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WEIGHTED-NORM PRECONDITIONERS FOR A MULTI-LAYER

TIDE MODEL

COLIN J. COTTER∗, ROBERT C. KIRBY† , AND HUNTER MORRIS‡

Abstract. We derive a linearized rotating shallow water system modeling tides, which can be
discretized by mixed finite elements. Unlike previous models, this model allows for multiple layers
stratified by density. Like the single-layer case [20] a weighted-norm preconditioner gives a (nearly)
parameter-robust method for solving the resulting linear system at each time step, but the all-to-all
coupling between the layers in the model poses a significant challenge to efficiency. Neglecting the
inter-layer coupling gives a preconditioner that degrades rapidly as the number of layers increases.
By a careful analysis of the matrix that couples the layers, we derive a robust method that requires
solving a reformulated system that only involves coupling between adjacent layers. Numerical results
obtained using Firedrake [30] confirm the theory.
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1. Introduction. Accurate modeling of tides plays a critical role in computa-
tional geosciences. Tide models help geologists to understand sediment transport
and coastal flooding, and they help oceanographers to study mechanisms for global
circulation [17, 28]. Finite element methods offer theoretically and computationally
robust and efficient discretizations of these methods, and are especially attractive in
handling irregular coastlines or topography [36]. The literature contains many pa-
pers [10, 11, 23, 22, 24, 32] studying mixed finite element pairs for discretization of
layers of ocean and atmosphere models. Much of this work relates to dispersion rela-
tions and conservation principles, although our work in [12, 13] focuses on semidiscrete
energy estimates related to the damping and corresponding error analysis, including
a very broad class of possible nonlinear damping models.

This past work has focused on single-layer tide models derived under a lineariza-
tion of the shallow water approximation. Oceans tend to stratify by density accord-
ing to depth, however, and more involved models can include multiple layers, each of
which have different densities and are coupled together via hydrostatic pressure. A
derivation of the fully nonlinear multi-layer depth-averaged equations can be found
in [5, 26]. Among many interesting features, these equations can lose hyperbolicity
in situations approaching Kelvin-Helmholtz instability [25]. A further generalization
with the number of layers varying spatially appears in [7]. Here, we consider only a
linearized model, suitable for tides rather than more general coastal flows, that does
not have this difficulty. We propose a mixed finite element discretization of this lin-
earized multilayer model and develop effective preconditioners along the lines of those
given in the single-layer case in [20]. The all-to-all coupling of the layers presents com-
putational challenges, and special structure of the coupling matrix turns out to be
critical. We consider systems of equations arising from implicit time stepping rather
than the explicit methods in [5, 7, 26]. These methods are better-suited for energy
conservation in the absence of damping, and can allow large time steps with better
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Fig. 2.1: Example of a one-dimensional fluid with three layers.

stability, but the linear systems required at each time step are quite challenging to
solve.

2. Model and discretization. We consider a series of layers of fluid inhabiting
a domain Ω ∈ R

2, with the top layer having thickness D1, the next layer D2, and so
on until DN for the bottom layer with bottom boundary z = b(x, y). The density
of each layer is denoted by ρi, and we assume that ρi < ρi+1 – the densities strictly
increase between layers down a column. Typically, ocean water density varies between
1.02 and 1.07 g/cm3. Hence, we think of the change in density between the top and
bottom layers as being small, and hence the density difference between two layers as
quite small compared to ρ1. As a technical assumption that easily covers this case,
we posit that

(2.1) ρN ≤ 2ρ1.

The horizontal fluid velocity within each layer will be denoted by horizontal ve-
locity ui. We have acceleration due to gravity g, and in this work we take the Coriolis
parameter f to be a constant less than 1.

We assume that the pressure is hydrostatic, meaning that the pressure in each
layer i satisfies

(2.2) ∂p
∂z |i = −ρig,

so p|i = −ρigz + ci in each layer.
Using p = 0 at the top surface, we have

(2.3) p|1 = ρ1g




N∑

j=1

Dj + b− z


 .

Evaluating this at the bottom of the top layer gives

(2.4) p|1(z =

N∑

j=2

Dj + b) = ρ1gD1.
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Then,

p|2 = ρ2g




N∑

j=2

Dj + b− z +
ρ1
ρ2

D1



 = ρ2g




N∑

j=1

Dj + b − z +
ρ1 − ρ2
ρ2

D1



 .(2.5)

By induction or pattern-matching, we have

p|i = ρig




N∑

j=i

Dj + b− z +

i−1∑

j=1

ρj
ρi
Dj




= ρig




N∑

j=1

Dj + b− z +

i−1∑

j=1

ρj − ρi
ρi

Dj


 ,

(2.6)

Under the assumption that the motion is columnar (that is, horizontal velocity
is independent of z) within each layer, the horizontal component of the momentum
equation becomes (after dividing by ρi)

∂ui

∂t + ui · ∇ui + fu⊥
i =− g∇




N∑

j=1

Dj +

i−1∑

j=1

ρj − ρi
ρi

Dj + b





− Ci(ui)

Di
+
F (t)

Di
,

(2.7)

where we added a parameterization for bottom drag, with Ci(ui)) the damping func-
tion, and F (t) is the barotropic tidal forcing. The rationale for the scaling with Di is
that the drag is due to turbulence assumed to occur in the bottom layer only. This
turbulent flow exerts an effective damping force proportional to the velocity in the

bottom layer, so the depth averaged momentum source is
∫ b+DN

b F (u)dz, and then
we divide by Di to get the equation for u.

Sometimes a simplified model is used under the rigid lid assumption, in which we
assume that

∑N
j=1Dj+b is constant. This is relevant because typically (ρj −ρi)/ρi is

small, and so there are very fast “barotropic” waves where ui is independent of i, and
much slower “baroclinic” waves where the free surface is more-or-less flat. It is the
baroclinic tides that become interesting since that is where tidally-generated energy
is thought to be dissipated as turbulence away from the bottom boundary.

