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Abstract. Deciding whether saddle points exist or are approximable for nonconvex-nonconcave
problems is usually intractable. This paper takes a step towards understanding a broad class of
nonconvex-nonconcave minimax problems that do remain tractable. Specifically, it studies minimax
problems over geodesic metric spaces, which provide a vast generalization of the usual convex-concave
saddle point problems. The first main result of the paper is a geodesic metric space version of Sion’s
minimax theorem; we believe our proof is novel and broadly accessible as it relies on the finite
intersection property alone. The second main result is a specialization to geodesically complete
Riemannian manifolds: here, we devise and analyze the complexity of first-order methods for smooth
minimax problems.
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1. Introduction. We study minimax optimization problems of the form

(1.1) min
x∈X

max
y∈Y

f(x, y),

where the constraint sets X and Y lie in geodesic metric spaces, and f is a suitable
bifunction. Problem (1.1) generalizes the standard Euclidean minimax problem where
X ⊆ Rm and Y ⊆ Rn. Minimax problems as such have drawn great attention
recently, e.g., in generative adversarial networks [22], robust learning [19, 45], multi-
agent reinforcement learning [10], adversarial training [23], among others.

A common goal of solving minimax problems is to find global saddle points1. A
pair (x∗, y∗) is a saddle point if x∗ is a minimum of f(·, y∗) and y∗ is a maximum of
f(x∗, ·). In game theory, a saddle point is a special Nash equilibrium [47] for a two-
player game. When f is convex-concave (i.e., convex in x and concave in y), existence
of saddle points is guaranteed by Sion’s minimax theorem [55], and their computation
is often tractable (e.g., [48]). But without the convex-concave structure, saddle points
may fail to exist, or even when they exist, computing them can be intractable [13].
Even computing local saddle points with linear constraints is PPAD-complete [15].
Therefore, it is natural to pose the following question:

Which nonconvex-nonconcave minimax problems admit saddle
points, and can we compute them?

While at this level of generality this question is unlikely to admit satisfactory answers,
it motivates us to pursue a more nuanced study, and to seek tractable subclasses
of problems or alternative optimality criteria—e.g., the works [30, 41, 20] explore
this topic and establish novel optimality criteria for nonconvex-nonconcave problems.
We instead explore a rich subclass of nonconvex-nonconcave problems that do admit
saddle points: minimax problems over geodesic metric spaces [9]. We provide sufficient
conditions that ensure existence of saddle points by establishing a metric space analog
of Sion’s theorem. An informal statement of our first main result is as follows:
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Theorem 1.1 (Informal; see Theorem 3.1). Let X,Y be geodesically convex
subsets of geodesic metric spaces M and N , and let X be compact. If a bifunction
f : X × Y → R is geodesically (quasi)-convex-concave and (semi)-continuous, then
the equality supy∈Y minx∈X f(x, y) = minx∈X supy∈Y f(x, y) holds.

If we further assume that both X and Y are compact, then there exists a saddle point
(x∗, y∗) ∈ X × Y . Later in the paper, we will address computability of saddle points
by focusing on the special case of Riemannian manifolds, for which we exploit the
available differentiable structure to obtain implementable algorithms. In particular,
we devise first-order algorithms for the Riemannian minimax problem

(P) min
x∈M

max
y∈N

f(x, y),

where M,N are finite-dimensional complete and connected Riemannian manifolds,
while f : M× N → R is a smooth geodesically convex-concave bifunction. When
the manifolds in (P) are Euclidean, first-order methods such as optimistic gradient
descent-ascent and extragradient (ExtraG) can find saddle points efficiently [48, 44].
But in the Riemannian case, the extragradient steps do not succeed by merely trans-
lating Euclidean concepts into their Riemannian counterparts. We must account for
the distortion caused by nonlinear geometry; to that end, we introduce an addi-
tional correction that offsets the distortion and thereby helps us obtain a Riemannian
corrected extragradient (RCEG) algorithm. In our second main result, we provide
non-asymptotic convergence rate guarantees for RCEG, informally stated below.

Theorem 1.2 (Informal, see Theorem 4.8). Under suitable conditions on the
finite-dimensional Riemannian manifoldsM, N , the proposed Riemannian corrected
extragradient method admits a curvature-dependent O(

√
τ/ϵ) convergence to an ϵ-

approximate saddle point for geodesically convex-concave problems, where τ is a con-
stant determined by bounds on curvature of the involved manifolds.

Our analysis enables us to efficiently solve minimax problems in nonlinear spaces. We
give several examples below.

1.1. Motivating examples and applications. Minimax problems on geodesic
metric spaces subsume Euclidean minimax problems. The more general structure from
nonlinear geometry can offer more concise problem formulations or solutions; and even
motivate more efficient algorithms. We mention below several examples of minimax
problems on geodesic spaces. Some of the examples possess a geodesically convex-
concave structure, whereas others are more general and worthy of further research.

Constrained Riemannian optimization. The first example is constrained
minimization on Riemannian manifolds; see e.g., [33, 38], which also note applications
of constrained Riemannian optimization such as non-negative PCA, weighted MAX-
CUT, among others. Here, we tackle the following optimization problem:

min g(x), for x ∈ X ⊆M,

s.t. h(x) = 0, h := (h1, . . . hn) :M→ Rn,
(1.2)

where M is a Riemannian manifold and X is a compact and geodesically convex
subset. The idea is to convert (1.2) into an unconstrained Riemannian minimization
problem via the augmented Lagrangian:

(1.3) max
λ∈Rn

min
x∈X⊆M

fα(x, λ) := g(x) + ⟨h(x), λ⟩ − α
2 ∥λ∥

2.
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If g and all {hi}ni=1 are continuous and geodesically convex, then (1.3) is a geodesically-
convex-Euclidean-concave problem. We obtain a strong-duality condition for it as a
byproduct of Theorem 1.1, leading to the following important corollary:

Corollary 1.3 (Informal; see Corollary 5.1). Lagrangian duality holds for geo-
desically convex Riemannian minimization problems that have geodesically convex con-
straints of the form (1.2).

Hence, a minimizer of (1.2) can be found by solving the saddle point problem (1.3).
A detailed statement is in Section 5.

Geometry-aware Robust PCA. Our second example is on finding princi-
pal components of a collection of symmetric positive definite (SPD) matrices. The
geometry-aware Principal Component Analysis (PCA) in [25] exploits Riemannian
structure of SPD matrices that is otherwise disregarded in the Euclidean view. De-
note the SPD manifold P(n) := {M ∈ Rn×n : M ≻ 0 and M = M⊤} and the sphere
manifold S(n) := {x ∈ Rn : x⊤x = I}. Let {Mi ∈ P(n)}ki=1 be a set of k observed
instances. Then, robust SPD-PCA can be stated as:

(1.4) max
M∈P(n)

min
x∈S(n)

fα(x,M) := −x⊤Mx− α

k

k∑
i=1

dP(M,Mi),

where dP : P(n)×P(n)→ R is the Riemannian distance induced by the exponential
map on P(n) and α > 0 controls the penalty. Problem in (1.4) has a locally geodesi-
cally strongly-convex-strongly-concave structure. We elaborate the property of (1.4)
and verify the empirical performance of our proposed algorithm on it in Section 5.

Robust Riemannian (Karcher) mean. A third example is the robust estima-
tion of Karcher mean problem. Given a dataset of SPD matrices {Mi ∈ P(n)}ki=1, the
Karcher mean is the unique SPD minimizer of the sum of squared distance defined as

d(A,B) = ∥ log(A−1/2BA−1/2)∥F ,

where log is the matrix logarithm and ∥ · ∥F is the Frobenius norm. Despite being a
hard problem in Euclidean space, Karcher mean can be efficiently tackled under the
Riemannian optimization regime [64]. Here, we consider a robust version of Karcher
mean problem by introducing auxiliary variables {Yi ∈ P(n)}ki=1:

(1.5) min
X∈P(n)

max
Yi∈P(n)

k∑
i=1

d(X,Yi)− α ·
k∑

i=1

d(Yi,Mi),

where α > 0 is the penalty coefficient. With a large enough α, the robust Karcher
mean is a (globally) geodesically strongly-convex-strongly-concave problem since dis-
tance function is geodesically strongly-convex [4].

