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Abstract. Constraints are a natural choice for prior information in Bayesian inference. In various applications,
the parameters of interest lie on the boundary of the constraint set. In this paper, we use a method
that implicitly defines a constrained prior such that the posterior assigns positive probability to the
boundary of the constraint set. We show that by projecting posterior mass onto the constraint set,
we obtain a new posterior with a rich probabilistic structure on the boundary of that set. If the
original posterior is a Gaussian, then such a projection can be done efficiently. We apply the method
to Bayesian linear inverse problems, in which case samples can be obtained by repeatedly solving
constrained least squares problems, similar to a MAP estimate, but with perturbations in the data.
When combined into a Bayesian hierarchical model and the constraint set is a polyhedral cone, we
can derive a Gibbs sampler to efficiently sample from the hierarchical model. To show the effect of
projecting the posterior, we applied the method to deblurring and computed tomography examples.
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1. Introduction. The goal of Bayesian inference is to analyze the probability distribution
of a parameter obtained through Bayes’ theorem [6]. Bayes’ theorem states that an initial
distribution πpxq on a parameter x P Rn can be updated with the data b using the likelihood
function πpb|xq, more precisely, πpx|bq9πpb|xqπpxq. In many applications, the variable of
interest x must satisfy some constraints: the pixels in images are bounded, the attenuation
coefficients in a CT scan are nonnegative and the mass of an object might be bounded from
above. This kind of information is often incorporated in the prior distribution πpxq, with the
goal of making the posterior more accurate and explainable.

Besides choosing common prior distributions that are naturally restricted to the constraint
space, there are multiple other ways to add the constraints to the prior information. One of
them is to truncate the prior distribution [7], where an unconstrained prior πpxq is replaced
by a prior proportional to πpxq1Cpxq, where 1Cpxq is 1 if x P C and 0 otherwise. This is
equivalent to truncating the posterior, resulting in a posterior proportional to πpx|bq1Cpxq.
Samples from such a truncated posterior can be obtained using MCMC methods. Alterna-
tively, the variable can be reparameterized to an unconstrained space. For example, for a
positive variable x, we can write x “ ez and define an unconstrained prior on z. If z is
normally distributed, then x is referred to as the log-normal distribution [2]. These methods
generally focus on the interior of the constraint set, while in many applications, the signals
of interest lie on the boundary of the constraint set. For example, an image with at least
one zero-valued pixel already lies on the boundary of the nonnegative orthant and in many
applications, a lot of pixels are expected to be zero. However, if the distribution is described
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by a density, then the probability of having at least one zero-valued pixel is zero.
Here, we consider a method that focuses on the boundary of the constraint set by pro-

jecting samples from an unconstrained posterior onto the constraint set. Such methods have
been analysed before in a Bayesian decision-theoretic framework [13]. Furthermore, in the
case of Bayesian linear inverse problems with Gaussian likelihood and prior with nonnega-
tivity constraints, it has been noted [3, 4] that samples from a projected posterior can be
obtained by sampling from constrained versions of randomized linear least squares prob-
lems. More precisely, let x be an unknown signal which is observed through a linear for-
ward operator A : Rn Ñ Rm. Examples of linear forward operators include convolutions [12]
and CT-scans [1]. The observations are inaccurate measurements of the form b “ Ax ` e
with error e P Rm. The components of the error e are often modelled as independent and
identically distributed Gaussian random variables, which results in a likelihood of the form
πpb|xq9 exp

`

´λ
2 }Ax´ b}

2
2

˘

. If we model our initial knowledge of x as the prior distribution

πpxq9 exp
`

´ δ
2}Lx}

2
2

˘

, then the posterior distribution satisfies

πpx|bq9πpb|xqπpxq9 exp

ˆ

´
λ

2
}Ax´ b}22 ´

δ

2
}Lx}22

˙

.(1.1)

In [4], they observed that projecting (1.1) onto the nonnegative orthant with respect to the
norm }¨}λATA`δLTL is equivalent to solving the randomized constrained least squares problem

x‹ “ argmin
xPRn`

"

λ

2
}Ax´ b̂}22 `

δ

2
}Lx´ ĉ}22

*

,

where b̂ „ N pb, λ´1Iq and ĉ „ N p0, δ´1Iq.
In this paper, we generalize the approach from [3, 4] to general constraints, with a focus

on polyhedral sets, and analyze the projected Gaussian posterior obtained through solving
randomized constrained least squares problems. We derive a characterization for the projected
distribution and show how this theory can be applied to Bayesian linear inverse problems. We
also discuss how the projected posterior relates to a constrained prior and derive a Gibbs
sampler for when the constraints are polyhedral cones. Finally, we use numerical experiments
to look into the effect of the projection to Bayesian linear inverse problems.

This paper is organized as follows. In Section 2, we discuss the theory behind the oblique
projection of a multivariate Gaussian distribution onto a closed and convex set. In Section
3, we discuss how to apply this projection framework to uncertainty quantification for lin-
ear inverse problems. Finally, in Section 4, we discuss the projection framework applied to
deblurring and computer tomography.

