central finite-
difference discretization of the second order spatial derivative. Introducing the vectors
q(t, η) = (q1, . . . , qn)

⊤ and p(t, η) = (p1, . . . , pn)
⊤, where qi and pi are approximations

to q(xi) and p(xi), we derive the system

{
q̇ = −Dxxp− ǫ(q2 + p2)⊙ p,

ṗ = Dxxq+ ǫ(q2 + p2)⊙ q,

which is of the form (2.1) with y(t, η) = (q⊤(t, η),p⊤(t, η))⊤ ∈ R
2n and

N (y) = − ǫ

4

n∑

i=1

(q2i + p2i )
2 = v⊤h(y).

Here v ∈ Rn is the vector with entries all equal to one and h(y) ∈ Rn is defined as
(h(y))i := − ǫ

4 (q
2
i + p2i )

2 for all i = 1, . . . , n. In the following tests we set L = π/l
with l = 0.11 as in [1] and n = 2048. AVF time integrator is applied in the temporal
interval [0, 30] with time step ∆t = 0.01.

The reduced basis is built using the complex SVD on snapshots of the full model
solution at each time step and for |Ph| = 11 equispaced training parameters in the
interval P = [0.9, 1.1]. Each simulation of the full model takes about 220 seconds.

Before studying the performances of the proposed hyper-reduction technique, we
compare it with the SDEIM proposed in [1] and [25]. SDEIM consists in applying a
DEIM approximation to the nonlinear Hamiltonian gradient and to chose as DEIM
basis the symplectic basis used to approximate the state, constructed by adding suit-
able snapshots to improve accuracy. The resulting method does not exactly preserve
the gradient structure of the Hamiltonian vector field, as pointed out in [25, page A17]
and in [17, page 1717], but it ensures asymptotic boundedness of the energy of the sys-
tem [25, Theorem 5.1]. However, this property is not enough to guarantee stability of
the resulting approximate solution. To illustrate these facts, we compare our hyper-
reduction technique (non-adaptive version) with SDEIM tested on the Schrödinger
equation with η = 1.0932. Since in the SDEIM algorithm the DEIM basis is chosen
to be the same as the reduced basis, we set m = 2k in the gradient-preserving hyper-
reduction method so that the reduced and DEIM spaces have the same dimension for
the two methods. In particular we consider k = m/2 ∈ {10, 20, 30, 40, 50, 60}. To
build the reduced and DEIM spaces, we consider all the snapshots of the full solu-
tion from the training phase, and one snapshot every dsnap = 20 time steps for the
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nonlinear term. Figure 3 shows a pseudocolor plot of the numerical solutions on a
space-time domain: The solution produced by SDEIM is unstable for 2k = 80 (first
row) and inaccurate for 2k = 120 (second row). We also point out that, similarly,
when classical DEIM is used to approximate the nonlinear term unstable solutions
and unbounded errors are produced.

Fig. 3. Numerical solution of the Schrödinger equation in space-time with η = 1.0932, for
2k = m = 80 (first row) and 2k = m = 120 (second row). The first column refers to the full
order solution, the second column to the proposed gradient-preserving hyper-reduction, and the third
column to the SDEIM of [25, 1].

In this problem, the dimension of the DEIM basis required by the hyper-reduced
model to achieve the error of the reduced model can be rather large. This behavior
can be ascribed to the fact that the Schrödinger equation and its Hamiltonian do
not exhibit significant global reducibility properties. Figure 4 shows, on the left, the
singular values of the full order solution obtained for Nt = 3000 time steps and, on
the right, the singular values of the snapshot matrix MJ ∈ Rn×2kNs of the Jacobian
for Ns = 150 time instants (one every 20 time steps). One value of the parameter
is considered: η = 1.0932. Each line corresponds to a different dimension 2k of the
reduced model. We can observe that the singular values of the snapshots correspond-
ing to the full order solution decay relatively slowly (Figure 4, left), which suggests
that the dimension 2k of the reduced space needs to be sufficiently large to accurately
represent the full dynamics. On the other hand, the reducibility of the Jacobian de-
teriorates as 2k increases (Figure 4, right). This last remark also justifies our choice
of performing hyper-reduction on the reduced Jacobian rather than on the full order
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one, as already pointed out in Remark 3.2.

