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Preconditioned Plug-and-Play ADMM
with Locally Adjustable Denoiser

for Image Restoration
Mikael Le Pendu and Christine Guillemot

Abstract—Plug-and-Play optimization recently emerged as a powerful technique for solving inverse problems by plugging a denoiser
into a classical optimization algorithm. The denoiser accounts for the regularization and therefore implicitly determines the prior
knowledge on the data, hence replacing typical handcrafted priors. In this paper, we extend the concept of plug-and-play optimization
to use denoisers that can be parameterized for non-constant noise variance. In that aim, we introduce a preconditioning of the ADMM
algorithm, which mathematically justifies the use of such an adjustable denoiser. We additionally propose a procedure for training a
convolutional neural network for high quality non-blind image denoising that also allows for pixel-wise control of the noise standard
deviation. We show that our pixel-wise adjustable denoiser, along with a suitable preconditioning strategy, can further improve the
plug-and-play ADMM approach for several applications, including image completion, interpolation, demosaicing and Poisson denoising.

Index Terms—Plug-and-Play Prior, Inverse Problems, Preconditioning, ADMM, Denoising, Interpolation, Demosaicing, Image
Completion.
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1 INTRODUCTION

Inverse problems arising in image restoration require the
use of prior knowledge on images in order to determine
the most likely solutions among an infinity of possibilities.
Traditional optimization methods rely on priors modeled as
convex regularization functions such as the total variation,
encouraging smoothness, or the l1 norm for sparsity. In
this context, convex optimization algorithms have played an
important role and their convergence properties have been
well-established. However, the methods based on ”hand-
crafted” convex priors are now significantly outperformed
by deep neural networks that directly learn an inverse map-
ping from the degraded measurements to the solution space.
Here, the prior knowledge on images and the degradation to
recover from do not need a formal mathematical definition.
Instead, they are implicitly taken into account when training
the network from a large dataset of degraded images (i.e.
network’s intput) along with their original versions (i.e.
network’s output). This approach has enabled a significant
leap in performance for common image restoration prob-
lems including denoising, demosaicing, super-resolution,
etc. However, different neural networks must be carefully
designed and trained for each problem specifically. Fur-
thermore, it is usually impossible to interpret what task
is performed by the different layers or sub-modules of the
trained network which acts as a black box.

In order to increase the interpretability and genericity of
deep neural networks, the field is evolving towards methods
that combine them with traditional optimization algorithms.
A popular approach, seen for example in [1], [2], [3], [4],
[5], [6], [7], consists in defining so-called “unrolled” neural
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networks that simulate several iterations of an optimization
algorithm. For instance, in unrolled gradient descent, the
gradient of the data-fidelity term can be computed knowing
its closed form expression, while a convolutional neural
network (CNN) is used to simulate the gradient compu-
tation of a regularization term. End-to-end training of this
regularizing network is then performed by “unrolling” a
given number of iterations of the optimization algorithm.
Here, the trained CNN is meant to represent only prior
knowledge on images, which does not depend on a specific
image restoration task. However, in practice these networks
require re-training for each task, meaning that task-specific
features are also learnt in the end-to-end unrolled training.

A more universal approach referred to as “Plug-and-
Play” (PnP), relies on proximal algorithms such as the Alter-
nating Direction Method of Multipliers (ADMM) [8] or Half
Quadratic Splitting (HQS) [9], where the proximal operator
of the regularization term is usually replaced by a denoiser
as in [10], [11], [12], [13], [14]. While Venkatakrishnan et al.
[10] introduced this approach using traditional denoising
techniques including BM3D [15] or K-SVD [16], more recent
methods attain higher performance thanks to neural net-
works trained for denoising. The main limitation, however,
is that the objective function to minimize is typically non-
convex when the proximal operator of the regularization
term is defined as a high performance denoiser. Hence
the proximal algorithms used may not provide the optimal
solution.

In this paper, we propose a preconditioned ADMM
in order to improve the algorithm’s performance in this
challenging “Plug-and-Play” scenario. While the proposed
formulation remains mathematically equivalent to the orig-
inal problem, the preconditioning makes it possible to use
a denoiser that takes into account spatially varying noise
levels. This is particularly advantageous for applications
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where the variance of the approximation error made at each
iteration varies spatially in a predictable way. For instance,
in image demosaicing, completion, or interpolation, only the
unknown pixels that require interpolation are expected to
have an approximation error. Hence, the pattern of known
and unknown pixels can be used in our scheme to define a
sensible preconditioning matrix. Likewise, when an image is
corrupted by Poisson noise, the noise variance at each pixel
is known to be proportional to the noiseless pixel intensity.
In summary, the main contributions of our paper are as
follows:

• We formulate a preconditioned ADMM, which en-
ables the use of a denoiser that can take into account
spatially varying standard deviation.

• We propose a procedure for training a denoising
neural network that takes as input a map of pixel-
wise standard deviation, along with the image to be
denoised.

• We demonstrate the effectiveness of the approach
and define suitable preconditioning schemes for sev-
eral applications: image completion, interpolation,
demosaicing and Poisson denoising. Note that for
Poisson denoising, we present further derivations ac-
counting for the negative log-likelihood of the Pois-
son distribution, which replaces the conventional
least square data fidelity term (only suitable for
Gaussian noise).

2 BACKGROUND: PLUG-AND-PLAY ADMM
2.1 Plug-and-Play Prior
Let us consider the linear inverse problem of recovering
a clean image x̂ ∈ Rn from its degraded measurements
b ∈ Rm obtained with the degradation model b = Ax + ν,
where A ∈ Rm×n is the degradation matrix, ν ∈ Rm is ad-
ditive white Gaussian noise with standard deviation σ, and
x is the unknown ground truth image arranged as a vector.
The problem is generally formulated as the Maximum a
Posteriori (MAP) estimation of x, given its prior probability
density function p. The MAP is given by:

x̂ = arg max
x

p(x|b) = arg max
x

p(b|x) · p(x), (1)

= arg min
x

− ln(p(b|x))− ln(p(x)), (2)

= arg min
x

1

2
‖Ax− b‖22 + σ2R(x). (3)

In practice, the prior distribution p is not used directly, but
is represented by the regularizer R(x) = − ln(p(x)), which
penalizes unlikely solutions.

The PnP approach introduced in [10] goes one step
further by removing the need for an explicit definition of
the regularizer. This is made possible by the use of proximal
algorithms such as ADMM in which the regularizer only
appears in the evaluation of the proximal operator of γR
for some scalar factor γ. This operator is defined as:

proxγR(u) = arg min
x

1

2
‖x− u‖22 + γ · R(x). (4)

It can be noted that the expression of proxγ·R is a particular
case of Eq. (3), where the degradation matrix A is the iden-
tity matrix, i.e. the degradation model only consists in the

addition of white Gaussian noise. In other words proxγ·R is
the MAP denoiser assuming additive white Gaussian noise
of variance γ and given the underlying prior p(x) = e−R(x).
Based on this observation, the authors of [10] replaced
proxγ·R by a standard image denoiser which implicitly
determines the prior distribution. In the following, we will
note the denoiser as a function of the image and the noise
standard deviation:

FR(u,
√
γ) = proxγR(u) (5)

More recent works use a trained CNN to represent the
proximal operator. For instance, in [13], adversarial training
is used to learn a projection operator. Here, the assumption
is that the regularizer is the indicator function of the set of
“natural images”. Hence, the corresponding proximal oper-
ator projects the input image to the closest “natural image”,
which can be seen as a form of blind denoising. While this
avoids the need for a parameter γ, it does not allow for
controlling the denoising “strength” within the algorithm.
In [11], a neural network called DRUNet, that combines
Res-Net [17] and U-Net [18] architectures, is trained for the
task of Gaussian denoising. The noise standard deviation
is given as a constant input map in addition to the noisy
image. Hence, compared to approaches based on denoising
CNNs trained for a single noise level [19], or for blind
denoising [13], [20], [21], the method in [11] can control
the algorithm’s parameters more precisely at each iteration,
while keeping the highest denoising performance. Since a
single network is used, it also simplifies the method in
[12], where 25 denoisers are trained for different standard
deviations in order to cover a larger range of noise levels.