2. Projected multivariate Gaussian distribution. In this section, we describe a framework
of projecting Gaussian distributions onto closed convex sets, where the projection is with
respect to the norm induced by the precision matrix of the Gaussian. We describe theort for
polyhedral constraint sets and give some explicit descriptions of the projected Gaussian for a
few simple constraint sets.

2.1. Oblique projection of Gaussians. Throughout this section, unless otherwise stated,
we make the following assumption.
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Assumption 2.1. The random vector x‹ P Rn follows a Gaussian distribution with mean
µ P Rn and covariance matrix Σ P Sn``, where Sn`` denotes the set of nˆn symmetric positive
definite matrices.

For x‹ as defined by Assumption 2.1, we can equivalently write x‹ “ µ ` Σŵ, where
ŵ „ N p0,Σ´1q. Define the quadratic function gpx;wq :“ 1

2x
TΣ´1x ´ xT pΣ´1µ ` wq,

then x‹ satisfies ∇xgpx‹; ŵq “ 0. Therefore, x‹ is the solution to a randomized quadratic
optimization problem of the form

(2.1) argmin
xPRn

"

1

2
xTΣ´1x´ xT pΣ´1µ` ŵq

*

.

Thus, we can sample from x‹ by repeatedly solving optimization problem (2.1) for different
samples of ŵ.

Now consider constraining optimization problem (2.1) to a closed convex set C Ď Rn. The
resulting optimization problem has the form

z‹ “ argmin
zPC

"

1

2
zTΣ´1z ´ zT pΣ´1µ` ŵq

*

, ŵ „ N p0,Σ´1q,

or equivalently

z‹ “ argmin
zPC

1

2
}z ´ pµ` Σŵq}2Σ´1 “ argmin

zPC

1

2
}z ´ x‹}2Σ´1 ,

i.e., z‹ is the oblique projection of x‹ „ N pµ,Σq onto C with respect to the norm induced by
the precision matrix Σ´1. This obliquely projected Gaussian distribution is the main object
of study in this work and is summarized in the following definition.

Definition 2.2. Under Assumption 2.1, the oblique projection of N pµ,Σq onto a closed,
convex set C Ă Rn is the oblique projection of x‹ onto the set C with respect to the norm
induced by the precision matrix Σ´1, that is,

(2.2) z‹ “ ΠΣ´1

C px‹q :“ argmin
zPC

1

2
}x‹ ´ z}2Σ´1 .

Because the precision matrix Σ´1 is positive definite, the oblique projection onto a closed,
convex set ΠΣ´1

C is well-defined and continuous, hence measurable. Therefore, the random
vector (2.2) is well defined with distribution

(2.3) PpΠΣ´1

C px‹q P Eq “ P
ˆ

x‹ P
”

ΠΣ´1

C

ı´1
pEq

˙

,

for a measurable set E and where
”

ΠΣ´1

C

ı´1
denotes the inverse image of ΠΣ´1

C .

Solving the optimization problem (2.2) can be computationally expensive, however, the in-
verse mapping can be analyzed more easily. The optimality condition of the oblique projection
is given by

0 P Σ´1pz‹ ´ x‹q `NCpz
‹q,
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or equivalently

x‹ P z‹ ` ΣNCpz
‹q,

where NCpzq “ BICpzq “ tv |v
T py ´ zq ď 0,@y P Cu is the normal cone associated with C.

From optimality condition (2.1) and equation (2.3) we get that the distribution of the
projected Gaussian can be described by

(2.4) P
´

ΠΣ´1

C px‹q P E
¯

“ P

˜

x‹ P
ď

zPE

rz ` ΣNCpzqs

¸

,

where E is a measurable set.
Because of the projection, a lot of the mass gets projected onto the boundary of the

constraint set. If C is a polyhedral set, then the probability on the boundary can be described
as in the following lemma.

Lemma 2.3. Under Assumption 2.1, if C is a polyhedral set and F is a face of C, then for
any measurable set E Ď relintpFq, where relintpFq denotes the relative interior of the face F,
we have

P
´

ΠΣ´1

C px‹q P E
¯

“

ż

E
πFpzqdz,

where πFpzq is the dimpFq-dimensional density

πFpzq “

ż

ΣNCpzq
πx‹pz ` vqdv.

Proof. For any z P relintpFq, the normal cone NCpzq is independent of z, therefore we
can write (2.4) as

P
´

ΠΣ´1

C px‹q P E
¯

“

ż

E`ΣNC

πx‹pwqdw

“

ż

E

ż

ΣNC

πx‹pz ` vqdvdz,

where the final decomposition is valid due to Lemma A.1 in Appendix A.1.

Lemma 2.3 above states that the projected Gaussian distribution onto a polyhedral set
consists of a mixture of various densities of different dimensions on all of the faces of the
polyhedral set.

