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Abstract

Developing efficient Bayesian computation algorithms for imaging inverse problems is challenging due to the di-

mensionality involved and because Bayesian imaging models are often not smooth. Current state-of-the-art methods

often address these difficulties by replacing the posterior density with a smooth approximation that is amenable to ef-

ficient exploration by using Langevin Markov chain Monte Carlo (MCMC) methods. Such methods rely on gradient

or proximal operators to exploit geometric information about the target posterior density and scale efficiently to large

problems. An alternative approach is based on data augmentation and relaxation, where auxiliary variables are intro-

duced in order to construct an approximate augmented posterior distribution that is amenable to efficient exploration

by Gibbs sampling. This paper proposes a new accelerated proximal MCMC method called latent space SK-ROCK

(ls SK-ROCK), which tightly combines the benefits of the two aforementioned strategies. Additionally, instead of

viewing the augmented posterior distribution as an approximation of the original model, we propose to consider it

as a generalisation of this model. Following on from this, we empirically show that there is a range of values for

the relaxation parameter for which the accuracy of the model improves, and propose a stochastic optimisation algo-

rithm to automatically identify the optimal amount of relaxation for a given problem. In this regime, ls SK-ROCK

converges faster than competing approaches from the state of the art, and also achieves better accuracy since the

underlying augmented Bayesian model has a higher Bayesian evidence. The proposed methodology is demonstrated

with a range of numerical experiments related to image deblurring and inpainting, as well as with comparisons with

alternative approaches from the state of the art. An open-source implementation of the proposed MCMC methods is

available from https://github.com/luisvargasmieles/ls-MCMC.

Keywords: Bayesian inference, inverse problems, image processing, Markov chain Monte Carlo methods, mathematical imag-

ing, proximal algorithms, uncertainty quantification.
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1 Introduction

The problem of estimating an unknown image from noisy and/or incomplete data is central to imaging sciences [16, 7]. Canonical

examples include, for example, noise removal [31], image inpainting [55], image deblurring [20], medical imaging [29, 3, 37],

astronomical imaging [13, 14]. Estimation by direct inversion of the foward model relating the unknown image to the data is not

usually possible, inasmuch the inverse problem is often severely ill-conditioned or ill-posed. The literature describes a range of

mathematical frameworks to incorporate regularisation and formulate well-posed solutions (see, e.g., [28, 48, 7]).

We consider Bayesian statistical solutions to imaging inverse problems [28]. In this case, the solution is a probability distri-

bution characterising our knowledge about the value of the unknown image of interest given the observed data. This distribution

can then be used to derive image estimators, calibrate unknown model parameters, perform uncertainty quantification analyses, or

Bayesian model selection (see, e.g., [24, 50, 42, 12]).

There are three main strategies to perform Bayesian computation in imaging inverse problems. One strategy relies on optimi-

sation methods, which typically scale efficiently to large models and offer detailed convergence guarantees, but can only support
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maximum-a-posteriori (MAP) estimation and a very limited range of other inferences [16, 14, 44]. Another strategy is to iteratively

construct an approximation of the distribution of interest by fitting a tractable surrogate model. Prominent examples of this strategy

include variational Bayesian inference [9, 41, 8] and expectation propagation [36, 56]. This approach can be very powerful for some

models, but it often requires a careful model-specific implementation, it has weaker guarantees, and in some cases it can exhibit

local convergence issues resulting in poor inferences. The third approach, which we adopt in this paper, is to directly approximate

the distribution of interest by using a Markov chain Monte Carlo (MCMC) sampling method [45]. This allows computing the ex-

pectations and probabilities of interest in a highly reliable way. However, the application of MCMC methods comes at the expense

of a higher computational cost. Reducing the cost of MCMC Bayesian computation in imaging has been a focus of significant ef-

forts recently (see, e.g.,[24, 42, 51]). Leaving computation strategies aside, it is possible to gain valuable insights about a Bayesian

imaging model through mathematical analysis. A prominent example is Gaussian denoising under a total variation prior (see [33,

34]).

There are two main challenges in designing efficient MCMC algorithms for Bayesian imaging: the dimensionality of the

problem and the fact that imaging models are often not smooth (this makes it difficult to directly apply gradient-based Markov Chain

Monte Carlo methods). A first attempt to address these problems was the proposal of proximal MCMC methods [39], such as the so-

called Moreau Yosida unadjusted Langevin algorithm (MYULA) [24] that combines ideas from Langevin gradient-based sampling

with ideas from the field of non-smooth convex optimization. MYULA and its variants represent a significant improvement in

computational efficiency and have good theoretical convergence guarantees. However, they are computationally inefficient for

problems that are severely ill-conditioned because of step-size restrictions that leads to a slow exploration of the solution space.

Recently, two different approaches were proposed in order to accelerate the convergence of proximal MCMC algorithms: the

proximal stochastic Runge-Kutta-Chebyshev method (SK-ROCK) [2, 42], which carefully combines s gradient evaluations to

achieve an s2-increase in the step-size, and the Split Gibbs Sampler (SGS) [51, 53], which is based on an augmentation and

relaxation scheme that can significantly improve convergence speed at the expense of some estimation bias.

This paper explores two natural questions. First, how do SGS and SK-ROCK compare methodologically and empirically.

Second, if the two methods can be combined in order to yield even more efficient MCMC methods. We address these questions in

the following way:

1. Rather than viewing the model augmentation and relaxation strategy of [43, 51, 53] as an approximation, we propose to

regard the augmented model as a generalisation of the original model. We show empirically that there is a range of relaxation

values for which the accuracy of the model improves. In this regime, relaxation leads to better convergence properties and

better accuracy. Beyond this regime, the accuracy of the relaxed model deteriorates rapidly.

2. Given the critical role of the amount of relaxation, we build on [50] to propose an empirical Bayesian method to automatically

estimate the value of the relaxation parameter by maximum marginal likelihood estimation.

3. We formally identify a relationship between SGS and MYULA by re-expressing SGS as a discrete-time approximation of a

Langevin stochastic differential equation (SDE) closely related to MYULA.

4. Having connected SGS and MYULA at the level of the SDE, we propose two novel MCMC methods for Bayesian imaging:

1) an integration of SGS and MYULA that improves on both SGS and MYULA; and 2) an integration of SGS and SK-ROCK

that outperform SK-ROCK, the previously fastest method in the literature.

The remainder of the paper is organised as follows: In Section 2 we introduce the models considered in this work, and recall

the state-of-the-art MCMC methods to sample from them. In Section 3 we revisit the augmented model and show empirically that

there is a subset of hyperparemeter values that enhances this model, while we also present a method to automatically compute

an optimal choice of these hyperparameters. In Section 4 we establish a formal connection between MYULA and SGS which

allows us to propose two novel and more efficient sampling algorithms for the augmented model. Section 5 illustrates the proposed

methodologies with two experiments related to image deblurring and image inpainting, where we report detailed comparisons with

state-of-the-art algorithms. Conclusions and perspectives for future work are reported in Section 6.

2 Problem statement

2.1 Bayesian inference and imaging inverse problems

Let x ∈ R
d be the image we are interested in estimating and y the available observation related to x by a statistical model with

likelihood function

p(y|x) ∝ e−fy(x).
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In this work, we pay special attention to problems where the estimation of x given y is ill-posed or ill-conditioned1. We address this

difficulty by considering the Bayesian framework, where we regularize the estimation problem by specifying a prior distribution,

given for any x and θ ∈ (0,+∞)d
′

by

p(x|θ) ∝ e−θTg(x),

for some vector of statistics g : Rd → R
d′ , where θ parametrises this prior distribution and controls the level of imposed regularity.

Using Bayes’ theorem, we derive the posterior distribution

p(x|y, θ) = p(y|x)p(x|θ)
p(y|θ) =

exp
[

−fy(x)− θTg(x)
]

∫

Rd

exp
[

−fy(x
′)− θTg(x′)

]

dx′
, (2.1)

which models the knowledge we have about x given the observed data y.

We focus on Bayesian computational methodology for log-concave models of the form (2.1), where fy and g satisfy the

following conditions:

1. fy : Rd → R is convex and Lipschitz continuously differentiable with constant Lf

2. (gi)i∈{1,...,d′} : Rd → R is proper, convex, and lower semi continuous, but potentially non-smooth.

Models with these characteristics are widely adopted in the imaging community due to the variety of currently available Bayesian

optimization tools that exploit the convexity properties of p(x|y, θ) [44, 38], such as the computation of the MAP estimate, which

can be formulated as a convex optimization problem [40] given by

x̂MAP = argmax
x

p(x|y, θ) = argmin
x

fy(x) + θTg(x), (2.2)

and can be solved by using state-of-the-art convex optimization algorithms [16]. However, there are other more complicated

Bayesian analyses beyond point estimation, such as model calibration, Bayesian model selection and hypothesis testing [46],

which cannot be addressed by using optimization algorithms and typically require the calculation of probabilities and expectations

w.r.t p(x|y, θ). This is challenging in imaging problems since it requires calculating intractable integrals on R
d. In this case, the

application of MCMC methods [45, 6] and, in particular, proximal MCMC methods [39, 24, 42, 51, 53], specialised for non-smooth

log-concave distributions, is the preferred approach.