In this paper, we argue that a denoiser parameterized
with an input map for standard deviation can even be
trained to control the noise level at each pixel independently.
Such a denoiser further improves the PnP scheme for several
applications thanks to the proposed preconditioning.

2.2 ADMM Formulation

In this section, we present the classical ADMM formulation
in the case of the least squares inverse problem in Eq. (3).
The same notations will be used throughout the paper.
In order to use the ADMM, the problem is first cast into
a constrained optimization problem by splitting the two
terms:

x̂ = arg min
x,y

1

2
‖Ax− b‖22 + σ2R(y)

subject to x = y,

(6)

The constraint x = y is included in the optimization
by defining the augmented Lagrangian function L, which
introduces a dual variable l ∈ Rn and a penalty parameter
ρ:

L(x,y, l) =
1

2
‖Ax− b‖22 + σ2R(y)

+ lT(x− y) +
ρ

2
‖x− y‖22 ,

(7)

=
1

2
‖Ax− b‖22 + σ2R(y) +

ρ

2

∥∥∥∥x− y +
l

ρ

∥∥∥∥2
2

−
‖l‖22
2ρ

. (8)
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The ADMM method consists in alternatively minimizing
the augmented Lagrangian L for the variables x and y sep-
arately, and by updating the dual variable l. In practice, the
penalty parameter ρmay also be updated at each iteration to
accelerate the convergence. The ADMM iteration thus reads
as:

xk+1 = arg min
x

‖Ax− b‖22 + ρk

∥∥∥∥∥x−
(
yk − l

k

ρk

)∥∥∥∥∥
2

2

,

(9)

yk+1 = arg min
y

1

2

∥∥∥∥∥y −
(
xk+1 +

lk

ρk

)∥∥∥∥∥
2

2

+
σ2

ρk
R(y),

(10)

lk+1 = lk + ρk(xk+1 − yk+1), (11)

ρk+1 = ρk · α, with α > 1, (12)

where the dual variable l is typically zero-initialized. An
initialization of x is also required and is often performed as
x0 = ATb, but a finer initialization strategy may be used
depending on the problem.

The y-update in Eq. (10) can be equivalently written
using a proximal operator:

yk+1 = proxγR(xk+1 + lk/ρk), (13)

where γ = σ2/ρk. As seen in Section 2.1, this step can be
performed in the PnP approach by denoising the image
xk+1 + lk/ρk using a Gaussian denoiser for a noise stan-
dard deviation

√
γ = σ/

√
ρk.

3 PRECONDITIONED PLUG-AND-PLAY ADMM

In several problems, we have additional knowledge about
locally varying noise level. For instance, in image comple-
tion or interpolation problems, the pixels already sampled
in b are known without error. Thus, at a given iteration,
only the pixels at unknown positions need to be denoised.
However, in the original ADMM formulation the denoising
step considers the same noise level σ/

√
ρk at each pixel.

Hence, in order to finely tune the denoising effect and im-
prove the performance of the PnP-ADMM, we reformulate
the problem with a preconditioner that takes into account
the knowledge of a variable noise level.

3.1 ADMM Reformulation

Let us consider the following problem, mathematically
equivalent to Eq. (3):

x̃ = arg min
x

1

2
‖APx− b‖22 + σ2R(Px), (14)

x̂ = P x̃, (15)

where P is a diagonal preconditioning matrix.

Similarly to the Section. 2.2, we can express the ADMM
algorithm for solving Eq. (14) by replacing the updates of x
and y in Eqs. (9) and (10) with respectively:

xk+1 = arg min
x

‖APx− b‖22 + ρk

∥∥∥∥∥x−
(
yk − l

k

ρk

)∥∥∥∥∥
2

2

,

(16)

yk+1 = arg min
y

1

2

∥∥∥∥∥y −
(
xk+1 +

lk

ρk

)∥∥∥∥∥
2

2

+
σ2

ρk
R(Py).

(17)

The variable x can be updated directly using the well-
known closed form solution of Eq. (16):

xk+1 = (P>A>AP+ρkI)−1(P>A>b+ρkyk−lk). (18)

However, for updating y, the denoiser FR from Eq. (5),
is no longer suitable because of the matrix P within the
regularization term. The next section presents how the y-
update can still be performed using a more general denoiser
that considers Gaussian noise with variable variance.

3.2 New Prior Term Sub-Problem

3.2.1 General Gaussian Denoiser

Let us first define the general expression of a denoiser
for Gaussian noise with covariance matrix Σ. The MAP
estimate from a noisy image u can be derived similarly to
Eqs. (1)-(3), where the likelihood p(u|x) is a multivariate

Gaussian distribution, i.e. p(u|x) ∝ e−
1
2‖Σ−1/2(u−x)‖2

2 . In-
cluding the prior and taking the negative logarithm gives
the expression of the denoiser:

GR(u,Σ1/2) = arg min
x

1

2

∥∥∥Σ−1/2(u− x)
∥∥∥2
2

+R(x), (19)

Here, we will only consider the case of a diagonal matrix
Σ. Hence, we still assume independent noise at each pixel
(but not identically distributed), and the diagonal of Σ
corresponds to pixel-wise variance. Note that the denoiser
FR is equivalently defined as FR(x, σ) = GR(x, σI) for a
constant standard deviation σ. A practical image denoiser
GR can be obtained by training a CNN that takes as input
a map of the pixel-wise noise levels in addition to the noisy
image. A training procedure for such a denoiser is presented
in Section 4.

3.2.2 Sub-Problem Solution

Now, let us rewrite Eq. (17) using the change of vari-
able ỹ = Py, which gives y = P−1ỹ. Thus, we have
yk+1 = P−1ỹk+1 and ỹk+1 = arg min

ỹ
f(ỹ) with:

f(ỹ) =
ρk

2σ2

∥∥∥∥∥P−1ỹ −
(
xk+1 +

lk

ρk

)∥∥∥∥∥
2

2

+R(ỹ), (20)

=
1

2

∥∥∥∥∥
√
ρk

σ
P−1

(
ỹ − P

(
xk+1 +

lk

ρk

))∥∥∥∥∥
2

2

+R(ỹ).

(21)
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Given the denoiser GR in Eq. (19) we can then rewrite the
y-update step as:

yk+1 = P−1GR

(
P

(
xk+1 +

lk

ρk

)
,

σ√
ρk
P

)
(22)

Therefore, the preconditioned ADMM still solves the
original problem but introduces a denoising step that as-
sumes noise with spatially varying standard deviation. The
standard deviation can be adjusted per pixel via the diago-
nal matrix P and the global parameters σ and ρk. A suitable
choice of the preconditioning matrix can be made depend-
ing on the problem in order to improve the performance of
the PnP-ADMM.