Now, we nondimensionalize these equations as follows. We introduce a character-
istic vertical length scale H , horizontal length scale L, and velocity scale V . We also
introduce a reference density ρ. Then, we make the change of variables

(2.8) x = x′H, t =
H

V
t′

so that

(2.9) ∇ = 1
H∇′, ∂

∂t =
V
H

∂
∂t′ .

Then, we introduce dimensionless versions of our quantities as

(2.10) Ci =
V
LC

′
i, b = Hb′, Di = HD′

i, ui = V u′
i, ρi = ρρ′i.

3



This gives the following non-dimensional equations:

V 2

L

(
∂u′

i

∂t′ + u′
i · ∇′u′

i

)
+ V fu′⊥

i =− gH

L
∇′




N∑

j=1

D′
j +

i−1∑

j=1

ρ′j − ρ′i
ρ′i

D′
j + b′




− V 2

LD′
i

(C′
i(u

′
i)− F ′(t′)) ,

(2.11)

HV
L

∂D′

i

∂t′ +
HV

L
∇′ · (Diu

′
i) = 0,(2.12)

where F ′(t′) = L
V 2HF (

L
V t

′). Dropping the primes, dividing (2.11) by V 2

L , and dividing

(2.12) by HV
L produces:

∂ui

∂t + ui · ∇ui + ǫ−1u⊥
i =− Fr2∇




N∑

j=1

Dj +

i−1∑

j=1

ρj − ρi
ρi

Dj + b





− 1

Di
(Ci(ui)− F (t)) ,

(2.13)

∂Di

∂t +∇ · (Diui) = 0,(2.14)

where Fr2 = gH
V 2 is the square of the Froude number, and ǫ−1 = fL

V is the reciprocal
of the Rossby number.

The steady solutions are ui = 0 i = 1, . . . , N , and Di = D̄i =constant for i < N ,
and DN − b = D̄N − b =constant. To linearize, we write Di = D̄i + ηi, where D̄i is
the thickness of the layer when the system is at rest. We assume that ηi and ui are
small, retaining only the linear terms in the advection terms as well as replacing Di

by D̄i in the forcing terms. This gives

∂ui

∂t + ǫ−1u⊥
i =− Fr2∇




N∑

j=1

ηj +

i−1∑

j=1

ρj − ρi
ρi

ηj


− 1

D̄i
(Ci(ui)− F (t)) ,(2.15)

∂ηi

∂t +∇ ·
(
D̄iui

)
= 0.(2.16)

Then we make the change of variables ûi = D̄iui, which makes a kind of momentum
rather than velocity the unknown field. This gives:

1

D̄i

(
∂ûi

∂t + ǫ−1û⊥
i

)
=− Fr2∇




N∑

j=1

ηj +

i−1∑

j=1

ρj − ρi
ρi

ηj



− 1

D̄i

(
Ĉi(ûi)− F (t)

)
,

(2.17)

∂ηi

∂t +∇ · ûi = 0,(2.18)

where Ĉi(ûi) = Ci

(
ûi

D̄i

)
. Although our model can be formulated with nonlinear

damping as in [12], for the rest of the paper we will assume it is linear.
It will be convenient to multiply both sides of (2.17) by ρi. Carrying this out,

and dropping the circumflexes, gives:

µi

(
∂ui

∂t + ǫ−1u⊥
i

)
= −Fr2∇




N∑

j=1

Aijηi


− µi (Ci(ui)− F (t)) ,(2.19)

∂ηi

∂t +∇ · ui = 0,(2.20)
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where

(2.21) Aij = ρmin{i,j}.

For each layer, we let µi =
ρi

D̄i

.

Let u =



u1

...
uN


 and η =



η1
...
ηN


. Then we can write (2.19) and (2.20) in matrix-

vector notation as follows:

M∂u
∂t + ǫ−1Mu⊥ + Fr2∇ (Aη) + Bu = F,(2.22)

∂η
∂t +∇ · u = 0,(2.23)

where M is the diagonal matrix with Mii = µi and B is a semi-definite diagonal ma-
trix modeling the damping. Cases of particular interest include the fully definite case,
as well as the case where B vanishes in all except the N,N entry, which corresponds
to damping only occuring in the bottom layer.

We let W = L2(Ω) be the space of square-integrable functions over Ω, with
W0 = L2

0(Ω) the subspace of functions with vanishing mean. V = H(div; Ω) is the
space of vector fields over Ω with square-integrable components and whose divergences
are also square-integrable. V0 the subspace of functions with vanishing normal trace
on ∂Ω. We also let WN =W ×W · · · ×W consist of the N -way Cartesian product of
the space with itself, with similar definitions of WN

0 , V N , and V N
0 . These spaces will

be used to represent functions mapping Ω to the disturbances and velocities within
each layer.

In the case of vanishing damping, one can apply standard energy techniques
similar to wave equations, arrive at stability and well-posedness. With damping pres-
ent, one has a non-increasing energy so that we also expect such analysis to carry
over. However, our analysis of the single-layer case in [13] gave long-time stability
and error analysis for semidiscrete methods by showing the system energy is actually
damped exponentially. Similar results should follow readily if the damping is fully
positive-definite, but determining the degree to which the results might hold in the
semi-definite case is quite interesting.

Throughout, we let (·, ·) denote the (L2)N inner product, with

(2.24) (u,v) =

∫

Ω

N∑

i=1

uividx.

Without any subscript on the norm, we let ‖u‖ =
√
(u,u) be the standard L2 norm.

For any smooth S mapping Ω into symmetric and uniformly positive-definite matrices,
we also define the S-weighted inner product by

(2.25) (u,v)S = (Su,v).

We assume that S is uniformly positive-definite over Ω so that

(2.26) ‖u‖S =
√
(u,u)S

defines a norm equivalent to the L2 norm with bounds

(2.27) CS‖u‖ ≤ ‖u‖S ≤ CS‖u‖
5



for some finite positive constants CS and CS .
We also assume that B is bounded in the L2 norm. That is, there exists some

B∗ <∞ such that for all u ∈ V N
h ,

(2.28) ‖Bu‖ ≤ B∗‖u‖.