2.2 Sampling via the Langevin diffusion

We consider proximal MCMC methods derived from the discretization of the overdamped Langevin diffusion process, which we

discuss below. Assume that we are interested in calculating probabilities w.r.t. a smooth distribution with density π(x), and consider

the stochastic differential equation (SDE)

dXt = ∇ log π(Xt)dt+
√
2dWt , (2.3)

where Wt is a d-dimensional Brownian motion. Under mild assumptions on π(x), this SDE has a unique strong solution and admits

π(x) as its unique invariant density [47, Theorem 2.1]. However, in imaging applications it is usually not possible to solve (2.3)

exactly, so a numerical approximation needs to be employed. Most works consider the Euler-Maruyama (EM) scheme given by

Xn+1 = Xn + δ∇ log π(Xn) +
√
2δZn+1, (2.4)

where δ > 0 is a given step-size and (Zn+1)n≥0 is an i.i.d. sequence of d-dimensional standard Gaussian random vectors. This

recursion is known as the unadjusted Langevin algorithm (ULA) and has been shown to be a highly efficient method for high-

dimensional Bayesian inference when π(x) is log-concave and smooth with ∇ log π(x) L-Lipschitz continuous and δ < 1/L [23,

22]. However, in many imaging models, π(x) is not smooth and hence appropriate adjustments need to be made to ULA.

2.2.1 Moreau-Yosida unadjusted Langevin algorithm (MYULA)

Proximal MCMC methods [39] deal with the non-differentiability of π(x) by replacing π(x) with a smooth approximation πλ(x)
which, by construction, satisfies the required conditions of ULA. In this case p(x|y, θ) in (2.1) is replaced by pλ(x|y, θ) defined as

pλ(x|y, θ) = p(y|x)pλ(x|θ)
pλ(y|θ) =

exp[−fy(x)− θTgλ(x)]
∫

Rd

exp[−fy(x
′)− θTgλ(x′)]dx′

, (2.5)

1Either the problem does not admit a unique solution that changes continuously with y, or there exists a unique solution but it is not stable w.r.t.

small perturbations in y.
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where

gλ(x) = [gλ1 (x), . . . , g
λ
d′(x)],

that is, each non-smooth term gi(x), i ∈ {1, . . . , d′} is replaced by its Moreau-Yosida envelope2, defined as

gλi (x) = min
u∈Rd

{

gi(u) +
1

2λ
‖x− u‖2

}

. (2.6)

This leads to a smooth posterior (2.5) which has the following properties:

• pλ(x|y, θ) is log-concave and Lipschitz continuously differentiable with gradient

∇ log pλ(x|y, θ) =−∇fy(x)−∇(θTgλ(x)) ,

=−∇fy(x)− 1

λ

p
∑

i=1

(

x− prox
λ
θigi

(x)
)

,

with Lipschitz constant L = Lf + p/λ, and for every x ∈ R
d

proxλgi(x) = argmin
u∈Rd

{

gi(u) +
1

2λ
‖x− u‖2

}

.

• pλ(x|y, θ) converges in total variation to p(x|y, θ)[24, Proposition 3.1], i.e.,

lim
λ→0

‖pλ(x|y, θ)− p(x|y, θ)‖TV = 0.

Applying the ULA scheme to the smooth posterior approximation pλ(x|y, θ) leads to the recursion

Xn+1 = Xn − δ∇fy(Xn)− δ

λ

d′
∑

i=1

(

Xn − proxλθigi(Xn)
)

+
√
2δZn+1,

which is known as the Moreau-Yosida unadjusted Langevin algorithm (MYULA) [24]. The main benefit of the MYULA is that

now since pλ(x|y, θ) is smooth and preserves log-concavity, the results from [23, 22] apply hence providing an efficient method

for imaging applications.

One of the main computational bottlenecks of ULA and MYULA is the fact that, in order to converge, one needs to choose

δ ≤ 1/L where L is the Lipschitz constant of ∇ log pλ(x|y, θ), given by L = Lf + d′/λ (see [24, Theorem 3.2]). This step-size

restriction is not problematic for moderate values of L, for example in denoising problems. However, in problems of the form

y = Ax+ ξ with ξ ∼ N (0, σ2
Im) and σ > 0 where the forward operator A is very poorly conditioned, the MYULA sampler will

have poor mixing properties, particularly on the subspace of Rd where x has high uncertainty (this is related to the slow components

of the Markov chain). A similar situation occurs when the problem requires a high level of accuracy in the approximated prior term

gλi (x) (i.e., λ is very small), for example in problems where one has to enforce domain constraints on the solution space.

2.2.2 SK-ROCK

A natural way of overcoming the step-size limitation of the MYULA is to adopt a discretization scheme for the Langevin Diffusion

(2.3) with better numerical stability properties. In particular, an explicit stochastic Runge-Kutta-Chebyshev discretization of the

Langevin SDE was proposed in [2] called SK-ROCK, and a proximal variant suitable for computational imaging problems was

recently proposed in [42]. This highly advanced Runge-Kutta stochastic integration scheme extends the deterministic Chebyshev

method [1] to sampling processes and has been shown to require fewer gradient evaluations than ULA or MYULA to reach a given

level of accuracy. In particular, it has been shown in [42, Proposition 3.1] that, in order to be ε close to a multivariate Gaussian target

distribution (in the 2-Wasserstein distance), SK-ROCK requires O(
√
κ) gradient evaluations (where κ is the condition number of

∇ log π(x)) instead of O(κ) required by the ULA, similar to accelerated optimization methods.

This is possible due to the fact that SK-ROCK uses s gradient evaluations per iteration at carefully chosen extrapolated points,

which allows using a much larger step-size than the MYULA and thus having a faster decorrelation of the Markov chain in a stable

manner. This is one of the great advantages of SK-ROCK in very ill-posed and ill-conditioned models, compared to MYULA,

accelerating its convergence while maintaining its stability, thus improving the quality of the generated samples.

2If the calculation of the proximal operator of the sum of some elements of g is possible, it is not necessary to replace each of these elements of

the vector g with its corresponding Moreau-Yosida envelope. In addition, if there is some gk(x), k ∈ {1, . . . , d′} that is Lipschitz differentiable,

its gradient can be computed directly.
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The SK-ROCK scheme is shown in Algorithm 1, where Ts denotes the Chebyshev polynomial of order s of the first kind,

defined recursively by Tk+1 = 2xTk(x) − Tk−1(x) with T0(x) = 1 and T1(x) = x. The two main parameters of the algorithm

are the number of stages s ∈ N
∗ and the step-size δ ∈ (0, δmax

s ], where the range of admissible values for δ is controlled by s: for

any s ∈ N
∗, the maximum allowed step-size is given by δmax

s = ls/(Lf + 1/λ) with ls = [(s − 0.5)2(2 − 4/3η) − 1.5] and

η = 0.05 [2]. Please see Section 4.4 for guidelines for setting s and δ.

Algorithm 1 SK-ROCK

1: Input: X0 ∈ R
d, λ > 0, n, s ∈ N, η = 0.05.

2: Compute ls = (s− 0.5)2(2− 4/3η)− 1.5,

3: Compute ω0 = 1 + η/s2, ω1 = Ts(ω0)/T
′
s(ω0),

4: Compute µ1 = ω1/ω0, ν1 = sω1/2, k1 = sω1/ω0,

5: Choose δ ∈ (0, δmax
s ], where δmax

s = ls/(Lf + 1/λ),
6: for i = 0 : n− 1 do

7: Set X̃0 = Xi,

8: Sample ξi+1 ∼ N (0, 2δId),
9: Compute X̃1 = X̃0 + µ1δ∇ log pλ(X̃0 + ν1ξi+1|y, θ) + k1ξi+1,

10: for j = 2 : s do

11: Compute µj = 2ω1Tj−1(ω0)/Tj(ω0), νj = 2ω0Tj−1(ω0)/Tj(ω0), kj = 1− νj ,

12: Compute X̃j = µjδ∇ log pλ(X̃j−1|, y, θ) + νjX̃j−1 + kjX̃j−2,

13: end for

14: Set Xi+1 = X̃s,

15: end for

16: Output: Samples X1, . . . , Xn.