3.3 Variables Interpretation and Initialization

It should be noted that in the preconditioned problem, an
image xk only estimates the intermediate variable x̃, but the
final result is x̂ = P x̃ (see Eq. (15)). Hence, xk (similarly
yk) may not be a plausible image. However, the input of the
denoiser is P (xk−1 + lk/ρk), where the multiplication by
P rescales the image pixels consistently with the “natural
image” x̂, as expected by the denoiser.

Inversely, for the initialization, the inverse scaling must
be performed. Given an initial estimate x̂0 of the true
image x̂, a good initialization for our problem is thus
x0 = P−1x̂0.

4 DEEP LOCALLY ADJUSTABLE DENOISER

4.1 Denoising Network for Known Noise Level

Our algorithm relies on a deep neural network for solving
the prior term sub-problem which corresponds to a Gaus-
sian denoising problem where the noise level (i.e. standard
deviation) is known and can be adjusted for each pixel.
Here, we use the DRUNet architecture proposed in [11].
The overall structure consists of a U-Net where each level
contains sequences of 4 residual-blocks and either a down-
sampling layer (first branch of the U) or an upsampling
layer (second branch).

The DRUNet network structure in [11] conforms to the
definition of the denoisers FR (Eq. (5)) or GR (Eq. (19)) by
taking as input the concatenation (in the channel dimension)
of the noisy image and a noise level map whose pixels’ val-
ues are equal to the noise standard deviation. The advantage
of using an input noise level map is that a single generic
model can be trained to perform optimally for a large range
of noise levels. However, in [11] the model is only trained
considering constant noise level maps since their algorithm
only uses the constant denoiser FR. In the rest of the paper,
we refer to this network as DRUNet-cst.

In order to use our preconditioning approach, a locally
adjustable denoiser GR is required. Therefore, the training
process must be adapted so that each input sample consists
of an arbitrary noise level map along with an image cor-
rupted with the corresponding Gaussian noise level for each
pixel. We describe in the next section how to randomly gen-
erate suitable patterns so that the trained model generalizes
well for any arbitrary noise level map.

4.2 Noise Level Map Generation
Let us first consider the case of a constant noise level map
as in [11]. Here, all the pixels are equal to the same random
variable S that can be simply defined as:

S = 2µ ·X, (23)

where X is a uniformly distributed random variable in the
range [0, 1]. The parameter µ is equal to the expectation of
the random variable S. It can be selected to train a denoiser
that is sufficiently generic for all the noise levels σ in the
range [0,2µ].

Now, in order to train a locally adjustable denoiser GR,
we generate a random map for each training image using
the following random process:

Si = 2µ · (Xi · (1−W ) +O ·W ), (24)

where i is the pixel index, O, W and Xi (for each pixel i) are
independent random variables with uniform distributions
in the range [0, 1]. One can verify that µ is the expectation of
Si, and the range of possible values of Si is [0,2µ] similarly
to the previous case with constant noise level.

The random weight W allows us to adjust the variance
of the noise level map (i.e. lower weight corresponding to
higher variance). The random offset O is also necessary to
reduce the correlation between the variance and the mean
of the generated maps. In particular, the offset enables the
generation of maps with a low variance but a high average
level, so that the trained denoiser generalizes well even in
the constant noise level case. Hence, the method makes it
possible to train the network with noise level maps covering
a wide range of first and second order statistics, which
prevents overfitting for a specific type of pattern. In the
paper, we refer to the network trained with this method
as DRUNet-var.

For some applications, the noise standard deviation may
also need to be adjusted depending on the color component.
For these applications, we train another network called
DRUNet-var-RBG that takes an input noise level map for
each color component. For the training, the noise level
maps are generated for each component separately using
the random process in Eq. (24).

4.3 Training Details
The training is performed by generating a noise level map
randomly for each input image, as described in Section 4.2.
Considering pixel data in the range [0, 1], we use the param-
eter µ = 25/255 in Eq. (23) (for the DRUNet-cst denoiser)
or Eq. (24) (for the DRUNet-var and DRUNet-var-RBG de-
noisers). The maximum noise level is thus 2µ = 50/255.
Gaussian noise with standard deviation defined by the noise
level map is then added to the input image.

The remaining details of the training procedure are the
same as described in [11]. We use the same large dataset of
8694 images, including the Berkeley Segmentation Dataset
BSDS500 (without the validation images) [22], the Waterloo
Exploration Database [23], the DIV2K dataset [24], and the
Flickr2K dataset [25]. We minimize the l1 loss between the
denoiser’s output and the ground truth image using the
ADAM optimizer [26] with a learning rate initialized at
1e − 4 and decreased by half every 100000 iterations. The
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(a) Ground truth / noisy
(µ = 100/255)

(b) Avg-std
PSNR=19.18

(c) True-std
PSNR=19.07

(d) PnP-ADMM
PSNR=28.94

(e) DRUNet-var
PSNR=29.28

Fig. 1. Denoising results with pixel-wise standard deviation randomly selected in [0, 2µ]. The average noise standard deviation is µ = 100/255. For
the Avg-std, True-std and PnP-ADMM schemes in (b-d), the network DRUNet-cst is used. In (e), the network DRUNet-var is used with the True-std
scheme.

TABLE 1
Denoising performance (average PSNR over each dataset) for

Gaussian noise with constant noise level (standard deviation σ = 10,
30 or 50).

Dataset CBSD68 Set5
noise level σ 10 30 50 10 30 50

CBM3D [15] 35.90 29.91 27.51 36.02 30.97 28.75
FFDNet [27] 36.14 30.32 27.97 36.16 31.35 29.24
RNAN [28] 36.43 30.65 28.30 36.62 31.77 29.61
DRUNet-cst [11] 36.51 30.79 28.48 36.67 31.90 29.80
DRUNet-var 36.51 30.80 28.48 36.67 31.91 29.79
DRUNet-var-RBG 36.47 30.78 28.46 36.61 31.90 29.77

training is stopped when the learning rate is smaller than
5e − 7. Finally, each iteration of the training uses a batch
of 16 patches of size 128x128 randomly selected from the
images of the training dataset.

4.4 Denoising Performance
Here, we evaluate the performance of our denoisers
DRUNet-var and DRUNet-var-RBG generalized for variable
standard deviation, in comparison with DRUNet-cst [11] as
well as other state-of-the-art denoisers that assume a con-
stant noise level. These include the BM3D denoiser (noted
CBM3D for color images) [15] and the two recent CNN-
based methods FFDNet [27] and RNAN [28]. Similarly to
DRUNet-cst, the FFDNet denoiser can be parameterized at
inference time knowing the noise standard deviation. On
the other hand, RNAN requires a separate training for each
noise level, but has shown higher denoising performance
thanks to a non-local attention module.

We perform our evaluations with the widely used
Set5 [29] and CBSD68 [30] test datasets.

4.4.1 Constant Noise Level
First, let us consider input images corrupted with constant
noise level. The results in Table 1 show that our locally
adjustable denoisers DRUNet-var and DRUNet-var-RBG do
not have significantly degraded performance compared to
the reference network DRUNet-cst, despite being trained for
more generic noise level maps. Only a very moderate loss
is observed for the DRUNet-var-RBG denoiser compared
to DRUNet-cst, mostly for the lowest and highest noise
levels (σ = 10 or 50). Nevertheless, DRUNet-var-RBG still
outperforms the other state-of-the-art methods, even the
RNAN denoiser trained specifically for each noise level.

