
SOLVING GRAPH LAPLACIANS VIA MULTILEVEL SPARSIFIERS∗

XIAOZHE HU† AND JUNYUAN LIN‡

Abstract. We consider effective preconditioners for solving Laplacians of general weighted
graphs. Theoretically, spectral sparsifiers (SSs) provide preconditioners of optimal computational
complexity. However, they are not easy to use for real-world applications due to the implementation
complications. Multigrid (MG) methods, on the contrary, are computationally efficient but lack of
theoretical justifications. To bridge the gap between theory and practice, we adopt ideas of MG and
SS methods and proposed preconditioners that can be used in practice with theoretical guarantees.
We expand the original graph based on a multilevel structure to obtain an equivalent expanded graph.
Although the expanded graph has a low diameter, a favorable property for constructing SSs, it has
negatively weighted edges, which is an unfavorable property for the SSs. We design an algorithm
to properly eliminate the negatively weighted edges and prove that the resulting expanded graph
with positively weighted edges is spectrally equivalent to the expanded graph, thus, the original
graph. Due to the low-diameter property of the positively-weighted expanded graph preconditioner
(PEGP), existing algorithms for finding SSs can be easily applied. To demonstrate the advantage of
working with the PEGP, we propose a type of SS, multilevel sparsifier preconditioner (MSP), that
can be constructed in an easy and deterministic manner. We provide some preliminary numerical
experiments to verify our theoretical findings and illustrate the practical effectiveness of PEGP and
MSP in real-world applications.

Key words. graph Laplacian, preconditioned iterative methods, support theory, low-stretch
spanning trees, graph sparsification

MSC codes. 05C50, 05C85, 65F10, 68R10

1. Introduction. Graph Laplacians naturally arise in large-scale computations
of various applications. For example, solving systems with weighted graph Laplacians
is the core component for solving ranking and user recommendation problems [26,
29, 14]. In [12, 13, 44, 15], similarities of proteins are calculated by solving graph
Laplacian systems associated with the protein interaction networks. Furthermore,
these similarities are used in clustering and labeling proteins. In addition, the marriage
of graph Laplacian with topics such as Convolutional Neural Networks and tensor
decomposition has also been a dominating trend [24, 10, 34, 25, 11, 52, 42]. Advanced
algorithms that adapt graph Laplacian properties to improve performance are key
components in modern methods for image reconstruction, clustering image data-sets,
and classification [3, 46, 28, 40].

Two major approaches to solve a linear system of equations are direct and iterative
(indirect) methods. Direct methods are variants of Gaussian Elimination which might
become expensive when the graph size gets large. In this case, it is more suitable to
consider iterative methods that provide successively better approximations to the
solutions. One example is the Conjugate Gradient (CG) method. However, the
convergence of the iterative usually depends on the condition number of the linear
system. A graph Laplacian matrix, L, is symmetric positive semidefinite (has span{1}
as its nullspace), and its condition number κ(L) is defined as the ratio between the
largest eigenvalue of L and the smallest non-zero eigenvalue of L. In practice, κ(L)
could be huge, especially for large-scale graphs, therefore it is difficult to solve the

∗Submitted to the editors for the 2022 Copper Mountain Special Issue of SIAM Journal on Sci-
entific Computing.
†Department of Mathematics, Tufts University, Medford, MA (xiaozhe.hu@tufts.edu).
‡Department of Mathematics, Loyola Marymount University, Los Angeles, CA (jun-

yuan.lin@lmu.edu).

1

ar
X

iv
:2

20
7.

07
84

7v
2

 [
m

at
h.

N
A

]
 2

9
A

ug
 2

02
2

mailto:xiaozhe.hu@tufts.edu
mailto:junyuan.lin@lmu.edu
mailto:junyuan.lin@lmu.edu

2 XIAOZHE HU AND JUNYUAN LIN

graph Laplacian systems Lx = b using standard iterative methods, such as CG.
To accelerate the iterative methods, one can use preconditioning. A good pre-

conditioner for a matrix L is a matrix R that makes solving the following systems of
linear equations in RL easy.

(1.1) RLx = Rb,

where R ∈ Rn×n is noted as the preconditioner of L. (Note that we use the notation
R for preconditioner instead of the more frequently used R−1, since we do not assume
R is invertible.)

More specifically, we want to choose an R that approximates the Moore-Penrose
pseudoinverse, L†, of L. When R ≈ L†, we have κ(RL) ≈ κ(L†L) ≈ κ(I)� κ(L). It
is clear that finding suitable R’s that are also inexpensive to compute is the key chal-
lenge for designing efficient preconditioned iterative methods. Based on the support
theory [55], Gremban et al. introduced the support-tree preconditioners in 1995 [4],
and this idea of using spanning trees to approximate the original graph became pop-
ular in the computer science field. For the last decades, researchers have developed
preconditioners using spanning trees and sparsifiers [5, 6, 7, 54, 18, 1, 36, 2, 32]. The
best-performing support-tree preconditioners out of these are sparsifiers built from
low-stretch spanning trees that can achieve nearly O(m log n) time for strictly diago-
nally dominant linear systems. Despite the theoretical success of those precondition-
ers, their implementations are still behind because finding low-stretch spanning trees
for general graphs is complicated. Those spectral equivalent sparsifiers are usually
constructed by randomly adding edges to the low-stretch spanning tree. Therefore,
without an efficient implementation of the low-stretch spanning tree algorithm, it
remains difficult to use those preconditioners for practical applications.

As another important family of preconditioners, the algebraic multigrid (AMG)
algorithms are frequently applied to solve linear graph Laplacian systems in prac-
tice. The standard AMG method was proposed to solve partial differential equations
(PDEs) and mainly involves two parts: smoothing the high-frequency errors on the
fine levels and eliminating the low-frequency errors on the coarse grids [58, 56, 50,
8, 48, 49]. AMG is proven to be one of the most successful iterative methods in
practical applications and many AMG methods have been developed to solving graph
Laplacian systems, such as combinatorial multigrid [38], Lean AMG [45], Algebraic
multilevel preconditioners based on matchings/aggregations [33, 47, 9], and AMG
with adaptive aggregation schemes [16, 27]. While multilevel methods work robustly,
are deterministic, and are widely used in practice, they lack theoretical guarantees for
general graphs.

In this paper, we propose new preconditioners that combine the pros of support-
tree and AMG preconditioners while avoiding their cons. It is noted by researcher that
finding a low-stretch spanning tree on low diameter graphs is relatively easy [4, 18, 37].
Inspired on this point, we aim to construct a spectrally equivalent graph to any given
general graph, which has lower diameter so that finding low-stretch trees/sparsifiers
is feasible in practice. MG methods become our motivation for such construction. As
described in [23], MG method can be viewed as a standard iterative preconditioner
for solving a linear system with multilevel expanded structure. We adopt this idea
and construct a multilevel expanded graph from the original graph. More precisely,
we take the following two steps to build a low diameter, positive-weighted expanded
graph, which is easier to construct and feasible for theoretical analysis using existing
support tree theory, compared to the original system:

SOLVING GRAPH LAPLACIANS VIA MULTILEVEL SPARSIFIERS 3

• Step 1: We expand the original graph G using AMG construction to the ex-
panded graph G̃µ. The multilevel structure of expanded graph G̃µ guarantees
that it is of low diameter.

• Step 2: Since Step 1 introduces negative edges into the expanded graph, we
extract the only positive subgraph H̃µ out of G̃µ

The resulting positive-weighted expanded graph preconditioner (PEGP) H̃µ has only
positive weights, small diameter, and multilevel structure, which makes applying any
spanning trees/sparsifiers finding algorithms easy. We define those spanning spar-
sifiers as multilevel sparsifier preconditioner (MSP) and include one deterministic

method to extract a tree-structured, low-stretch sparsifier on H̃µ as an illustrative
example.