2.3 Sampling via augmentation: Split Gibbs sampler (SGS)

A separate line of research seeks to address the limitation of ULA (and MYULA) by introducing an auxiliary variable z ∈ R
d

and operating on the augmented state-space (x, z). This allows to relax the original model (2.1) and instead uses the following

augmented posterior

p(x, z|y, θ, ρ2) = p(y|x)p(x, z|θ, ρ2)
p(y|θ, ρ2) =

p(y|x)p(x|z, ρ2)p(z|θ)
∫

Rd

∫

Rd

p(y|x)p(x|z, ρ2)p(z|θ)dxdz

=
exp

[

−fy(x)− θTg(z)− 1
2ρ2

‖x− z‖2
]

∫

Rd

∫

Rd

exp

[

−fy(x)− θTg(z)− 1

2ρ2
‖x− z‖2

]

dxdz

, ρ2 > 0,

(2.7)

where

p(y|x) = exp(−fy(x))
∫

Rd

exp(−fy(x))dx

, p(z|θ) = exp(−θTg(z))
∫

Rd

exp(−θTg(z′))dz′
, (2.8)

p(x|z, ρ2) = exp(−‖x− z‖2/2ρ2)
∫

Rd

exp(−‖x− z‖2/2ρ2)dx
=

exp(−‖x− z‖2/2ρ2)
(2πρ2)d/2

, (2.9)

where ρ2 controls the correlation between the variable of interest x and the auxiliary variable z, and fy, g are the same as in Section

2.1. If we now consider the marginal posterior distribution

p(x|y, θ, ρ2) =
∫

Rd

p(x, z|y, θ, ρ2) dz, (2.10)

it is possible to show that it converges in total variation to the original posterior p(x|y, θ) as ρ2 → 0.

This approach was first introduced several decades ago as a way of calculating maximum likelihood estimates from incomplete

data [19], and as an efficient method for sampling from posterior distributions [49] (see [25] for a review of these techniques). In
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the current literature, this model was revisited by [43] in the context of consensus Monte Carlo in distributed settings and applied

to imaging inverse problems in [51], where its similarities to the algorithmic structure of the Alternating Direction Method of

Multipliers (ADMM) optimization algorithm [10] were also discussed.

From a computational point of view, as in the case of MYULA, because g is not differentiable one needs to approximate

p(x, z|y, θ, ρ2) by

pλ(x, z|y, θ, ρ2) ∝ exp

[

−fy(x)− θTgλ(z)− 1

2ρ2
‖x− z‖2

]

, ρ2 > 0. (2.11)

To sample (2.11), [51, 53] proposed a Gibbs-like splitting strategy scheme, applied on the following conditional distributions

p(x|y, z, ρ2) ∝ exp

[

−fy(x)− 1

2ρ2
‖x− z‖2

]

, (2.12)

pλ(z|x, θ, ρ2) ∝ exp

[

−θTgλ(z)− 1

2ρ2
‖x− z‖2

]

. (2.13)

This method is known as the split Gibbs sampler (SGS). See Algorithm 2. In the case where the likelihood is Gaussian one can

Algorithm 2 SGS

1: Input: X0, Z0 ∈ R
d, λ, ρ2 > 0, n ∈ N.

2: for i = 0 : n− 1 do

3: Sample Xi+1 ∼ p
(

x|y, Zi, ρ
2
)

according to (2.12),

4: Compute Zi+1 = Zi−δ
∑d′

k=1[Zi−proxλθkgk(Zi)]/λ−δ(Zi−Xi+1)/ρ
2+

√
2δζi+1; where ζi+1 ∼ N (0, Id),

5: end for

6: Output: Samples X1, . . . , Xn.

exactly sample from (2.12) [27] (for a review and comparison of existing Gaussian sampling approaches, see [52]). Additionally,

when the iterates Zi are also sampled exactly from p
(

z|y,Xi, ρ
2
)

(i.e., by replacing Step 4 by an exact sampler), the resulting

scheme is provably ergodic and can be used for approximate inference w.r.t. p (x|y) [53]. Leaving exact sampling aside, a main

benefit of this splitting approach is that the step-size one needs to set for the proximal MCMC method used for sampling (2.13)

will be independent of the Lipschitz constant associated with the likelihood distribution, and will only depend on the parameters

λ and ρ2 (i.e., the step-size now depends on the Lipschitz constant indirectly via λ and ρ2, there is still some dependence w.r.t.

the Lipschitz constant through the bias incurred). This can lead to faster sampling algorithms compared to MYULA for suitably

chosen values of the parameter ρ2 [51], albeit for a biased posterior distribution.

3 Enhancing Bayesian imaging models by smoothing

As discussed previously, the augmented model (2.7) was originally proposed as a relaxation of (2.1) that allows for a faster explo-

ration of the target distribution, at the expense of some additional bias when compared to the original model. One then might think

that ρ2 = 0 represents the best model for inference (at the expense of higher computing cost). However, we have found empirically

that this is not the case.

As an illustration, Figure 1(a) shows the estimation mean-squared error (MSE) for a Bayesian image debluring problem (the

details of this experiment will be explained in Section 5.1). The error is computed w.r.t. the posterior mean, as estimated by an

adaptation of the SK-ROCK method to target (2.11) (see Section 4.3 for details), using a value of θ = 4.4 × 10−2 estimated by

[50, Algorithm 1], and by using different values for ρ2. Recalling that increasing ρ2 improves convergence speed, one can clearly

identify a regime of small values of ρ2 for which convergence speed improves without a deterioration in estimation accuracy (in

fact, there is a mild improvement). Beyond this range, the estimation MSE deteriorates dramatically. This suggests the need for a

method to automatically set the value of ρ2.

We propose an empirical Bayesian method to estimate optimal values for θ and ρ2 directly from y by maximum marginal

likelihood estimation (MMLE)

(θ∗, ρ
2
∗) = argmax

θ∈Θ,ρ2∈Ω

p(y|θ, ρ2), (3.1)

where Θ ⊂ (0,+∞)d
′

, Ω ⊂ (0,+∞) are compact convex sets, and p(y|θ, ρ2) is defined in (2.7). To solve (3.1), we modify the

stochastic approximation proximal gradient (SAPG) algorithm of [50]. By maximising the model evidence, (3.1) seeks to select the

best model to perform inference within the class of posterior distributions parametrised by θ ∈ Θ, ρ2 ∈ Ω [54].
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3.1 Computing the optimal values for θ and ρ2

We adopt the approach of [50] to solve (3.1) and estimate optimal values for θ and ρ2 in (2.7). The method [50] was proposed for

models of the form (2.1), so we will now adapt it to the augmented model (2.7).

We are interested in estimating the parameters θ ∈ Θ, ρ2 ∈ Ω by MMLE (3.1). If we had access to the gradients ∇ρ2 log p(y|θ, ρ2)
and ∇θ log p(y|θ, ρ2), then we could construct an interative algorithm that converges to the solution of (3.1) by using the projected

gradient algorithm [32]

ρ2n+1 = ΠΩ

[

ρ2n + γ′
n∇ρ2 log p(y|θn, ρ2n)

]

θn+1 = ΠΘ

[

θn + γn∇θ log p(y|θn, ρ2n)
]

,

where ΠΩ and ΠΘ are the projection onto Ω and Θ respectively, and (γ′
n, γn)n∈N are sequences of non-increasing step-sizes such

that
∑

n∈N
γ′
n → +∞ and

∑

n∈N
γ′2

n < ∞, and similarly
∑

n∈N
γn → +∞ and

∑

n∈N
γ2
n < ∞, (see Section 4.4 for details).

However, due to the complexity of the model, ∇ρ2 log p(y|θ, ρ2) and ∇θ log p(y|θ, ρ2) are intractable.

As shown in [50], one can construct carefully designed stochastic estimates of these gradients that satisfy the conditions for the

solution to converge to (3.1). To build these stochastic estimators, we are going to express the gradients as expectations by applying

the Fisher’s identity [21, Proposition D.4]. More precisely, we have that

∇ρ2 log p(y|θ, ρ2) =
∫

Rd

∫

Rd

p(x, z|y, θ, ρ2)∇ρ2 log p(x, z, y|θ, ρ2)dxdz,

and

∇θ log p(y|θ, ρ2) =
∫

Rd

∫

Rd

p(x, z|y, θ, ρ2)∇θ log p(x, z, y|θ, ρ2)dxdz.

We can approximate these expectations by using MCMC. In fact, we will see that one MCMC sample will suffice to obtain

an estimate of the gradient accurate enough to converge asymptotically to (3.1). As p(x, z, y|θ, ρ2) = p(y|x)p(x, z|θ, ρ2) =
p(y|x)p(x|z, ρ2)p(z|θ), we have

∇ρ2 log p(y|θ, ρ2) =
∫

Rd

∫

Rd

p(x, z|y, θ, ρ2)∇ρ2 log p(x|z, ρ2)dxdz,

and

∇θ log p(y|θ, ρ2) =
∫

Rd

∫

Rd

p(x, z|y, θ, ρ2)∇θ log p(z|θ)dxdz.