0 100 200 300 400 500
10−8

10−6

10−4

10−2

100

102
103

0 100 200 300 400 500
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100
102

Full

2k = 600

2k = 400

2k = 200

2k = 100

Fig. 4. NLS. Left: singular values of the snapshot matrix of the full order solution. Right:
singular values of of the snapshot matrix MJ ∈ Rn×2nNs of the Jacobian for different choices of k.
Only the 500 largest singular values are shown.

To address the lack of global reducibility of the Jacobian, we perform the adapta-
tion of DEIM basis and indices described in Section 4. In this section we fix the size
of the reduced basis to 2k = 400 and we consider η = 1.0932 /∈ Ph as test parameter.

As a first test, we consider, at each update j = 1, . . . , Na, the selection of the ms

sampling points collected in the matrix Sj and we compare three possible selection
strategies: (i) random; (ii) based on the minimization of the residual norm ‖Rj‖F as
proposed in [23, Algorithm 1]; and (iii) based on the minimization of the projected
residual norm ‖RjCj‖F motivated by Theorem 4.3, see also Algorithm 4.2. We set the
dimension of the DEIM basis to m = 100, while the adaptation hyper-parameters are
δ = δ0 = γ = 5, w = 1 and r = r, namely a full-rank update is performed at each step.
We compare the three selection strategies for two possible sizes of the sampling matrix,
namely ms ∈ {150, 300}. Figure 5 shows the error ‖Uj+1Cj − Fj‖F , at each update
j, for the three selection criteria. It can be observed that the random algorithm gives
the worst results, while the other two strategies do not yield significantly different
results, at least in this simulation.
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Fig. 5. NLS. Evolution of ‖Uj+1Cj − Fj‖F for three different criteria of selection of the
sampling points. The number of sampling points is ms = 150 (left plot) and ms = 300 (right plot).
The dimension of the reduced basis is 2k = 400 and the dimension of the DEIM basis is m = 100.

Next, we assess the adaptive hyper-reduction algorithm for different choices of
the adaptation hyper-parameters – r, ms, w, δ, and γ – in terms of: (i) accuracy
of the solution, measured by the error EHR

L2 from (5.1); (ii) computational time of
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both the offline phase, toff , and the online phase, ton, computed as the average time,
in seconds, over 5 independent runs; and (iii) conservation of the Hamiltonian via
the error ∆HNt

= |H(yNt)−H(AzNt)|. We refer to Proposition 4.4 for the analytic
bound on ∆HNt

; when AVF is used as numerical time integrator, the error sources in
(4.15) that are independent on the reduction take values smaller than 10−10.

In all the following tests, we fix the size of the DEIM basis to m = 100 and we
let one hyper-parameter vary at a time. Based on the previous test and on Section 4,
the sampling strategy in Algorithm 4.2 is adopted for the update of the sampling
indices. As a reference, we include the performances of the non-adaptive hyper-
reduction, where the offline phase consists of the construction of the DEIM basis from
the matrix of the reduced Jacobian at full model snapshots obtained every 20 time
steps and 11 training parameters. If the adaptive scheme is employed instead, the
offline phase involves solving the full system for δ0 ≪ Nt time steps and only for the
given test parameter. This implies that the offline phase will only require few seconds;
on the other hand, the DEIM basis is adapted every δ time steps, which increases the
computational cost of the online phase with respect to the non-adaptive scheme.

Effect of the rank r of the DEIM update. We test the hyper-reduced model
for different values of the rank r of the DEIM update. Instead of fixing its value we
let it change at each update j based on the numerical rank of S⊤

j RjC
⊤
j for a fixed

tolerance τr. The rank rj vs. the update number is shown in Figure 6 (left) for
different choices of τr, while the error EHR

L2 of the hyper-reduced solution is reported
in Table 2. We observe that the error improves as τr decreases, while the cost of the
online phase of the adaptive hyper-reduction algorithm is almost independent of τr.
This is due to the fact that the cost of the adaptation procedure is dominated by the
computation of the DEIM residual matrix Rj and the SVD of RjCj in Algorithm 4.2,
whose complexity is O(dkmw), and thus independent of r. Moreover, in this exper-
iment, there is no significant advantage in fixing the tolerance τr smaller than 10−8

and, correspondingly, performing a DEIM basis update of rank larger than 40.