Extending Lemma 2.3 to general closed, convex sets C is a more complicated procedure,
but the idea of densities of different dimensions on different parts of the constraint set is the
same. For example, consider the quarter disc as illustrated in Figure 1. The projection has no
effect on the interior of the domain, therefore, there is a two-dimensional density on the interior
of the set. The normal cones at the three corners are two dimensional, therefore, positive mass
gets projected onto each of the corners. The normal cone at the straight and curved lines
are one-dimensional, resulting in one-dimensional densities on these parts. Figure 2, shows
these densities, except for the corner points. To further illustrate this, we will consider a few
examples for which we can compute analytical expression for the densities.
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z `NCpzq

C

z ` ΣNCpzq

C

Figure 1: Visualization of obliquely projecting a density onto the different boundary compo-
nents of a quarter disc.

2.2. Analytic examples. Computing analytical expressions for the densities on parts of
the surface of the constraint set is in general intractable, but can be computed when the
dimension of the normal cone NCpxq is at most one-dimensional. In this subsection, we
consider two such cases, half-space and disc constraints, and give analytical expressions for
their densities.

2.2.1. Halfspace. Suppose that C is a halfspace defined by C “ tx P Rn |aTx ď bu,
where a P Rn is a nonzero normal vector and b P R. Denote by F P Rnˆpn´1q a matrix
whose columns form an orthonormal basis for NullpaT q and let x0 P Rn satisfy aTx0 “ b,
then the boundary of the halfspace C can be parameterized by x0`Fu for u P Rn´1. Under
Assumption 2.1, the n´ 1 dimensional density of ΠΣ´1

C px‹q on the boundary of C is given by

(2.5) πbdpuq “ πx‹px0 ` Fuq

c

aTΣa

aTa
exp

`

γ2
˘

c

π

2
erfc pγq ,

where γ “ 2pb´aTµq
?

8aTΣa
and erfc is the complementary error function.

2.2.2. Unit disc. Suppose that C is a unit disc defined by C “ tx P R2 | }x}2 ď 1u
with boundary parameterization npuq :“ pcospuq, sinpuqqT for u P r0, 2πq. The density on the
boundary of the disc is given by

(2.6) πbdpuq “ πx‹pnpuqq

ˆ

detpΣq

α
`

?
π

?
8a3{2

p2αKpuq ´ β detpΣqq exp

ˆ

β2

8α

˙

erfc

ˆ

β
?

8α

˙˙

,

where α “ npuqTΣnpuq, β “ 2npuqT pnpuq´µq, Kpuq “ detrΣnpuq Rnpuqs and R “

„

0 ´1
1 0



.

These computations are all based on being able to compute the integral of a Gaussian
over a one-dimensional normal cone and the computations can be found in Appendix A.2.
Furthermore, these distributions can be mixed. Figure 2 shows the one-and two-dimensional
densities on the boundary of a quarter disc as described by the Equations (2.5) and (2.6).



6 J.M. EVERINK, Y. DONG, M.S. ANDERSEN

0
0.1
0.2
0.3
0.4

0.2
0.4
0.6

0.20.40.6

Quarter disc one-and two-dimensional densities

0.132

0.164

0.196

0.228

0.260

0.292

0.324

0.356

0.388

0.420

Figure 2: The one-and two-dimensional densities of the oblique projection of a Gaussian onto
a quarter disc. The zero-dimensional densities in the corners are not shown.

2.3. Boundary properties. As seen in the analytical examples in Subsection 2.2, a lot of
mass is projected onto the boundary of the constraint set C. Nevertheless, there will always
be a positive probability on the relative interior of the constraint set. The following lemma
shows that both the boundary and relative interior of the constraint set will always have
positive probability. Although the lemma is formulated in terms of the oblique projection of a
Gaussian distribution with respect to its precision matrix, the proof extends to the projection
with respect to any positive definite matrix and any continuous distribution whose support is
Rn.

Lemma 2.4. Under Assumption 2.1, if C Ă Rn is a non-empty, closed, convex set, then
the probability of being on the boundary of C is positive and the probability of being in the
relative interior of C is positive, i.e.,

PpΠΣ´1

C px‹q P bdpCqq ą 0 and PpΠΣ´1

C px‹q P relintpCqq ą 0.

Proof. Because C Ă Rn and closed, RnzC is non-empty and open. Therefore

PpΠΣ´1

C px‹q P bdpCqq ě Ppx‹ P RnzCq ą 0.

Let z P relintpCq, then there exists ε ą 0 such that Bεpzq X affpCq Ď C, where Bεpzq is
the closed ball of radius ε around z and affpCq is the affine hull of C. By Lemma A.1,
Bεpzq X affpCq ` Σ affpCqK is an n-dimensional convex set. Therefore we can conclude that

PpΠΣ´1

C px‹q P relintpCqq ě Ppx‹ P Bεpzq X affpCq ` Σ affpCqKq ą 0.
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Typically, one would like to compute a single point estimate from the posterior and analyze
the uncertainty of that estimate. A common choice for point estimate is the MAP (Maximum
a Posteriori), which is the point of maximum posterior density. However, due to the projected
posterior consisting of a mixture of different dimensional densities, the MAP estimate is
undefined. Another common choice for point estimate is the mean of the posterior, however, as
the following theorem shows, the mean of the projected posterior lies inside the relative interior
of the constraint set. It is therefore not always a suitable point estimate if one is interested in
the boundary of the constraint set. This motivates our choice of the componentwise median
as point estimate in the numerical examples in Section 4.