Replacing (2.9) in p(x|z, ρ2) we obtain

∇ρ2 log p(y|θ, ρ2) = Aθ,ρ2(y)−
d

2ρ2
,

where

Aθ,ρ2(y) = Ex,z|y,θ,ρ2

[‖x− z‖2
2(ρ2)2

]

=

∫

Rd

∫

Rd

p(x, z|y, θ, ρ2)‖x− z‖2
2(ρ2)2

dxdz,

and similarly, replacing (2.8) in p(z|θ) gives

∇θ log p(y|θ, ρ2) = −Bθ,ρ2(y)− Cθ,ρ2(y),

where

Bθ,ρ2(y) = Ex,z|y,θ,ρ2 [g(z)] =

∫

Rd

∫

Rd

p(x, z|y, θ, ρ2)g(z)dxdz,

Cθ,ρ2(y) = Ex,z|y,θ,ρ2

[

∇θ log

(
∫

Rd

exp(−θTg(z))dz

)]

=

∫

Rd

∫

Rd

p(x, z|y, θ, ρ2)∇θ log

[∫

Rd

exp(−θTg(z))dz

]

dxdz.

Because of the complexity of the model, Aθ,ρ2(y) and Bθ,ρ2(y) are not available analytically and need to be approximated by

MCMC computation (e.g., by using the methods we develop in Section 4). With respect to Cθ,ρ2(y), and more precisely, the

integral between brackets, we can follow a similar procedure as in [50, Section 3.2.1]. In particular, if we consider the case where

each gi(z) is αi positively homogeneous3 , which is the case for many regularizers such as ℓ1, ℓ2 or TV, we have that

∂ log p(y|θ, ρ2)
∂θ(i)

=
d

αiθ(i)
− Ex,z|y,θ(i),ρ2 [gi(z)] .

3g(x) is α positively homogeneous if, for any x ∈ R
d and t > 0, g(tx) = tαg(x).
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(See [50] for more details and [50, Section 3.2] for the case of inhomogeneous regularizers).

Following on from this, and by using Monte Carlo approximations of Aθ,ρ2(y) and Bθ,ρ2(y), we construct an SAPG algorithm

[26, 50] to solve (3.1) and produce optimal estimates of θ and ρ2. This method is presented in Algorithm 3. We refer the reader

to Section 4.4 for guidelines on setting the step-size (γ′
n, γn)n∈N and the weights (wn)n∈N for the averages computed in the final

step of Algorithm 3. See also [18, 17] for details about the convergence properties of this kind of SAPG algorithm.

Algorithm 3 SAPG algorithm for the augmented model (2.7)

1: Input: X0
0 , Z

0
0 ∈ R

d, θ0, ρ
2
0, γ0, γ

′
0 ∈ R, λ > 0, m,n ∈ N.

2: for i = 0 : m− 1 do

3: if i > 0 then

4: Set X
(0)
i = X

(n)
i−1,

5: end if

6: for j = 0 : n− 1 do

7: Sample X
(j+1)
i+1 , Z

(j+1)
i+1 according to Algorithm 4,

8: end for

9: for j = 1 : d′ do

10: Set θ
(j)
i+1 = ΠΘ

[

θ
(j)
i +

γ
(j)
i+1

n

∑n
k=1

{

d

αjθ
(j)
i

− gj(Z
(k)
i+i)

}]

,

11: end for

12: Set ρ2i+1 = ΠΩ

[

ρ2i +
γ′

i+1

n

∑n
k=1

{

‖X(k)
i+1 − Z

(k)
i+1‖2/2(ρ2i )2 − d/(2ρ2i )

}]

,

13: end for

14: Output: θ
(j)

m =
∑m

k=0 wkθ
(j)
k /

∑m

k=0 wk for j ∈ {1, . . . , d′}, ρ2m =
∑m

k=0 wkρ
2
k/

∑m

k=0 wk.

To illustrate Algorithm 3 in action, Figure 1 shows the value of ρ2 estimated by the algorithm for the image deblurring problem.

Observe that the MMLE estimate is close to the value that produces the best estimation MSE in this case. This is in agreement

with the results reported in [50] for other problems. Lastly, notice that Step 10 of Algorithm 3 involves the original prior, with

terms {gj}d
′

j=1, and not the smooth approximations {gλj }d
′

j=1, as the SAPG scheme to estimate θ and ρ2 is not affected by the non-

smoothness p(z|θ) w.r.t z (instead, it requires some smoothness of the Markov kernels w.r.t. θ, see [17, 18] for technical details).

The approximation {gλj }d
′

j=1 is used within the MYULA step of Step 7 Algorithm 3, which does require a smooth prior. This

mismatch introduces some bias, which is controlled by using a small value of λ [17]. One could use {gλj }d
′

j=1 instead of {gj}d
′

j=1

within Step 10. However, doing so would prevent the SAPG scheme from exploiting the homogeneity of {gj}d
′

j=1, resulting in a

significantly more expensive SAPG scheme (see [50, Algorithm 3]).

4 Reinterpretation of SGS as noisy MYULA & new MCMC methods

4.1 Noisy MYULA

We now proceed to show that the SGS algorithm 2 can be viewed as a noisy version of MYULA. This link will be crucial in allowing

us to write it as a noisy discretisation of an SDE, which will help us to propose more efficient MCMC methods for sampling (2.7).

First, note that the marginal of z computed from (2.11) can be written as follows

pλ(z|y, θ, ρ2) =
∫

Rd

pλ(x, z|y, θ, ρ2) dx ∝ p(y|z, ρ2)pλ(z|θ),

where

p(y|z, ρ2) ∝
∫

Rd

exp

[

−fy(x)− 1

2ρ2
‖x− z‖2

]

dx, pλ(z|θ) ∝ exp[−θTgλ(z)].

Notice that in the case where fy(x) is quadratic, p(y|z, ρ2) is Gaussian with eigenvalues in its covariance matrix shifted by ρ2,

when compared with the covariance of fy(x). Now applying the MYULA to pλ(z|y, θ, ρ2), we have that

Zn+1 = Zn + δ∇z log p
λ(Zn|θ) + δ∇z log p(y|Zn, ρ

2) +
√
2δζn+1, (4.1)
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(a) (b)

Figure 1: Image deblurring experiment: (a) MSE between the true image and the posterior mean estimated using Algorithm 5, for some values of

ρ2. In red, the optimal value of ρ2 that minimises the MSE, and in green, the value of ρ2 found by Algorithm 3. (b) Iterations of SAPG algorithm

to estimate ρ2.

where (ζn+1)n≥0 is an i.i.d. sequence of d-dimensional standard Gaussian random vectors. Due to the complexity of the model, it

is difficult to compute ∇z log p(y|Zn, ρ
2), however, we can express it as an expectation by using Fisher’s identity [21, Proposition

D.4] as follows

∇z log p(y|z, ρ2) =
∫

Rd

p(x|y, z, ρ2)∇z log p(x, y|z, ρ2)dx

= Ex|y,z,ρ2
[

∇z log p(x, y|z, ρ2)
]

.

As p(x, y|z, ρ2) = p(y|x)p(x|z, ρ2), we have

∇z log p(x, y|z, ρ2) = Ex|y,z,ρ2
[

∇z log p(x|z, ρ2)
]

=
1

ρ2
Ex|y,z,ρ2 (x− z) .

Using this expression in (4.1) we obtain

Zn+1 = Zn − δ∇zp
λ(Zn|θ)− δ

ρ2
Ex|y,z,ρ2 (Zn − x) +

√
2δζn+1, (4.2)

We are now ready to explicitly establish the connection to SGS. SGS stems from dealing with the presence of the expectation in

this algorithm by replace it by a Monte Carlo empirical average, i.e.,

Ex|y,z,ρ2 (Zn − x) ≈ Zn − 1

N

N
∑

i=1

X(i), where X(i) ∼ p(x|y,Zn; ρ). (4.3)

More precisely, to recover SGS we take N = 1 and substitute in (4.2) to obtain

Zn+1 = Zn − δ∇zp
λ(Zn|θ) − δ

ρ2
(Zn −X(1)) +

√
2δζn+1. (4.4)

Since X(1) is an exact sample from p(x|y,Zn, ρ
2), (4.4) corresponds to the fourth line of Algorithm 2.
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This establishes that SGS is equivalent to a noisy version of MYULA that relies on one sample from p(x|y, z, ρ2) to compute

a stochastic estimate of the gradient ∇z log p(y|z, ρ2) via (4.3). Using multiple samples from p(x|y,Zn; ρ) would improve the

estimation of the expectation (4.3) and hence the behaviour of the algorithm. Alternatively, in the experiments considered in this

paper p(x|y,Zn; ρ) is Gaussian, and hence this expectation can be calculated exactly. This is exploited in the MCMC methods

proposed below.