Further Robust optimization problems. We hope to motivate future study
of geodesic minimax problems by also noting some applications without the convex-
concave structure; many of these applications arise in robust covariance estimation.

For instance, suppose we observe k perturbed points ai from a manifold subset
Γ ⊂ M and aim to estimate their covariance in a robust way, given known mean µ.
The objective is then

min
a∈Γ

max
S∈P(n)

−k

2
log det(S)− 1

2
Loga(µ)

⊤S−1Loga(µ) +
α

k

n∑
i=1

dM(a, ai),
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Table 1
Results on saddle point in non-linear geometry. We compare our Theorem 3.1 with

several similar existing results. These results are established for different geometry and relies on
different continuity, differentiability and convexity conditions of objective f .

Our result KKM theory Fixed point Nonexp.
(Thm. 3.1) [51] [35] mapping [11]

Differentiability Not required Not required Subdiff. Not required
Convexity Quasi-conv. Quasi-conv. Conv. Conv.
Smoothness Semi-cont. Semi-cont. Cont. subdiff. Cont.
Geometry Geodesic space KKM space Hadamard Hadamard

where dM is the Riemannian distance, α > 0 is the regularization coefficient and Log

is the inverse exponential map. Then by incorporating a robust variable a, we instead
simultaneously minimize the distance between a and ai’s, and maximize on the SPD
manifold to estimate the covariance matrix S. The objective is geodesically concave
in S [26], and not necessarily convex in a.

Other examples include robust computation of Wasserstein barycenters [28, 57]
and computation of operator eigenvalues [52, 53]. We expect that novel tools for
geodesic nonconvex-nonconcave problems will prove valuable for these problems.

1.2. Related work on non-Euclidean saddle points. We summarize below
related work on the existence of saddle point in nonlinear geometry. Sion [55] proved a
general minimax theorem for quasi-convex-quasi-concave problems in Euclidean space
via the Knaster–Kuratowski–Mazurkiewicz (KKM) theorem and also via Helly’s the-
orem. Nevertheless, Sion’s proof relies deeply on linear geometry and can not be
directly extended. Several recent works attempt to extend Sion’s minimax result to
non-Euclidean settings. Notably, in [35, 11, 8] the authors establish guarantees on
the existence of Nash equilibria for geodesically convex games on Hadamard mani-
folds. Our analysis generalizes these results by removing the reliance on Riemannian
differential structure along with other additional conditions.

The closest works to ours are [51, 50], which show that Sion’s theorem can be es-
tablished for the novel KKM space that subsumes Hadamard manifolds. Nevertheless,
it remains difficult to verify whether a given geometry satisfies the KKM conditions.
In contrast, we generalize Sion’s theorem to nonlinear space by providing a new ap-
proach based on the finite intersection property in compact spaces. Our proof is based
on the analysis in [34], which focuses on linear spaces. The original arguments in [34]
do not critically rely on linear structure; however, their presentation omits many key
steps, such as referring to the finite intersection property or providing a step-by-step
proof for Lemma 3.4. The missing arguments make it difficult for us to judge whether
their analysis holds in nonlinear spaces. We complete the missing parts and confirm
that a similar proof can be carried out in geodesic metric space, though we are unable
to tell how the author completed the original proof in the first place. We illustrate
the strength of our result by comparing it with existing works in Table 1.

2. Preliminaries and Notation. In this section, we introduce our notation
by briefly overviewing several definitions in geodesic metric spaces and Riemannian
manifolds. For more details, we refer readers to the textbooks [9, 36, 17].

2.1. Metric (geodesic) geometry. A metric space equipped with geodesics is
called a geodesic metric space. Examples of geodesic metric space are CAT(0) spaces
or Busemann convex spaces [9, 29]. Formally, a metric space is a pair (M, dM) of a
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non-empty set M and a distance function dM : M×M → R defined on M. We
occasionally omit the subscriptM when it causes no confusion.

A map γ : [0, 1] ⊂ R →M is called a path onM. For any two points x, y ∈ M,
a path γ : [0, 1]→M is referred to as a geodesic joining x, y if

(1) γ(0) = x, (2) γ(1) = y and (3) dM(γ(t1), γ(t2)) = |t2 − t1| · dM(x, y),

for any [t1, t2] ⊆ [0, 1]. By definition, a geodesic is continuous (but a path is not
necessarily continuous). A metric space (M, dM) is called a geodesic metric space if
any two points x, y ∈ M are joined by a geodesic. Using geodesics, the concept of
convexity can be established in metric spaces.

Formally, a non-empty set X ⊂ M is called a geodesically convex set, if every
(not necessarily unique) geodesic connecting two points in X lies completely within
X. Further, we can define the concept of (strongly/quasi-)convex functions.

Definition 2.1 (Geodesic (quasi-)convexity). A function f :M→ R is geodesi-
cally convex, if for any x, y ∈M and t ∈ [0, 1], for any geodesic γ satisfying γ(0) = x
and γ(1) = y, the following inequality holds: f(γ(t)) ≤ (1− t)f(x)+ tf(y). Moreover,
we say f is geodesically quasi-convex if f(γ(t)) ≤ max {f(x), f(y)}; (concavity and
quasi-concavity are defined by considering −f).

Definition 2.2 (Geodesic strong convexity). A function f :M→ R is geodesi-
cally µ-strongly convex, if for any x, y ∈M and t ∈ [0, 1], for any geodesic γ satisfying
γ(0) = x and γ(1) = y, the following inequality holds: f(γ(t)) ≤ (1− t)f(x)+ tf(y)−
µt(1−t)

2 dM(x, y); (strong concavity is defined by considering −f).

2.2. Riemannian geometry. An n-dimensionalmanifold is a second countable,
Hausdorff topological space that is locally Euclidean. A smooth manifold is referred
as a Riemannian manifold if it is endowed with a Riemannian metric ⟨·, ·⟩x on the
tangent space TxM, for each x ∈ M. The metric induces a norm on the tangent
space, denoted ∥ · ∥x; we usually omit x when it causes no confusion.

A curve γ : [0, 1]→M on Riemannian manifold is a geodesic if it is locally length-
minimizing and of constant speed. An exponential map at point x ∈ M defines a
mapping from tangent space TxM toM as Expx(v) = γ(1), where γ is the geodesic
with γ(0) = x and γ′(0) = v. If geodesic is unique between any two points, we can
define the inverse map as Logx :M→ TxM. The exponential map also induces the
Riemannian distance as dM(x, y) = ∥Logx(y)∥. A parallel transport Γy

x : TxM →
TyM provides a way of comparing vectors between different tangent spaces. Parallel
transport preserves inner product, i.e., ⟨u, v⟩x = ⟨Γy

xu,Γ
y
xv⟩y for points x, y ∈ M

and tangent vectors u, v ∈ TxM. Unlike Euclidean space, a Riemannian manifold
is not always flat. Sectional curvature κ (or simply “curvature”) provides a tool to
characterize the distortion of geometry on the Riemannian manifold.

To make sure that gradient updates on Riemannian manifolds are well defined, we
will restrict our discussion to simply-connected and complete manifolds. A Riemann-
ian manifold is complete if the exponential map Expx at any point x ∈M is defined on
the entire tangent space TxM. Assuming finite-dimension, a simply-connected and
complete Riemannian manifold admits at least one geodesic between any two points
(Hopf-Rinow theorem [36]). Hence, it inherits the definition of geodesically convex
sets and geodesically convex/concave functions in geodesic space. In particular, a Ha-
damard manifold is a special case of such a manifold with non-positive curvature and
therefore has unique geodesic between any two points [36]. We can readily verify that
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the inherited convexity is consistent with the usual definition of geodesic convexity in
Riemannian optimization literature.