To arrive at a discrete model, we decompose Ω into a family of quasiuniform
meshes {Th}h of triangles. For some fixed k ≥ 0, we let Wh ⊂ W be the space of
all functions whose restriction to each T ∈ Th are polynomials of degree k, and Vh
will consist of a suitable H(div) finite element space, such as the Raviart-Thomas
element [31] or Brezzi-Douglas-Marini [9] elements. In the single-layer case, BDM
elements may be preferable at small ǫ due to spurious modes appearing with RT [14].
In particular, we assume that the property ∇ · Vh = Wh holds and that there exist
suitable commuting projections [6] that would enable stability and error analysis to
hold. Decomposition of Ω into quadrilateral meshes is also possible. If the mesh
elements are not affine images of a reference square, some accuracy may be lost [2].

We let V N
h be the finite-dimensional space consisting of vectors of N components,

each in Vh, andW
N
h with N components inWh. By seeking a solution u : [0, T ] → V N

h

and η : [0, T ] →WN
h , a Galerkin discretization of (2.22) is

(
∂u
∂t ,v

)
M + ǫ−1

(
u⊥,v

)
M − Fr2 (η,∇ · v)A + (u,v)B = (F,v) ,(2.29)

(
∂η
∂t ,w

)
+ (∇ · u,w) = 0,(2.30)

for all v ∈ V N
h and w ∈ WN

h .
To obtain a fully discrete method, we must specify some time-stepping scheme.

For example, the implicit midpoint rule is symplectic and, in the damping-free case of
B = 0, conserves the system energy exactly for this problem. We assume a constant
step size ∆t and define discrete time levels tn = n∆t. Then, given initial conditions
u0
h and η0

h, the solution at each time level is approximated by

(
un+1 − un

∆t
,v

)

M
+ ǫ−1

((
un+1/2

)⊥
,v

)

M

−Fr2
(
ηn+1/2,∇ · v

)

A
+
(
Bun+1/2,v

)
=
(
Fn+1/2,v

)
,

(
ηn+1 − ηn

∆t
,w

)
+
(
∇ · un+1/2,w

)
=0,

(2.31)

where we define u
n+1/2
h = 1

2

(
un
h + un+1

h

)
and similarly for η

n+1/2
h . Multiplying

through each equation by ∆t and moving known data to the right-hand side, we
see that a variational problem of the form

(u,v)M + ǫ−1k
(
u⊥,v

)
M − Fr2k (η,∇ · v)A + k (Bu,v) = (F1,v) ,

(η,w) + k (∇ · u,w) = (F2,w)
(2.32)

must be solved at each time step, where k > 0 is some small number related to
the time step. This equation is fairly generic – other single-stage methods such as
Crank-Nicolson or backward Euler give systems of the same form. A multi-stage
Runge-Kutta method, such as considered in [16] for the wave equation, would give a
more complicated system, although the diagonal blocks would have this form.
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To simplify the analysis, we define the bilinear form

a ((u,η), (v,w)) = (u,v)M + ǫ−1k
(
u⊥,v

)
M − Fr2k (η,∇ · v)A + k (Bu,v)

+ (η,w) + k (∇ · u,w) ,
(2.33)

and the variational problem (2.32) can then be compactly written as finding (u,η) ∈
V N
h ×WN

h such that

(2.34) a ((u,η), (v,w)) = (F1,v) + (F2,w)

for all (v,w) ∈ V N
h ×WN

h .
Now, we cast the discrete variational problem (2.32) into matrix notation. We

let {ψi}dimVh

i=1 be a basis for Vh. Then, if ej is the canonical basis vector in R
n, 1 in

entry j and vanishing in other entries, functions of the form

ψ
j
i = ψie

j , 1 ≤ i ≤ dim Vh, 1 ≤ j ≤ N

form a basis for V N
h . Similarly, we let {φi}dimWh

i=1 be a basis for Wh. With

φ
j
i = φie

j , 1 ≤ i ≤ dim Vh, 1 ≤ j ≤ N,

and

{{
φ

j
i

}dimWh

i=1

}N

j=1

forms basis for Wh.

In order to define matrices, we need to impose a total ordering on the basis
functions for V N

h and WN
h . For example, for 1 ≤ i ≤ N dimVh, we can write find

unique i0, i1 such that i = i0 dimVh + i1 by integer division/remainder operations
and then put

Ψi = ψ
j
i = ψi1e

i0 ,

with a similar total ordering for {Φi}N dimVh

i=1 . This ordering imposes a block structure
on the linear system by storing all the degrees of freedom within a layer contiguously.

Before proceeding, give a remark on matrix notation, as several different kinds of
matrices appear in this paper. Matrices that act across the layers of the tide model,
such as A, B, and M have been denoted in calligraphic letters. Discrete operators on
a single layer, or equivalently, those discretizing a bilinear form over Vh and/or Wh

will be denoted in italics. To this end, we define:

MV
ij = (ψj , ψi) ,

MV,κ
ij = (κψj , ψi) ,

M̃V =
(
ψ⊥
j , ψi

)
,

MW
ij = (φj , φi) ,

Dij = (∇ · ψj , φi) ,

Eij = (∇ · ψj ,∇ · ψi) .

(2.35)

Then, we use Roman block lettering to denote discrete operators over V N
h and/or

7



WN
h . Such needed matrices are:

MV
ij = (Ψj ,Ψi)M ,

MW
ij = (Φj ,Φi) ,

M̃ij =
(
Ψ⊥

j ,Ψi

)
M ,

Dij = (∇ ·Ψj ,Φi) ,

DA
ij = (∇ ·Ψj ,Φi)A ,

Bij = (BΨj ,Ψi) ,

Eij = (∇ ·Ψj ,∇ ·Ψi) ,

EA
ij = (∇ ·Ψj ,∇ ·Ψi)A .

(2.36)

Note that the matrices appearing in (2.36) have important substructure. For example,
we have that

(2.37) MV = diag(MV,µ1 , . . . ,MV,µN ).

The first N − 1 blocks are in fact constant coefficient and so equal to µiM
V . Due to

the variable bathymetry, the bottom right block is not, but it is still symmetric and
positive-definite. The matrix B is also block diagonal and symmetric semi-definite. If
the damping matrix B is full-rank, it is definite. Similarly, MW , M̃V , and D, E are
block diagonal. In fact, WW = I ⊗MW , D = I ⊗D, and E = I ⊗ E, where I is the
N ×N identity matrix.