The paper is organized as follows: section 2 includes preliminaries and notations
for graph and aggregation. Using these building blocks, we first extend the original
graph G into a multilevel expanded graph G̃µ with the original graph on its fine level
in Section 3.1. Due to the multilevel structure of G̃µ, the diameter of the original
graph G shrinks. In Section 3.2, we further find the PEGP H̃µ of the expanded
graph G̃µ that only contain positive edges. We prove that the graph Laplacian LH̃µ
is spectrally equivalent to LG̃µ . It is much easier to find spanning trees/subgraphs

on H̃µ than on G, so we introduced a spanning tree/sparsifier MSP in Section 3.3.
Numerical results are included in Section 4 to test the robustness of the proposed
preconditioners.

2. Preliminaries. This section includes notations and preliminaries of graph
and aggregation that are useful for defining the expanded graph, the PEGP, and the
MSP.

2.1. Graph. Consider a simply connected graph G = (E, V, ω), where E is the
edge set, V is the node set, and ω is the edge weight set. Here, |V | = n and |E| = m
denote the number of nodes and edges in graph G, respectively. E+(G) and E−(G)
denote positive and negative edge set in G, respectively.

LG represents the graph Laplacian that corresponds to G. Note that, LG =
BT WB. Here, BT ∈ Rn×m is the incidence matrix and W ∈ Rm×m is the diagonal
weight matrix of graph G. When ω only contains positive elements, we are able to
write W = W T

1/2W1/2, where W1/2 ∈ Rm×m is the diagonal matrix with square-root
of the edge weights.

Using graph G, in this work, we build the expanded graph G̃µ = (Ẽ, Ṽ , ω̃(µ))
based on a aggregation-based multigrid structure similar to [22]. ñ is the number

of nodes in the expanded graph G̃µ and µ is a weight parameter we set to control
the condition number of the preconditioned graph Laplacian system. The detailed
construction of the expanded graph is illustrated in Section 3.1.

2.2. Aggregation. We consider the original graph G and carefully choose nodes
in G into different aggregations. The aggregates now become nodes in the next level
just as the construction of AMG. We then continue to aggregate nodes until the
desired level is achieved.

One can observe that there can be infinitely many ways to aggregate nodes on
each level, such as aggregations based on heavy edge coarsening [31, 30] and maxi-
mal independent set [59], and these methods can all be applied to define multilevel
structure. As suggested in the appendix of [14], aggregating two nodes that are con-
nected by a heavy edge is recommended because it minimizes the condition number of
LG̃µ in a two-level setting. Follow this idea, we use the maximal weighted matching

4 XIAOZHE HU AND JUNYUAN LIN

(MWM) [20] in the numerical implementations in Section 4. MWM visits the vertices
in the graph in random order and matches each unaggregated vertex to its neighbor
with the maximal edge weight. The following Figure 1 shows an example of MWM
algorithm implemented on a graph with anisotropic diffusion.

Fig. 1. The maximal weighted matching on an example graph

In Figure 1, the red circles represent nodes in the same aggregation. We can
observe that all the aggregations contain two nodes linked by the heaviest incident
edge. If there are leftover nodes after performing the matching scheme, we add each
leftover node to the aggregation that has its heaviest neighbor.

Based on these aggregates, We are able to define the prolongation operator. De-
note n` as the number of nodes on the `th level graph and the prolongation operator
P `
`−1 ∈ Rn`−1×n` from level `− 1 to level ` as follow,

(2.1) P `
`−1(i, j) =

{
1, if node i is in aggregation j,

0, otherwise.

Furthermore, the prolongation operator P ` ∈ Rn×n` from level 1 to level ` is defined
as follows,

(2.2) P ` = P 2
1 · P 3

2 · · ·P `
`−1.

With all these components, we can define a composite prolongation operator
which incorporates a weight parameter µ as follows,

(2.3) {P (µ)}` :=
[
I (−µP 2) ((−µ)2P 3) · · · ((−µ)`−1P `),

]
where {P (µ)}` ∈ Rn×ñ. This composite prolongation operator {P (µ)}` is an essential
element in defining LG̃µ as shown in the next section.

SOLVING GRAPH LAPLACIANS VIA MULTILEVEL SPARSIFIERS 5

3. Building the Positively Weighted Expanded Graph. In this section, we
first explain in detail how to construct the multilevel expanded graph G̃µ so that its
diameter is relative small but spectrally equivalent to the original graph. In particular,
in Section 3.1, we expand the graph from G to G̃µ and justify the legitimacy by
showing the equivalence between the linear systems of graph Lapcians LG and LG̃µ .

Due to the existence of negative edges in G̃µ, we further extract the PEGP H̃µ

from G̃µ. In Section 3.2, we perform a spectral analysis between the two and show
their spectral equivalence when parameter µ is chosen properly. Due the multilevel
structure, the PEGP H̃µ has relatively small diameter which is favorable for finding a
good spectral sparsifiers. To demonstrate that, in Section 3.3, we propose a sparsifier,
MSP, of H̃µ that has tree-like structure.

3.1. Expanding the Graph. Consider a simply connected graph G and the
linear system

(3.1) LGx = b.

Since LG is semi-definite and might be ill-conditioned, it is challenging to efficiently
solve the linear system either by direct or simple iterative methods. Based on the
support tree construction introduced by Gremban [22] and the multilevel structure

from the MG method [23], we construct the expanded graph G̃µ such that solving its
graph Laplacian LG̃µ ,

(3.2) LG̃µ x̃ = b̃,

is mathematically equivalent to solving (3.1).

We build the graph Laplacian LG̃µ of the expanded graph G̃µ by the following
formula:

LG̃µ =

I

(−µP 2)T

((−µ)2P 3)T

...

((−µ)`−1P `)T

 LG
[
I (−µP 2) ((−µ)2P 3) · · · ((−µ)`−1P `)

]

= ({P (µ)}`)T LG {P (µ)}`(3.3)

Here, I ∈ Rn×n is the identity matrix and 0 < µ < 1 is a scaling parameter that
controls the conditional number of the preconditioner. We discuss the choice of µ in
detail in Section 3.2. Such a construction has been proposed in [23] for recasting the
MG algorithm as an iterative method for the semidefinite expanded linear system.
Note that since {P (µ)}` · 1ñ = c · 1n, where c is a constant and LG · 1n = 0, we have
LG̃µ · 1

ñ = ({P (µ)}`)T LG {P (µ)}` · 1ñ = ({P (µ)}`)T LG c · 1n = 0. This means

1ñ ∈ Null(LG̃µ). However, the corresponding expanded graph G̃µ contains negative
weighted edges as we showcase with an example later this section. This leads to
further modifications to G̃µ and the construction of PEGP and MSP.

We include the following proof to show that, by our construction, solving (3.1)
and (3.2) are equivalent in the following sense.

Theorem 3.1. Let x̃ be a solution to the expanded graph Laplaican system (3.2),
then

x = {P (µ)}` x̃

6 XIAOZHE HU AND JUNYUAN LIN

is a solution to the original graph Laplacian system (3.1).

Proof. Note that,

LG x = b,

({P (µ)}`)T LG x = ({P (µ)}`)T b,

({P (µ)}`)T LG {P (µ)}` x̃ = ({P (µ)}`)T b,

LG̃µ x̃ = b̃, by (3.3)

where b̃ = ({P (µ)}`)T b and x = {P (µ)}` x̃, which completes the proof.

Solving the original linear system in (3.1) and the expanded one (3.2) are mathe-

matically equivalent. The main motivation of introducing the expanded graph G̃µ is
that the expanded graph has a multilayer structure which naturally leads to a smaller
diameter compared with the original graph. This property is favored when finding
spanning subgraph preconditioners such as the low stretch spanning trees or sparsi-
fiers [4, 18, 37].In the MG literature, it is also well-known that the expanded linear
system is much better conditioned than the original linear system [23].