4.4.2 Spatially Varying Noise Level
Now, let us show the advantage of the proposed training
procedure by comparing the performances of our DRUNet-
var denoiser with the DRUNet-cst version when the input

TABLE 2
Denoising performance (average PSNR over each dataset) for

Gaussian noise with pixel-wise variable standard deviation in the range
[0, 2µ].

DRUNet-cst [11] DRUNet-var

Dataset Avg-std True-std PnP-ADMM True-std

µ
=

25

25
5 Set5 29.01 29.03 34.35 34.48

BSD68 28.14 28.22 32.75 32.90

µ
=

50

25
5 Set5 24.45 24.37 32.03 32.24

BSD68 23.59 23.60 30.09 30.27

µ
=
10
0

25
5 Set5 19.82 19.58 29.69 30.06

BSD68 19.03 18.88 27.73 28.01

noise standard deviation varies spatially. For these tests, we
randomly select a standard deviation in the range [0, 2µ] for
each pixel. For a complete comparison with DRUNet-cst, we
have tested this network in three different ways:

• Avg-std: using the average noise level µ as input.
• True-std: using the true noise level map as input.
• PnP-ADMM: solving the problem of denoising with

variable noise level (Eq.(19)) using PnP-ADMM
without preconditioning based on the DRUNet-cst
network.

For the PnP-ADMM, we set the parameters using Eq. (33)
so that the noise of highest standard deviation σ0

den = 2µ
is removed at the first iteration, while successive iterations
refine the result by decreasing the noise level of the denoiser
down to σNden. Here, we use σNden = 2µ

3 forN = 25 iterations,
which we found to give the best results for this application.

Table 2 and Fig. 1 present the results of DRUNet-cst in
each of the three schemes, and DRUNet-var in the True-std
scheme. As expected, the results using only the average
standard deviation are unsatisfying, since the pixels with
above average noise level are not sufficiently denoised,
while details are not optimally preserved in less noisy
regions. The same behavior is observed when using the true
noise level map as input to DRUNet-cst. This confirms that
a denoiser trained for constant noise level does not gen-
eralize when the noise standard deviation strongly varies
between pixels. More satisfying results are obtained when
using DRUNet-cst in the PnP-ADMM scheme. However,
our DRUNet-var denoiser trained directly for this task can
still retrieve more details, which indicates that the PnP-
ADMM without preconditioning is sub-optimal. More re-
alistic applications are presented in the rest of the paper to
demonstrate that our locally adjustable denoisers also allow
for improved performances in practical scenarios thanks to
the preconditioned PnP-ADMM.
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5 APPLICATIONS

In this section we present several examples of applications
in image restoration. Although the proposed denoiser al-
lows us to adjust of the variance locally, it still assumes
an independent noise distribution for each pixel. Hence, in
order to demonstrate the advantage of our preconditioning
for the PnP-ADMM scheme, we restrict our study to appli-
cations where the error variance is expected to vary only in
the pixel domain. While this excludes deblurring, or super-
resolution from an anti-aliased downsampled image, many
applications of high practical interest are still concerned.
These include image completion, interpolation, demosaicing
and Poisson denoising.

5.1 Image Completion and Interpolation
In the problems of image completion and interpolation, a
subset Ω of the original image pixels are sampled in the
input vector b, while the remaining ones are unknown and
must be determined. In both problems, the sampling can
be expressed in the matrix form Ax = b with a sampling
matrixA such that each row contains only zeros, except one
element equal to 1 at the index of a sampled pixel.

When solving the problem with ADMM, all the un-
known pixels are expected to have the highest estimation
error at the initialization stage. However, over iterations,
more reliable estimates should be obtained especially for
pixels close to a sampled pixel. Hence, the denoiser within
our preconditioned PnP-ADMM should be adjusted locally
depending on the proximity to a sampled pixel. Following
this intuition, we define a preconditioning matrix P that
varies over iterations according to the following formula for
each iteration k: [

P k
]
i,i

=
max(mk) + ε

[mk]i + ε
(25)

where ε is a scalar parameter and mk is defined recursively
by blurring mk−1, and where m0 is the mask indicating
the known pixels:

mk = mk−1 ∗ g(σf ), with
[
m0

]
i

=

{
1 if i ∈ Ω

0 otherwise
∀i

(26)
Here, * is the 2D convolution operation and g is a 2D
Gaussian filter of parameter σf . Note that it is equivalent
to have mk = m0 ∗ g(σf

√
k). We can thus determine σf

so that the preconditioning at the last iteration N does not
depend on N , but only on a fixed parameter σlastf at the last
iteration by taking σf = σlastf /

√
N .

Using this definition, the preconditioning values are
always equal to 1 for the known pixels (i.e.

[
P k
]
i,i

= 1 ∀i ∈
Ω), and higher than 1 for the other pixels, which results in
a stronger denoising for the unknown pixels in Eq. (22).
The parameter ε prevents too high preconditioning values
that would make the denoising impractical. The highest
preconditioning value is pmax = (1 + ε)/ε. Additionally,
thanks to the Gaussian blur, the preconditioning values of
unknown pixels will depend on their distance with sampled
pixels. Therefore, the least reliable pixels (i.e. that are far
from sampled pixels) will be denoised more.

Note that we only use non-zero preconditioning values
(and thus non-zero standard deviation in the denoiser) so

that the matrix P remains invertible. However, ideally, no
denoising should be performed at the sampled pixel posi-
tions to prevent unnecessary loss of information. Therefore,
we force the denoiser’s output to be equal to the input for
these pixels.

5.2 Demosaicing
Digital cameras typically capture colors using a sensor with
a color filter array (CFA). Thanks to the mosaic formed by
the CFA, neighbor pixels on the sensor record a different
color information. Knowing the CFA pattern, the full color
information can then be retrieved by an inverse problem
called demosaicing.

Red, green and blue filters are generally used so that
each pixel directly records one of the RGB components.
Demosaicing can then be seen as an interpolation problem
where a pixel R, G or B value is either known or unknown.
Therefore, we use the same preconditioning strategy de-
scribed in Section 5.1. However, in a realistic scenario, sensor
data may also contain noise which is preferably removed
jointly with the demosaicing step [31]. In the case of noisy
data, our method applies similarly, but we do not force the
denoiser to keep the sampled pixels unchanged as explained
in Section 5.1.

Furthermore, unlike the problems of completion and
interpolation, the demosaicing uses different masks indi-
cating the sampled pixels for the R, G and B components.
The preconditioning matrix thus takes different values for
each component of the same pixel, which requires using a
denoiser parameterized with a RGB noise level map. Our
DRUNet-var-RBG network trained for arbitrary noise level
patterns is thus suitable for this application.

However, in order to illustrate the tradeoff between the
genericity of the denoiser and the optimal performance, we
also trained a more specialized denoiser for demosaicing
that we call DRUNet-dem. For training this network, instead
of generating noise level maps with the generic random
process in Eq. (24), we generate the patterns from the CFA
mask, that is also used in the preconditioned ADMM. These
patterns are defined by Eqs. (25) and (26), where a mask
m0 is defined for each color component by the CFA pat-
tern. Experimental results using either the generic network
DRUNet-var-RBG or the specialized one DRUNet-dem, are
given in Section 6.4.