The matrices DA and EA also have structure, with

DA = A⊗D

EA = A⊗ E
(2.38)

A Galerkin discretization of (2.32) then gives rise to a block matrix system of the
form

(2.39)

[
MV + ǫ−1kM̃V + kB −Fr2k

(
DA)T

kD MW

] [
u
η

]
=

[
F1

F2

]

3. A weighted-norm preconditioner. Linear systems arising from finite el-
ement discretizations are typically solved using iterative methods such as the gen-
eralized minimum residual method (hence, GMRES) [34]. These methods have the
advantage of requiring only matrix-vector products with the system matrix, but their
performance depends strongly on the conditioning of the linear system. The condi-
tioning of the system matrix, and hence number of iterations required for convergence,
can degrade as a function of mesh refinement and/or physical parameters. In such
cases, it is critical to precondition the linear system by pre-multiplying a linear system

Ax = b

by some linear operator P−1 to obtain the equivalent system

P−1Ax = P−1b.

One hopes to choose P such that the iterative method converges much faster for P−1A
than that of A under the constraint that the cost of applying P−1 at each iteration
not offset the gains obtained by reducing the iteration count.

8



When preconditioning finite element linear systems, it can be helpful to choose
P as discretizing some simple differential operator, such as an inner product on the
underlying Hilbert space [19, 27]. It is also frequently possible to incorporate phys-
ical parameters in the definition of the preconditioner in such a way as to minimize
the dependence of the spectral bounds on those parameters. We refer to these as
“weighted-norm” preconditioners, and we adopt this perspective here.

In this section, we propose and analyze the matrix

(3.1)

[
MV + Fr2k2EA 0

0 MW

]

as a preconditioner for (2.39). Because this matrix decouples the momentum and
elevation variables, it should be far easier to invert than the original matrix. The
MW block is itself quite simple, just a block diagonal matrix of mass matrices (which
can be diagonal in the lowest order case). However, the top left block couples all of
the layer velocities together, and we take a closer look at this block in the following
section.

This matrix arises from discretizing the bilinear form

(3.2) b ((u,η), (v,w)) = (u,v)M + Fr2k2 (∇ · u,∇ · v)A + (η,w)

over V N
h ×WN

h . This bilinear form is equivalent to the standard H(div)× L2 inner
product, with constants dependent upon the physical parameters. We will prove norm
equivalence by giving continuity and inf-sup bounds of the bilinear form a in (2.33)
with respect to the norm defined by the inner product b.

We first note that the matrix DA appears in the first row of the system matrix,
but D in the second. Also, the two blocks are scaled differently with respect to the
Froude number. This structural asymmetry, complicates the analysis. Rather than
scaling the actual system to be solved, we can give analysis for an equivalent pair of
bilinear forms. To motivate this alternate pair, we rewrite the preconditioned matrix:

[
MV + Fr2k2EA 0

0 MW

]−1 [
MV + ǫ−1kM̃V + kB −Fr2k

(
DA)T

kD MW

]

=

[
MV + Fr2k2EA 0

0 Fr2MW,A

]−1 [
MV + ǫ−1kM̃V + kB −Fr2k

(
DA)T

Fr2kDA Fr2MW,A

]
,

(3.3)

where we have inserted the identity, written as

[
I 0
0 Fr2A⊗ I

]−1 [
I 0
0 Fr2A⊗ I

]

between the two matrices on the left-hand side.
The second matrix on the right-hand side discretizes of the bilinear form

â ((u,η), (v,w)) = (u,v)M + ǫ−1k
(
u⊥,v

)
M − Fr2k (η,∇ · v)A + k (Bu,v)

+ Fr2 (η,w)A + Fr2k (∇ · u,w)A ,
(3.4)

while the first discretizes the weighted inner product

(3.5) b̂ ((u,η), (v,w)) = (u,v)M + Fr2k2 (∇ · u,∇ · v)A + Fr2 (η,w)A .
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We further define the ‖ · ‖b̂ norm on V N
h ×WN

h by

(3.6) ‖(u,η)‖b̂ =
√
b̂ ((u,η) , (u,η)).

Because of equality (3.3), GMRES iteration for the matrix associated with bilinear
form (2.33) preconditioned by that from (3.2) is exactly equivalent to that obtained
from the matrices for (3.4) and (3.5). We proceed to demonstrate norm equivalence
for the latter pair.

Theorem 3.1. For all (u,η), (v,w) in V N
h ×WN

h ,

(3.7) â ((u,η) , (v,w)) ≤ C ‖(u,η)‖b̂ ‖(v,w)‖b̂ ,

where

(3.8) C = max

{
2, 1 + k

ǫ +
kB∗

C2
M

}
.

Proof. Let (u,η), (v,w) ∈ V N
h ×WN

h be given. Then, applying the Cauchy-
Schwarz inequality and noting ·⊥ is pointwise an isometry, we have

â ((u,η), (v,w)) = (u,v)M + ǫ−1k
(
u⊥,v

)
M − Fr2k (η,∇ · v)A + k (Bu,v)

+ Fr2 (η,w)A + Fr2k (∇ · u,w)A

≤
(
1 + k

ǫ

)
‖u‖M‖v‖M + Fr2k‖η‖A‖∇ · v‖A + k‖Bu‖‖v‖

+ Fr2‖η‖A‖w‖A + Fr2k‖∇ · u‖A‖‖w‖A.

(3.9)

At this point, we use the boundedness of B assumed in (2.28) and the norm equivalence
of ‖ · ‖ and ‖ · ‖M in (2.27) to obtain

â ((u,η), (v,w)) ≤
(
1 + k

ǫ + kB∗

C2
M

)
‖u‖M‖v‖M + Fr2k‖η‖A‖∇ · v‖A

+ Fr2‖η‖A‖w‖A + Fr2k‖∇ · u‖A‖‖w‖A.
(3.10)

We can rewrite the right-hand side of this as the inner product of two vectors and
apply discrete Cauchy-Schwarz to bound this by

â ((u,η), (v,w)) ≤
√(

1 + k
ǫ +

kB∗

C2
M

)
‖u‖2M + 2Fr2‖η‖2A + Fr2k2‖∇ · u‖2A

×
√(

1 + k
ǫ +

kB∗

C2
M

)
‖v‖2M + 2Fr2‖w‖2A + Fr2k2‖∇ · v‖2A

≤ C ‖(u,η)‖b̂ ‖(v,w)‖b̂ .