Lemma 2.3. A differentiable function f : M → R is geodesically convex if and
only if for any two points x, y ∈M,

f(y) ≥ f(x) + ⟨∇f(x), Logx(y)⟩.

Besides, f is geodesically µ-strongly convex if and only if for any two points x, y ∈M,

f(y) ≥ f(x) + ⟨∇f(x), Logx(y)⟩+
µ
2 d

2
M(x, y).

We also state the Lipschitz regularity of smooth functions on Riemannian manifolds
using the aforementioned manifold operations.

Definition 2.4. f is geodesically Lipschitz smooth with modulus L, if for any
x, y ∈M, it holds that ∥∇f(x)− Γx

y∇f(y)∥ ≤ LdM(x, y).

3. Main theorem: minimax in nonlinear geometry. In Euclidean space,
Sion’s minimax theorem guarantees strong duality for suitable convex-concave mini-
max problems. In this section, we establish an analog of Sion’s theorem in geodesic
metric spaces. The result automatically applies to complete and connected Riemann-
ian manifolds as they are just instances of geodesic metric spaces.

We consider the general form of (P) in geodesic metric spaces, i.e., M, N are
geodesic metric spaces, f |X×Y is a geodesically (quasi-)convex-concave bifunction
restricted to compact convex subset X ⊆ M and convex subset Y ⊆ N . We present
below our main theorem that guarantees the existence of a saddle point for this general
minimax problem.

Theorem 3.1 (Sion’s theorem in geodesic metric space). Let (M, dM) and
(N , dN ) be geodesic metric spaces. Suppose X ⊆ M is a compact and geodesically
convex set, and Y ⊆ N is a geodesically convex set. If the following conditions hold
for the bifunction f : X × Y → R:

(1) f(·, y) is geodesically-quasi-convex and lower semi-continuous; and
(2) f(x, ·) is geodesically-quasi-concave and upper semi-continuous.

Then, we have the equality

min
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

min
x∈X

f(x, y).

Remark 3.2. In Theorem 3.1, to keep the statement minimal, we only require
X to be compact. Hence, due to the absence of compactness, f(x, ·) only admits a
supremum but not necessarily a maximum on Y for any x ∈ X.

3.1. Proof of Theorem 3.1. We now prove Theorem 3.1, while postponing
proofs of the technical lemmas to Section 3.2 and Section 3.3.

Note that we restrict the domain to geodesically convex sets X and Y on met-
ric spaces (M, dM) and (N , dN ), respectively. Hence it follows from the max-min
inequality that

sup
y∈Y

min
x∈X

f(x, y) ≤ min
x∈X

sup
y∈Y

f(x, y).

We now prove its reverse. The technique we use generalizes [34]. We notice
that the function g(x) = supy∈Y f(x, y) is lower semi-continuous due to the fact
that the supremum of any collection of lower semi-continuous functions is still lower
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semi-continuous. Combined with compactness of X, we deduce by the Weierstrass
minimum theorem that minx∈X supy∈Y f(x, y) is bounded away from −∞. Therefore,
there exists at least one α > −∞ such that α < minx∈X g(x) = minx∈X supy∈Y f(x, y).

Now, the major difficulty is to ensure that for any value α < minx supy f(x, y),
there is always a point y0 ∈ Y such that the condition α < minx f(x, y0) holds. To
this end, we specify the following claim.

Claim 3.3. For any value α < minx supy f(x, y), there exist (finite) k points
y1, . . . , yk in Y such that condition α < minx maxi∈[k] f(x, yi) holds.

The claim follows by connecting the statement with the finite intersection property
via geodesic quasi-convexity. Its complete proof can be found in the next Section 3.2.

In the light of Claim 3.3, we can invoke Lemma 3.4 below and show that there
exists at least one point y0 ∈ Y such that

(3.1) α < min
x∈X

f(x, y0) ≤ sup
y∈Y

min
x∈X

f(x, y).

Lemma 3.4. Under the conditions of Theorem 3.1, for any finite set of k points
y1, . . . , yk in Y and any real number α < minx∈X maxi∈[k] f(x, yi), there exists a point
y0 ∈ Y such that α < minx∈X f(x, y0).

Since the above inequality (3.1) holds for arbitrary α < minx supy f(x, y), by
considering a monotonically increasing sequence αk → minx∈X supy∈Y f(x, y), we
know that

min
x∈X

sup
y∈Y

f(x, y) = lim
k

αk ≤ sup
y∈Y

min
x∈X

f(x, y),

which completes the proof of the theorem.

3.2. Proof of Claim 3.3. To prove Claim 3.3, we invoke the finite intersection
property to find a finite number of points fulfilling the statement of the claim. Before
proceeding to the proof, we first present the definition and a proposition on the finite
intersection property.

Definition 3.5 (Finite intersection property). For a set C and an index set I,
the collection of subsets Ci ⊂ C, i ∈ I admits the finite intersection property if for
any finite subcollection Cj , j ∈ J ⊂ I, it holds that

⋂
j∈J Cj ̸= ∅.

Proposition 3.6 (Theorem 26.9 in [46]). Let C be a topological space. Then C
is compact if and only if for any collection of closed subsets Ci ⊂ C, i ∈ I that admits
the finite intersection property, it holds that

⋂
i∈I Ci ̸= ∅.

We now define the level set of function f : X × Y → R with respect to the first
variable as

ϕy(α) := {x ∈ X|f(x, y) ≤ α}.

Analogous to the Euclidean case, ϕy(α) is a geodesically convex set if f(·, y) is a
geodesically (quasi)-convex function, and it is closed if f(·, y) is lower semi-continuous.
For any value α > −∞, the inequality α < minx supy f(x, y) is equivalent to say that

∩y∈Y ϕy(α) = ∅.

Suppose the latter does not hold, then for such α there exists at least one x0 in
∩y∈Y ϕy(α). By the intersection of level sets, we have f(x0, y) ≤ α for any y ∈ Y ,
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and thus supy∈Y f(x0, y) ≤ α. But this conclusion contradicts the condition that
α < minx supy f(x, y). Every step is reversible so the equivalence holds.

We further notice that for each y ∈ Y , the level set ϕy(α) is closed and geodesically
convex due to lower semi-continuity and quasi-convexity of f(·, y). Together, we have
(1) X is compact, (2) ϕy(α) is closed, and (3) ∩y∈Y ϕy(α) = ∅. By Proposition 3.6,
the collection of subsets ϕy(α) of X does not admit the finite intersection property.
Therefore, by definition, there exists a finite subset of k points {y1, . . . , yk} ⊂ Y such
that ∩i∈[k]ϕα(yi) = ∅. So Claim 3.3 is true.

3.3. Proof of Lemma 3.4. As stated in the previous section, the only missing
piece in the proof of Theorem 3.1 is Lemma 3.4, which serves as an extension of
Lemma 3.7 below. This lemma in turn is inspired by and can be regarded as the
geodesic version of Lemma 1 in [34].

Lemma 3.7. Under the conditions of Theorem 3.1, for any two points y1, y2 ∈ Y
and any real number α < minx∈X max{f(x, y1), f(x, y2)}, there exists a point y0 ∈ Y
such that α < minx∈X f(x, y0).

Proof. The proof is by contradiction. Assume therefore, that for such an α the
inequality minx∈X f(x, y) ≤ α holds for arbitrary y ∈ Y . As a consequence, there
exists a constant β such that

sup
y∈Y

min
x∈X

f(x, y) ≤ α < β < min
x∈X

max{f(x, y1), f(x, y2)}.(3.2)

Consider now a geodesic γy : [0, 1] → Y (recall Y is geodesically convex) con-
necting y1 and y2. For any t ∈ [0, 1] and corresponding z = γy(t) on the geodesic,
the level sets ϕz(α) and ϕz(β) are nonempty due to (3.2), and closed due to lower
semi-continuity of f in the first variable. And since f is geodesically quasi-concave in
the second variable, we obtain the inequality

f(x, z) ≥ min{f(x, y1), f(x, y2)}, with z = γy(t), ∀x ∈ X, ∀t ∈ [0, 1].