Theorem 2.5. Under Assumption 2.1, if C Ă Rn is a non-empty, closed, convex set, then

ErΠΣ´1

C px‹qs P relintpCq.

Proof. By Lemma 2.4, p :“ PpΠΣ´1

C px‹q P relintpCqq ą 0. Let z‹ “ ΠΣ´1

C px‹q, then
consider the decomposition of the expectation on the relative interior, i.e.,

Erz‹s “ pErz‹|z‹ P relintpCqs ` p1´ pqErz‹|z‹ P relbdpCqs.

We have that Erz‹|z‹ P relintpCqs P relintpCq by the convexity of the relative interior and
Erz‹|z‹ P relbdpCqs P C. Combined with the fact [10, Lemma 2.1.6] that for p P p0, 1s,
p relintpCq ` p1´ pqC Ď relintpCq, we can conclude that Erz‹s P relintpCq.

2.4. Gaussian decomposition. The two analytical examples in Subsection 2.2 illustrate
that the densities on the boundary of the constraint set can become quite complicated, even
for relatively simple examples. However, note that the density on the boundary of a half-
space in (2.5) is proportional to the original Gaussian density, while on the boundary of a
disc in (2.6), the additional factor depends on the surface coordinate. The property that the
densities are proportional to the original Gaussian as observed in the half-space example can
be generalized to polyhedral sets as stated in the following theorem, which is a key observation
for the derivation of the Gibbs sampler in Subsections 3.2 and 3.3.

Theorem 2.6. Under Assumption 2.1, if C Ď Rn is a polyhedral set, then the density of
the projected Gaussian ΠΣ´1

C px‹q on the relative interior of any face of C is proportional to
the density of x‹.

Proof. Consider a face F of the polyhedral set C Ď Rn with linearly independent normal
vectors a1, . . . ,ak P Rn, where k is the dimension of the face F, and let F P Rnˆpn´kq be a
matrix whose columns form a basis for the space orthogonal to the span of the normal vectors
a1, . . . ,ak, i.e., F Tai “ 0 for all i “ 1, . . . , k. If x0 is any point on F, then each point z P F
can be written as x0`Fu for some u and the corresponding normal cone can be parameterized
as

řk
i“1 tiai for ti ě 0 for all i “ 1, . . . , k. The density πF on the face then satisfies

πFpuq9

ż 8

0
¨ ¨ ¨

ż 8

0
πx‹

˜

x0 ` Fu`
k
ÿ

i“1

tiΣai

¸

dt1 ¨ ¨ ¨ dtk.
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Note that

´2 log

¨

˝

πx‹
´

x0 ` Fu`
řk
i“1 tiΣai

¯

πx‹ px0 ` Fuq

˛

‚

“ 2

˜

k
ÿ

i“1

tiai

¸T

px0 ` Fu´ µq `

˜

k
ÿ

i“1

tiΣai

¸T

Σ´1

˜

k
ÿ

i“1

tiΣai

¸

.

The only term that depends on u vanishes because

˜

k
ÿ

i“1

tiai

¸T

Fu “
k
ÿ

i“1

tia
T
i Fu “ 0,

and hence

πx‹

˜

x0 ` Fu`
k
ÿ

i“1

tiΣai

¸

9 cpt1, . . . tkqπx‹ px0 ` Fuq ,

where cpt1, . . . tkq only depends on the coefficients ti. It follows that

πFpuq9

ż 8

0
. . .

ż 8

0
πx‹

˜

x0 ` Fu`
k
ÿ

i“1

tiΣai

¸

dt1 . . . dtk9πx‹ px0 ` Fuq ,

i.e., the density of the projected Gaussian on a face of the polyhedral set is proportional to
the unprojected Gaussian.

3. Bayesian linear inverse problems with constraints. In this section, we describe how to
apply the theory for projected Gaussian distributions in Section 2 to linear inverse problems.
We discuss the randomized optimization problems to be solved to obtain samples from the
projected posteriors and how the projected posterior relates to a constrained prior. Finally,
we define a Bayesian hierarchical model for the linear inverse problem and derive a Gibbs
sampler for that model in the special case where the constraint set C is a polyhedral cone.

3.1. Bayesian model. Let us now consider the problem of recovering a signal x P Rn from
noisy observations b “ Ax ` e using a linear forward operator A : Rn Ñ Rm and with noise
e „ N p0,Σeq for Σe P Sn``. This results in the likelihood function

πpb |xq9 exp

ˆ

´
1

2
}Ax´ b}2

Σ´1
e

˙

.

Furthermore, assume a priori that x „ N p0,Σxq with Σx P Sn``, i.e.,

πpxq9 exp

ˆ

´
1

2
}x}2

Σ´1
x

˙

.