(3.11)

As a remark, it is possible to include the damping term in the inner product b̂, in which
case the continuity estimate is independent of B∗. However, typical use cases have
small damping and the differences in resulting preconditioner performance are small.
Furthermore, when damping is nonlinear, omitting it avoids the need to reassemble
the preconditioner at each linear iteration.

Theorem 3.2. The bilinear form â is inf-sup stable with respect to the ‖·‖b̂ norm
with constant no smaller than 1

2
√
3
.
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Proof. Let (u,η) ∈ V N
h ×WN

h be given and put v = u and w = η + k∇ · u.
Then we see that

â ((u,η), (v,w)) = (u,u)M + k
ǫ

(
u⊥,u

)
M − Fr2k (η,∇ · u)A + k (Bu,u)

+ Fr2 (η,η + k∇ · u)A + Fr2k (∇ · u,η + k∇ · u)A
=‖u‖2M + k (Bu,u)
+ Fr2‖η‖2A + Fr2k (η,∇ · u)A + Fr2k2‖∇ · u‖2A.

(3.12)

Now, the semi-definiteness of B and standard estimates let us make the bound

â ((u,η), (v,w)) ≥‖u‖2M + Fr2‖η‖2A + Fr2k2‖∇ · u‖2A
− Fr2

2 ‖η‖2A − Fr2k2

2 ‖∇ · u‖2A
=‖u‖2M + Fr2

2 ‖η‖2A + Fr2k2

2 ‖∇ · u‖2A
≥1

2 ‖(u,η)‖
2
b̂ .

(3.13)

Now, we also have

‖(v,w)‖2b̂ = ‖u‖2M + Fr2k2‖∇ · u‖2A + Fr2‖η + k∇ · u‖2A
≤ ‖u‖2M + Fr2k2‖∇ · u‖2A + 2Fr2

(
‖η‖2A + k2‖∇ · u‖2A

)

≤ 3 ‖(u,η)‖2b̂ .
(3.14)

Hence,

(3.15) â ((u,η) , (v,w)) ≥ 1
2 ‖(u,η)‖ ‖(v,w)‖ ≥ 1

2
√
3
‖(u,η)‖b̂ ‖(v,w)‖b̂ ,

and the result follows.

4. More about A. The major cost of applying our block diagonal preconditioner
is the inversion of the upper-left block of (3.1):

(4.1) C = MV + Fr2k2EA.

One could adapt the H(div) multigrid in [4] to this problem, but the requisite patch
problems would include degrees of freedom of all the layers. Solving the local patch
problems would then become increasingly expensive as the number of layers increases.
We do not analyze this method further, but work toward approaches that avoid this
limitation. In passing, we also note a passing structural similarity of (4.1) to the
matrices obtained for higher-order Runge-Kutta discretizations, so that it might be
possible to adapt preconditioning techniques from references such as [16, 29, 35].

In this section, we give an explicit formula for the inverse of A and estimates
on its extremal eigenvalues. This sets us up to discuss preconditioners for C in the
following section.

4.1. An explicit inverse for A.

Proposition 4.1. Define the matrix C to be the N × N symmetric tridiagonal

matrix with

(4.2) Cii =






1
ρ1

+ 1
ρ2−ρ1

, i = 1,
1

ρi−ρi−1
+ 1

ρi+1−ρi

, 2 < i < N − 1,
1

ρn−ρn−1
, i = N,11



and off-diagonal entries

(4.3) Ci,i+1 = Ci+1,i = − 1

ρi+1 − ρi
, 1 ≤ i ≤ N − 1.

Then C is the inverse of A given in (2.21).

Proof. The result can be obtained by Gauss-Jordan elimination on A, although
the notation for the case of general N is quite cumbersome. Here, we confirm the
result is correct by verifying CA = I.

Since the diagonal of C is defined piecewise, we proceed in a few cases. Consider
the first row of S = CA:

S11 = C11A11 + C12A21

=

(
1

ρ1
+

1

ρ2 − ρ1

)
ρ1 −

1

ρ2 − ρ1
ρ1 = 1.

(4.4)

For any j > 1, we have that A1j = ρ1 and A2j = ρ2, so

S1j = C11A1j + C12A2j

=

(
1

ρ1
+

1

ρ2 − ρ1

)
ρ1 −

1

ρ2 − ρ1
ρ2

= 1− ρ2 − ρ1
ρ2 − ρ1

= 0.

(4.5)

Now, for 2 ≤ i < N , we have

Sii = Ci,i−1Ai−1,i + Ci,iAi,i + Ci,i+1Ai+1,i

= − 1

ρi − ρi−1
ρi−1 +

(
1

ρi − ρi−1
+

1

ρi+1 − ρi

)
ρi −

1

ρi+1 − ρi
ρi = 1,

(4.6)

For some j > i, we have

Sij = Ci,i−1Ai−1,j + Ci,iAi,j + Ci,i+1Ai+1,j

= − 1

ρi − ρi−1
ρi−1 +

(
1

ρi − ρi−1
+

1

ρi+1 − ρi

)
ρi −

1

ρi+1 − ρi
ρi+1 = 0,

(4.7)

and for j < i,

Sij = Ci,i−1Ai−1,j + Ci,iAi,j + Ci,i+1Ai+1,j

= − 1

ρi − ρi−1
ρj +

(
1

ρi − ρi−1
+

1

ρi+1 − ρi

)
ρj −

1

ρi+1 − ρi
ρj = 0.