4.2 Latent space MYULA

We established that SGS is equivalent to MYULA targeting the marginal of z with an inexact (i.e., stochastic) estimate of the

gradient. Replacing this stochastic estimate with its exact value in Algorithm 2 produces the following recursion

Xi+1
grad = Ex|y,Zi,ρ

2 [x],

Zi+1 = Zi − δ

λ

d′
∑

k=1

[Zi − proxλ
θkgk

(Zi)]− δ(Zi −Xi+1
grad)/ρ

2 +
√
2δζi+1,

(4.5)

where ζi+1 ∼ N (0, Id).
We now discuss how to use samples {Zi}mi≥1 to compute expectations w.r.t. the marginal of interest x|y, θ, ρ2. More precisely,

consider the computation of an expectation Ex|y,θ,ρ2 [h(x)] for some function h w.r.t. the posterior distribution pλ(x|y, θ, ρ2)
defined in (2.10) by using (4.5). Formally,

Ex|y,θ,ρ2 [h(x)] =

∫

Rd

h(x)

∫

Rd

pλ(x, z|y, θ, ρ2) dz dx.

Using the fact that pλ(x, z|y, θ, ρ2) = p(x|y, z, ρ2)pλ(z|θ) we have that

Ex|y,θ,ρ2 [h(x)] =

∫

Rd

∫

Rd

h(x)p(x|y, z, ρ2)pλ(z|θ) dz dx

=

∫

Rd

∫

Rd

h(x)p(x|y, z, ρ2) dx pλ(z|θ) dz

= Ez|θ

[

Ex|y,z,ρ2 (h(x))
]

.

(4.6)

In cases where Ex|y,θ,ρ2 [h(x)] is available analytically, we suggest using a Rao-Blackwellised estimator of the form [45]

Ex|y,θ,ρ2 [h(x)] ≈
1

m

m
∑

i=1

Ex|y,Zi,ρ
2 [h(x)] .

The computation of Ex|y,Zi,ρ
2 [h(x)] can be done as a postprocessing step, or alternatively within the iterations of the sampler.

If Ex|y,θ,ρ2 [h(x)] is not available analytically, we would draw samples from the conditional x|y, Zi, θ, ρ
2 and apply a standard

Monte Carlo estimator.

We are now ready to present our first new MCMC method, summarised in Algorithm 4 below. We henceforth refer to this

method as latent space MYULA (ls-MYULA), since it corresponds to MYULA applied to the marginal of the latent variable z.

Algorithm 4 ls-MYULA

1: Input: X0, Z0 ∈ R
d, λ, ρ > 0, m ∈ N.

2: for i = 0 : m− 1 do

3: Compute X i+1
grad = Ex|y,Zi,ρ2 [x],

4: Compute Zi+1 = Zi−δ
∑d′

k=1[Zi−proxλθkgk(Zi)]/λ−δ(Zi−X i+1
grad)/ρ

2+
√
2δζi+1; where ζi+1 ∼ N (0, Id),

5: Compute ĥi+1 = Ex|y,Zi+1,ρ2 [h(x)],
6: end for

7: Output: an estimator of Ex|y,θ,ρ2 [h(x)] given by {∑m

k=1 ĥk}/m.
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Remark 4.1. The underlying assumption in Algorithm 4 is that one can explicitly calculate Ex|y,Zi,ρ
2 [x] which, for example, is

the case when the expectation represents the first moment of a Gaussian distribution, which corresponds to the likelihood models

we consider in our experiments. In cases where Ex|y,Zi,ρ
2 [x] is intractable, we recommend to replace the expectation by its

corresponding MCMC estimation, i.e.,

Ex|y,Zi,ρ
2 [x] ≈ 1

M

M
∑

i=1

Xi where Xi ∼ p(x|y,Zi, ρ
2).

Remark 4.2. Notice that Algorithm 4 relies implicitly on two forms of smoothing, which operate differently and provide com-

plementary benefits. On the one hand, through the MYULA construction, {gk}d
′

k=1 is replaced by the (smooth) Moreau-Yosida

envelopes {gλk}d
′

k=1. On the other, the use of the auxiliary variable z introduces smoothing on the marginal prior p(x|ρ2) =
∫

p(x|z, ρ2)p(z)dz, where p(x|z, ρ2) acts as a Gaussian smoothing kernel. It can thus appear that there is some redundancy and

that a single smoothing mechanism would suffice. However, Algorithm 4 operates on the latent space, and from that perspective, the

smoothing related to p(x|z, ρ2) acts on the likelihood function of z given y, and not to the prior of z. This can lead to significant

benefits in terms of convergence speed, as illustrated in Section 5. This effect can be analysed in detail in the case of the Gaussian

likelihood function, where the smoothing introduced by p(x|z, ρ2) shifts the eigenvalues of the likelihood covariance matrix by

ρ2. As a result, the likelihood of y w.r.t. z is by construction strongly log-concave. The same remark holds for the latent space

SK-ROCK algorithm described below. Also note that the bias introduced by this additional smoothing is undone exactly when the

samples are mapped from the latent space of z to the canonical space of x.

4.3 Latent space SK-ROCK

In the same way that an exact MYULA discretization is more beneficial than the stochastic MYULA discretization used in SGS,

we can further improve results by using an exact SK-ROCK discretization which, as we described in Section 2.2.2, has many

important advantages compared to MYULA. In particular, we present this method in Algorithm 5, and we will refer to it as latent

space SK-ROCK (ls-SK-ROCK). The main difference between this algorithm and Algorithm 1 is that the conditional expectation

Ex|y,Z̃j ,ρ
2 [x] is computed on each internal stage s.

Algorithm 5 ls-SK-ROCK

1: Input: X0, Z0 ∈ R
d, λ, ρ > 0, m, s ∈ N, η = 0.05.

2: Compute ls = (s− 0.5)2(2− 4/3η)− 1.5,

3: Compute ω0 = 1 + η/s2, ω1 = Ts(ω0)/T
′
s(ω0),

4: Compute µ1 = ω1/ω0, ν1 = sω1/2, k1 = sω1/ω0,

5: Choose δ ∈ (0, δmax
s ], where δmax

s = ls/(1/(ρ
2 + L−1

f ) + 1/λ),
6: for i = 0 : m− 1 do

7: Set X̃
0
grad = X i

grad, Z̃0 = Zi,

8: Sample ξi+1 ∼ N (0, 2δId),

9: Compute X̃
1
grad = Ex|y,Z̃0+ν1ξi+1,ρ2 [x],

10: Compute Λ(Z̃0) =
∑d′

k=1[Z̃0 + ν1ξi+1 − proxλθkgk(Z̃0 + ν1ξi+1)]/λ+ (Z̃0 + ν1ξi+1 − X̃
1
grad)/ρ

2,

11: Compute Z̃1 = Z̃0 − µ1δΛ(Z̃0) + k21ξi+1,

12: for j = 2 : s do

13: Compute µj = 2ω1Tj−1(ω0)/Tj(ω0), νj = 2ω0Tj−1(ω0)/Tj(ω0), kj = 1− νj ,

14: Compute X̃
j

grad = Ex|y,Z̃j−1,ρ2 [x],

15: Compute Λ(Z̃j−1) =
∑d′

k=1[Z̃j−1 − proxλθkgk(Z̃j−1)]/λ+ (Z̃j−1 − X̃
j

grad)/ρ
2,

16: Compute Z̃j = −µjδΛ(Z̃j−1) + νjZ̃j−1 + kjZ̃j−2,

17: end for

18: Set X i+1
grad = X̃

s

grad, Zi+1 = Z̃s, ĥi+1 = Ex|y,Zi+1,ρ2 [h(x)],
19: end for

20: Output: an estimator of Ex|y,θ,ρ2 [h(x)] given by {∑m
k=1 ĥk}/m.
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4.4 Implementation guidelines

Setting λ

As the priors of the experiments performed in this work are non-differentiable, we will use the Moreau-Yosida envelope defined in

(2.6) with λ ∈ [L−1
f , 10L−1

f ]. We chose λ = L−1
f in our numerical experiments, however, we have found numerically that values

of λ = 5L−1
f or λ = 10L−1

f lead to faster convergence at the cost of additional bias.

Setting γ
(j)
i , γ′

i and n

With respect to Algorithm 3, it is suggested in [50] to set γ
(j)
i = C

(j)
0 i−p and γ′

i = C′
0i

−p where p ∈ [0.6, 0.9] (in the experiments

performed in this paper, we have set p = 0.8), C
(j)
0 and C′

0 starting with (θ
(j)
0 d)−1 and (ρ20d)

−1 respectively, and then readjusting

it if necessary. With respect to n, we have followed the recommendation in [50] and used a single sample (i.e., n = 1) on each

iteration (we did not observe significant difference for larger values of n). For more details about these parameters and their effect

on the convergence properties of the algorithms please see [18, Section 4.2] and [17, Theorem 1].

Setting wn

Following [50], we recommend setting wn as follows

wn =











0 if n < N0,

1 if N0 ≤ n ≤ N1,

γn otherwise,

where N0 is the number of initial iterations to be discarded (when n < N0, the values of ρ2n and θn are still bouncing and not

stabilized), n ∈ [N0, N1] corresponds to the averaging estimation phase, in which the values of ρ2n and θn have stabilized and

start converging, and n > N1 is known as the refinement phase where we use decreasing weights to enhance the accuracy of the

estimator (see [50, Section 3.3.1] for details).