5.3 Poisson Denoising
In many practical scenarios, the assumption that images are
corrupted by additive white Gaussian noise is inaccurate.
Camera noise is typically better modelled by a Poisson pro-
cess. In order to formulate a MAP optimization for the prob-
lem of denoising an image corrupted with Poisson noise, the
least squares data term in Eq. (3) must be modified. Here, we
re-derive our preconditioned ADMM algorithm for Poisson
denoising.

5.3.1 Preconditioned ADMM for Poisson denoising
Applying Poisson noise to an original image x ∈ Rn gives
a noisy image b ∈ Nn such that the likelihood distribution
is:

p(b|x) =
n∏
i=1

xbi
i e
−xi

bi!
. (27)
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As seen in Eqs. (1)-(3), the data term is the negative log-
likelihood which can be derived as

− ln(p(b|x)) = −bT ln(x) + 1Tx+ c, (28)

where c is a constant term that can be ignored for the mini-
mization. The preconditioned Poisson denoising problem is
then formulated by substituting x with Px and by adding
the regularization term as in Eq. (14):

x̃ = arg min
x

−bT ln(Px) + 1TPx+R(Px), (29)

The problem is solved using the ADMM, by splitting the
data and regularization terms following the methodology in
Section 2.2. Since the regularization term remains the same
as in Section 3, the y-update in Eq. (22) still applies, and is
performed using the same Gaussian denoiserGR. However,
given the new data term, the x-update becomes:

xk+1 = arg min
x

−bT ln(Px) + 1TPx+
ρk

2

∥∥∥x− uk
∥∥∥2
2
,

(30)
where uk = yk − lk/ρk.

Knowing that P is a diagonal matrix, this problem
can be solved independently for each pixel. The following
closed form solution is derived in Appendix A (similar
derivations are also found in [14] for the case P = I):

[
xk+1

]
i

=
ρkui − Pi,i +

√
(ρkui − Pi,i)2 + 4ρkbi

2ρk
. (31)

It is worth noting that unlike the Gaussian case, the noise
level only depends on the data and is not controlled by
a parameter σ. However, in photography the amount of
Poisson noise can be reduced by increasing the exposure.
This effect can be simulated by applying Poisson noise to
a ground truth image rescaled in the range [0, λ]. A high
peak value λ thus simulates a high exposure and less noise.
However, for an input image b with values in the range
[0, λ], the algorithm must be modified since the denoiser
GR in Eq. (22) assumes data in the range [0, 1]. The y-
update should then be performed by replacing GR with the
denoiser GλR adapted to the range [0, λ] by rescaling the
input and output as:

GλR(u,Σ1/2) = λGR(u/λ,Σ1/2/λ) (32)

Similarly, the final ADMM result should be divided by λ to
recover an image in the range [0, 1].

5.3.2 Choice of Preconditioning Matrix
It is well known that the variance and the expected value
of a random variable with the Poisson distribution are both
equal to the distribution’s parameter, i.e. the noiseless image
pixel. This means that for each pixel of the image, the noise
standard deviation is equal to the square root of the pixel
value in the ground truth image. Although this image is
unknown, the noisy image provides a first estimate of the
noise variance, which can be refined at the next iterations,
as we obtain a better estimate of the noiseless image.

Therefore, in this problem, we use ρk = 1 for each iter-
ation, so that the denoiser is only controlled using the pre-
conditioning matrix which is initialized as P 0 = diag(

√
b).

Here, the square root is applied element-wise and the no-
tation diag forms a diagonal matrix from the vector. Fol-
lowing the initialization strategy in Section 3.3, the variable
x is then initialized such that x̂0 = P 0x0 = b, and thus
x0 =

[
P 0
]−1

b =
√
b.

Then, at each iteration, a more accurate estimate of
the noiseless image is given by P kyk obtained after the
denoising step in Eq. (22). Note that P kyk is directly the
output of the denoiser (before applying

[
P k
]−1

) and is thus
obtained without further matrix multiplication. Hence, the
preconditioning matrix can be updated to better estimate
the noise standard deviation using P k+1 = diag(

√
P kyk).

6 EXPERIMENTAL RESULTS

6.1 ADMM Parameters Setting

The main hyper-parameters of the ADMM are the number
of iterations N , the initial penalty parameter ρ0, and it’s
increase factor α in Eq. (12). The additional parameter σ
in Eq (14) depends on the problem and corresponds to the
Gaussian noise standard deviation in the measurement vec-
tor b. For noise-free applications (i.e. completion, interpo-
lation, noise-free demosaicing), using the theoretical value
σ = 0 would remove the regularization term. Therefore,
in order to keep the benefit of the regularization in these
applications, we use a small value σ = 1/255. Also note
that this parameter does not appear in the case of Poisson
denoising in Eq. (29) since the noise standard deviation only
depends on the ground truth image.

6.1.1 Completion, Interpolation and Demosaicing

For the completion, interpolation and demosaicing (either
with or without noise) the parameters setting is inspired
from [11]: since the noise level of the denoiser is globally
controlled at each iteration by σkden = σ/

√
ρk, we choose ρ0

such that σ0
den is sufficiently large to remove initialization

noise or artifacts at the first iteration (regardless of the loss
in details). For example, in the completion problem, we
use zero-initialisation and a large value of σ0

den = 1. For
the interpolation and demosaicing problems, more accurate
initialisation can be performed, thus we use a smaller value
of σ0

den = 50/255. The parameter α is then determined so
that σkden decreases down to σNden = σ, in order to best
preserve the details in the final image. Therefore, we have
σkden = σNden/

√
ρk. Using this equation for k = 0 and k = N ,

we can compute the parameters values:

ρ0 =

(
σNden
σ0
den

)2

and α =

(
1

ρ0

)1/N

(33)

Note that the noise level assumed by the denoiser is also
controlled locally by the preconditoning matrixP in Eq.(22).
However, our preconditioning strategy for these problems
is such that Pi,i = 1 if i is the index of a sampled pixel
(see Section 5.1). Hence at the last iteration, the image is
denoised assuming the correct noise standard deviation
σNden = σ for the sampled pixels. In our experiments, we can
thus compare our preconditioned PnP-ADMM to the non-
preconditioned version using the same parameterization of
σ0
den and σNden.
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TABLE 3
Summary of the parameters setting. For the demosaicing with

preconditioning, we use either σlastf = 0 with the DRUNet-dem network
or σlastf = 0.3 with the DRUNet-var-RBG network.

without preco. with preco.

σ0
den σNden σ0

den σNden σlastf pmax

completion 1 1
255

1 1
255

0 10

interpolation 50
255

1
255

50
255

1
255

0.4 10

demosaicing
noise-free 50

255
1

255
50
255

1
255

0 or 0.3 10

noise σ 50
255

σ 50
255

σ 0 or 0.3 10

without preco. with preco.

Poisson denoising

(peak λ)

ρ0 α ρ0 α

1
λ

41/N 1 1

The preconditioning matrix definition in Eqs. (25)
and (26) introduces the additional parameters σf , control-
ling the blurring of the mask at each iteration, and ε, control-
ling the maximum preconditioning value pmax = (1 + ε)/ε.
In all the experiments, we use pmax = 10 (i.e. ε = 1/9). The
parameter σf is set according to the number of iterations
N using σf = σlastf /

√
N as explained in Section 5.1, where

σlastf is the blurring parameter at the last iteration that
we set empirically for each application (see details in the
respective sections and parameters summary in Table 3).