(4.8)

Finally, we handle the last row. The diagonal entry there is

SN,N = CN,N−1AN−1,N + CN,NAN,N

= − 1

ρN − ρN−1
ρN−1 +

1

ρN − ρN−1
ρN = 1,

(4.9)

and for any 1 ≤ j < N ,

SN,N = CN,N−1AN−1,j + CN,NAN,j

= − 1

ρN − ρN−1
ρj +

1

ρN − ρN−1
ρj = 0.

(4.10)

12



Finally, we note that since C is tridiagonal and symmetric positive-definite, it has
a factorization

(4.11) C = LDLT

with bidiagonal L and diagonal D with positive entries.

4.2. The spectrum of A. Subsequent analysis will rely on knowing things
about the spectrum of A, and we are able to give certain instructive spectral bounds
here. Since A is symmetric and positive-definite, we let λ1 ≥ λ2 ≥ · · · ≥ λN > 0 be
its eigenvalues, arranged in nonincreasing order.

Proposition 4.2. The largest eigenvalue of A satisfies

(4.12) Nρ1 ≤ λ1 ≤
N∑

j=1

ρj

Proof. We handle the upper bound by Gerschgorin’s Circle Theorem. Owing to
the structure of A, the largest outer extent of a Gerschgorin disk comes from the final
row, and the maximal value is

(4.13) ρN +

N−1∑

j=1

ρj =

N∑

i=1

ρi.

Now, we derive the lower bound in (4.12), which confirms that λ1 is in fact
comparable to N . Since λ1 maximizes the Rayleigh quotient:

(4.14) λ1 = max
x 6=0

xTAx

xTx
,

using any particular choice of nonzer x in the Rayleigh quotient gives a lower bound
for λ1. We chose the vector x consisting entire of ones. Since xTx = N , we know
that

(4.15) Nλ1 ≥ xTAx.

Proceeding, the entries of Ax are just the row sums of A:

(4.16) (Ax)i =

i−1∑

j=1

ρj +

N∑

j=i

ρi =




i−1∑

j=1

ρj


+ (N − i+ 1)ρi.

Evaluating xTAx gives

xTAx =

N∑

i=1

(Ax)i =

N∑

i=1






i−1∑

j=1

ρj


 + (N − i+ 1) ρi




=
N∑

i=1

(N − i) ρi +
N∑

i=1

(N − i+ 1) ρi =
N∑

i=1

(2N − 2i+ 1) ρi.

(4.17)

Since ρ1 < ρi for i > 1,

Nλ1 ≥ ρ1

N∑

i=1

(2N − 2i+ 1) = ρ1

[
2N2 − 2

N(N + 1)

2
+N

]
= N2ρ1.(4.18)

This proves the lower bound.
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Similar techniques can lead to upper and lower bounds on the minimal eigenvalue λN :

Theorem 4.3. Let δρ∗ = min1≤i≤N−1 ρi+1 − ρi and δρ
∗ = max1≤i≤N1

ρi+1 − ρi.
Then

(4.19) δρ∗

4 ≤ λN ≤ 3δρ∗

10 .

Proof. We apply the Gerschgorin Circle Theorem to bound the maximal eigen-
value of C, which is the reciprocal of the minimal eigenvalue of A, to give the claimed
lower bound. Consider the first row of C. The diagonal plus sum of magnitudes of
off-diagonal entries yields

(4.20) 1
ρ1

+ 1
ρ2−ρ1

= ρ1+ρ2

ρ1(ρ2−ρ1)
.

We then use (2.1) to bound this by

3
ρ2−ρ1

≤ 3
δρ∗

.

Then, for 2 ≤ i ≤ N − 1, the diagonal plus sum of off-diagonal magnitudes gives

(4.21) 2
[

1
ρi−ρi−1 + 1

ρi+1−ρi

]
≤ 4

δρ∗
.

Finally, outer limit of the Gerschgorin disk for the final row is

(4.22) 2
ρN−ρN−1

≤ 2
δρ∗

.

Taking the maximum over these three calculations gives that

(4.23) 1
λN

≤ 4
δρ∗

,

and the reciprocal of this inequality gives the lower bound.
To establish the upper bound, we again consider the Rayleigh quotient on a

particular vector. Pick some vector x such that for a fixed 3 ≤ i ≤ N − 2

(4.24) xj =





1, j = i,

−1, |j − i| = 1,

0, otherwise.

Selecting i = 1, 2, N − 2, N − 1, although this requires dealing with exceptional first
and last rows of (4.2) and does not appreciably improve our bound. Since x is nonzero
only in entries i−1, i, i+1, we directly computing the relevant entries of Cx using (4.2)
and (4.3).

(Cx)i−1 =

N∑

j=1

Ci−1,jxj = Ci−1,i−1xi−1 + Ci−1,ixi

= −
(

1
ρi−1−ρi−2

+ 1
ρi−ρi−1

)
− 1

ρi−ρi−1

= − 1
ρi−1−ρi−2

− 2
ρi−ρi−1

.

(4.25)

(Cx)i =
N∑

j=1

Ci,jxj = Ci,i−1xi−1 + Ci,ixi + Ci,i+1xi+1

= 1
ρi−ρi−1

+
(

1
ρi−ρi−1

+ 1
ρi+1−ρi

)
+ 1

ρi+1−ρi

= 2
ρi−ρi−1

+ 2
ρi+1−ρi

.

(4.26)

14



Similarly, we can compute

(4.27) (Cx)i+1 = − 2
ρi+1−ρi

− 1
ρi+2−ρi+1

.

Now, we use the results to directly calculate that

(4.28) xTCx = 1
ρi−1−ρi−2

+ 4
ρi−ρi−1

+ 4
ρi+1−ρi

+ 1
ρi+2−ρi+1

≥ 10
δρ∗ .

Now, we note that xTx = 3 for this choice of x and using the Rayleigh quotient gives
the upper bound on λN .

Assuming some kind of comparability between δρ∗ and δρ∗, both are on the order of
N . This gives a spectral condition number (ratio of extremal eigenvalues) for A on
the order of N2.