Due to the construction in (3.3), LG̃µ naturally has block structure that corre-

sponds to the multilevel structure of the expanded graph G̃µ. The diagonal blocks
are the graph Laplacians of each layer, respectively. The off-diagonal blocks of LG̃µ
represent the edges across the layers, which include negatively weighted edges. The
negative edges are unfavorable for common algorithms that find spectral equivalent
trees or sparsifiers. In addition, while each row sum of LG̃µ is still 0 (similarly, the
column sum), LG̃µ is not an M-matrix anymore due to the negative weights. To
help visualize the negative edges, we present a two-level example to demonstrate the
structure of the expanded graph and further analyze the negative edges.

The original graph G is an unweighted (or all the edge weights are 1) regular 2D
lattice with 8 nodes as shown in Figure 2. Assuming that the 4 aggregations on the
first layer are {1, 2}, {3, 4}, {5, 6}, {7, 8}, we can expand the graph in Figure 2 to have
a second layer with four new nodes 9, 10, 11, 12 as the aggregation representatives in
Figure 3.

Fig. 2. Original graph G

The prolongation operator according to the first layer aggregations {1, 2}, {3, 4}, {5, 6}, {7, 8}

SOLVING GRAPH LAPLACIANS VIA MULTILEVEL SPARSIFIERS 7

Fig. 3. Two-level expanded graph G̃µ

is,

(3.4) P 2
1 =

1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1

,

and the graph Laplacian of the expanded graph has the following 2×2 block structure
since we have two layers in this example.

(3.5) LG̃µ =

[
I

(−µP 2
1)T

]
LG

[
I (−µP 2

1)
]

=

[
LG LG(−µP 2

1)

(−µP 2
1)TLG µ2(P 2

1)TLGP
2
1

]
.

Specifically:

LG̃µ =

2 −1 0 0 −1 0 0 0 −µ 0 µ 0
−1 3 −1 0 0 −1 0 0 −2µ µ µ 0
0 −1 3 −1 0 0 −1 0 µ −2µ 0 µ
0 0 −1 2 0 0 0 −1 0 −µ 0 µ
−1 0 0 0 2 −1 0 0 µ 0 −µ 0
0 −1 0 0 −1 3 −1 0 µ 0 −2µ µ
0 0 −1 0 0 −1 3 −1 0 µ µ −2µ
0 0 0 −1 0 0 −1 2 0 µ 0 −µ
−µ −2µ µ 0 µ µ 0 0 3µ2 −µ2 −2µ2 0
0 µ −2µ −µ 0 0 µ µ −µ2 3µ2 0 −2µ2

µ µ 0 0 −µ −2µ µ 0 −2µ2 0 3µ2 −µ2

0 0 µ µ 0 µ −2µ −µ 0 −2µ2 −µ2 3µ2

.

We can immediately see that there are positive off-diagonal entries in the above ma-
trix which correspond to the negative-weighted edges in the expanded graph. These
negative edges are the edges (dashed purple edges in Figure 3) connecting vertices
on the fine grid (first layer in Figure 3) and vertices in different aggregations on the
coarse grid (second layer in Figure 3). The magnitude of a negatively weighted edge

8 XIAOZHE HU AND JUNYUAN LIN

ω̃(ui,vj)(µ), where ui denotes a node on the first layer in aggregation i and vj is a
node on the second layer represents aggregation j, i 6= j, is the scaled weight sum of
edges that connect vertex ui with vertices that belong to the aggregate j on the first
level. For instance, ω̃(1,11)(µ) in Figure 3 is calculated by summing up edges between
node 1 and nodes in the third aggregation (i.e. nodes 5 and 6). Edge (1, 5) satisfies
the requirement, so ω̃(1,11)(µ) = ω̃(1,5)(µ) · µ = 1 · µ = µ.

Although the expanded graph has a small diameter which is favored by existing
sparsifiers and spanning subgraph preconditioners, those negatively weighted edges are
troublesome since most existing fast algorithms for finding sparsifiers and/or spanning
subgraph preconditioners are designed for positive weighted graphs only [4, 5, 2].
Therefore, they cannot be applied directly to our expanded graph. Next, we will
argue that we can safely drop those negatively weighted edges and only keep the
positively weighted edges on the expanded graph. The scaling parameter µ plays
an essential role here to guarantee the results positively weighted graph is spectrally
equivalent to the expanded graph.

3.2. Extracting the Positive Subgraph. As mentioned in the previous sec-
tion, with the negative edges in the expanded graph, we cannot directly apply the
existing algorithms for constructing spectrally equivalent sparsifiers or subgraph pre-
conditioners on it. We propose to extract only the positive edges from the expanded
graph to construct G̃µ’s positively weighted subgraph H̃µ. Therefore, any algorithms
that find good quality sparsifiers, such as in [18, 53] can be performed on the positive

subgraph H̃µ. Moreover, we show that H̃µ is spectrally equivalent to the expanded
graph G̃µ when the parameter µ is chosen properly.

We denote H̃µ’s graph laplacian as LH̃µ and it is now diagonally dominant. As

an example, Figure 4 is the subgraph of G̃µ in Figure 3 with only positively weighted
edges. For this example, LH̃µ is as follows:

Fig. 4. Spanning positive subgraph H̃µ of G̃µ

L
H̃µ

=

2 + µ −1 0 0 −1 0 0 0 −µ 0 0 0
−1 3 + 2µ −1 0 0 −1 0 0 −2µ 0 0 0
0 −1 3 + 2µ −1 0 0 −1 0 0 −2µ 0 0
0 0 −1 2 + µ 0 0 0 −1 0 −µ 0 0
−1 0 0 0 2 + µ −1 0 0 0 0 −µ 0
0 −1 0 0 −1 3 + 2µ −1 0 0 0 −2µ 0
0 0 −1 0 0 −1 3 + 2µ −1 0 0 0 −2µ
0 0 0 −1 0 0 −1 2 + µ 0 0 0 −µ
−µ −2µ 0 0 0 0 0 0 3µ

2
+ 3µ −µ2 −2µ

2
0

0 0 −2µ −µ 0 0 0 0 −µ2 3µ
2

+ 3µ 0 −2µ
2

0 0 0 0 −µ −2µ 0 0 −2µ
2

0 3µ
2

+ 3µ −µ2

0 0 0 0 0 0 −2µ −µ 0 −2µ
2 −µ2 3µ

2
+ 3µ

.

SOLVING GRAPH LAPLACIANS VIA MULTILEVEL SPARSIFIERS 9

The rest of this section is dedicated to show that, with a properly chosen µ,
LH̃µ is spectral equivalent to LG̃µ . To start, let us consider the following generalize
eigenvalue problem:

(3.6) LG̃µv = λLH̃µv.

Depending on where the vector v resides in, we have three different cases:
1. When v ∈ Null(LH̃µ), λ could be any number. Since LH̃µ is a graph Lapla-

cian matrix of positively weighted graph H̃µ, constant vector is its nullspace.
(i.e. Null(LH̃µ) = span{1}). If v ∈ span{1}, it is also in the null space of
LG̃µ as mentioned in Section 3.1. In this case, LG̃µv = LH̃µv = 0. Since we
cannot bound λ, we avoid letting v ∈ Null(LH̃µ).

2. When v ⊥ Null(LH̃µ) and v ∈ Null(LG̃µ), λ = 0. To prove that such v
exists, we claim the following lemma:

Lemma 3.2. Given that graph G and its expanded graph G̃µ are both simply
connected, dim(Null(LG̃µ)) = ñ−n+ 1. Here, n and ñ represent the number

of nodes in G and G̃µ respectively.

We include the following proof for lemma 3.2:

Proof. We assume the original graph G and its expanded graph G̃µ are simply
connected.

LG̃µ = ({P (µ)}`)T LG {P (µ)}`

= ({P (µ)}`)T BT W T
1/2 W1/2 B{P (µ)}`

We define B̃ := W1/2 B, where B and W1/2 are defined in Section 2.1.
Then, we have

LG̃µ =
(
{P (µ)}` B̃

)T (
{P (µ)}` B̃

)
and

rank(LG̃µ) = rank

((
{P (µ)}` B̃

)T (
{P (µ)}`

)
B̃

)
= rank({P (µ)}` B̃).