6.1.2 Poisson Denoising
For the problem of Poisson denoising, the noise level at
each pixel and each iteration is fully controlled by the
preconditioning matrix as explained in section 5.3, which
removes the need for the penalty parameter. Therefore we
simply use ρ0 = 1 and α = 1.

Nevertheless in order to evaluate the advantage of the
preconditioning, we also implement the non-preconditioned
version by takingP = I and using the DRUNet-cst network.
In this case, the noise standard deviation assumed by the
denoiser in Eq. (22) is 1/

√
ρk at each iteration k. Given an

input image data in the range [0, λ] and with Poisson noise,
the highest possible noise standard deviation is

√
λ. Hence,

we initialize ρ0 so that 1/
√
ρ0 =

√
λ. We found empirically

that the best results are always obtained by decreasing the
denoiser’s standard deviation down to 1/

√
ρN =

√
λ/2 at

the last iteration N . Therefore in our experiments without
preconditioning, we always use ρ0 = 1/λ and α = 41/N .

A summary of the parameters setting can be found in
Table 3. It does not include the number of iterations N
which is studied more in detail for each application in the
following sections.

6.2 Interpolation
The interpolation problem can be seen as a particular case
of super-resolution, where the low resolution input im-
age was generated without applying an antialiasing filter
before sub-sampling the ground truth image pixels. As a
result, the main difficulty of the interpolation problem is
to remove aliasing effects. First, we show in Fig. 2 that
our method better removes aliasing when we update the
preconditioning matrix P by blurring the mask of sampled
pixels, as described in Section 5.1 (see Eqs. (25)-(26)). In this

(a) Bicubic (b) Ours: σlastf = 0 (c) Ours: σlastf = 0.4

Fig. 2. Interpolation for x2 upsampling using either: (a) bicubic interpo-
lation, (b) our method without P update (i.e. σlastf = 0), (c) our method
with σlastf = 0.4. For (b) and (c), we used N = 6 iterations.

(a) x2 interpolation. (b) x4 interpolation

(c) completion (20%) (d) completion (10%)
Fig. 3. Results of the PnP-ADMM either with or without preconditioning
with respect to the number of iterations N for: (a) x2 interpolation, (b) x4
interpolation, (c) completion from 20% pixels, (d) completion from 10%
pixels. The plots show the average PSNR over the Set5 Dataset.

(a) Ground Truth (b) bicubic interpolation
PSNR=25.30

(c) No Preconditioning N=100
PSNR=25.37

(d) With Preconditioning N=10
PSNR=25.84

Fig. 4. Example of x4 interpolation results.

TABLE 4
Interpolation results for x2 and x4 factors (average PSNR over each
dataset). In each case, the number of iterations N giving the best

results is used for the PnP-ADMM.
Set5 CBSD68

x2
bicubic interpolation 31.63 27.85
PnP-ADMM w/o preco. (N = 30) 33.34 28.85
PnP-ADMM w/ preco. (N = 6) 33.47 29.00

x4
bicubic interpolation 25.66 23.20
PnP-ADMM w/o preco. (N = 100) 26.36 23.65
PnP-ADMM w/ preco. (N = 10) 26.94 23.90

example, the results of the bicubic interpolation in Fig. 2(a)
displays strong aliasing artifacts. In Fig. 2(b), using our
preconditioned PnP-ADMM with σlastf = 0 (i.e. no update
of P and no blurring of the mask) partially removes the
aliasing. However, better results are obtained in Fig. 2(c),
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(a) Ground Truth (b) Input (10% pixels) (c) Total Variation (d) Diffusion (EED) (e) PnP-ADMM (f) PnP-ADMM (preco.)

Fig. 5. Results of completion from 10% pixels for the butterfly image using (c) Total Variation regularization, (d) Edge-Enhancing Diffusion, (e)
PnP-ADMM without preconditioning (using N = 200 iterations), (f) PnP-ADMM with our preconditioning (using N = 20 iterations).

TABLE 5
Completion results for 20% and 10% rates (average PSNR over each

dataset). In each case, the number of iterations N giving the best
results is used for the PnP-ADMM.

Set5 CBSD68

20%

Total Variation regularization 26.11 24.80
Edge Enhancing Diffusion 28.61 25.55
PnP-ADMM w/o preco. (N = 118) 30.20 26.75
PnP-ADMM w/ preco. (N = 18) 30.94 27.43

10%

Total Variation regularization 22.86 22.66
Edge Enhancing Diffusion 25.85 23.43
PnP-ADMM w/o preco. (N = 200) 26.20 24.06
PnP-ADMM w/ preco. (N = 20) 27.52 24.95

when updating P using σlastf = 0.4.
Although many super-resolution algorithms exist and

excellent performances have been obtained by deep learning
techniques, these methods are generally trained assuming
that the degradation already includes a given antialiasing
filter. Therefore these methods are not suitable for the
interpolation. Hence, we only compare our approach to
the non-preconditioned PnP-ADMM, as well as the bicu-
bic interpolation which we also use as an initialisation in
the ADMM. The results of the PnP-ADMM either with or
without preconditioning depends on the chosen number of
iterations N . Fig. 3(a)-(b) shows that without precondition-
ing, the best results are obtained using respectively N = 30
and N = 100 iterations for x2 and x4 interpolation, while
with our preconditioning, we only need to use N = 6 and
N = 10 respectively. Using these values for the parameter
N in each case, the results in Table 4 and Fig. 4 show that
in addition to the faster convergence, our preconditioning
improves the final results of the PnP-ADMM both in x2 and
x4 interpolation.

6.3 Completion
For the completion problem, we evaluate the results us-
ing a rate of either 20% or 10% of known pixels. Unlike
the interpolation problem, the known pixels do not form
a regular grid and are instead selected randomly, which
prevents the aliasing artifacts. For this reason, contrary to
what we observed for the interpolation in Fig. 2, updating
the preconditioning matrix P with a blurred version of the

mask does not improve the completion results. Hence, we
use σlastf = 0 in the following experiments.

Based on the results in Fig. 3(c)-(d), we use N = 18 and
N = 20 iterations respectively for the 20% and 10% com-
pletion problems when using our preconditioning. Similarly
to the interpolation problem, the convergence of the non-
preconditioned PnP-ADMM is significantly slower: the best
results for the Set5 dataset are obtained using respectively
N = 118 and N = 200 for 20% and 10% completion.

For further comparisons, we also provide completion
results obtained with the conventional total variation (TV)
regularization, using the implementation in [34]. We also
compare our results to a state of the art diffusion based
method. A review of diffusion methods in [35] have shown
that the best completion performance was obtained with a
non-linear anisotropic diffusion scheme referred to as edge
enhancing diffusion (EED). The EED was also exploited
within compression schemes in more recent works (e.g. [36],
[37]), where only a small percentage of pixels are encoded
and the remaining ones must be recovered by the decoder.
Therefore, we use the EED scheme for our comparisons.