This bound is equivalent to saying that ϕz(α) ⊆ ϕz(β) ⊆ ϕy1
(β) ∪ ϕy2

(β).
We then argue that the intersection ϕy1(β)∩ϕy2(β) should be empty. Otherwise,

there exists a point x ∈ X such that max{f(x, y1), f(x, y2)} ≤ β, contradicting (3.2).
Next, by quasi-convexity, since the level set ϕz(β) is geodesically convex for any z, it
is also connected. Consider now the three facts:

• ϕz(α) ⊆ ϕz(β) ⊆ ϕy1
(β) ∪ ϕy2

(β);
• ϕy1

(β) ∩ ϕy2
(β) is empty;

• ϕz(α), ϕz(β), ϕy1(β) and ϕy2(β) are closed, connected, and convex.
We then claim that for any point z on the geodesic γ, either the inclusion ϕz(β) ⊆

ϕy1
(β) or the inclusion ϕz(β) ⊆ ϕy2

(β) holds. Suppose not, then we can find two
points x1 ∈ ϕy1

(β) and x2 ∈ ϕy2
(β) such that both x1, x2 ∈ ϕz(β). But since ϕz(β)

is convex, there is a geodesic γx : [0, 1] → X in ϕz(β) connecting x1, x2. Therefore,
γx also lies in ϕz(β) ⊆ ϕy1(β) ∪ ϕy2(β). Because ϕy1(β) ∩ ϕy2(β) is empty, the map
γ−1
x induces a partition {J1, J2} of [0, 1] into J1 ∩ J2 = ∅ and J1 ∪ J2 = [0, 1], where

γx(J1) ⊆ ϕy1
(β) and γx(J2) ⊆ ϕy2

(β). Since γ−1
x is continuous, and set ϕy1

(β), ϕy2
(β)

are closed, we can conclude that both J1 and J2 are also closed considering the fact
that Ji = γ−1

x (ϕyi
(β)) for i = {1, 2}. This then contradicts the connectedness of [0, 1].

Because for any t ∈ [0, 1], either ϕγy(t)(α) ⊆ ϕγy(t)(β) ⊆ ϕy1(β) or ϕγy(t)(α) ⊆
ϕγy(t)(β) ⊆ ϕy2(β) holds, we know that γ−1

y also induces a partition of [0, 1] into I1
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and I2 defined as follows,

I1 := {t ∈ [0, 1]| ϕγy(t)(α) ⊆ ϕy1(β)},
I2 := {t ∈ [0, 1]| ϕγy(t)(α) ⊆ ϕy2

(β)}.

We conclude the proof of this lemma by showing that there is a contradiction to
the continuity of γy, the connectedness of interval [0, 1], and the upper semi-continuity
of f in y. The reasoning is as follows: let tk be an infinite sequence in I1 with limit
t∞, we want to show t∞ is also in I1. This claim is done as follows. Consider any
x ∈ ϕγ(t∞)(α); upper semi-continuity of f(x, ·) implies that

lim sup
k→∞

f(x, γ(tk)) ≤ f(x, γ(t∞)) ≤ α < β.

Therefore, there exists a large enough integer l such that f(x, γ(tl)) < β. This
inequality implies that x ∈ ϕγ(tl)(β). We further know from tl ∈ I1 that ϕγ(tl)(β) ∩
ϕy1

(β) ⊇ ϕγ(tl)(α) ̸= ∅. Then, upon noting that ϕy1
(β)∩ϕy2

(β) = ∅ and ϕγ(tl)(β) ⊆
ϕy1

(β) ∪ ϕy2
(β), we conclude that x ∈ ϕγ(tl)(β) ⊆ ϕy1

(β) with a analogous argument
showing ϕz(α) ⊆ ϕy1(α) ∪ ϕy2(α) above.

Hence, for any x ∈ ϕγ(t∞)(α), the condition x ∈ ϕy1(β) also holds. In other words,
the inclusion ϕγ(t∞)(α) ⊆ ϕy1

(β) holds. Thus, by the definition of I1, we know that
the limit point t∞ lies in I1, and thus I1 is closed. By a similar argument, we can
show that I2 is also closed. Since both I1 and I2 are closed, this is in contradiction
with the continuity of γy and the connectedness of [0, 1]. Thus we prove the lemma.

Lemma 3.4 extends the conclusion of Lemma 3.7 to any finite k points, and then
provides a basis for using the finite intersection property and Claim 3.3. As argued
in Section 3.1, this step is key in the proof of Theorem 3.1. We now state the proof
of Lemma 3.4.

Proof of Lemma 3.4. The proof is by induction on Lemma 3.7. For k = 1, the
result is trivial. We assume the lemma holds for k − 1. Now, for any k points
y1, . . . , yk ∈ N , and any value α < minx∈X maxi∈[k] f(x, yi), we denote the set X ′ =
ϕyk

(α). If X ′ is empty, selecting y0 = yk yields the conclusion. Otherwise, we have

α < min
x∈X

max
i∈[k]

f(x, yi) ≤ min
x∈X′

max
i∈[k]

f(x, yi) ≤ min
x∈X′

max
i∈[k−1]

f(x, yi),

where the second inequality is due to X ′ ⊆ X, while the third inequality is due to the
fact f(x, yk) ≤ α for any x ∈ X ′. Due to the definition of level sets and since X ′ ⊆ X,
the set X ′ is geodesically convex and compact. We apply our assumption on the k−1
points y1, . . . , yk−1 and on the sets X ′, Y , to claim that there exists a point y′0 such
that α < minx∈X′ f(x, y′0). As a result, we have α < minx∈X max{f(x, y′0), f(x, yk)}.
Then applying Lemma 3.7 leads to the conclusion.

3.4. Existence of saddle point in Riemannian minimax problems. Later
in this paper, we specialize to the Riemannian minimax problem (P). We state Sion’s
theorem on Riemannian manifolds as a corollary. To guarantee the existence of a pair
of points comprising a saddle point, we further require set Y to be compact.

Corollary 3.8. Suppose that M and N are finite-dimensional complete and
connected Riemannian (sub)-manifolds. If subsets X, Y and the bifunction f satisfy
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the condition in Theorem 3.1, and additionally, Y is also compact, then the following
min-max identity holds:

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y).

Proof. Immediate from Theorem 3.1 asM and N are geodesic metric spaces.

By Corollary 3.8 we deduce that there is at least one saddle point (x∗, y∗) such that:

min
x∈X

f(x, y∗) = f(x∗, y∗) = max
y∈Y

f(x∗, y).

If f is geodesically convex-concave, the minimax problem (P) can be tackled by closing
the duality gap, defined for a given pair (x̂, ŷ) as

gapf (x̂, ŷ) := max
y

f(x̂, y)−min
x

f(x, ŷ).

The duality gap then serves as an optimality criterion as in the Euclidean setup.

Definition 3.9. The pair (x̂, ŷ) is an ϵ-saddle point of f , if gapf (x̂, ŷ) ≤ ϵ.

We use this definition when stating non-asymptotic convergence bounds for our Rie-
mannian minimax optimization algorithm.

4. Riemannian Minimax Algorithms and Analysis. In this section we pres-
ent our algorithm for minimax optimization of a geodesically convex-concave bifunc-
tion f on Riemannian manifolds under a suitable smoothness assumption. Building
upon the aforementioned optimality criterion, we establish convergence rate of our
algorithm via a non-asymptotic analysis. This result is summarized in Table 2.