Notice that {P (µ)}` ∈ Rn×ñ is in the echelon form, rank({P (µ)}`) = n. The

rank of weighted incidence matrix B̃ is n− 1. Recall two inequalities:

rank({P (µ)}` B̃) 6 min
(
rank({P (µ)}`

)
, rank(B̃)) = min(n, n− 1) = n− 1

rank({P (µ)}` B̃) > rank({P (µ)}` + rank(B̃)− n = n+ (n− 1)− n = n− 1

We can get that rank({P (µ)}` B̃) = rank(LG̃µ) = n − 1. Therefore, the
dimension of Null(LG̃µ) = ñ− (n− 1) = ñ− n+ 1.

This goes to show that besides the constant vector that is in both Null(LH̃µ)
and Null(LG̃µ), there are ñ − n other linearly independent vectors that are
in Null(LG̃µ). Therefore, there exist vectors v in nullspace of LG̃µ but not in
nullspace of LH̃µ . When v ⊥ Null(LH̃µ) and v ∈ Null(LG̃µ), the left-hand-
side is always 0 whereas LH̃µv is never 0, thus λ has to be 0. Since this is a
trivial case, we also avoid letting v ⊥ Null(LH̃µ) and v ∈ Null(LG̃µ).

10 XIAOZHE HU AND JUNYUAN LIN

3. When v ⊥ Null(LG̃µ), there are finite number of positive λ’s. Define the

condition number of L†
H̃µ

LG̃µ , as κ(L†
H̃µ

LG̃µ) =
λmax(L†

H̃µ
LG̃µ)

λmin(L†
H̃µ

LG̃µ)
. We include

the following Lemmas 3.3 3.5 3.6 and Theorem 3.7 to show that κ(L†
H̃µ

LG̃µ)
is bounded with proper µ’s.

Now we are ready to discuss the bounds of the generalized eigenvalue prob-
lem (3.6). First, we show that eigenvalues of L†

H̃µ
LG̃µ are bounded by 1 from above.

Lemma 3.3. For any µ > 0 and v ∈ Rñ, we have (LG̃µv,v) 6 (LH̃µv,v). This

implies that the upper bound of λ(L†
H̃µ

LG̃µ) is 1, when v ⊥ Null(LH̃µ).

Proof. We analyze the upper bound by writing out the graph Laplacian quadratic
form of LG̃µ ∈ Rñ×ñ. For any v ∈ Rñ,

(LG̃µv,v) =
∑

(i,j)∈E(G̃µ)

ω̃(i,j)(µ)(vi − vj)
2

=
∑

(i,j)∈E+(G̃µ)

ω̃(i,j)(µ)(vi − vj)
2 −

∑
(i,j)∈E−(G̃µ)

ω̃(i,j)(µ)(vi − vj)
2

= (LH̃µv,v)− (L−µ v,v)

6 (LH̃µv,v).

Here, E+(G̃µ) and E−(G̃µ) are defined in Section 2. L−µ denotes the graph Laplacian

of graph induced by edges in E−(G̃µ). ω̃(i,j)(µ) represents the magnitude of the edge
(i, j) that depends on µ, as defined in Section 3.1.

When we restrict v ⊥ Null(LH̃µ), we can divide (LH̃µv,v) on both sides of the

inequality and conclude that the upper bound of λ(L†
H̃µ

LG̃µ) is 1. This completes
the proof.

Remark 3.4. Notice that we attain the upper bound 1 when (LG̃µv,v) = (LH̃µv,v).
This corresponds to the case when v ∈ Null(L−µ). It is easy to see that the dimension

of Null(L−µ) equals to the number of connected components in graph of L−µ .

To prove for the lower bound of λ(L†
H̃µ

LG̃µ), it is important that we choose scalar

µ properly. The following lemma establishes the relationship between L−µ and LH̃µ ,
which is essential for the lower bound.

Lemma 3.5. For any scalar 0 < ρ 6 1, there exists 0 < µ∗(ρ) < 1 such that for
any 0 < µ < µ∗(ρ),

(L−µ v,v) 6 ρ (LH̃µv,v), ∀ v ∈ Rñ and v ⊥ Null(LH̃µ).

Proof. Define cv(µ) :=
(L−µ v,v)

(LH̃µv,v)
=

∑
(i,j)∈E−(G̃µ)

ω̃(i,j)(µ)(vi − vj)
2

∑
(i,j)∈E+(G̃µ)

ω̃(i,j)(µ)(vi − vj)2
. cv(µ) is

well-defined since v ⊥ Null(LH̃µ) = span{1}. In addition, since cv(µ) is a ratio,
without loss of generality, we only need to consider ‖v‖ = 1.

Notice that if v ∈ Null(LG̃µ), (L−
µ v,v) = (LH̃µv,v) which proves the result with

ρ = 1.
According to the construction of graph G̃µ, (i, j) ∈ E−(G̃µ) only consists of

negative edges that across different layers. However, (i, j) ∈ E+(G̃µ) includes positive

SOLVING GRAPH LAPLACIANS VIA MULTILEVEL SPARSIFIERS 11

edges connecting nodes both on the same level and across different levels. Due to our
construction, we can observe that,

cv(0) = 0 and cv(1) 6 1.

When µ = 0, E+(G̃µ) includes edges in the original graph G which the weights are not
multiplied by µ, therefore the denominator of cv(µ) is nonzero. On the other hand,

all the edges in E−(G̃µ) are scaled by µ, which makes the numerator zero. Hence,
cv(0) = 0.

When µ = 1, both positive and negative edges that are across the layers are scaled
by the same power of µ, but the denominator includes more positive edges that are
on the same level, therefore we have cv(1) 6 1.

We can also see that cv(µ) is continuous on [0, 1] with respect to µ for any fixed
v ⊥ 1 and ‖v‖ = 1. For such a fixed v, use the fact that cv(µ) is right continuous
at 0, for any given 0 < ρ 6 1, we can arrive at the conclusion that there exists a
µ∗v(ρ) > 0, such that

cv(µ) 6 ρ for any 0 < µ < µ∗v(ρ) < 1.

Since the set {v ∈ Rñ |v ⊥ 1, ‖v‖ = 1} is compact, this implies

cv(µ) 6 ρ for any v ⊥ 1, ‖v‖ = 1 and 0 < µ < µ∗(ρ),

where µ∗(ρ) := min
{v∈Rñ |v⊥1, ‖v‖=1}

µ∗v(ρ) > 0. Therefore, for any µ such that 0 < µ <

µ∗(ρ), we have

(L−µ v,v) 6 ρ (LH̃µv,v), ∀ v ⊥ 1, ‖v‖ = 1 and 0 < ρ 6 1.

This completes the proof.

From lemma 3.5, the lower bound of λ(L†
H̃µ

LG̃µ) follows naturally,

Lemma 3.6. When v ⊥ Null(LH̃µ), the lower bound of λ(L†
H̃µ

LG̃µ) is 1− ρ, for

any 0 < µ < µ∗(ρ), where µ∗(ρ) is defined in Lemma 3.5.

Proof. As proved in Lemma 3.5, (L−µ v,v) 6 ρ (LH̃µv,v),∀ v ⊥ 1, ‖v‖ =
1 and 0 < ρ 6 1. Therefore, we have

(LG̃µv,v) = (LH̃µv,v)− (L−µ v,v) > (LH̃µv,v)− ρ(LH̃µv,v) = (1− ρ)(LH̃µv,v).

which completes the proof.

Together with the result for upper bound, we have the following theorem which
shows the spectral equivalence between the expanded graph G̃µ and its positive
weighted subgraph H̃µ.

Theorem 3.7. Given a simply connected graph G, let G̃µ be the expanded graph
defined in (3.3) and H̃µ be the subgraph of G̃µ consisting only positive edges. Then
for a given 0 < ρ ≤ 1, there exists a constant µ∗(ρ) defined in Lemma 3.5 such that,
for any 0 < µ < µ∗(ρ), when v ⊥ Null(LH̃µ), we have

(1− ρ)(LH̃µv,v) ≤ (LG̃µv,v) ≤ (LH̃µv,v).