The results in Fig. 5 show that, while the EED diffu-
sion better recovers large image structures than solving the
inverse problem with TV regularizatioin, the PnP-ADMM
scheme retrieves finer details and sharper edges thanks
to the advanced regularization provided by the trained
denoiser. However, without our preconditioning, some im-
portant structures of the image may be lost as shown in
Fig. 5(e) (e.g. white spots on the butterfly, zebras’ stripes).
On the other hand, our preconditioned version recovers all
the structures that could be inferred from the input data,
hence resulting in a large gain in PSNR. Note that this
observation is consistent with the interpolation results in
Fig. 4, where important details of the image are lost in the
non-preconditioned PnP-ADMM but are preserved with our
preconditioning. The average PSNR results in Table 5 con-
firm the superiority of the proposed preconditioned PnP-
ADMM over the other approaches for image completion
from either 10% or 20% pixels.
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TABLE 6
Demosaicing results (average PSNR over each dataset) for the Bayer pattern in the noise-free scenario (σ = 0). For our preconditioned

PnP-ADMM method, we show the results using either the generic denoiser DRUNet-var-RBG or the specialized denoiser for demosaicing
DRUNet-dem. The best and second best results are in red and blue respectively.

Malvar et al.
(Matlab) [32]

Gharbi et al.
(DeepJoint) [31]

Henz et al.
[21]

Kokkinos et al.
(MMNet) [33]

PnP-ADMM
no preconditioning with preconditioning

(DRUNet-cst) DRUNet-var-RBG DRUNet-dem
Kodak 34.68 41.85 42.05 40.26 41.45 42.37 42.32
McMaster 34.46 39.13 39.50 36.84 39.24 39.27 39.31

Fig. 6. Demosaicing results in the noise-free scenario. The “PnP-ADMM (DRUNet-cst)” result corresponds to the non-preconditioned version, while
our method is preconditioned and uses either the generic denoiser DRUNet-var-RBG or the specialized one DRUNet-dem.

TABLE 7
Demosaicing results (average PSNR over each dataset) for the Bayer pattern in the noisy scenario with noise of standard deviation σ = 10/255 or

σ = 20/255. For our preconditioned PnP-ADMM method, we show the results using either the generic denoiser DRUNet-var-RBG or the
specialized denoiser for demosaicing DRUNet-dem. The best and second best results are in red and blue respectively.

Malvar et al.
(Matlab) [32]

Gharbi et al.
(DeepJoint) [31]

Kokkinos et al.
(MMNet) [33]

PnP-ADMM
no preconditioning with preconditioning

(DRUNet-cst) DRUNet-var-RBG DRUNet-dem

σ = 10/255
Kodak 27.54 33.27 30.96 33.24 33.90 34.18
McMaster 27.69 33.18 30.19 33.35 33.89 34.06

σ = 20/255
Kodak 22.38 30.04 23.81 29.92 30.84 31.18
McMaster 22.75 30.18 23.65 30.09 31.09 31.36

(a) with preconditioning. (b) without preconditioning
Fig. 7. Results of the PnP-ADMM for demosaicing with respect to the
number of iterations N : (a) with preconditioning, (b) without precondi-
tioning. The plots show the average PSNR over the Kodak Dataset.

6.4 Demosaicing

For the demosaicing, we evaluate the results both in the
noise-free scenario and in the presence of Gaussian noise of
standard deviation σ = 10 or σ = 20. In each case, the input
images are filtered by the traditional Bayer CFA, i.e. only one
of the red green or blue components is known at each pixel.
The Bayer CFA forms a repetitive pattern of 2x2 blocks,
each containing one red, one blue and two green pixels. For
our preconditioned PnP-ADMM method, we evaluate the
results using either the generic denoising network DRUNet-
var-RBG or the specialized network DRUNet-dem that was
trained for noise level patterns generated from the Bayer
CFA, as explained in Section 5.2.

Similarly to the interpolation problem, the repetition of
the 2x2 block pattern in the Bayer CFA may cause artifacts
comparable to aliasing. When using the generic network
DRUNet-var-RBG in our preconditioning scheme, these arti-
facts are better removed by updating the matrix P with a
blurred version of the mask. In this case, we use σlastf = 0.3
to control the blur at each iteration. However, when using

Fig. 8. Demosaicing results for the same detail as in Fig. 6, but in the
noisy scenario with Gaussian noise of standard deviation σ = 20.

the denoiser DRUNet-dem specialized for such patterns, the
aliasing artifacts from the Bayer CFA are naturally removed
without the need for altering the preconditioning matrix.
Thus we use σlastf = 0 in this case.

Note that for all the experiments, a fast initialisation
is performed with Matlab’s demosaicing method [32] that
uses bilinear interpolation and gradient-based corrections.
Given this initialisation, we fix the number of iterations N
of the PnP-ADMM according to the preliminary experiment
in Fig. 7. Using our preconditioning (Fig. 7(a)), close to
optimal results are obtained using N = 10, either with
or without noise, and for both the DRUNet-var-RBG and
DRUNet-dem networks. More iterations are needed for the
non-preconditioned PnP-ADMM which reaches its best per-
formance using N = 40 in the noise-free scenario (σ = 0),
and using N = 16 in both noisy settings.
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(a) Ground Truth (b) Noisy
λ = 255/8

(c) No Preco. N=6
PSNR=30.15

(d) No Preco. N=100
PSNR=29.49

(e) With Preco. N=6
PSNR=30.28

(f) With Preco. N=100
PSNR=30.76

Fig. 9. Poisson Denoising given a peak value λ = 255/8. Results are shown for the PnP-ADMM either with preconditioning (e,f) or without (c,d) and
using a number of iterations N = 6 (c,e) or N = 100 (d,f).

(a) PSNR of the results at each iteration.

(b) Mean Square Error between the two ADMM variables

Fig. 10. Convegence plots of the PnP-ADMM for Poisson denoising
with λ = 255/8 and for the image “head” (from Fig. 9). For, the non-
preconditioned case, several parameters depend on the fixed number
of iterations N , thus, different curves are obtained with respect to
N . With our preconditioning, the curves for different values of N are
superimposed on the red curve because no parameter depend on N .

For the evaluation, we use the Kodak [38] and McMas-
ter [39] test datasets that are widely used for demosaicing
benchmarks as they contain natural images which include
challenging features for this application. We compare both
versions of our preconditioned PnP-ADMM with the non-
preconditioned version (based on the DRUNet-cst denoiser),
as well as other reference methods including Matlab’s de-
mosaicing method by Malvar et al. [32] and the deep learn-
ing based methods of Gharbi et al. (DeepJoint) [31], Henz et
al. [21] and Kokkinos et al. (MMNet) [33].

Table 6 and Fig. 6 present the results in the noise-
free scenario. Our method performs among the best in
average PSNR, indicating that it successfully recovers the
fine details overall, and with greater accuracy than the non-
preconditioned PnP-ADMM. However, in very challenging
areas with high frequency patterns (see Fig. 6), our precon-

ditioning based on the generic network DRUNet-var-RBG
leaves some zipper and color artifacts. Note that, on closer
inspection, similar artifacts also remain in the Henz et al.
and DeepJoint methods. However, using the specialized
denoiser DRUNet-dem in our scheme completely solves this
issue. This shows that it was not a limitation of the pre-
conditioning or the PnP-ADMM scheme itself, but rather
a limitation of the DRUNet-var-RBG denoiser that does not
perform optimally when the noise level map is a structured
pattern constructed from the Bayer CFA.

Similar conclusions can be drawn for the noisy scenario
in Table 7 and Fig. 8. Our preconditioned PnP-ADMM
best recovers the image details, and using the specialized
DRUNet-dem network prevents the color issues that may ap-
pear in challenging areas when using the generic DRUNet-
var-RBG network.