Table 2
Comparison of minimax algorithms. The table summarizes the convergence properties of

our RCEG and presents a comparison with the Euclidean counterparts. SC-SC denotes the strongly-
convex-strongly-concave case. We provide an explanation of each symbol. L: Lipschitz constant of
f . µ: strong-convexity/concavity constant of f . τ : a constant parameterized by curvature and
domain diameter (see below and Theorem 4.8).

Geometry Setting Algorithm Complexity Reference

Riemannian convex-concave RCEG O (
√
τ/ϵ) Theorem 4.8

Euclidean convex-concave ExtraG O (1/ϵ) [48]

Euclidean SC-SC ExtraG O
(

L
µ log(1/ϵ)

)
[44]

Specifically, we consider smooth minimax optimization of (P). To this end, we
assume the following regularity conditions.

Assumption 4.1. The gradients of f are geodesically L-smooth, i.e., for any two
pairs (x, y) and (x′, y′) ∈M×N , the gradient satisfies the bounds

∥∇xf(x, y)− Γx
x′∇xf(x

′, y′)∥ ≤ L (dM(x, x′) + dN (y, y′)) ,

∥∇yf(x, y)− Γy
y′∇yf(x

′, y′)∥ ≤ L (dM(x, x′) + dN (y, y′)) .

Assumption 4.2. The bifunction f |X×Y is geodesically convex in the first vari-
able and geodesically concave in the second variable.
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The next assumption makes sure that any two points on the manifold can be connected
by a geodesic.

Assumption 4.3. Both M and N are simply-connected and complete Riemann-
ian manifolds.

Further, we require the curvature ofM andN to be bounded in range [κmin, κmax].
An additional bound on the diameter is necessary when positive curvature is in-
volved, i.e., κmax > 0. It allows us to (1) use comparison inequalities (see Lemma 4.5,
Lemma 4.6), and (2) to ensure that the geodesic is unique between any two points
[36], so that we can use the inverse exponential map Log. We emphasize the assump-
tion is purely algorithmic and independent from our geodesic Sion theorem. This is
a regularity condition in Riemannian optimization literature [4, 64]. Formally, it is
stated in the following assumption.

Assumption 4.4. The sectional curvatures ofM,N lie in the range [κmin, κmax]
with κmin ≤ 0. Moreover, if κmax > 0, the diameter of the corresponding manifold is
(strictly) upper bounded by π/

√
κmax.

4.1. Comparison inequalities. The convergence rates of gradient methods on
Riemannian manifolds are often curvature dependent. Hence, before we present our
convergence analysis, we summarize how the bound on curvature leads to trigonomet-
ric comparison inequalities. Suppose there is a geodesic triangle ∆pqr with vertices
p, q, r ∈ X ⊂ M and geodesic edges γpq, γqr, γrp. Comparison inequalities provide a
quantitative relationship between the lengths of geodesic edges. A first result is due
to [64], which is obtained when the sectional curvature is bound from below.

Lemma 4.5 (Lemma 5 in [64]). LetM be a Riemannian manifold with sectional
curvature lower bounded by κmin ≤ 0. If a, b, c are the length of sides γpq, γqr, γrp of
a geodesic triangle ∆pqr inM, then

a2 ≤ ζ(κmin, c)b
2 + c2 − 2⟨Logrq, Logrp⟩

where ζ(κ, c) :=
√
−κc coth(

√
−κc).

The second inequality characterizes the length when sectional curvature is bounded
from above. In particular, if the upper-bound κ is positive, the diameter of the mani-
fold should be bounded for the inequality to hold. In consistency with Assumption 4.4,
we define the upper bound of diameter D(κ) as

D(κ) :=

{
∞, κ ≤ 0,

π/
√
κ, κ > 0.

Then we can lower bound the length of the sides as follows.

Lemma 4.6 (Corollary 2.1 in [4]). Let M be a Riemannian manifold with sec-
tional curvature bounded above by κmax and diameter diam(M) < D(κmax). If a, b, c
are the length of sides γpq, γqr, γrp of a geodesic triangle ∆pqr inM, then

a2 ≥ ξ(κmax, c)b
2 + c2 − 2⟨Logrq, Logrp⟩

where ξ(κ, c) :=

{√
−κc coth(

√
−κc), κ ≤ 0,

√
κc cot(

√
κc), κ > 0.

Remark 4.7. When κ is set to 0, both ζ(κ, ·) and ξ(κ, ·) reduce to 1.
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The upper and lower bounds in the above lemmas decide the minimal and maximal
distortion rates. We define a ratio τ between the two rates to quantify how curvature
changes in the space as:

τ([κmin, κmax], c) :=


√
| κmin

κmax
| · coth

(√
|κmin|c

)
/coth

(√
|κmax|c

)
, κmax ≤ 0,√

| κmin

κmax
| · coth

(√
|κmin|c

)
/cot

(√
κmaxc

)
, κmax > 0.

We emphasize τ is defined as the ratio between maximal distortion ζ and ξ, i.e.,

(4.1) τ([κmin, κmax], D) = ζ(κmin, D)/ξ(κmax, D).

4.2. Riemannian corrected extragradient. We present a Riemannian extra-
gradient method with an additional correction term (RCEG) for geodesically convex-
concave f (see Algorithm 4.1). We overload manifold operations to have more compact
notation for the Riemannian gradient step of pair (x, y) ∈M×N :

(4.2) Exp(x,y)(u, v) := (Expx(u), Expy(v)).

We use a geodesic averaging scheme [58, 64] in Algorithm 4.1: i.e., at each iteration
we calculate

(4.3) (wt+1, zt+1) = Exp(wt,zt)

(
1

t+ 1
· Logwt

(wt+1),
1

t+ 1
· Logzt

(zt+1)

)
.

This averaging implies that at iteration t, the point w̄t lies on the geodesic from
w̄t−1 to wt, and z̄t lies on the geodesic from z̄t−1 to zt. The output produced by
averaging is then (wT , zT ). The following theorem shows that the averaged output of
RCEG achieves a curvature-dependent convergence rate for smooth convex-concave
f on Riemannian manifolds.

Theorem 4.8. Suppose Assumptions 4.1–4.4 hold, and the iterations remain in
subdomains2 of bounded diameter DM and DN . Let (xt, yt, wt, zt) be the sequence
obtained from the iteration of Algorithm 4.1 with initialization x1 = w1, y1 = z1.
Then, using a step-size η = 1

2L
√
τ
, the following inequality holds for T :

max
y∈N

f(wT , y)− min
x∈M

f(x, zT ) ≤
d2M(x1, x

∗) + d2N (y1, y
∗)

ηT
,

with (wT , zT ) obtained via averaging in (4.3), and τ = τ([κmin, κmax],max(DM, DN )).

Theorem 4.8 is a natural nonlinear extension of the known result achieved by extra-
gradient method in the Euclidean setting. We notice that, different from Riemannian
minimization algorithms (e.g., [64]), whenever the lower and upper of curvature coin-
cide, the curvature-free convergence rate can be retrieved.

The correction term in RCEG. The translation of the extragradient method
to Riemannian manifolds is non-trivial. We briefly elaborate on the proof technique
and focus on the update of xt for simplicity. For any x ∈ M, at each step, we need
to bound the difference as

(4.4) f(wt, zt)− f(x, zt) ≤ at · d2M(xt+1, x)− bt · d2M(xt, x),

2The condition allows an upper-bound for distortion (cf. τ) and is regular in Riemannian opti-
mization literature [4, 64].
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Algorithm 4.1 Riemannian Corrected Extragradient (RCEG)

1: input: objective f , initialization (x1, y1), step-size η
2: Set w1 ← x1, z1 ← y1
3: for t = 1, 2, . . . , T do
4: (wt, zt)← Exp(xt,yt)

(−η∇xf(xt, yt), η∇yf(xt, yt))
5: (xt+1, yt+1)← Exp(wt,zt)

(−η∇xf(wt, zt) + Logwt
(xt), η∇yf(wt, zt) + Logzt(yt))

6: end for
7: output: geodesic averaging scheme (wT , zT ) as in (4.3)

where at,bt are undetermined constants. We start with geodesic convexity, i.e.,
f(wt, zt) − f(x, zt) ≤ −⟨∇xf(wt, zt), Logwt

(x)⟩. The correction term in RCEG al-
lows a useful equality

(4.5) Logwt
(xt+1) = Logwt

(xt)− η∇xf(wt, zt).