Moreover, when v ⊥ Null(LG̃µ), then 0 < ρ < 1 and the corresponding finite condition

number is κ(L†
H̃µ

LG̃µ) 6
1

1− ρ
.

12 XIAOZHE HU AND JUNYUAN LIN

Proof. By the proofs of Lemmas 3.3 and 3.6, we have (1 − ρ) · (LH̃µv,v) 6
(LG̃µv,v) 6 (LH̃µv,v) when v ⊥ Null(LH̃µ). If we restrict v ⊥ Null(LG̃µ), we
have 0 < ρ < 1. We can then divide the lower bound and get the condition number

κ(L†
H̃µ

LG̃µ) 6
1

1− ρ
, 0 < ρ < 1.

Remark 3.8. According to Thoerem 3.7, in practice, we can always choose a
proper µ to guarantee a small condition number 1/(1 − ρ). However, we want to
point out that our results is an existence result, i.e., for any given 0 < ρ < 1, we
can choose small enough µ in order to guarantee the spectral equivalence between the
graphs G̃µ and H̃µ. How to explicitly compute µ for a given ρ is still open and a
subject of our ongoing work.

To get a more in-depth understanding of the selections of scaling parameter µ in
practice, we demonstrate it on different graphs with various sizes. In all cases, we
use MWM as the aggregation method (as suggested in Section 2). We construct the
expanded graph to the maximum level possible (with only two nodes on the top level)

and record κ((L†
H̃µ

LG̃µ) (the ratio between the largest eigenvalue λmax(L†
H̃µ

LG̃µ)

and the smallest nonzero eigenvalue λmin(L†
H̃µ

LG̃µ)) with different graph sizes n and
proper scaling factors µ.

We calculate the condition numbers on two types of structured graphs, 2D regular
grids and ring graphs. Examples of a 2D regular grid with 16 nodes and a ring graph
with 10 nodes and average degree of 4 are shown in Figure 5 and Figure 6 respectively.

Fig. 5. A 2D regular grid with |V | = 16

We first analyze the condition numbers when picking a relatively large µ = 0.8.
In this case, µ is a constant that does not vary with the graph size n:

From Table 1, we can observe that with large µ, the condition numbers for both
types of graphs grow with the graph size and are not bounded. This corresponds
to our conclusion in Theorem 3.7. Therefore, we experiment with smaller µ’s in the
following tests:

We can observe from Table 2 that setting µ =
1√
n

on the regular grids and

ring graphs gives bounded condition number κ(L†
H̃µ

LG̃µ) even with increasing graph
size. It verifies Theorem 3.7 numerically that there exists a small enough µ such that
κ(L†

H̃µ
LG̃µ) is bounded from above. Moreover, with the chosen µ, it can be observed

that as graph sizes grow larger, the condition numbers decrease slightly for both graph

SOLVING GRAPH LAPLACIANS VIA MULTILEVEL SPARSIFIERS 13

Fig. 6. A ring graph with |V | = 10, and average degree = 4

Table 1
Analysis of condition number on 2D regular grids and ring graphs with average degree = 4,

µ = 0.8

Graph Basics κ(L†
H̃µ

LG̃µ)

Size of L1 ∈ Rn×n Level Size of LG̃µ ∈ Rñ×ñ 2D Grids Ring Graphs
16*16 4 30*30 4.5713 3.5001
64*64 6 126*126 14.4171 16.9643

256*256 8 510*510 61.8819 83.5291
1024*1024 10 2046*2046 204.5351 348.3507

Table 2
Analysis of condition number on 2D regular grids and ring graphs with average degree = 4,

µ =
1
√
n

Graph Basics κ(L†
H̃µ

LG̃µ)

Size of L1 ∈ Rn×n Level Size of LG̃µ ∈ Rñ×ñ 2D Grids Ring Graphs
16*16 4 30*30 1.5680 2.6021
64*64 6 126*126 1.4128 3.1655

256*256 8 510*510 1.1959 2.1026
1024*1024 10 2046*2046 1.0926 1.6033

types.

3.3. Finding Spectral Sparsifiers of H̃µ. Now that PEGP H̃µ has small
diameter from its multilevel structure and positive weights only, it makes a good
candidate as a preconditioner for the expanded graph G̃µ. Moreover, it is easy to
apply any off-the-shelf algorithms to find spanning trees and sparsifiers on PEGP,
which we leads us to finding spectral sparsifiers that further improve the performance.
To explain the construction, we first review the idea of stretch and its relation to
condition number. In [4], the stretch of an edge (i, j) in H̃µ is defined as:

(3.7) stretchT̃µ(i, j) = ω(i,j)

 ∑
(u,v)∈p(i,j)

1/ω(u,v)

 ,

14 XIAOZHE HU AND JUNYUAN LIN

where ω(i,j) is the edge weight of edge (i, j) and p(i, j) is the path that connects nodes

i and j in the tree T̃µ. The stretch of the entire positive subgraph H̃µ is then:

(3.8) stretchT̃µ(H̃µ) =
∑

(i,j)∈E+(G̃µ)

stretchT̃µ(i, j).

It is proved in Section 2.2 of [43] that κ(L†
T̃µ

LH̃µ) = ‖KT̃µ‖
2
2 6 ‖KT̃µ‖

2
F = stretchT̃µ(H̃µ).

Here, KT̃µ = B̃†
T̃µ
· B̃G̃µ , and B̃T̃µ and B̃G̃µ are the weighted incidence matri-

ces of tree T̃µ and expanded graph G̃µ respectively. Combine our finding in Theo-
rem 3.7 with the result in [43], we can get (1 − ρ)(LT̃µ v,v) 6 (1 − ρ)(LH̃µ v,v) 6

(LG̃µv,v) 6 (LH̃µv,v) 6 stretchT̃µ(H̃µ)(LT̃µv,v). Therefore, the condition number

κ(L†
T̃µ

LG̃µ) =
stretchT̃µ(H̃µ)

1− ρ
.

In addition to using spanning tree, researchers have found that sparsifier created
by adding back spectrally critical off-tree edges to low-stretch spanning tree offers a
practically efficient, nearly-linear time preconditioner for large-scale, real-world graph
problems [2, 19].

Although there are existing spectral sparsifiers that can be applied to the PEGP
H̃µ directly, to further demonstrate that the benefit of constructing H̃µ, we propose
a tree-structured multilevel sparsifier preconditioner for H̃µ which can be constructed
in a straightforward manner. Thanks to the fact that the positive subgraph H̃µ of
the expanded graph G̃µ has small diameter from its multilevel structure and positive
weights only, it is easy for us to define a low-stretch spanning sparsifier. Specifically,
we extract only the edges on the top coarse level, edges between the levels, and edges
inside of the aggregations of the original graphs from the positive subgraph. For
example, the positive subgraph in 4 can be further extracted to:

Fig. 7. 2-level spanning tree-structured sparsifier MSP of PEGP H̃µ with aggregations defined
in Equation 3.4

Here, the MSP we build here is a sparsifier rather than a spanning tree. When
computing stretchT̃µ(H̃µ), distT̃µ(i, j) is not unique. We choose the path with the
lightest edge weight sum as distT̃µ(i, j) in this case. Since we use MWM coarsening
scheme, most aggregations are matchings of size 2 . MSP’s tree-like structure guar-
antees that the Gaussian elimination procedure introduces no fill-ins to the Schur
complement when eliminating each aggregation less than four nodes from the base
level.

SOLVING GRAPH LAPLACIANS VIA MULTILEVEL SPARSIFIERS 15

From the standpoint of achieving the best theoretical bound for κ(L†
T̃µ

LG̃µ), we

need to pick large µ to get small stretchT̃µ(H̃µ) but small-scale µ to control
1

1− ρ
. In

practice, we found that µ = 1/
√
n leads to steady iteration steps and efficient solving

time for our test graphs in 4.