Table 2

Error and computational times of the hyper-reduced model for different rank tolerances τr.

toff ton ttot EHR
L2 ∆HNt

Non-adaptive 152.77 38.52 191.29 1.04e+00 2.03e+00

ms = 250
δ0 = δ = 5

w = 1
γ = δ

τr = 10−4 5.44 54.83 60.27 3.04e-03 7.09e-02
τr = 10−6 5.44 55.17 60.61 1.09e-04 2.37e-04
τr = 10−8 5.44 55.30 60.74 6.44e-05 6.88e-04
τr = 10−10 5.44 55.46 60.90 6.17e-05 8.04e-04
τr = 10−12 5.44 55.58 61.02 6.03e-05 7.21e-04

Effect of the number ms of sampling points. Analogously to the rank of
the update, instead of fixing ms we may select the number of sampling indices based
on a tolerance τs. More precisely, an index is chosen at the jth adaptation step if the
2-norm of the corresponding row of RjCj is larger than τs. In this way, the number of
sampling indices changes at each adaptation step and it is fixed to be at least equal to
m. The results are reported in Table 3. The number of sampling indices selected at
each adaptation for different choices of the tolerance is shown in Figure 6 (right). As
ms increases, the error improves while the computational time is almost independent
of the value of ms, and the total time required by the adaptive algorithm is less than
one third of the time needed by the non-adaptive algorithm.
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Table 3

Error and computational times of the hyper-reduced model for different sampling tolerances τs.

toff ton ttot EHR
L2 ∆HNt

Non-adaptive 152.77 38.52 191.29 1.04e+00 2.03e+00

δ0 = δ = 5
w = 1
r = r

γ = δ

τs = 10−4 5.50 53.32 58.82 3.94e-04 1.12e-02
τs = 10−6 5.50 53.81 59.31 3.94e-04 1.12e-02
τs = 10−8 5.50 53.82 59.32 2.86e-04 5.18e-03
τs = 10−10 5.50 54.42 59.92 5.99e-05 9.80e-05
τs = 10−12 5.50 55.49 60.99 4.70e-05 1.52e-04
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Fig. 6. NLS. Left: Rank rj = rank(S⊤
j RjC

⊤
j ) at every update j for different values of τt = τ .

Right: Number of sampling indices msj at every update j for different values of τs = τ .

Effect of the size w of the time window to evaluate the nonlinear term.

The role of w in the adaptation is described in Section 4. In this test, we slightly
increase the values of δ0 and δ and set them equal to 10. The reason is that it must
hold w < δ0, and, moreover, it is reasonable to require that w < δ, that is, at each
adaptation step, the temporal window only contains snapshots obtained after the last
update. In Table 4 we observe that, as expected, the error EHR

L2 decreases as more
information from the past is included in the construction of the DEIM basis update.
In parallel, the increase of the window size requires larger computational times in the
online phase. However, it can be noticed that the online phase in the case w = 1 is only
slightly more computationally expensive than the online phase of the non-adaptive
algorithm, while the L2-error is reduced by almost four orders of magnitude.

Table 4

Error and computational times of the hyper-reduced model for different window sizes w.

toff ton ttot EHR
L2 ∆HNt

Non-adaptive 152.77 38.52 191.29 1.04e+00 2.03e+00

ms = 250
δ0 = δ = 10
r = r, γ = δ

w = 1 8.91 45.01 53.92 1.31e-04 2.55e-03
w = 2 8.91 50.82 59.73 1.13e-04 2.67e-03
w = 4 8.91 60.13 69.04 7.44e-05 1.30e-04
w = 6 8.91 69.73 78.64 6.91e-05 1.06e-03

Effect of the number δ of time steps between each DEIM adaptation.