5. Simplifying the preconditioner. Our weighted norm preconditioner (3.1)
provides parameter-robustness, but also maintains an all-to-all coupling between the
layers that can become expensive as the number of layers increases. In this section,
we propose two approaches to overcoming this difficulty. In the first case, we simply
ignore the inter-layer coupling. We are able to prove that this strategy is more effective
than the the N2 conditioning of A might otherwise suggest. In the second case, we
make use of the special properties of A derived above to propose a change of variables
in the upper-left block of (3.1) that renders coupling only between adjacent layers.

5.1. Neglecting inter-layer coupling. The bilinear form

(5.1) c(u,v) = (u,v)M + Fr2k2 (∇ · u,∇ · v)A ,

yields the matrix (4.1) under discretization, and we want to compare c to the simpler
form obtained by replacing the A-weighted inner product with the standard one:

(5.2) ĉ(u,v) = (u,v)M + Fr2k2 (∇ · u,∇ · v) .

The latter form gives rise to the block diagonal matrix

(5.3) Ĉ = MV + Fr2k2E,

which we can consider using it as a preconditioner for the matrix derived from c(·, ·).
Both c and ĉ are symmetric and positive-definite, and showing an equivalence between
them controls eigenvalues of the system obtained by preconditioning one with the
other.

As a first attempt, A is symmetric and positive-definite, and we can use the
Rayleigh quotient pointwise inside of integrals to obtain:

(5.4) ‖w‖2A =

∫

Ω

(Aw) ·w dx ≥
∫

Ω

λ1 (w ·w) = λ1‖w‖2,

with a similar upper bound of ‖w‖2A ≤ λ1‖w‖2.
Using this observation,

(5.5) λN
(
‖u‖2M + k2Fr2‖∇ · u‖2

)
≤ c(u,u) ≤ λ1

(
‖u‖2M + k2Fr2‖∇ · u‖2

)
,

so that an equivalence between c and ĉ holds with a condition number of λ1/λN , which
is quadratic in the number of layers. With more careful consideration, however, are
able to prove a tighter bound.
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In this analysis, we will make the inverse assumption that there exists some
CI > 0, independent of u and h such that

(5.6) ‖∇ · u‖ ≤ CI

h ‖u‖M

holds for all u ∈ V N
h with some CI > 0 independent of u. This estimate is a theorem

for standard H1 polynomial spaces [8] and is commonly made assumption for H(div)
spaces. In our case, it follows from the standard H(div) inverse assumption in each
component plus the equivalence of ‖ · ‖M to the N -way L2 inner product.

To simplify our notation, we introduce the quantity

(5.7) q = CIkFr.

Theorem 5.1. For all u ∈ V N
h , the equivalence

(5.8) χ0ĉ(u,u) ≤ c(u,u) ≤ χ1ĉ(u,u)

holds, where

(5.9) χ0 =
λNq

2 + h2

q2 + h2
, χ1 =

λ1q
2 + h2

q2 + h2
.

Proof. We first prove the upper bound involving χ1, applying the Rayleigh quo-
tient for A pointwise to obtain

(5.10) c(u,u) ≤ ‖u‖2M + λ1Fr
2k2‖∇ · u‖2.

Next, for some 0 ≤ α ≤ 1 to be specified, we split the ‖∇ · u‖2 term

(5.11) c(u,v) ≤ ‖u‖2M + αλ1Fr
2k2‖∇ · u‖2 + (1− α)λ1Fr

2k2‖∇ · u‖2,

and using the inverse assumption (5.6), we have

(5.12) c(u,v) ≤
(
1 + αλ1q

2

h2

)
‖u‖2M + (1− α) λ1Fr

2k2‖∇ · u‖2.

The best bound here will be obtained if we choose α to equalize the coefficients of the
terms appearing in the bilinear form, or

1 + αλ1q
2

h2 = (1− α)λ1.

This is readily solved to find

(5.13) α =
(λ1 − 1)h2

λ1 (h2 + q2)
.

So then, the coefficient of k2Fr2‖∇ · u‖2 in our estimate is α1λ1, which is equal to
the claimed value χ1. The coefficient of ‖u‖2M must have the same value, completing
the upper bound.

Now, we consider the lower bound, which begins in the same way, using the lower
bound on the Rayleigh quotient to write

(5.14) c(u,v) ≥ ‖u‖2M + λNFr
2k2‖∇ · u‖2.
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Now, we additively split the L2 term with some 0 < α < 1:

(5.15) c(u,u) ≥ (1− α)‖u‖2M + α‖u‖2M + λNk
2Fr2‖∇ · u‖2.

Now, we rearrange the inverse assumption to bound ‖u‖M below by h
CI

‖∇ · u‖

c(u,u) ≥ (1− α)‖u‖2M +
(

αh2

C2
I

+ k2Fr2λN

)
‖∇ · u‖2

= (1− α)‖u‖2M +
(

αh2

q2 + λN

)
k2Fr2 ‖∇ · u‖2 ,

(5.16)

Again, the optimal choice of α will balance the coefficients, so we solve

1− α = αh2

q2 + λN

to find

(5.17) α =
q2 (1− λN )

q2 + h2
,

so that 1− α = χ0 as claimed.

This theorem shows a somewhat complex relationship between the physical and
discretization parameters and the equivalence bounds obtained by neglecting the inter-
layer coupling. The lower bound is somewhat simpler to unpack. Since λN > 0 but
decays like 1/N , we always have

χ0 ≥ h2

q2 + h2
,

which is independent of the number of layers. Fixing h and letting q (here, a proxy
for the time step) become small presents no problems. On the other hand, keeping a
nondegenerate lower bound when h→ 0 also requires q → 0 at a comparable rate.

The asymptotics of the upper bound are a bit different. We have that λ1 =
O(N) as we increase the number of layers. However, this only makes χ1/χ0 = O(N)
rather than the naive O(N)2 posited initially. Also, for a fixed number of layers, two
comments are in order. First, we always have χ1 < λ1. Second, we can decrease the
effect of large λ1 by reducing the time step relative to the mesh size, for

χ1 =
λ1q

2 + h2

q2 + h2
=
λ1

(
q
h

)2
+ 1

(
q
h

)2
+ 1

.