4. Numerical Results. In this section, we verify the spectral approximating
property of the PEGP H̃µ by using it as a preconditioner for solving the expanded
graph G̃µ, which is equivalent to the original graph G. Moreover, we also demon-
strate the performance of MSP to show its practical applications. We conduct nu-
merical experiments on different types of graph Laplacians; some are related to dis-
crete PDEs, and the rest are derived from real-world networks. For all the tests, we
solve the expanded graph Laplacian system in (3.2), which is equivalent to the orig-
inal system (3.1). We pair the model problems with a low-frequency right-hand-side
b̃ ∈ Rñ = ({P (µ)}`)T b,where b = [1, 1, . . . , 1− n]T . We compare the performance of
the proposed preconditioners to the Combinatorial Multigrid (CMG) preconditioner
[38]. CMG borrows the structure and operations of multigrid algorithms, but its
setup phase is based on support theory. It has been noted by many authors for its
robustness in practice for various real-world problems [45, 39, 21]. Since CMG does
not work with graphs with negative edges, we use it to solve the original system (3.1).

We choose MWM coarsening scheme to build the multilevel structure described
in Section 2.2 and add the leftover nodes to the aggregate with the heaviest incident
edge. Therefore, there are no isolated nodes on any level. For all the experiments
below, we use flexible generalized minimum residual method (FGMRES) [51] as the
solver to solve (3.2) to a relatively small tolerance 1e − 8 for the scalability tests
in Sections 4.1 and 4.2 and more practical choice 1e − 6 for real-world graphs in
Section 4.3.

Numerical experiments are conducted using a 1.1GHz Intel i7-10710U CPU with
16 GB of RAM. The software used for testing PEGP and MSP is written by the
authors and implemented in Matlab code. The package used to test for CMG method
can be found in [35], which is a C code integrated in Matlab interface. We report the
following results in each table. The “steps” column reports the number of iterations
needed for the residual to reach certain tolerance, “level” represents the total number
of levels for the MSP, µ is a scalar of choice from 0 to 1, and we report “time” as the
total CPU times in seconds. We set the maximum number of iterations to 1000 and
denote any cases where the solver takes more than 1000 iterations as “–”.

4.1. On Regular Grids. We first tested the performance of the preconditioners
on unweighted graph Laplacians of 2D regular uniform grids in Table 3. This relates
to solving a Poisson equation with Neumann boundary condition on a 2D square.

Table 3
Performance on Regular Grids ε = 10−8

level = 2, µ = 1/
√
n level = max, µ = 1/

√
n

PEGP MSP PEGP MSP CMG

n steps time steps time steps time steps time level time steps

2
8

12 0.0094 48 0.0208 7 0.0092 58 0.0133 4 14 0.0393

2
10

10 0.0333 51 0.0618 6 0.0527 93 0.0793 5 15 0.0877

2
12

9 0.1377 51 0.2748 5 0.1933 151 0.2281 6 16 0.3923

2
14

8 0.5092 55 1.0923 4 0.7758 248 1.2778 7 16 1.0066

There are two main observations from the numerical results: (1) As shown in

Theorem 3.7, with a small enough µ, κ(L†
H̃µ

LG̃µ) can be controlled, and this is

16 XIAOZHE HU AND JUNYUAN LIN

confirmed by the stable iteration counts even when the amount of level is fixed to
2. When extending to the maximal level, the PEGP still has stable iteration counts,
contributing to the short CPU time needed for computation. (2) It is easy to construct
MSP from PEGP due to its small diameter. MSP has low stretch and tree structure,
which makes each solving step faster to run. When level = 2, the CPU time scales
linearly with the problem size. When level = max, MSP’s computation time scales in
O(n log n). In addition, the CPU time of our proposed preconditioners are faster or
comparable with CMG’s performance for this model testing problem.

4.2. On Random Watts-Strogatz Graphs. For the second example, we use
Watts Strogatz [57] model and set the rewiring probability β = 1/

√
n and the mean

node degree to be 4 to produce ring-like graphs as in 8. The condition numbers of
the graph Laplacians of the ring graphs also grow rapidly when the size of the graphs
increases.

Fig. 8. Example of a Watts-Strogatz graph with n = 16, mean node degree= 4, and rewiring
probability β = 1/4

Table 4
Performance on Solving Watts-Strogatz Graphs ε = 10−8, rewiring probability= 1/

√
n

level = 2, µ = 1/
√
n level = max, µ = 1/

√
n

PEGP MSP PEGP MSP CMG

n steps time steps time steps time steps time level steps time

2
8

11 0.0076 42 0.0180 6 0.0065 89 0.0073 4 22 0.0124

2
10

9 0.0197 51 0.0557 5 0.0253 171 0.0335 5 30 0.0243

2
12

9 0.0619 57 0.1814 5 0.0960 344 0.1196 6 46 0.1515

2
14

7 0.2402 62 0.6645 4 0.3097 704 0.9943 7 37 2.2038

Similar observations can be made from this set of tests. In addition to the analysis
in Table 2, the stable (even slightly decreasing) iteration count for H̃µ numerically
confirms Theorem 3.7 that PEGP provides a spectral equivalent positively weighted
expanded graph when µ is small. MSP again has an increasing iteration count. How-
ever, each step takes a much faster time to solve than PEGP and CMG. In fact, in all
cases, the CPU time needed for PEGP and MSP outperform the CMG preconditioner.
As the ring graph gets larger, the CMG method’s CPU time and convergence steps
tend to increase more drastically than the proposed preconditioners.

4.3. On Real-world Graphs. In this section, we perform tests on real-world
networks from the Stanford large network datasets collection [41] and the University
of Florida sparse matrix collection [17].

We pre-processed the graphs as follows. The largest connected component of each
graph is extracted, any self-loops from the extracted component are discarded, and

SOLVING GRAPH LAPLACIANS VIA MULTILEVEL SPARSIFIERS 17

edge weights of the component are modified to be their absolute values to satisfy the
requirements of the CMG algorithm. We also made the largest connected components
undirected if they were originally directed. In Tables 5 and 6, the basic information
of pre-processed graphs collected from the Stanford large network datasets collection
and University of Florida sparse matrix collection are presented.

Table 5
Largest connected components of the networks from Stanford large network datasets collection

nodes edges Description

ca-GrQc 4,158 13,422 Collaboration network of Arxiv General Relativity
ego-Facebook 4,039 88,234 Social circles from Facebook (anonymized)

feather-lastfm-social 7,624 27,806 Social network of LastFM users from Asia
p2p-Gnutella04 10,876 39,994 Gnutella peer to peer network from August 4 2002

Table 6
Largest connected components of the networks from University of Florida sparse matrix collection

nodes edges Description

airfoil 2d 14,214 259,688 Unstructured 2D mesh (airfoil)
Pres Poisson 14,822 715,804 A computational fluid dynamics problem from ACUSIM, Inc

Oberwolfach/gyro k 17,361 1,021,159 Oberwolfach model reduction benchmark collection
tsyl201 20,685 2,454,957 Matrix Representation of TSYL201, part of condeep cylinder

Table 7
Performance on Solving Real World Graphs ε = 10−6, level = max

PEGP MSP CMG

Networks µ steps time steps time level steps time

ca-GrQc 0.8 26 1.8934 61 0.5268 6 32 0.1154
ego-Facebook 0.8 36 0.7868 57 0.5017 9 38 0.2531

feather-lastfm-social 0.8 28 1.8435 65 0.9154 5 20 1.1955
p2p-Gnutella04 0.8 15 4.6773 64 2.2723 7 13 3.5261

airfoil 2d 0.8 117 72.7376 148 5.0942 6 7 5.9355
Pres Poisson 0.8 64 77.7364 105 3.7668 7 8 7.3866

Oberwolfach/gyro k 0.8 42 32.7343 32 4.0394 6 14 11.8209
tsyl201 0.8 44 187.0472 54 3.2941 6 28 4.2295

Notice that there is a trade-off in picking µ’s. As proved in Sections 3.2 and 3.3, a
small enough µ keeps κ(L†

H̃µ
LG̃µ) bounded but simultaneously increase stretchT̃µ(H̃µ),

hence the condition number κ(L†
T̃µ

LG̃µ). Since the structures and properties of the
real-life graphs vary much more than the regular grids and the ring graphs, PEGP
sometimes has many high-degree nodes, making the matrix inversion time-consuming
at each step for larger and denser graphs. Although it converges with fewer steps,
the total solving time might not be optimal in practice. MSP is a subgraph of PEGP
and its tree-like structure introduces no fill-ins during Gaussian elimination. There-
fore each step takes a shorter time than PEGP. As shown in Table 7, in practice, we

18 XIAOZHE HU AND JUNYUAN LIN

choose large µ (for example, 0.8) to control the stretch and boost the performance
of MSP. Especially for larger and denser networks, while PEGP might still be diffi-
cult and expensive to solve due to the graph structure, MSP with properly chosen µ
demonstrate a more robust performance than CMG in terms of the CPU time.