This equality leads to a decomposition of cross terms in ⟨∇xf(wt, zt), Logwt
(x)⟩, and

as a result, we obtain

f(wt, zt)− f(x, zt) ≤ 1
η ⟨Logwt

(xt+1), Logwt
(x)⟩ − 1

η ⟨Logwt
(xt), Logwt

(x)⟩.(4.6)

Applying comparison inequalities on (4.6) leads to an efficient upper-bound in (4.4).
By telescoping on (4.4), we obtain the convergence result.

It is worth noting that the correction term is crucial to our Riemannian conver-
gence analysis. In the Euclidean case, the extragradient update is simply realized as
xt+1 ← xt − η∇xf(wt, zt). However, we cannot prove using the current technique
that, a direct Riemannian counterpart, i.e., xt+1 ← Expxt

(−ηΓxt
wt
∇xf(wt, zt)), is a

convergent algorithm. This is due to it does not permit a decomposition as in (4.5),
and necessitates bounding the cross-term ⟨Γxt

wt
∇xf(wt, zt), Logxt

(x) − Γxt
wt
Logwt

(x)⟩.
This approach leads to error terms caused by non-linear geometry that we cannot
upper-bound.

4.3. Lemmas for proving Theorem 4.8. Before proceeding to the main proof,
we first present a lemma that characterizes the behavior of the geodesic averaging
scheme in (4.3) under convex-concave setting.

Lemma 4.9. Suppose Assumption 4.2 holds. Then, for any iterates (wt, zt), the
geodesic averaging scheme (wt, zt) as in (4.3) satisfies, for any positive integer T and
any x ∈ X, y ∈ Y the following bound:

f(wT , y)− f(x, zT ) ≤
1

T
·

T∑
t=1

[f(wt, y)− f(x, zt)].

Proof. For the case T = 1, the result trivially holds. Now suppose the condition
holds for T − 1; then we have already

f(wT−1, y)− f(x, zT−1) ≤
1

T − 1
·
T−1∑
t=1

[f(wt, y)− f(x, zt)].(4.7)

We want to show wT and zT lie, respectively, on the geodesics connecting wT−1, wT

and zT−1, zT . For any x ∈M and u ∈ TxM, let us use the temporary notation γ(t;u)
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to denote the geodesic γ with γ(0) = x and γ′(0) = u. From Lemma 5.18 in [36], it
holds that γ(s; cu) = γ(cs;u) for any c, s ∈ [0, 1]. Now we denote ut = Logw̄t

(w̄t+1)
and αt = 1/(t+ 1). By the definition of Log, Exp map and averaging scheme in (4.3)
we have

w̄t+1 = Expw̄t
(αtut) = γ(1;αtut) = γ(αt;ut).

where γ(·, ut) is the geodesic connecting w̄t and wt+1. So w̄t+1 lies on the geodesic
from w̄t to wt+1. In a similar way we can also show that z̄t+1 lies on the geodesic
from z̄t to zt+1. Then we can calculate

f(wT , y)− f(x, zT )

≤ T − 1

T
· [f(wT−1, y)− f(x, zT−1)] +

1

T
· [f(wT , y)− f(x, zT )]

≤ T − 1

T
· 1

T − 1

T−1∑
t=1

[f(wt, y)− f(x, zt)] +
1

T
· [f(wT , y)− f(x, zT )]

=
1

T

T∑
t=1

[f(wt, y)− f(x, zt)],

where the first inequality comes from the fact the f is geodesically convex-concave
and the second is due to induction in (4.7).

The next several technical lemmas help bound the iterates of Algorithm 4.1. We
state them as a preparation to the proof of Theorem 4.8. The first prepares an
inequality where we perform a telescopic sum on the distance to the saddle point.

Lemma 4.10. Suppose the same condition in Theorem 4.8. Then for the iterates
(xt, yt, wt, zt) produced by Algorithm 4.1, it holds that

f(wt, y)− f(x, zt) ≤ 1
η

(
d2M(x, xt) + d2N (y, yt)− d2N (y, yt+1)− d2M(x, xt+1)

)
− ξ

ηd
2
M(wt, xt)− ξ

ηd
2
N (zt, yt) +

ζ
ηd

2
M(wt, xt+1) +

ζ
ηd

2
N (zt, yt+1),

where ξ = ξ(κmax,max(DM, DN )) and ζ = ζ(κmin,max(DM, DN )).

Proof. Since f is geodesically convex in x and geodesically concave in y, for any
two points x ∈ X, y ∈ Y , the following inequality holds

f(wt, y)− f(x, zt) = f(wt, zt)− f(x, zt)− (f(wt, zt)− f(wt, y))

≤ −⟨∇xf(wt, zt), Logwt
(x)⟩+ ⟨∇yf(wt, zt), Logzt(y)⟩.(4.8)

Recalling the iteration of RCEG in Algorithm 4.1:

xt+1 ←Expwt
(−η∇xf(wt, zt) + Logwt

(xt)),

yt+1 ←Expzt(η∇yf(wt, zt) + Logzt(yt)),

by the definition of inverse exponential map, we have

η∇xf(wt, zt) = Logwt
(xt)− Logwt

(xt+1),

−η∇yf(wt, zt) = Logzt(yt)− Logzt(yt+1).
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This allows us to decompose these mixed terms in the right-hand side of (4.8) as

η⟨∇xf(wt, zt), Logwt
(x)⟩ = ⟨η∇xf(wt, zt)− Logwt

(xt), Logwt
(x)⟩

+ ⟨Logwt
(xt), Logwt

(x)⟩
= −⟨Logwt

(xt+1), Logwt
(x)⟩+ ⟨Logwt

(xt), Logwt
(x)⟩,

η⟨∇yf(wt, zt), Logzt(y)⟩ = ⟨η∇yf(wt, zt) + Logzt(yt), Logzt(y)⟩
− ⟨Logzt(yt), Logzt(y)⟩
= +⟨Logzt(yt+1), Logzt(y)⟩ − ⟨Logzt(yt), Logzt(y)⟩.

Plugging this decomposition back into (4.8) results in following inequality:

f(wt, y)− f(x, zt) ≤ 1
η ⟨Logwt

(xt+1), Logwt
(x)⟩ − 1

η ⟨Logwt
(xt), Logwt

(x)⟩

+ 1
η ⟨Logzt(yt+1), Logzt(y)⟩ −

1
η ⟨Logzt(yt), Logzty⟩.

(4.9)

Now, it suffices to bound the right-hand side of (4.9) by leveraging comparison in-
equalities on Riemannian manifolds with bounded sectional curvature. Combining
the bounded domain condition and Lemma 4.6, we then obtain

−2⟨Logwt
(xt), Logwt

(x)⟩ ≤ −ξd2M(wt, xt)− d2M(wt, x) + d2M(xt, x)

−2⟨Logzt(yt), Logzt(y)⟩ ≤ −ξd
2
N (zt, yt)− d2N (zt, y) + d2N (yt, y).

Similarly, we use Lemma 4.5 and bounded domain to obtain

2⟨Logwt
(xt+1), Logwt

(x)⟩ ≤ ζd2M(wt, xt+1) + d2M(wt, x)− d2M(xt+1, x),

2⟨Logzt(yt+1), Logzt(y)⟩ ≤ ζd2N (zt, yt+1) + d2N (zt, y)− d2N (yt+1, y).