From Bayes’ theorem we obtain the posterior distribution

(3.1) πpx | bq9πpb |xqπpxq9 exp

ˆ

´
1

2
}Ax´ b}2

Σ´1
e
´

1

2
}x}2

Σ´1
x

˙

,
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which is a Gaussian distribution with covariance Σx|b “ pΣ
´1
x ` ATΣ´1

e Aq´1 and mean µ “

Σx|bA
TΣ´1

e b. Now consider a closed, convex set C Ă Rn. To sample from the projected
posterior, instead of solving

argmin
xPC

"

1

2
xT pΣ´1

x `ATΣ´1
e Aqx´ xT pATΣ´1

e b` ŵq

*

,

where ŵ „ N p0,Σ´1
x|bq, we can equivalently solve

(3.2) argmin
xPC

"

1

2
}Ax´ b̂}2

Σ´1
e
`

1

2
}x´ ĉ}2

Σ´1
x

*

,

where b̂ „ N pb,Σeq and ĉ „ N p0,Σxq, i.e., solving randomized constrained linear least
squares problems or randomized MAP estimates.

For a simple case where e „ N p0, pλIq´1q and x „ N p0, pδLTLq´1q with hyperparameters
λ, δ ą 0 and L is a full-rank matrix, the posterior (3.1) simplifies to

(3.3) πpx | bq9πpb |xqπpxq9 exp

ˆ

´
λ

2
}Ax´ b}22 ´

δ

2
}Lx}22

˙

.

Optimization problem (3.2) then simplifies to

(3.4) argmin
xPC

"

λ

2
}Ax´ b̂}22 `

δ

2
}Lx´ ĉ}22

*

,

where b̂ „ N pb, pλIq´1q and ĉ „ N p0, pδIq´1q.
Thus, by repeatedly solving the randomized constrained least squares problem (3.4), we

obtain samples from the obliquely projected posterior onto the set C.

3.2. Constrained prior. Although we defined the posterior implicitly through modification
of the unconstrained posterior, we can also interpret this modification as having implicitly
defined a constrained prior. Let C Ď Rn be a polyhedral set and define the projected posterior
onto C as in (2.2). By Theorem 2.6, the projected posterior density on any face F of C is
proportional to the unprojected posterior. Because constraining the signal is based on prior
information, we will assume that the likelihood πpb|xq is not affected by the projection. Hence,
by Bayes’ formula, we obtain the prior density on the face,

πx,Fpuq9
πx|b,Fpuq

πb|xpx0 ` Fuq
9

exp
´

´1
2}Ax´ b}

2
Σ´1

e
´ 1

2}x}
2
Σ´1

x

¯

exp
´

´1
2}Ax´ b}

2
Σ´1

e

¯(3.5)

9 exp

ˆ

´
1

2
}x}2

Σ´1
x

˙

9πxpx0 ` Fuq,

where we denote by x “ x0 ` Fu the point of the face F parameterized by u.
This shows that the corresponding constrained prior is proportional to the unconstrained

prior on any face of C and therefore has a similar structure on C as the posterior. However,
this constrained prior is generally not the same as obliquely projecting the prior onto the
constraint set.
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3.3. Bayesian hierarchical model and Gibbs sampler. Let us now consider adding priors
to the hyperparameters λ and δ. To exploit that Gaussian and Gamma distributions are
conjugate, let the hyperpriors be λ „ Γpαλ, βλq and δ „ Γpαδ, βδq, i.e.,

πpλq9λαλ´1 expp´βλλq, for λ ą 0 and

πpδq9 δαδ´1 expp´βδδq, for δ ą 0.

Combining these hyperpriors with the likelihood and prior of the previous section results in
a Bayesian hierarchical model. A common method for sampling for the signal x and hyper-
parameters λ and δ is a hierarchical Gibbs sampler [2, Algorithm 5.1]. For the unconstrained
setting of (3.3), it can be derived that

πx,λ,δ|bpx, λ, δq9 λm{2`αλ´1δn{2`αδ´1

ˆ exp

ˆ

´
λ

2
}Ax´ b}22 ´

δ

2
}Lx}22 ´ βλλ´ βδδ

˙

,

from which it follows that

λ |x, b „ Γpm{2` αλ,
1

2
}Ax´ b}22 ` βλq,

δ |x, b „ Γpn{2` αδ,
1

2
}Lx}22 ` βδq,(3.6)

and x |λ, δ, b is a Gaussian described by (3.3). A Gibbs sampler then alternates among
sampling from these conditional distributions.