5. Conclusion and Future Work. While the spectral sparsifiers precondition-
ers have theoretical guarantees from the support theory for solving graph Laplacians,
they are challenging to implement due to the randomness in finding low-stretch span-
ning trees/sparsifiers. On the other hand, multilevel methods are deterministic and
can achieve nearly linear optimal complexity, but they require PDE-based assump-
tions and lack theoretical justifications for general graphs. In this paper, we proposed
a new method to construct preconditioners that combines the advantages of both.

We adopt the idea of MG and expand the original graph G to a multilevel struc-
tured graph G̃µ with a small diameter. However, we introduce negative edges in G̃µ,
which make it challenging to apply existing algorithms to find spanning trees/sparsi-
fiers. In Section 3.2, based on the support theory for spanning subgraphs, we define
a PEGP H̃µ of G̃µ, such that LH̃µ is spectrally equivalent to LG̃µ . Now that H̃µ has
positive weights, small diameter, and multilevel structure, making it easy to construct
spanning trees/sparsifiers on. To demonstrate this, we propose the MSP in Section 3.3
for solving graph Laplacians robustly in practice.

In Section 4, we test PEGP and MSP as preconditioners for solving graph Lapla-
cians on 2D regular grids, random Watts-Strogatz graphs. We observe that the new
preconditioners take stabler iteration steps and less CPU time than the CMG pre-
conditioner. The solving time scales linearly with the problem size with the proposed
preconditioners. Compared to the CMG preconditioner, the proposed approaches are
more robust and effective on real-life graphs from various sources.

As for future directions, we would like to extend our work in the following ways.
The parameter µ plays an important in both theory and practice. Smaller µ’s in H̃µ

guarantee a faster convergence rate at each step, while larger µ’s, on the other hand,
reduce the stretch and minimize the total computation time for MSP. Therefore, we
plan to investigate how to properly chose µ in practical applications. We also want to
test the proposed preconditioners on a broader range of real-life graphs and summarize
the graph properties that lead to better performance using the new preconditioners.
Finally, we will compare the proposed methods to other spanning trees/sparsifiers
besides CMG.

Acknowledgments. The work of X. Hu is partially supported by the National
Science Foundation under grant DMS-1812503 and CCF-1934553

REFERENCES

[1] Ittai Abraham, Yair Bartal, and Ofer Neiman, Nearly tight low stretch spanning trees,
in 2008 49th Annual IEEE Symposium on Foundations of Computer Science, IEEE, 2008,
pp. 781–790.

[2] Ittai Abraham and Ofer Neiman, Using petal-decompositions to build a low stretch spanning
tree, in Proceedings of the forty-fourth annual ACM symposium on Theory of computing,
2012, pp. 395–406.

[3] Sameer Agarwal, Kristin Branson, and Serge Belongie, Higher order learning with
graphs, in Proceedings of the 23rd international conference on Machine learning, ACM,
2006, pp. 17–24.

[4] Noga Alon, Richard M Karp, David Peleg, and Douglas West, A graph-theoretic game
and its application to the k-server problem, SIAM Journal on Computing, 24 (1995), pp. 78–
100.

SOLVING GRAPH LAPLACIANS VIA MULTILEVEL SPARSIFIERS 19

[5] Marshall Bern, John R Gilbert, Bruce Hendrickson, and Nhat Nguyen, Support-graph
preconditioners, in SIAM Journal on Matrix Analysis and Applications, Citeseer, 2001.

[6] Erik Boman and Bruce Hendrickson, On spanning tree preconditioners, Manuscript, Sandia
National Lab, 3 (2001).

[7] Erik G Boman and Bruce Hendrickson, Support theory for preconditioning, SIAM Journal
on Matrix Analysis and Applications, 25 (2003), pp. 694–717.

[8] A. Brandt, S. F. McCormick, and J. W. Ruge, Algebraic multigrid (AMG) for sparse matrix
equations, in Sparsity and Its Applications, D. J. Evans, ed., Cambridge University Press,
Cambridge, 1984.

[9] James Brannick, Yao Chen, Johannes Kraus, and Ludmil Zikatanov, Algebraic multilevel
preconditioners for the graph laplacian based on matching in graphs, SIAM Journal on
Numerical Analysis, 51 (2013), pp. 1805–1827.

[10] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-
dergheynst, Geometric deep learning: going beyond euclidean data, IEEE Signal Pro-
cessing Magazine, 34 (2017), pp. 18–42.

[11] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun, Spectral networks and
locally connected networks on graphs, arXiv preprint arXiv:1312.6203, (2013).

[12] Mengfei Cao, Christopher M Pietras, Xian Feng, Kathryn J Doroschak, Thomas
Schaffner, Jisoo Park, Hao Zhang, Lenore J Cowen, and Benjamin J Hescott,
New directions for diffusion-based network prediction of protein function: incorporating
pathways with confidence, Bioinformatics, 30 (2014), pp. i219–i227.

[13] Mengfei Cao, Hao Zhang, Jisoo Park, Noah M. Daniels, Mark E. Crovella, Lenore J.
Cowen, and Benjamin Hescott, Going the distance for protein function prediction: A
new distance metric for protein interaction networks, PLoS ONE, 8 (2013), pp. 1–12.

[14] C. Colley, J. Lin, X. Hu, and S. Aeron, Algebraic multigrid for least squares problems on
graphs with applications to hodgerank, in 2017 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), May 2017, pp. 627–636.

[15] Lenore J Cowen, Xiaozhe Hu, Junyuan Lin, Yue Shen, and Kaiyi Wu, Random-walk based
approximate k-nearest neighbors algorithm for diffusion state distance, in International
Conference on Large-Scale Scientific Computing, Springer, 2021, pp. 3–15.

[16] Pasqua D’Ambra and Panayot S Vassilevski, Adaptive amg with coarsening based on com-
patible weighted matching, Computing and Visualization in Science, 16 (2013), pp. 59–76.

[17] Timothy A Davis and Yifan Hu, The university of florida sparse matrix collection, ACM
Transactions on Mathematical Software (TOMS), 38 (2011), pp. 1–25.

[18] Michael Elkin, Yuval Emek, Daniel A Spielman, and Shang-Hua Teng, Lower-stretch
spanning trees, SIAM Journal on Computing, 38 (2008), pp. 608–628.

[19] Zhuo Feng, Spectral graph sparsification in nearly-linear time leveraging efficient spectral
perturbation analysis, in Proceedings of the 53rd Annual Design Automation Conference,
2016, pp. 1–6.

[20] Zvi Galil, Silvio Micali, and Harold Gabow, An o(ev\logv) algorithm for finding a maximal
weighted matching in general graphs, SIAM Journal on Computing, 15 (1986), pp. 120–130.

[21] Dimitrios Garyfallou, Nestor Evmorfopoulos, and Georgios Stamoulis, A combinato-
rial multigrid preconditioned iterative method for large scale circuit simulation on gpu s,
in 2018 15th International Conference on Synthesis, Modeling, Analysis and Simulation
Methods and Applications to Circuit Design (SMACD), IEEE, 2018, pp. 209–212.

[22] Keith D Gremban, Combinatorial preconditioners for sparse, symmetric, diagonally dominant
linear systems, PhD thesis, Carnegie Mellon University, 1996.