6.5 Poisson Denoising

For Poisson denoising, we compare the results of the PnP-
ADMM either with or without our preconditioning. Note
that the non-preconditioned version was previously de-
scribed in [14] for this application. However, the BM3D
denoiser was used in [14]. For a fair evaluation of our ap-
proach, we use instead the DRUNet-cst network which gives
the best performance when no preconditioning is required.
For our preconditioned scheme, we use the DRUNet-var-
RBG denoiser since the Poisson noise variance depends not
only on pixels’ positions, but also on the colour component.

First, we analyse the results for moderate to high levels
of Poisson noise (using λ ∈ {255, 255/4, 255/8}). Table 8
and Fig. 10(a) show that the the proposed precondition-
ing improves the results compared to the original PnP-
ADMM, regardless of the fixed number of iterations N .
Furthermore, a better convergence is obtained with our
approach as shown in Fig. 10. While the results of the
non-preconditioned PnP-ADMM start degrading when us-
ing more than N = 6 iterations, our method successfully
converges to the best result. The improved convergence is
confirmed in Fig. 10(b) showing that the equality constraint
between the two ADMM variables is better satisfied with
our preconditioning. The visual results in Fig. 9 also show
that our approach can recover finer details. Using a large
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TABLE 8
Results of PnP-ADMM for Poisson denoising either with or without

preconditioning (average PSNR over each dataset).

Without Preconditioning With Preconditioning
Dataset N = 6 N = 20 N = 6 N = 20

λ = 255
Set5 36.54 36.33 36.82 36.81

CBSD68 36.35 36.25 36.58 36.57

λ = 255
4

Set5 33.34 33.13 33.65 33.69
CBSD68 32.36 32.19 32.72 32.74

λ = 255
8

Set5 31.73 31.41 31.94 32.06
CBSD68 30.42 30.20 30.81 30.89

TABLE 9
Denoising Results for extreme Poisson noise with λ = 1 (average

PSNR over each dataset).
Anscombe

initialization
PnP-ADMM (N=100)
no preconditioning

PnP-ADMM (N=100)
with preconditioning

Set5 17.50 22.04 23.82
CBSD68 17.30 20.50 23.05

number of iterations further improves the PSNR in this case,
although the visual results are similar (see Fig. 9(e,f)). On the
other hand, in the non-preconditioned PnP-ADMM, using a
too large number of iterations visually degrades the results
by removing details in the bright regions, while leaving
more noise in the dark regions (see Fig. 9(c,d)).

Let us now evaluate our method for an extreme noise
level, i.e. using λ = 1. In this situation, the noisy image is
a very inaccurate estimate of the noise variance, and it can’t
be used to initialize the preconditioning matrix. Instead, we
compute an initial estimation using variance stabilization
and Gaussian denoising: the Anscombe transform [40] is
first applied to obtain an image with approximately constant
noise variance; our Gaussian denoiser is then used assuming
a constant standard deviation; finally the inverse Anscombe
transform is applied after denoising. The preconditioning
matrix P is thus computed as the square root of this
initial estimate. We also disabled the update of P which
degraded our results in this case. The PSNR results using
this initialization method are presented in Table 9, and
visual comparisons are shown in Fig. 11. Here, the best
results are obtained after convergence either with or without
the preconditioning. Hence the results are given for a large
number of iterations N = 100. Our approach significantly
outperforms both the non-preconditioned PnP-ADMM and
the Anscombe variance stabilization method used for the
initialization.

7 CONCLUSION

In this paper, we have proposed a new preconditioning
approach for Plug-and-Play optimization methods in the
context of image restoration. Existing PnP schemes per-
form regularization of inverse problems using any conven-
tional denoiser that assumes independent and identically
distributed Gaussian noise. On the theoretical level, we
have shown that our preconditioning removes this i.i.d.
assumption by introducing in the algorithm a denoiser pa-
rameterized with a covariance matrix (directly related to the
chosen preconditioning matrix) instead of a single standard
deviation parameter. Greater control is thus granted for

(a) Ground Truth/Noisy
λ = 1

(b) Anscombe (initialization)
PSNR=17.89

(c) No Preconditioning N=100
PSNR=16.90

(d) With Preconditioning N=100
PSNR=22.30

Fig. 11. Poisson Denoising for very high noise level (using peak value
λ = 1).

better adapting the algorithm to each task by accounting for
the specific error distribution of the current image estimate.

For our practical implementation, we have proposed a
training procedure that generalizes a state-of-the-art CNN
denoiser, enabling its parameterization with an arbitrary
noise level map. While this restricts our study to diagonal
covariance and preconditioning matrices, it is sufficient
for many applications where the input image is degraded
independently on each pixel. Such applications include
image interpolation, completion, demosaicing and Poisson
denoising. For each of these tasks, we have defined a suit-
able preconditioning scheme that significantly outperforms
the non-preconditioned version both in convergence speed
and image quality. The proposed method also preserves
the genericity of the PnP approach since a denoiser is
used to solve several inverse problems. Nevertheless, as we
have shown with demosaicing, our method may be further
specialized and improved for a given task by training the
denoiser using the corresponding noise level maps.

A possible direction for future work would be to develop
denoisers suitable for correlated noise (i.e. non-diagonal
covariance matrix), hence extending the use of our precon-
ditioned PnP scheme to a broader range of applications.

APPENDIX A
POISSON DATA TERM SUB-PROBLEM

Let us find the closed form solution of the minimization
in Eq. (30) which we rewrite here without the iteration
numbers for simplicity of notation:

arg min
x

−bT ln(Px) + 1TPx+
ρ

2
‖x− u‖22 , (34)

where P is a diagonal matrix. Here, we additionally assume
ρ > 0, bi ≥ 0 and Pi,i > 0, ∀i).

Since P is diagonal, the problem is equivalently ex-
pressed for each element i independently. Using the scalar
notations b = bi, p = Pi,i and u = ui, the problem is to find
the value x that minimizes the function h defined as:

h(x) = −b · ln(x · p) + x · p+
ρ

2
(x− u)2 (35)
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The function is defined for x > 0 and is convex. Therefore,
finding x > 0 such that dh

dx (x) = 0 gives the global
minimum. Differentiating h gives:

dh

dx
=
−b
x

+ p+ ρ · (x− u) = 0, (36)

=
ρ

x
·
(
x2 + x ·

(
p− ρu
ρ

)
− b

ρ

)
. (37)

Therefore, if we can find x > 0 such that x is a root of
the second order polynomial x2 + x ·

(
p−ρu
ρ

)
− b

ρ , then x

minimizes the function h. For bi > 0, the solution always
exists and is:

x =
1

2

ρu− p
ρ

+

√(
ρu− p
ρ

)2

+
4b

ρ

 , (38)

=
1

2ρ

(
ρu− p+

√
(ρu− p)2 + 4ρb

)
. (39)

Note that if b = 0 and u ≤ p/ρ, then the high-
est root is x = 0, which is not in the domain of h.
However, when b = 0, we can simply redefine h using
h(x) = x · p+ ρ

2 (x− u)2 which is defined for x = 0. So
in practice, we can extend the domain of h to the value
0 (negative values are not valid pixel values and should
remain excluded). With this definition, Eq. (39) gives the
solution in every case.

Rewritting Eq.(39) using the matrix notations directly
gives the solution to Eq. (34):

xi =
ρui − Pi,i +

√
(ρui − Pi,i)2 + 4ρbi

2ρ
. (40)
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