Now for the constrained setting, let C be a polyhedral cone, i.e., C is the conic hull
of finitely many vectors. Combined with the constrained prior in (3.5), we can compute the
normalization constant K of the density of the prior conditioned on the face F of C as follows,

1 “

ż

F
πx|Fpuqdu “ K

ż

F
exp

ˆ

´
δ

2
}LFu}22

˙

du “ Kδ´dimpFq{2

ż

F
exp

ˆ

´
1

2
}LFv}22

˙

dv,

where we used that the face of any polyhedral cone is again a polyhedral cone, hence cF “ F
for any c ą 0 and we can take x0 “ 0. The normalization constant K is therefore

K “
δdimpFq{2

ş

F exp
`

´1
2}LFv}

2
2

˘

dv
,

hence the distribution of the prior conditioned on the face satisfies

πx|Fpuq9 δ
dimpFq{2 exp

ˆ

´
δ

2
}LFu}22

˙

,

where the proportionality does not depend on δ anymore.
Now we can obtain the distribution of the (hyper)parameters using Bayes’ formula,

πx,λ,δ|b,Fpu, λ, δq9 πb|x,λ,δpFuqπx|δ,Fpuqπλpλqπδpδq

9 λm{2`αλ´1δdimpFpxqq{2`αδ´1

ˆ exp

ˆ

´
λ

2
}AFu´ b}22 ´

δ

2
}LFu}22 ´ βλλ´ βδδ

˙

,
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Input: x0, αλ, βλ, αδ, αλ, kmax

for k “ 1 to kmax do
Compute pλk, δkq „ πλ,δ|x,b as follows:

λk „ Γ
`

m{2` αλ,
1
2}Ax

k´1 ´ b}22 ` βλ
˘

,
δk „ Γ

`

dimpFpxk´1qq{2` αδ,
1
2}Lx

k´1}22 ` βδ
˘

.
Compute xk „ πx|b,λk,δk using (3.4)

end for
return tpxk, λk, δkquk“1,...,kmax

Sampler 3.1: Polyhedral Cone Hierarchical Gibbs Sampler

where Fpxq is the smallest face of C that contains x. Therefore, we can conclude the following
conditional distributions of the hyperparameters,

πpλ |x, b,Fq9λm{2`αλ´1 expp´βλλ´
λ

2
}Ax´ b}22q, for λ ą 0 and

πpδ |x, b,Fq9 δdimpFpxqq{2`αδ´1 expp´βδδ ´
δ

2
}Lx}22q, for δ ą 0,

or equivalently

λ |x, b,F „ Γpm{2` αλ,
1

2
}Ax´ b}22 ` βλq,

δ |x, b,F „ ΓpdimpFpxqq{2` αδ,
1

2
}Lx}22 ` βδq.(3.7)

From these conditional distributions, we obtain the Polyhedral Cone Hierarchical Gibbs Sam-
pler 3.1.

The main difference with the ordinary Hierarchical Gibbs sampler is δ, see the difference
between (3.6) and (3.7). It can be quite expensive to compute dimpFpxkqq, but in a few cases
there are simpler expressions. In the simplest setting where C “ Rn, i.e., the unconstrained
setting, then the only face is the whole space Rn, hence dimpFpxkqq “ n and the Polyhedral
Cone Hierarchical Gibbs Sampler reduces to the ordinary Hierarchical Gibbs Sampler. In
the more complicated setting where C “ Rně0, i.e., nonnegativity constraints, then the faces
are characterized by the zero values of the vector and dimpFpxqq simplifies to the number of
non-zero values elements of x. The Polyhedral Cone Hierarchical Gibbs Sampler above then
simplifies to the Nonnegative Hierarchical Gibbs Sampler of [4].
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Figure 3: True signal, true data and noisy data for a Gaussian deblurring problem.

4. Numerical examples. In this section, we present two numerical examples. First, we
consider a one-dimensional deblurring problem and investigate the effect of constraints on
the posterior distribution. Second, we consider a Bayesian hierarchical model for a two-
dimensional computed tomography (CT) problem. For this problem, we use the Gibbs sampler
as described in the Subsection 3.3 and take particular interest in efficiently and approximately
solving the constrained linear least squares problems required for sampling.

4.1. One-dimensional deblurring with different constraints. Let us first consider a one-
dimensional Gaussian deblurring problem defined by

(4.1) b “ Ax` e,

for a true signal x P r0, 1sn, noise e „ N p0, λ´1Iq with hyperparameter λ ą 0 and forward
operator A defined by the Toeplitz matrix

Aij “
h

γ
?

2π
exp

˜

´
1

2

ˆ

hpi´ jq

γ

˙2
¸

, for i, j “ 1, . . . , n

where n “ 128, h “ 1{n and γ “ 0.02. Assume a priori that x „ N p0, pδLTLq´1q, where
δ ą 0 is a hyperparameter and L is a periodic first-order finite difference matrix. Let the
hyperparameters be fixed to λ “ 1000 and δ “ 150.

Figure 3 shows the true signal and the noisy measurements obtained through (4.1) with
λ “ 1000. For the specific instance of e we have }e}{}Ax} « 6%. The true signal is divided
into multiple components in order to illustrate the impact of constraints on different signal
behaviour. These components include instantaneous changes between the extreme values 0
and 1, a small deviation from an extreme value and a smooth transition between extreme
values. A lot of the components of the true signal have extreme values, hence we will be a
priori interested in signals on the boundary of r0, 1sn, i.e., the set of signals for which at least
one element is 0 or 1.
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(a) Different constraints with oblique projection.
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(b) Different constraints with standard Euclidean projection.

Figure 4: Component-wise median and 95% credible intervals for 10000 samples of the Gauss-
ian deblurring model.