Predictably, the online phase is cheaper for large δ since the adaptations are less
frequent, while the error increases, as reported in Table 5.
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Table 5

Error and computational times of the hyper-reduced model. Effect of the number δ of time steps
between each update of the DEIM basis.

toff ton ttot EHR
L2 ∆HNt

Non-adaptive 152.77 38.52 191.29 1.04e+00 2.03e+00
ms = 250

δ0 = 5, w = 1
r = r, γ = δ

δ = 5 5.55 55.05 60.60 6.16e-05 5.31e-04
δ = 10 5.55 46.40 51.95 1.40e-04 3.08e-03
δ = 20 5.55 41.00 46.55 2.50e-03 4.99e-02

Effect of the number of time steps γ between each update of the sam-

pling indices. In view of the discussion on the arithmetic complexity of sampling in
Subsection 4.2, it might seem preferable, in terms of computational cost, to update
the sampling indices every γ > 1 time steps. Indeed, the larger γ, the less frequently
Algorithm 4.2 is run, including the expensive computation of the full residual. In this
test we consider γ = νδ, i.e. the sampling points are updated every ν DEIM adapta-
tions. We observe in Table 6 that the error of the hyper-reduced solution decreases as
γ is halved, with an increase in the runtime of the online phase of less than 5 seconds.

Table 6

Error and computational times of the hyper-reduced model. Effect of the number γ of time steps
between each update of the sampling indices.

toff ton ttot EHR
L2 ∆HNt

Non-adaptive 152.77 38.52 191.29 1.04e+00 2.03e+00
ms = 250
δ0 = δ = 5

w = 1
r = r

γ = 5 5.51 55.15 60.66 6.16e-05 5.31e-04
γ = 10 5.51 50.35 55.86 1.11e-04 2.04e-03
γ = 20 5.51 48.20 53.71 8.59e-04 1.83e-02
γ = 30 5.51 47.56 53.07 4.58e-03 9.90e-02

Although the behavior of the adaptive hyper-reduction algorithm under variation
of the hyper-parameters is clearly problem-dependent, the numerical tests presented
above suggest the following conclusions. Increasing the rank r of the update and the
number ms of sampling points leads to a significant reduction of the error without
any major effect on the computational time. On the other hand, the optimal values of
r and ms may depend on the adaptation step j and, hence, it seems preferable to let
them vary in time according to a tolerance. The effect of w on the error is less evident:
although the error decreases as w increases, the fast growth of the computational time
ton outweighs this gain. Finally, small values of δ and γ imply frequent adaptations
of both the DEIM basis and sampling indices, and thus reduction in the error, at a
mild increase of the computational cost of the simulation.

As a last numerical test, we fix the values of the hyper-parameters and compare
the performances of the non-adaptive and adaptive hyper-reduction algorithms as the
dimension m of the DEIM space varies, for different choices of the reduced dimension
2k. We set the hyper-parameters as follows: the tolerance in the choice of the update
rank is τr = 10−12; the tolerance in the selection of the sampling points is τs = 10−10;
the temporal window size is w = 1; the frequency of the updates is δ = γ = 5.
In Figure 7 we report the error EHR

L2 between the hyper-reduced solution and the
full model solution vs. m (left plot) and vs. the algorithm runtime (right plot)
for 2k = 400. In Figure 8, we study the computational cost of the hyper-reduction
algorithms for two more dimensions of the reduced space, namely for 2k ∈ {160, 280}.
The reported times are computed as averages over 5 runs.
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Fig. 7. NLS. Reduced model of size 2k = 400. Left: error EHR
L2 vs. DEIM size m. Right: EHR

L2

vs. total algorithm runtime for different values of m. The black line represents the error between the
reduced solution and the full solution. The computational time to solve the reduced model is 230 s.
The computational time of the offline phase of the hyper-reduction is 152.8 s in the non-adaptive
case, 5.5 s in the adaptive case.
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Fig. 8. NLS. Hyper-reduction error EHR
L2 vs. total algorithm runtime for different values of

m. Reduced model of size 2k = 160 (left) and 2k = 280 (right). For 2k = 160: the computational
time to solve the reduced model is 66 s; the offline phase of the hyper-reduction takes 69.7 s in the
non-adaptive case and 0.5 s in the adaptive case. For 2k = 280: the computational time to solve
the reduced model is 126 s; the offline phase of the hyper-reduction takes 109.6 s in the non-adaptive
case and 1.2 s in the adaptive case.