[23] Michael Griebel, Multilevel algorithms considered as iterative methods on semidefinite sys-
tems, SIAM Journal on Scientific Computing, 15 (1994), pp. 547–565.

[24] Xiaofei He, Deng Cai, and Partha Niyogi, Tensor subspace analysis, in Advances in neural
information processing systems, 2006, pp. 499–506.

[25] Mikael Henaff, Joan Bruna, and Yann LeCun, Deep convolutional networks on graph-
structured data, arXiv preprint arXiv:1506.05163, (2015).

[26] Anil N Hirani, Kaushik Kalyanaraman, and Seth Watts, Least squares ranking on graphs,
arXiv preprint arXiv:1011.1716, (2010).

[27] Xiaozhe Hu, Junyuan Lin, and Ludmil T Zikatanov, An adaptive multigrid method based
on path cover, SIAM Journal on Scientific Computing, 41 (2019), pp. S220–S241.

[28] B. Jiang, C. Ding, J. Tang, and B. Luo, Image representation and learning with graph-
laplacian tucker tensor decomposition, IEEE Transactions on Cybernetics, (2018), pp. 1–
10.

[29] Xiaoye Jiang, Lek-Heng Lim, Yuan Yao, and Yinyu Ye, Statistical ranking and combina-
torial hodge theory, Mathematical Programming, 127 (2011), pp. 203–244.

20 XIAOZHE HU AND JUNYUAN LIN

[30] George Karypis and Vipin Kumar, Multilevelk-way partitioning scheme for irregular graphs,
Journal of Parallel and Distributed Computing, 48 (1998), pp. 96–129.

[31] George Karypis and Vipin Kumar, Kumar, v.: A fast and high quality multilevel scheme for
partitioning irregular graphs. siam journal on scientific computing 20(1), 359-392, Siam
Journal on Scientific Computing, 20 (1999).

[32] Jonathan A. Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu, A
simple, combinatorial algorithm for solving sdd systems in nearly-linear time, in Proceed-
ings of the Forty-fifth Annual ACM Symposium on Theory of Computing, STOC ’13, New
York, NY, USA, 2013, ACM, pp. 911–920.

[33] HwanHo Kim, Jinchao Xu, and Ludmil Zikatanov, A multigrid method based on graph
matching for convection-diffusion equations, Numer. Linear Algebra Appl., 10 (2003),
pp. 181–195. Dedicated to the 60th birthday of Raytcho Lazarov.

[34] Thomas N Kipf and Max Welling, Semi-supervised classification with graph convolutional
networks, arXiv preprint arXiv:1609.02907, (2016).

[35] Ioannis Koutis, Ikoutis/cmg-solver: Combinatorial multigrid solver for sdd matrices.
[36] Ioannis Koutis, Gary L Miller, and Richard Peng, A nearly-m log n time solver for

sdd linear systems, in 2011 IEEE 52nd Annual Symposium on Foundations of Computer
Science, IEEE, 2011, pp. 590–598.

[37] , Approaching optimality for solving sdd linear systems, SIAM Journal on Computing,
43 (2014), pp. 337–354.

[38] Ioannis Koutis, Gary L. Miller, and David Tolliver, Combinatorial preconditioners and
multilevel solvers for problems in computer vision and image processing, Computer Vision
and Image Understanding, 115 (2011), pp. 1638–1646. Special issue on Optimization for
Vision, Graphics and Medical Imaging: Theory and Applications.

[39] Dilip Krishnan and Richard Szeliski, Multigrid and multilevel preconditioners for compu-
tational photography, ACM Transactions on Graphics (TOG), 30 (2011), pp. 1–10.

[40] Boris Landa and Yoel Shkolnisky, The steerable graph laplacian and its application to
filtering image data-sets, CoRR, abs/1802.01894 (2018).

[41] Jure Leskovec and Andrej Krevl, SNAP Datasets: Stanford large network dataset collec-
tion. http://snap.stanford.edu/data, June 2014.

[42] Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang, Adaptive graph convolutional
neural networks, in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32,
2018.

[43] Junyuan Lin, Preconditioned Iterative Methods for Linear Equations of Graph Laplacians:
Algorithms and Applications, PhD thesis, Tufts University, 2019.

[44] Junyuan Lin, Lenore Cowen, Benjamin Hescott, and Xiaozhe Hu, Computing the diffu-
sion state distance on graphs via algebraic multigrid and random projections, Numerical
Linear Algebra with Applications, 25 (2018), p. e2156. e2156 nla.2156.

[45] Oren E Livne and Achi Brandt, Lean algebraic multigrid (lamg): Fast graph laplacian linear
solver, SIAM Journal on Scientific Computing, 34 (2012), pp. B499–B522.

[46] Atsuhiro Narita, Kohei Hayashi, Ryota Tomioka, and Hisashi Kashima, Tensor factor-
ization using auxiliary information, Data Mining and Knowledge Discovery, 25 (2012),
pp. 298–324.

[47] Yvan Notay, An aggregation-based algebraic multigrid method, Electronic transactions on
numerical analysis, 37 (2010), pp. 123–146.

[48] John Ruge and Klaus Stüben, Efficient solution of finite difference and finite element equa-
tions by algebraic multigrid AMG, Gesellschaft f. Mathematik u. Datenverarbeitung, 1984.

[49] John W Ruge, Algebraic multigrid (AMG) for geodetic survey problems, in Prelimary Proc.
Internat. Multigrid Conference, Fort Collins, CO, 1983.

[50] J. W. Ruge and K. Stüben, Algebraic multigrid, in Multigrid methods, vol. 3 of Frontiers
Appl. Math., SIAM, Philadelphia, PA, 1987, pp. 73–130.

[51] Youcef Saad and Martin H Schultz, Gmres: A generalized minimal residual algorithm for
solving nonsymmetric linear systems, SIAM Journal on scientific and statistical computing,
7 (1986), pp. 856–869.

[52] Uri Shaham, Kelly Stanton, Henry Li, Ronen Basri, Boaz Nadler, and Yuval Kluger,
Spectralnet: Spectral clustering using deep neural networks, in International Conference on
Learning Representations, 2018.

[53] Marcel K De Carli Silva, Nicholas JA Harvey, and Cristiane M Sato, Sparse sums
of positive semidefinite matrices, ACM Transactions on Algorithms (TALG), 12 (2015),
pp. 1–17.

[54] Daniel A Spielman and Shang-Hua Teng, Nearly-linear time algorithms for graph parti-
tioning, graph sparsification, and solving linear systems, in Proceedings of the thirty-sixth

http://snap.stanford.edu/data

SOLVING GRAPH LAPLACIANS VIA MULTILEVEL SPARSIFIERS 21

annual ACM symposium on Theory of computing, 2004, pp. 81–90.
[55] Pravin M. Vaidya, Solving linear equations with symmetric diagonally dominant matrices by

constructing good preconditioners, 1990.
[56] Panayot S. Vassilevski, Multilevel block factorization preconditioners, Springer, New York,

2008. Matrix-based analysis and algorithms for solving finite element equations.
[57] Duncan J Watts and Steven H Strogatz, Collective dynamics of ‘small-world’ networks,

Nature, 393 (1998), pp. 440–442.
[58] Jinchao Xu and Ludmil Zikatanov, Algebraic multigrid methods, Acta Numerica, 26 (2017),

pp. 591–721.
[59] H Peyton Young, A note on preference aggregation, Econometrica: Journal of the Economet-

ric Society, (1974), pp. 1129–1131.

	1 Introduction
	2 Preliminaries
	2.1 Graph
	2.2 Aggregation

	3 Building the Positively Weighted Expanded Graph
	3.1 Expanding the Graph
	3.2 Extracting the Positive Subgraph
	3.3 Finding Spectral Sparsifiers of H"0365H

	4 Numerical Results
	4.1 On Regular Grids
	4.2 On Random Watts-Strogatz Graphs
	4.3 On Real-world Graphs

	5 Conclusion and Future Work
	References