Inserting the above inequalities to (4.9) yields the desired inequality.

Before proceeding, we need the following lemma.

Lemma 4.11. For any two points x, y ∈M, it holds that Logyx = −Γy
xLogxy.

Proof. Suppose γx is the geodesic between x and y, i.e. γx(0) = x and γx(1) = y.
Hence, γy(t) = γx(1 − t) is also a geodesic with γy(0) = y and γy(1) = x. By the
chain rule and the definition of exponential map the following holds:

Logyx = γ′
y(0) = −γ′

x(1).

We consider the parallel transport of Logyx along geodesic γx. Then by [36], there
exists a unique vector field v(t) along γx such that

∇γ′
x(t)

v(t) = 0 and v(0) = Logyx.(4.10)

We notice that v(t) = γ′
x(t), the following condition holds due to the geodesic equation

∇γ′
x(t)

γ′
x(t) = 0.

Also, we have γ′
x(0) = Logxy. Then γ′

x(t) is the unique vector field satisfying (4.10)
and hence we conclude

Γy
xLogxy = v(1) = γ′

x(1) = −Logyx.
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The next lemma states that the error terms scale quadratically in the step-size η.

Lemma 4.12. Suppose the same condition in Theorem 4.8. Then for the iteration
(xt, yt, wt, zt) produced by Algorithm 4.1, it holds that

d2M(wt, xt+1) ≤ η2L2 · (d2M(wt, xt) + d2N (yt, zt)),

d2N (zt, yt+1) ≤ η2L2 · (d2M(wt, xt) + d2N (yt, zt)).

Proof. We first recall from the iteration of Algorithm 4.1 and definition of inverse
exponential map that

Logwt
(xt+1) = Logwt

(xt)− η∇xf(wt, zt),

Logzt(yt+1) = Logzt(yt) + η∇yf(wt, zt).

Using the definition of Riemannian distance, we have

d2M(wt, xt+1) = ∥Logwt
(xt+1)∥2 = ∥η∇xf(wt, zt)− Logwt

(xt)∥2,
d2N (zt, yt+1) = ∥Logzt(yt+1)∥2 = ∥η∇yf(wt, zt) + Logzt(yt)∥

2.
(4.11)

Next, we utilize Lemma Lemma 4.11 and obtain

Logwt
(xt) = −Γwt

xt
Logxt

(wt) = ηΓwt
xt
∇xf(xt, yt),

Logzt(yt) = −Γ
zt
yt
Logyt

(zt) = −ηΓzt
yt
∇yf(xt, yt).

Plugging the above equalities into (4.11) yields our result

d2M(wt, xt+1) = η2∥∇xf(wt, zt)− Γwt
xt
∇xf(xt, yt)∥2 ≤ η2L2

(
d2M(xt, wt) + d2N (yt, zt)

)
and

d2N (zt, yt+1) = η2∥∇yf(wt, zt)− Γzt
yt
∇yf(xt, yt)∥2 ≤ η2L2

(
d2M(xt, wt) + d2N (yt, zt)

)
where the inequalities are due to L-smoothness.

4.4. Proof of Theorem 4.8. Finally, with these building blocks, we can present
the formal proof of Theorem 4.8.

Proof of Theorem 4.8. Starting with Lemma 4.10, we immediately have for any
x ∈ X, y ∈ Y ,

f(wt, y)− f(x, zt) ≤ 1
η

(
d2M(x, xt) + d2N (y, yt)− d2N (y, yt+1)− d2M(x, xt+1)

)
− ξ

ηd
2
M(wt, xt)− ξ

ηd
2
N (zt, yt) +

ζ
ηd

2
M(wt, xt+1) +

ζ
ηd

2
N (zt, yt+1).

We can bound the last two terms, i.e. d2M(wt, xt+1), d
2
N (zt, yt+1), with Lemma 4.12:

d2M(wt, xt+1) + d2N (zt, yt+1) ≤ 2η2L2 · (d2M(wt, xt) + d2N (yt, zt)).

Based on our parameter choice η = 1
2L

√
τ
where τ = ζ/ξ (c.f., Equation (4.1)), it

holds that

−ξd2M(wt, xt)− ξd2N (zt, yt) + ζd2M(wt, xt+1) + ζd2N (zt, yt+1)

≤ −(ξ − 2η2L2ζ) · d2M(wt, xt)− (ξ − 2η2L2ζ) · d2N (zt, yt) ≤ 0.
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We plug this into the above inequality and obtain

f(wt, y)− f(x, zt) ≤ 1
η

(
d2M(x, xt) + d2N (y, yt)− d2N (y, yt+1)− d2M(x, xt+1)

)
.

Summing from 1 to T , we further obtain

T∑
t=1

f(wt, y)− f(x, zt) ≤
1

η
·
(
d2M(x1, x) + d2N (y1, y)

)
.

Lastly, by Lemma 4.9, the averaging scheme satisfies

f(wT , y
∗)− f(x∗, zT ) ≤

1

T

T∑
t=1

(f(wt, y)− f(x, zt)) ≤
d2M(x1, x

∗) + d2N (y1, y
∗)

ηT
,

where (x∗, y∗) is the global saddle point pair. Hence the result follows.

5. Applications and experiments. In this section, we confirm the theoretical
and algorithmic results of our work through two experiments.

5.1. Strong duality for constrained Hadamard optimization. From the
theoretical aspect, we show the prowess of Theorem 3.1 and Corollary 3.8 by estab-
lishing a strong-duality result for the constrained Hadamard optimization problem.
The setting is previously entailed in Section 1.1.

Corollary 5.1. Consider the constrained optimization problem in (1.2) on a
Hadamard manifold M. If X ⊆ M is compact and geodesically convex, both g and
each hi, i = 1, . . . n, are lower semi-continuous and geodesically convex, then the
Lagrangian f(x, λ) = g(x) + ⟨h(x), λ⟩ satisfies the following identity:

min
x∈X

sup
λ∈Rn

f(x, λ) = sup
λ∈Rn

min
x∈X

f(x, λ).

Proof. This claim is immediate from Theorem 3.1.

Similar to the Euclidean case, Corollary 5.1 guarantees that the minimizer for (1.2)
can be efficiently found by maximizing the dual problem g∗α(λ) = minx fα(x, λ). We
point out a similar result can be found in [62], which establishes a KKT theorem for
constrained Hadamard optimization problem.

5.2. Robust SPD-PCA. We demonstrate the tractability of our RCEG by
conducting numerical experiments on solving robust SPD-PCA. While the problem
in (1.4) is difficult in the Euclidean space, we show that it can be efficiently solved
under our geodesic convex-concave setting.

Before we present the experiments, we comment on how well this problem could
align with our assumptions. More precisely, the SPD manifold is Hadamard with its
curvature in range [− 1

2 , 0] [12, 18]. The sphere manifold is of positive curvature +1
and is a complete manifold. From the definition of Riemannian distance, fα(x,M)
in (1.4) is geodesic strongly-concave and smooth in M ([4]). It is also trivial to verify
that fα is geodesic smooth and locally convex in x around the top eigenvector u1 of
M , which is also the minimizer given M . By considering a small level set around u1,
we can apply our Theorem 3.1 to guarantee the existence of saddle point.

We compare our RCEG with the Riemannian gradient descent-ascent (RGDA)
method. The RDGA method performs the following iteration:

(xt+1, yt+1) = Exp(xt,yt)
(−η∇xf(xt, yt), η∇yf(xt, yt)).
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We also consider the effect of averaging scheme in (4.3). We will use RCEG-last and
RCEG-ave to denote, respectively, the last-iterate version and the average version of
RCEG. Respectively, RGDA-last and RGDA-ave refer to the cases when the algorithm
outputs the last-iterate and the average average iterate.