Setting an stopping criteria

It is recommended to supervise the evolution of |θm+1 − θm|/θm and |ρ2m+1 − ρ2m|/ρ2
m in the execution of Algorithm 3 until they

reach a tolerance level β to stop the algorithm execution. In our imaging experiments, we set β = 10−4 but we have observed that

β = 10−3 is often enough to reach an acceptable estimate of the hyper-parameters in small computational times.

Other implementation considerations

In the implementation of the SAPG method, it is important to update the step-size of the MCMC method to sample Xi and Zi

within each iteration of the SAPG scheme, as the maximum step-size depends on the value of ρ2i .

Regarding the Lipschitz constant L one needs to compute the step-size for MYULA and SK-ROCK algorithms, the model (2.5)

has L = λ−1 + Lf . With respect to the augmented model (2.10), the Lipschitz constant is La = λ−1 + (ρ2 + L−1
f )−1 which we

use to implement SGS, ls-MYULA and ls-SK-ROCK. Therefore, we set the step-size of the MCMC methods to 1/L for MYULA,

to 1/La for SGS and ls-MYULA, and to δmax
s for SK-ROCK and ls-SK-ROCK, where δmax

s can be found in Algorithms 1 and 5,

respectively. Regarding the SK-ROCK and ls-SK-ROCK algorithms, their most important parameters are the number of internal

stages s ∈ N and the maximum step-size δmax
s . Note the increase in the step-size of Algorithm 5 compared to Algorithm 1, since

δmax
s = ls/(1/(ρ

2 + L−1
f ) + 1/λ) = ls/La in ls-SK-ROCK, compared to δmax

s = ls/(Lf + 1/λ) = ls/L in SK-ROCK (with

ls = [(s− 0.5)2(2− 4/3η) − 1.5] and η = 0.05 in both algorithms). This leads to a shift of ρ2 in δmax
s that allows ls-SK-ROCK

to converge faster. We have empirically observed that a good bias-variance trade-off is achieved by taking δ ∈ [δmax/2, δmax) and

s ∈ {5, . . . , 15}.

It is worth highlighting at this point that the improvement in Lipschitz constant experiences by the latent-space model allows

ls-MYULA and ls-SK-ROCK to take larger step-sizes than MYULA and SK-ROCK, respectively. This leads to an improvement in

convergence speed and therefore to higher computational efficiency, without noticeable additional bias.
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5 Numerical experiments

We now illustrate the improvement that can be obtained by sampling the augmented model (2.7) using Algorithms 4 and 5 together

with an optimal estimate of ρ2 using Algorithm 3. To evaluate the performance of the methods in a variety of situations, we perform

two imaging experiments related to image deblurring (whose model is strongly log-concave) and image inpainting (whose model

is weakly log-concave). We implement these algorithms as described in the implementation guidelines (see Section 4.4).

(a) cameraman, true image x (b) skier, true image x

(c) cameraman, observation y (d) skier, observation y

Figure 2: Image deblurring experiments: Test images x and their corresponding noisy and blurred observations y.

For a fair comparison the results we show have been plotted as a function of the number of gradient evaluations, i.e., the

number of times ∇ log pλ(x|, y, θ) and ∇z log p
λ(z|y, θ, ρ2) are computed in our algorithms. The plots we show include the

evolution of the MCMC samples in the burn-in stage using the scalar statistic log p(Xn|y, θ) for MYULA and SK-ROCK, and

log p(Xgrad
n |y, θ) for SGS, ls-MYULA and ls-SKROCK. We have also plotted the progression of the mean-squared error (MSE)

between the posterior mean and the true image, when all the algorithms have reached stationarity, including the MAP estimate

defined in (2.2) and computed using a highly efficient optimization algorithm called SALSA [5, 4] for the image deblurring and

image inpainting experiments.

We also provide pixel-wise standard deviation plots as a way of quantifying the uncertainty in the delivered solution. We have

also computed standard deviation plots performing downsampling by averaging the samples by a factor of 2×j where j = {1, 2, 4},

which allows us to observe the uncertainty in image structures at different scales. Finally, we also show autocorrelation plots of

the slowest component of the samples produced by each of the methods, applying a 1-in-s thinning to the MYULA, SGS and ls-

MYULA chains to equal the number of gradient evaluations between the mentioned methods (one gradient evaluation per iteration)

and SK-ROCK/ls-SKROCK methods (s gradient evaluations per iteration). The chain’s slowest component was identified by

computing the approximated eigenvalue decomposition of the posterior covariance matrix and projecting the samples onto the

leading eigenvector. Now using the slowest component, we have also computed effective sample sizes (ESS) of the five algorithms

discussed in this paper, where the sum is truncated at lag k when the lag-k autocorrelation reaches a value less than 0.05.

For completeness, in Table 7 we have also provided computing times of all the experiments. These results have been obtained

on an Intel core i5-8350U@1.70GHz workstation running MATLAB R2018a.

5.1 Image deblurring

To examine the performance of the MCMC methods in different scenarios, we consider a deblurring problem with two test images:

cameraman, and the training image #61060 from the Berkeley Segmentation Dataset and Benchmark [35], we henceforth refer to

this image as skier. Both images have a size of d = 256 × 256 pixels. An uniform blur operator H of size 5 × 5 is applied to

the true image x ∈ R
d and then additive Gaussian noise η is added with a sigma-to-noise level of 40dB, to produce an observation

y ∈ R
d related to the true image by y = Hx+ η. As H is nearly singular, the problem becomes ill-conditioned. So, to promote
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regularity, we have used the isotropic TV pseudonorm as a prior, given by TV(x) =
∑

i

√

(∆h
i x)

2 + (∆v
i x)

2, where ∆h
i , ∆v

i

denote horizontal and vertical first-order local diference operators. This leads to the following posterior distributions

p(x|y, θ) ∝ exp
[

−‖y −Hx‖2/2σ2 − θTV(x)
]

(5.1)

p(x, z|y, θ, ρ2) ∝ exp
[

−‖y −Hx‖2/2σ2 − θTV(z)− ‖x− z‖2/2ρ2
]

, (5.2)

where fy(x) = ‖y −Hx‖2/2σ2 and g(x) = TV(x). Figures 2(a), (b) show the test images for this experiment and Figures 2(c),

(d) show the corresponding observations y for each image.

Table 1: Values for θ and ρ2 estimated using Algorithm 3 for (5.1) and (5.2) in the image deblurring experiments, together with the corresponding

Lipschitz constants L and La.

Experiment θ ρ2 σ2 L = 1/λ+ 1/σ2 La = 1/λ + (σ2 + ρ2)−1

cameraman 0.044 0.480 0.335 5.959 4.205
skier 0.044 0.250 0.175 11.440 8.078
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Figure 3: Image deblurring experiments: (a),(d) Convergence to the typical set of the posterior distribution (5.1) and (5.2) for the first 105 MYULA,

SGS and ls-MYULA samples, and the first 105/s SK-ROCK and ls-SK-ROCK samples (s = 15). (b),(e) MSE between the mean of the algorithms

and the true image, measured using 5×106 MYULA, SGS and ls-MYULA samples, and 5×106/s SK-ROCK and ls-SK-ROCK samples (s = 15),

in stationary regime. (c),(f) Autocorrelation function for the values of the slowest component of the samples.

We begin estimating optimal values for θ and ρ2 for the given models implementing Algorithm 3 setting γi = γ′
i = 10 ×

i−0.8/d, θ0 = 0.04, ρ20 = L−1
f = σ2 and X0 = Z0 = H⊺y. The corresponding results for the parameters estimation are given in

Table 1, together with the Lipschitz constants L and La required to sample (5.1) and (5.2) respectively. We then generate 5× 106

samples using MYULA and 5 × 106/s samples using SK-ROCK (with s = 15) from (5.1), and 5 × 106 samples using SGS and

ls-MYULA and 5 × 106/s samples using ls-SK-ROCK (with s = 15) from (5.2). The results of these experiments are plotted in

3. We note from the evolution of the MSE (when the chains have reached the typical set of the target distributions) that ls-MYULA

and ls-SK-ROCK outperform SGS in terms of the convergence speed of the posterior mean. The improvement of ls-MYULA w.r.t.

SGS illustrates the benefits of using an exact MYULA implementation rather than a noisy one, as shown in Section 4. The minor

improvements between ls-MYULA and MYULA, and between SK-ROCK and ls-SK-ROCK, are due to the effect of ρ2 > 0, which

does not have a significant impact on the estimation of the posterior mean. The step-sizes used by each method are reported in Table

2.
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Table 2: Image deblurring experiment: Summary of the values for the step-size δ for each of the MCMC methods applied to the two imaging

experiments: cameraman and skier.