Figure 4a shows the component-wise median and 95% credible intervals for the posterior
from 10000 samples obtained by repeatedly solving optimization problem (3.4) in the uncon-
strained (Rn), nonnegative constrained (Rně0) and box constrained (r0, 1sn) settings. Note
that the fluctuating features near the extreme values 0 and 1 get flattened when applying the
constraints. However, when applying the Euclidean projector to unconstrained samples, as
illustrated in Figure 4b, these fluctuations around the extreme values are stronger.

As we use the median as central point estimate, we measured the variation of the samples
using the width of component-wise credible intervals. Figure 5 shows the width of 95%
component-wise credible intervals for the examples in Figure 4a. Figure 5 shows that the
width is reduced most where the signal values lie close the extreme values, but the width is
also reduced for values close to extreme. Furthermore, using the oblique projection generally
reduces the width more than the Euclidean projector. A possible explanation is that the
Euclidean projection works component-wise, while the oblique projection takes interaction
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Figure 5: Component-wise width of 95% credible intervals for different constraints and projec-
tors (oblique and Euclidean) obtained from 10000 samples of the Gaussian deblurring model.
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Figure 6: True Shepp-Logan phantom (left) and noisy sinogram (right).

between components into account.

4.2. Gibbs sampler for CT reconstruction with nonnegativity constraints. Let us now
consider a CT problem [8] of the form

b “ Ax` e,

where the true signal x P R100ˆ100 is the Shepp-Logan phantom shown in Figure 6, the
noise satisfies e „ N p0, λ´1Iq with hyperparameter λ ą 0, and forward operator A obtained
from AIR Tools II [9] is a discretized Radon transform at 180 angles with 140 rays and a
parallel-beam geometry. Assume a priori that x „ N p0, pδLTLq´1q with where δ ą 0 is a
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hyperparameter and L is a first-order finite difference matrix. We generated noisy data using
λ “ 5. For the specific instance of e we have }e}{}Ax} « 4%.

In CT, the signal x represents attenuation coefficients that are bounded from below by
the corresponding background value, generally air. For simplicity, this constraint has been
modelled as nonnegatity. In this experiment, we used the Polyhedral Cone Hierarchical Gibbs
Sampler to sample from the posterior both with and without nonnegativity constraints. The
parameters for the hyperprior were chosen to be αλ “ αδ “ 1 and βλ “ βδ “ 10´4, similar to
[4].

Repeatedly solving optimization problem (3.4) to high accuracy is a very costly procedure.
Therefore, instead of solving the optimization problem from scratch at each iteration of the
Gibbs sampler, we solve the optimization problem each time using a few iterations of FISTA
[5] with the previous sample as warm-start. Using a small number of iterations, greatly
reduces the computation time, but the samples become more correlated and do not have to
be samples from the target distribution anymore. This is similar to using a few steps of CG
in a gradient scan Gibbs sampler [2, Algorithm 5.4],although this guarantees convergence to
the target distribution.

We chose to run 100 iterations of FISTA for each sample with the dynamic stepsize
0.99pλ}ATA}2 ` δ}LTL}2q

´1. This stepsize is a positive lower-bound on the inverse of the
Lipschitz constant of the objective function and therefore guarantees convergence. We ran
the algorithm for 15000 samples and removed the first 1000 samples as burn-in.

Figure 7 shows the autocorrelation function (ACF) and the distribution of the hyperpa-
rameters λ and δ. First, note that the autocorrelation function for λ decays slightly faster
in the nonnegative setting than the unconstrained setting. This shows that the nonnegative
samples are slightly less correlated. Second, although the actual noise level is the same in
both settings, the noise parameter λ and the prior hyperparameter δ are noticeably smaller.

Figure 8 shows the component-wise median for both the unconstrained and nonnegative
setting. The main difference between the two medians lies in the background of the phantom.
The unconstrained median has a non-uniform background containing a lot of small artefacts,
while the nonnegative median is, besides a few pixels, uniformly zero in the background.

Another difference between the unconstrained and nonnegative setting is the component-
wise variation. Figure 9 shows the width of the component-wise 95% credible intervals together
with the difference between the two settings. Note the different range of the unconstrained
and nonnegative settings. Just like in the deblurring experiment, the width is greatly reduced
in the components that are close to the extreme values. Therefore, the uncertainty can be
used to easily distinguish between the actual object and the background. The uncertainty
inside the object is slightly larger with nonnegativity constraints, which is due to the smaller
λ and δ hyperparameters as observed in Figure 7.

5. Conclusion. We have presented a method for handling constraints in Bayesian inference
that puts positive probability on the boundary of the constraint set. In general, the method
works by projecting posterior samples from outside the constraint set onto the constraint set.
Therefore, the method can be interpreted as post-processing the posterior by projecting the
density onto the constraint set.