Figures 7 and 8 show that, to achieve a given error, the adaptive scheme allows a
smaller DEIM basis compared to the non-adaptive one. This translates in a reduced
computational cost, despite the fact that the adaptive algorithm requires extra online
operations to perform the DEIM update. This gain in the total runtime is also due
to the fact that a more expensive online phase for adaptation is compensated by a
cheaper offline phase compared to the non-adaptive strategy. As an example, the
total runtime is reduced by a factor 3 for m = 100 when 2k = 400, and by a factor
4 when 2k = 280. Moreover, for a given DEIM size m, the adaptive scheme yields
smaller errors than the non-adaptive one: for example, for m = 200, the error in
the adaptive case is almost three orders of magnitude lower when 2k = 400, and a
similar gain is observed for m = 150 when 2k = 280. Finally, when the dimension
of the reduced space is 2k = 400, the hyper-reduced model achieves the error of the
reduced model for m = 290 in the adaptive case, and for m = 350 in the non-adaptive
one; for these values of m, the adaptive algorithm requires about 40% less runtime
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than the non-adaptive scheme. This gain in computational efficiency becomes more
evident when the reduced space is smaller. For 2k = 280, the DEIM modes required
to achieve the reference error in the adaptive case are about half of those needed in
the non-adaptive case (160 vs. 270), with an approximately 70% saving of the total
computational time. With an even smaller reduced space, 2k = 160, the adaptive
hyper-reduced model converges to the reduced model error for m = 25, compared
to m = 130 in the non-adaptive case, and the total runtime is about 85% smaller;
even comparing the online phases alone, solving the adaptive scheme with m = 20 is
about as cheap as solving the non-adaptive scheme for m = 80, while the error is over
2 orders of magnitude smaller. Finally, these numerical experiments show that the
beneficial properties of the proposed adaptive strategy become more apparent when
the hyper-reduction is performed on a relatively small reduced space. This is related
to the decay of the singular values of the reduced Jacobian highlighted in Figure 4.

6. Concluding remarks. We have proposed a hyper-reduction method to deal
with large-scale parametric dynamical systems characterized by nonlinear gradient
fields. Its combination with symplectic reduced basis methods enables efficient nu-
merical simulations of Hamiltonian systems with general nonlinearities. Indeed the
resulting hyper-reduced models can be solved at a computational cost independent
of the size of the full model and without compromising the physical properties of the
dynamics thanks to the preservation of the gradient structure of the velocity field.
Although we have focused on Hamiltonian dynamical systems, the method can be
applied to any gradient field, in e.g. gradient flows or in port-Hamiltonian problems.

Some questions remain open. A rigorous connection between the reducibility
properties of the solution space, of the space of nonlinear gradient fields and of the
space of reduced Jacobian matrices is not understood yet. This could provide useful
insights on when the simulation of a system can significantly benefit from hyper-
reduction and whether an adaptive approach is to be preferred over a global one.

Moreover, our hyper-reduction strategy hinges on the properties of the reduced
space. We observe that a larger reduced space improves the approximation of the
state but demands a larger DEIM basis for accurate hyper-reduction. A natural idea
to address this shortcoming is to consider symplectic reduced spaces that can evolve
in time, as done e.g. in [22]. This would allow us to deal with small reduced spaces
and hence highly reducible Jacobian matrices (i.e. small DEIM bases as well). The
combination of evolving reduced spaces with adaptive hyper-reduction provides an
interesting possible direction of future investigation.

Acknowledgments. CP would like to thank Benjamin Peherstorfer for interest-
ing discussions on adaptive DEIM preliminary to this work.
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