MCMC method Cameraman Skier

MYULA 0.167 0.087
SK-ROCK (s = 15) 67.959 35.402
SGS 0.237 0.124
ls-MYULA 0.237 0.124
ls-SK-ROCK (s = 15) 96.294 50.161

Table 3: Image deblurring experiments: Effective sample sizes of the slowest component, after generating 15 × 103 samples using the five

algorithms discussed in this work, and the speed increase (i.e., speed-up) achieved by the algorithms w.r.t. MYULA.

MYULA SK-ROCK SGS ls-MYULA ls-SK-ROCK

ESS Speed-up ESS Speed-up ESS Speed-up ESS Speed-up ESS Speed-up

Cam. 46 - 1175 25.54 49 1.07 54 1.17 1604 34.87
Skier 18 - 636 35.33 35 1.94 37 2.06 924 51.33

(a) MYULA (b) SK-ROCK (c) SGS (d) ls-MYULA (e) ls-SK-ROCK

(f) MYULA (g) SK-ROCK (h) SGS (i) ls-MYULA (j) ls-SK-ROCK

Figure 4: Image deblurring experiments: MMSE computed using 5× 106 MYULA, SGS and ls-MYULA samples, and 5× 106/s SK-ROCK and

ls-SK-ROCK samples, in stationarity.

We also plot the autocorrelation function of the slowest component from the chains of the MCMC algorithms, this is shown in

Figure 3(c),(f) and, as can be seen, ls-SK-ROCK presents the fastest decay. In addition, Table 3 shows the effective sample sizes

(ESS) associated with these autocorrelation plots, and one can notice that ls-SK-ROCK reaches the largest ESS. The comparison

of the autocorrelation function and ESS for the slowest mixing component for MYULA and ls-MYULA illustrates the benefits

of operating on the latent space (and the effect of ρ2 > 0). A similar comparison between ls-MYULA and SGS illustrates the

efficiency cost that SGS incurs due to the use of an inexact gradient. For completeness, we also illustrated in Figure 4 the minimum

mean-square estimator (MMSE) of all the MCMC methods for all two deblurring experiments.

Finally, Figure 5 shows the marginal posterior standard deviation of the cameraman deblurring experiment at different scales.

One can notice that edges show higher uncertainty, which is expected due to the nature of the forward operator. As can be seen,

ls-MYULA and, in particular, ls-SK-ROCK outperform SGS in terms of delivering comparable estimates in less computational

time, showing the benefit of using these algorithms to sample in a more efficient way the augmented posterior distribution.
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Figure 5: Image deblurring experiments - cameraman: pixel-wise standard deviation computed using 104 MYULA, SGS and ls-MYULA samples

with a 1-in-15 thinning, and 104 SK-ROCK and ls-SK-ROCK samples with s = 15, using (a)-(e) the original sample size (256 × 256) and with

downsampling by a factor of (f)-(j) 2, (k)-(o) 4 and (p)-(t) 8.

5.2 Image inpainting

We now perform an image inpainting experiment, which consists of randomly selecting 60% of the image pixels x ∈ R
d to form

the observation vector y ∈ R
m (m < d) and then adding Gaussian noise with a SNR level of 40dB (the observation images y are

illustrated in Figure 6). To test the MCMC methods in different regimes, we will use the same two test images given in Section 5.1

(cameraman and skier) and illustrated in Figure 2(a)-(b). For this experiment, we consider the following models

p(x|y, θ) ∝ exp
[

−‖y − Ax‖2/2σ2 − θTV(x)
]

(5.3)

p(x, z|y, θ, ρ2) ∝ exp
[

−‖y −Ax‖2/2σ2 − θTV(z)− ‖x− z‖2/2ρ2
]

, (5.4)

where fy(x) = ‖y −Ax‖2/2σ2, A ∈ R
m×d is a rectangular matrix obtained by taking a random subset of rows from the identity

matrix in dimension d, and g(x) = TV(x), previously defined in Section 5.1.

We first proceed to estimate optimal hyperparameters θ and ρ2 for (5.3) and (5.4) using Algorithm 3 setting γi = γ′
i =

10 × i−0.8/d, θ0 = 0.5, ρ20 = L−1
f /2 = σ2/2 and X0 = Z0 = A⊺y. The estimated parameter values can be seen in Table 4,

together with the Lipschitz constants L and La required to sample (5.3) and (5.4) respectively.

Having obtained our estimates from SAGP algorithm for the values of the hyperparameters, we proceed to generate 5 × 106

MYULA samples and 5 × 106/s SK-ROCK samples (with s = 15) from (5.3) and 5 × 106 SGS and ls-MYULA samples, and

5× 106/s ls-SK-ROCK samples (with s = 15) from (5.4). The step-sizes for each method are reported in Table 5.
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(a) cameraman: observation y (b) skier: observation y

Figure 6: Image inpainting experiments: noisy and incomplete observations y (pixels in black represent unobserved components).

Table 4: Values for θ and ρ2 estimated using Algorithm 3 for (5.3) and (5.4) in the image inpainting experiments

Experiment θ ρ2 σ2 L = 1/λ + 1/σ2 La = 1/λ + (σ2 + ρ2)−1

cameraman 0.058 0.65 0.388 5.146 3.530
skier 0.052 0.37 0.175 9.071 6.220
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Figure 7: Image inpainting experiments: (a),(d) Convergence to the typical set of the posterior distribution (5.3) and (5.4) for the first 105 MYULA,

SGS and ls-MYULA samples, and the first 105/s SK-ROCK and ls-SK-ROCK samples (s = 15). (b),(e) MSE between the mean of the algorithms

and the true image, measured using 5×106 MYULA, SGS and ls-MYULA samples, and 5×106/s SK-ROCK and ls-SK-ROCK samples (s = 15),

in stationary regime. (c),(f) Autocorrelation function for the slowest component of the samples.

With the generated samples, we proceed to plot the results of these experiments in Figure 7. We first notice the acceleration

one can get from ls-SK-ROCK from the convergence to equilibrium of the MCMC samples in the burn-in stage represented by the

evolution of the scalar estimate log p(Xn|y, θ). Then, we illustrate the evolution of the mean-squared error (MSE) between the

mean of the samples and the true image x in stationarity and, as can be seen, ls-SK-ROCK is computationally efficient in being the

fastest method to reach the MMSE in all two experiments, even outperforming the MAP estimate in terms of accuracy in all two

experiments; moreover, the improvement of ls-MYULA over SGS, in terms of accuracy is evident similar to our previous results.

We also plot the autocorrelation function of the pixel values for the slowest component in Figure 7(c),(f) and, as can be seen,

the ACF of the ls-SK-ROCK samples decays faster than all the other MCMC methods. Again, a comparison of the autocorrelation
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function for the slowest mixing component shows the benefits of operating on the latent space (and the effect of ρ2 > 0), as well

as the efficiency cost that SGS incurs because of the use of an inexact gradient in this case. For completeness, we also illustrate in

Figure 8 the MMSE of all the MCMC methods for all two inpainting experiments and, as in previous numerical results, we can see

in Figure 7(b),(e) that ls-SK-ROCK is the fastest method in compute this estimate.

Table 5: Image inpainting experiment: Summary of the values for the step-size δ for each of the MCMC methods applied to the two imaging

experiments: cameraman and skier.

MCMC method Cameraman Skier

MYULA 0.194 0.110
SK-ROCK (s = 15) 78.698 44.646
SGS 0.283 0.161
ls-MYULA 0.283 0.161
ls-SK-ROCK (s = 15) 114.717 65.105

Finally, Figure 9 presents uncertainty quantification plots by showing pixel-wise standard deviation estimates for the camera-

man inpainting experiment. In this case, the uncertainty is concentrated on the unobserved pixels, which is expected given the nature

of the inpainting problem. One can notice that ls-MYULA and ls-SK-ROCK deliver comparable estimates in less computational

time than SGS, showing the good performance of these algorithms in sampling the augmented posterior distribution.

(a) MYULA (b) SK-ROCK (c) SGS (d) ls-MYULA (e) ls-SK-ROCK

(f) MYULA (g) SK-ROCK (h) SGS (i) ls-MYULA (j) ls-SK-ROCK

Figure 8: MMSE for the image inpainting experiment.

Table 6: Image inpainting experiments: Effective sample sizes of the slowest component, after generating 15 × 103 samples using the five

algorithms discussed in this work, and the speed increase (i.e., speed-up) achieved by the algorithms w.r.t. MYULA.