The posterior sampling and projection steps can be combined if the posterior distribution
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Figure 7: Autocorrelation functions (ACF) for the hyperparameters and hyperparameter dis-
tributions for unconstrained and nonnegative setting.
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Figure 9: Component-wise width of 95% credible intervals for the unconstrained (left) and
nonnegative (middle) settings, together with their difference (right).

is Gaussian and the projection is with respect to the posterior precision matrix. Samples from
such a post-processed posterior can be obtained by solving perturbed constrained quadratic
optimization problems. Although this distribution is difficult to describe in closed form for
general constraint sets, we were able to characterize the distribution when the constraint set is
a polyhedral set. We have proven that the projected posterior on a polyhedral set consists of
densities on each of the faces and these densities are proportional to the unprojected posterior
density.

To apply the theory, we considered Bayesian linear inverse problems. For such problems,
sampling from the projected posterior can be achieved by solving perturbed constrained linear
least squares problems. Furthermore, we considered a Bayesian hierarchical model and derived
a Gibbs sampler for the constrained problem when the constraint set is a polyhedral cone.

We tested the projection method on deblurring and CT test cases, for which component-
wise bounds are natural constraints. These numerical experiments have shown that the pro-
jected posterior can greatly reduce the uncertainty of vector components that are close to
their bounds. Furthermore, the experiments suggest that using the oblique projection instead
of the Euclidean projection gives better results.

One major issue with sampling by means of solving perturbed constrained least squares
problems is the computational cost. The computational cost of solving these optimization
problems accurately can be very high, yet it is still unknown to what extent accurate solutions
are necessary. Therefore, further research should focus on determining what the effect that
inaccurately solving the optimization problems has on the distribution of the samples.

Another topic of further study is identifying more techniques for efficient post-processing of
posteriors beyond constraints. For example, adding penalization functions to the randomized
least squares problems results in new modified posteriors. The computational cost of sampling
from this new posterior is similar to the projected posterior, but it can introduce different
regularization-like effects.
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Appendix A. Miscellaneous proofs and computations.

A.1. Linear algebra lemma.

Lemma A.1. If u1, . . . ,uk,uk`1, . . . ,un P Rn is an orthonormal basis and Σ is a positive
definite matrix, then u1, . . . ,uk,Σuk`1, . . . ,Σun P Rn is a basis for Rn.

Proof. Let U “ rU1, U2s where U1 and U2 are matrices with the first k and last n ´ k
vectors ui as columns respectively. We will proof the claim by showing that Û “ rU1,ΣU2s

has full rank. Note that

UT Û “

„

I UT1 ΣU2

0 UT2 ΣU2



,

has full rank, because UT2 ΣU2 is positive definite. Therefore, Û “ UpUT Ûq also has full rank.

A.2. Analytic computations.

A.2.1. Halfspace. Define the halfspace C “ tx P Rm |aTx ď bu, where a P Rn is
a nonzero normal vector and b P R. Denote by F P Rnˆpn´1q a matrix whose columns
form an orthonormal basis for NullpaT q, then the boundary of the halfspace defined can be
parameterized by x0 ` Fu for u P Rn´1. Let x‹ „ N pµ,Σq and E Ď bdpCq be measurable,
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then

P
´

ΠΣ´1

C px‹q P E
¯

“ |det
`“

Σa F
‰˘

|

ż

Rn´1

ż 8

0
πx‹px0 ` Fu` tΣaqdt du

“

ż

Rn´1

aTΣa

}a}2

ż 8

0
πx‹px0 ` Fu` tΣaqdtdu,

hence the density on the boundary can be written as

πbdpuq “
aTΣa

}a}2

ż 8

0
πx‹px0 ` Fu` tΣaqdt.

The integral can be computed using the following integral identity [11]: for constants a ă 0
and b, c P R,

ż 8

0
exppat2 ` bt` cqdt “

?
π

2
?
´a

exp

ˆ

´
b2

4a
` c

˙

erfc

ˆ

´
b

2
?
´a

˙

.

A.2.2. Disc. Suppose that C is a unit disc defined by C “ tx P R2 | }x}2 ď 1u with
boundary parameterization npuq :“ pcospuq, sinpuqqT for u P r0, 2πq. For the two-dimensional
ball, we can derive an exact distribution on its boundary in a similar way to the boundary of
a halfspace. Let E Ď bdpCq be measurable, then

P
´

ΠΣ´1

C px‹q P E
¯

“

ż

E

ż 8

0
πx‹pnpuq ` tΣnpuqq|Jpt, uq|dtdu,

where

|Jpt, θq| “ det
“

Σnpuq pI ` tΣqRnpuq
‰

, with R “

„

0 ´1
1 0



,

or equivalently

|Jpt, θq| “ det
“

Σnpuq Rnpuq
‰

` t detpΣq “: Kpuq ` tdetpΣq.

Therefore, the resulting boundary distribution is given by

πbdpuq “

ż 8

0
pKpuq ` t detpΣqqπx‹pnpuq ` tΣnpuqqdt.

The integral can be computed using the following integral identity [11]: for constants a ą 0
and b, c, d, f P R,

ż 8

0
pd`ftq expp´

1

2
pat2`bt`cqqdt “

e´c{2

4a3{2

ˆ

4f
?
a`

?
2πp2ad´ bfq exp

ˆ

b2

8a

˙

erfc

ˆ

b
?

8a

˙˙

.
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