Data generation. We run our test on a synthetic dataset {Mi ∈ P(n)}ki=1. For
each Mi, we first produce B ∈ Rn×n with i.i.d. random entries from standard Gauss-
ian distribution and compute its QR decomposition as B = QR, where Q ∈ Rn×n is
orthonormal matrix and R ∈ Rn×n is upper-triangular matrix. We then generate ran-
dom eigenvalue σ = (σ1, . . . , σn) in range [µ,L]. Finally we obtain Mi = Qdiag(σ)Q⊤.

Results. The empirical performance of Riemannian minimax algorithms is illus-
trated in Figure 1. The RCEG-last is able to converge in an almost linear rate in
later stages, whereas the RCEG-ave converges in a slow sublinear rate. The difference
is due to the gradient dominance and local geodesic strong-convexity and strong-
concavity of our objective [64]: while the sublinear rate of average regime is predicted
by Theorem 4.8, the fast rate of last-iterate regime can be explained by a recent
follow-up paper [31] which shows that RCEG-last achieves linear rate for geodesic
strongly-convex-strongly-concave objectives.

0 20 40 60 80 100

10 8

10 6

10 4

10 2

100

gr
ad

no
rm

 o
f x

n = 25

0 20 40 60 80 100

10 9

10 7

10 5

10 3

10 1

101

gr
ad

no
rm

 o
f x

n = 50

0 20 40 60 80 100

10 9

10 7

10 5

10 3

10 1

101
gr

ad
no

rm
 o

f x
n = 75

0 20 40 60 80 100

10 1

100

101

gr
ad

no
rm

 o
f M

n = 25

0 20 40 60 80 100

10 1

100

101

gr
ad

no
rm

 o
f M

n = 50

RCEG-ave RGDA-ave RCEG-last RGDA-last

0 20 40 60 80 100

10 1

100

101

gr
ad

no
rm

 o
f M

n = 75

Fig. 1. Convergence of RCEG for robust SPD-PCA. We use step-size η = 0.1, k = 40, penalty
term α = 3, µ = 0.2 and L = 4.5 for different trajectories.

5.3. Robust Karcher mean. We illustrate the power of our RCEG by a second
experiment on the robust Karcher mean problem. Defined over the SPD manifold,
(1.5) is a globally strongly-convex-strongly-concave function for a properly chosen α.
Therefore we can apply our Theorem 3.1 to guarantee the existence of saddle point.

Setting and results. We run the test on a synthetic dataset {Mi ∈ P(n)}ki=1, which
is generated in the same way as the experiment for RPCA. The empirical performance
of RCEG and RGDA can be found in Figure 2.
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Fig. 2. Convergence of RCEG for robust Karcher mean problem. We use step-size η = 0.2,
k = 10, penalty term α = 3, µ = 10−3 and L = 1 for different trajectories.

5.4. SPD Bilinear function. In this subsection, we provide a synthetic test
problem to illustrate the better convergence property of RCEG over RGDA. As the
direct generalization of Euclidean gradient-descent method, RGDA is not guaranteed
to convergence for convex-concave objectives. We empirically verify this by utiliz-
ing f(x, y) = ⟨Logx(x0), Logy(y0)⟩F , where x, y belong to the same SPD manifold
P(n) and ⟨·, ·⟩F is the Frobenius inner product. Then f formalizes an analogy of
Euclidean bilinear function. The result in Figure 3 illustrates that, while our RCEG
is convergent, similar to its Euclidean counterpart, the naive Riemannian gradient
descent-ascent method can diverge for certain geodesically convex-concave objectives.
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Fig. 3. Comparison between RGDA and RCEG for bilinear objective. While RCEG is conver-
gent, the RGDA method is divergent for minimax problem f(x, y) = ⟨Logx(x0), Logy(y0)⟩F , where
x, y are defined on P(100). We utilize a step-size η = 0.2.

6. Additional related work. In this section, we will cover some other topics
and works relevant to our theme.



20 PEIYUAN ZHANG, JINGZHAO ZHANG, AND SUVRIT SRA

Convex-concave minimax algorithms. The majority of results on minimax op-
timization leverages the convex-concave setting. The optimal convergence rate for
smooth convex-concave problems isO(1/ϵ) in terms of duality gap, achieved by mirror-
prox method [48], extragradient [44] or proximal gradient descent [59]. The rate is
matched by the lower-bound analysis in [49]. Another line [59, 44, 21] studied the
strongly-convex-strongly-concave setting, establishing a linear convergence to saddle
points. Moreover, several works [56, 37, 5] focused on the accelerated algorithms
to improve the reliance on conditional number. Specifically, a recent work of [37]
established a near-optimal rate, matching the lower-bound [49].

Nonconvex-nonconcave minimax. In the general nonconvex-nonconcave minimax
problems, determining the existence of global saddle point is NP-hard. Hence a prom-
inent task is to find a well-defined and tractable notion of stationarity. Along this
line, works like [30, 41, 20] investigated different notions of local optimality and their
properties. Concurrently, several results [14, 2, 43] focused on the relations between
the stable fixed points of algorithm and local stationarity. Another line of research
also considers problems with additional structure. For instance, [61] tackled prob-
lem with Polyak-Lojasiewicz (PL) inequality; [16, 40, 39] explored Minty variational
inequality condition.

Geodesic convex optimization. Geodesic convex optimization is a natural exten-
sion of convex optimization in Euclidean space onto Riemmanian manifolds. The
pioneer work of this field includes [60, 1]. More recently, [64] provided a first non-
asymptotic analysis for Riemannian gradient methods. Subsequent works of the flour-
ishing line explored topics such as acceleration [65, 3, 24, 12], variance reduction
method [63, 54], and adaptive methods [32]. A parallel line of research tackled con-
strained Riemannian optimization by studying a hybrid minimax setting, in which
M is the Riemannian manifold and N is Euclidean space. In particular, [33, 38]
formalized the task of constrained geodesic-convex optimization on Riemannian man-
ifold as a minimax problem by augmented Lagrangian method. [27] considered a
geodesic-convex-Euclidean-concave minimax problem and analyzed the convergence
complexity of a novel Riemannian descent-ascent method.

7. Conclusions and Perspectives. In this work, we provide a new perspective
into nonconvex-nonconcave minimax optimization and game theory by considering ge-
odesic convex-concave problems in non-linear geometries. First, we provide an analog
of Sion’s theorem on geodesic metric spaces. Second, we provide novel and efficient
minimax algorithm for a different class of geodesic convex-concave games on geodesi-
cally complete Riemannian manifolds. We believe our work takes a significant step
towards understanding the properties of minimax problems in non-linear geometry,
and should help inform the study of many structured learning problems on manifolds.
We would like to promote the future investigations and applications by raising several
open questions.

Minimax algorithm in metric space. While most existing literature focuses on
Riemannian manifold, few works attempt to tackle the optimization problem in other
instances of nonlinear geometry. For example, in [7, 6] minimization of convex function
in CAT(0) space is considered (geodesic metric spaces of nonpositive curvature), where
the notion of a subgradient is absent. In [6] a proximal point algorithm is employed for
such settings and shown to admit weak convergence to a minimizer. Since Theorem 3.1
is valid even without the Riemannian metric structure, it lays down a foundation for
the study of minimax problems in general metric spaces using proximal operators.
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Acceleration in Riemannian minimax. Another promising direction is to establish
faster rates for Riemannian minimax. Nevertheless, all existing Euclidean accelerated
minimax algorithms require accelerated gradient methods as subroutines. Yet, full
acceleration without stronger assumptions on curvature and diameter is not possible
even for minimization problems, due to [24, 12]. Nevertheless, partial acceleration is
still possible [3]. A potential route for accelerating minimax problems is to consider
manifolds with constant curvature [42]. However, the result in [42] still suffers from
an exponential dependence over diameter. We hope these issues can be solved by
future works.

Matching lower bound. Our work opens a pathway to establish upper bound for
Riemannian minimax problem. However, a matching lower bound analysis like [49] is
still lacking for minimax problems in Riemannian geometry.
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