MYULA SK-ROCK SGS ls-MYULA ls-SK-ROCK

ESS Speed-up ESS Speed-up ESS Speed-up ESS Speed-up ESS Speed-up

Cam. 14 - 281 20.07 14 1 21 1.5 448 32
Skier 8 - 212 26.5 11 1.38 15 1.88 320 40

5.3 Image deblurring with a total generalized variation prior

We conclude this section with an experiment related to image deblurring with a total generalised variation prior. The experiment

setup is akin to Section 5.1, except that the prior is now given by

p(x|θ(1), θ(2)) ∝ exp
[

−TGV2
θ(1),θ(2) (x)− ε‖x‖22

]

, (5.5)
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Figure 9: Image inpainting experiments - cameraman: pixel-wise standard deviation computed using 104 MYULA, SGS and ls-MYULA samples

with a 1-in-15 thinning, and 104 SK-ROCK and ls-SK-ROCK samples with s = 15, using (a)-(e) the original sample size (256 × 256) and with

downsampling by a factor of (f)-(j) 2, (k)-(o) 4 and (p)-(t) 8.

where ε > 0 and where TGV2
θ(1),θ(2)

(x) is the so-called total generalized variation (TGV) regulariser [11, 15], defined for every

θ(1), θ(2) ∈ [0,+∞)2, and x ∈ R
d by

TGV2
θ(1),θ(2)(x) = min

u∈R2d
{θ(1)‖u‖1,2 + θ(2)‖J(∆x− u)‖1,Frob.},

where ∆ = (∆v,∆h) computes the first-order vertical and horizontal pixel differences, while the second-order information of

the image-gradient vector field is computed by the Jacobian matrix J . The incorporation of second-order information removes the

characteristic stair-casing artefacts commonly associated with (non-generalised) TV regularisation [11].

Image deblurring with a TGV prior is challenging because the results are highly sensitive to the choice of θ(1) and θ(2).
However, these parameters are difficult to set a priori. Their direct estimation from y by maximum marginal likelihood estimation

is also difficult because the TGV prior does not belong to the exponential family. [50, Section 4.4] proposes to address this difficulty

by using a SAPG scheme to compute a pseudo-maximum marginal likelihood estimator for θ(1) and θ(2), which we also adopt in

this paper (we refer the reader to [50, Section 4.4] for more details). Also note that the term ε‖x‖22 is required so that p(x|θ(1), θ(2))
defines a proper prior, in practice ε is very small (we use ε = 10−10).

In a manner akin to Section 5.1, we consider a deblurring problem with the skier test images of size d = 128 × 128 pixels,

which is a patch of Image 2(b) (a reduced size image is considered in this experiment because the evaluation of the TGV proximal

operator is highly computationally expensive). The observation y is generated by applying a uniform blur operator H of size 5× 5
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Table 7: Summary of the execution times (in seconds) to produce one sample (i.e., after one iteration) on each of the MCMC algorithms imple-

mented for each experiment.

Imaging MYULA SK-ROCK ls-MYULA ls-SK-ROCK SGS

Experiment (s=15) (s=15)

deblurring 3.8× 10−2 6.1× 10−1 4.3× 10−2 6.1× 10−1 4.7× 10−2

inpainting 4.1× 10−2 5.8× 10−1 3.8× 10−2 5.6× 10−1 4.7× 10−2

to the true image x ∈ R
d, followed by additive Gaussian noise with a sigma-to-noise level of 30dB. This experiment considers the

following posterior distributions

p(x|y, θ(1), θ(2)) ∝ exp
[

−‖y −Hx‖2/2σ2 − p(x|θ(1), θ(2))
]

(5.6)

p(x, z|y, θ(1), θ(2), ρ2) ∝ exp
[

−‖y −Hx‖2/2σ2 − p(z|θ(1), θ(2))− ‖x− z‖2/2ρ2
]

, (5.7)

where p(x|θ(1), θ(2)) is defined in (5.5), and p(z|θ(1), θ(2)) is the same TGV prior applied to the latent variable z instead of x.

Figure 10(a) shows the test images for this experiment and Figure 10(b) shows the corresponding observations y.

(a) skier, true image x (b) skier: observation y

Figure 10: Image deblurring experiment with TGV prior: Test image x (patch from Image 2(b) of size 128× 128) and its corresponding noisy and

blurred observation y.

We begin estimating optimal values for θ(1), θ(2) and ρ2 for the given models implementing a variant of the Algorithm 3

for inhomogeneous regularizers (See [50, Section 3.2.3] for details), setting γ
(1)
i = 100 × i−0.8/d, and γ

(2)
i = γ′

i = i−0.8/d,

θ
(1)
0 = θ

(2)
0 = 5, ρ20 = L−1

f = σ2 and X0 = Z0 = H⊺y. The corresponding results for the estimated parameters are given in

Table 8, together with the Lipschitz constants L and La required to sample (5.6) and (5.7) respectively. We then generate 1.5×105

samples using MYULA and 1.5 × 105/s samples using SK-ROCK (with s = 15 and δ = δmax
s /2) from (5.6), and 1.5 × 105

samples using SGS and ls-MYULA and 1.5 × 105/s samples using ls-SK-ROCK (with s = 15 and δ = δmax
s /2) from (5.7). The

results of these experiments are plotted in Figure 11. In particular, we note from the evolution of the MSE (when the chains have

reached the typical set of the target distributions) that ls-MYULA and ls-SK-ROCK outperform SGS, as we are using an exact

MYULA implementation rather than a noisy one, as shown in Section 4. We have also reported the step-size used by each method

in Table 9.

Table 8: Values for θ(1), θ(2) and ρ2 estimated using Algorithm 3 for (5.6) and (5.7) in the image deblurring experiment with TGV, together with

the corresponding Lipschitz constants L and La.

θ(1) θ(2) ρ2 σ2 L = 1/λ+ 1/σ2 La = 1/λ + (σ2 + ρ2)−1

4.46 7.38 7.15× 10−5 5.04× 10−5 3.97× 104 2.81× 104

We also plot the autocorrelation function of the slowest component from the chains of the MCMC algorithms, this is shown in

Figure 11(c) and, as can be seen, ls-SK-ROCK presents the fastest decay. In addition, we also illustrated in Figure 12 the minimum

mean-square estimator (MMSE) of all the MCMC methods for this experiment.
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Figure 11: Image deblurring experiment with TGV prior: (a) Convergence to the typical set of the posterior distribution (5.6) and (5.7) for the first

5 × 103 MYULA, SGS and ls-MYULA samples, and the first 5 × 103/s SK-ROCK and ls-SK-ROCK samples (s = 15). (b) MSE between the

mean of the algorithms and the true image, measured using 1.5 × 105 MYULA, SGS and ls-MYULA samples, and 1.5 × 105/s SK-ROCK and

ls-SK-ROCK samples (s = 15), in stationary regime. (c) Autocorrelation function for the values of the slowest component of the samples.

Table 9: Image deblurring experiment with TGV: Summary of the values for the step-size δ for each of the MCMC methods applied to this

experiment.

MCMC method δ
MYULA 2.51× 10−5

SK-ROCK (s = 15) 5.10× 10−3

SGS 3.56× 10−5

ls-MYULA 3.56× 10−5

ls-SK-ROCK (s = 15) 7.21× 10−3

As can be seen, ls-MYULA and, in particular, ls-SK-ROCK outperform SGS in terms of delivering comparable estimates in

less computational time, showing the benefit of using these algorithms to sample in a more efficient way the augmented posterior

distribution.

(a) MYULA (b) SK-ROCK (c) SGS (d) ls-MYULA (e) ls-SK-ROCK

Figure 12: MMSE for the image deblurring experiment with TGV prior.

6 Conclusions

We presented a strategy to combine MYULA or proximal SK-ROCK with augmentation and relaxation in the manner of SGS.

This was achieved by first establishing that SGS is equivalent to a noisy ULA scheme applied to the marginal distribution of the

latent variable z in an augmented Bayesian model x, z|y, θ, ρ2. This then naturally led to two new samplers that apply MYULA

and SK-ROCK to the latent marginal distribution z|y, θ, ρ2. Probabilities and expectations w.r.t. the primal marginal x|y, θ, ρ2 are

then straightforwardly computed by using a Rao-Blackwellised Monte Carlo estimator. Moreover, we also observed empirically

that there is a range of values for ρ2 for which convergence speed and model quality improve (in the sense of the model evidence).

Increasing ρ2 beyond this range leads to improvements in convergence speed at the expense of significant estimation bias. We

therefore proposed to adopt an empirical Bayesian approach and set ρ2, together with the regularisation parameter θ, by maximum

marginal likelihood estimation from y. This was achieved by using an SAPG scheme that convergences in very few iterations. We
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illustrated the benefits from adopting the proposed methodology with two experiments, image deblurring and image inpainting. The

results showed that the new proximal SK-ROCK algorithm that benefits from augmentation and relaxation outperforms the other

methods from the state of the art in terms of computational efficiency. Future work will focus on extending the proposed approach

to plug-and-play priors encoded by neural network denoisers [30], and on establishing non-asymptotic convergence results for the

methods. Another perspective for future work is to compare the proposed MCMC methods with deterministic Bayesian computation

strategies based on approximate message passing and expectation propagation algorithms [41], and to explore ways in which the

methods presented in this paper could be used to compute message passing or expectation propagation update steps within these

schemes.
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