5.2. A block tridiagonal reformulation. Neglecting the inter-layer coupling
in our preconditioner is better than initially thought, and performs well for practical
numbers of layers. Here, we sketch an alternate approach that should also sparsify
the preconditioner while maintaining the layer-independence. This approach relies
heavily on the tridiagonal inverse of the coupling matrix A.

For the bilinear form c from (5.1) and some bounded linear functional f ∈ (V N
h )′,

consider the variational problem

(5.18) c(u,v) = f(v), v ∈ V N
h

Using (4.11) in this, we write

(5.19) A = C−1 =
(
LDLT

)−1
= L−TD−1L−1,
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so that

c(u,v) = (Mu,v) + Fr2k2(L−TD−1L−1∇ · u,∇ · v)
= (Mu,v) + Fr2k2(D−1∇ · L−1u,∇ · L−1v).

(5.20)

Now, we introduce auxilary variables ũ = L−1u and ṽ = L−1v and define the ma-
trix C̃ = LTML. This varies spatially, but is pointwise tridiagonal. With these
substitutions, we have

c(u,v) = (MLũ,Lṽ) + Fr2k2(D−1∇ · ũ,∇ · ṽ)
= (C̃ũ, ṽ) + Fr2k2(D−1∇ · ũ,∇ · ṽ)
≡ c(ũ, ṽ)

(5.21)

Now, we can write (5.18) as

(5.22) c̃ (ũ, ṽ) = f̃(ṽ).

Hence, one could change variables and solve a sparser system, in which only adjacent
layers are coupled through the tridiagonal matrix C̃, although this requires consider-
able care in the implementation.

6. Numerical results. We have implemented a mixed finite element discretiza-
tion of the tide model and developed all of our preconditioners within the Firedrake
framework [30]. Firedrake is an automated system for the solution of PDE using the
finite element method. It generates efficient low-level code from the Unifed Form Lan-
guage (UFL) in Python [1], and interfaces tightly with PETSc for scalable algebraic
solvers. Firedrake also has a rich ability to interoperate with and extend PETSc [21],
which facilites the definition of auxiliary bilinear forms needed for weighted norm
preconditioning. Morever, a facility to generate Runge-Kutta methods from a semi-
discrete formulation was recently added to Firedrake through the Irksome project [16],
and we use this to obtain the implicit midpoint rule.

Our numerical experiments primarily consist of testing preconditioners as a func-
tion of discretization and physical parameters. We discretize the problem on the unit
square by taking an Nx×Ny mesh subdivided into right triangles and use lowest-order
Raviart-Thomas elements for uh and piecewise constants for ηh. In all our cases, we
solve the resulting linear systems using unrestarted GMRES with right precondition-
ing. We chose the right-hand side by choosing an initial condition for the IBVP at
rest but for a small disturbance in the top layer and taking one step of the implicit
midpoint rule using Irksome. We iterated to the PETSc default relative tolerance
of 10−5, which is appropriate for the low-order time and space discretizations under
consideration. In certain cases, we found it necessary to use modified Gram-Schmidt
orthogonalization, and so we used it throughout. Our techniques are not particular to
the Raviart-Thomas elements or triangles. Much as in [20], we have also performed
our experiments on rectangular Raviart-Thomas elements and trimmed serendipity
elements [15, 18] with very similar results.

As point of reference, we will compare the weighted-norm preconditioners un-
der consideration to a standard incomplete LU factorization method [33] with no
fill. (Firedrake natively stores the momentum and elevation variables separately, but
PETSc performs nested dissection to reorder the unknowns before performing the
factorizations.) For wave-like equations with a reasonable time step and moderate
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Fig. 6.1: Performance of ILU(0) preconditioner as a function of mesh parameters for
various Froude and CFL numbers. Throught, we fix ǫ = 1 and consider 5 layers with
densities varying between 1.03 and 1.06. We see eventual mesh independence, but the
number of iterations varies considerably with fixing the CFL number as 1 and varying
the Froude number (left) or fixing Fr = 1 and varying the CFL number (right).
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Fig. 6.2: Performance of the preconditioner (3.1) using exact inversion of the blocks.
Parameters are the same as in Figure 6.1.

physical parameters, this is not a terrible approach. We refer to the two plots in Fig-
ure 6.1. Both plots fix 5 layers with equidistributed densities between 1.03 and 1.06
and Rossby number ǫ = 1. In the first plot, we vary the Froude number and in the
second, we vary the CFL number ∆t/N . In both cases, we have mesh independence,
but we see a wide range of variation with respect to the physical and discretization
parameters.

We repeat these same experiments, now with the weighted-norm preconditioner
we proposed in (3.1). Applying this preconditioner requires at least approximately
inverting the block diagonal matrix. The best (in terms of iteration count) we can
hope for is obtained if those blocks are in fact inverted exactly. The bottom right
block is diagonal for lowest-order elements and hence trivial to invert. For the top
left block, we compute a sparse LU factorization in a setup phase and perform solves
with this at each iteration. We can compare Figure 6.2 to those in 6.1 and see the
potential benefit of our new preconditioner. Although we see some variation with
respect to the Froude and CFL numbers, we seem to approach a relatively small and
mesh-independent bound, even for rather extreme parameter values.

However, for scaling to very large problems, it is important to consider ways of
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Fig. 6.3: Repeating the experiments in Figure 6.2, but with the inverse of the top left
block approximated by ILU(0). We see an increase in iteration count, and greater
parameter dependence. At moderate parameter values the increased iteration count
is relatively small.
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Fig. 6.4: Performance of the weighted norm preconditioner using the simplied
form (5.2) in the top left block. Exact inversion of the blocks.

bypassing sparse factorizations. A simple strategy for this is to replace the inversion
of the top left block with a simple ILU(0) factorization, and we repeat the experiments
from Figures 6.1 and 6.2 using this choice in Figure 6.3. As expected, we lose some
parameter robustness, but this could still give a practical result. These plots show
that even running at CFL number requires only about 20 iterations per time step,
and ILU(0) costs about as much as a matrix-vector product to apply. We remark
that some adaptation of H(div) multigrid [3] could recover parameter robustness at
the cost of more expensive iterations.

We also repeat these experiments using the decoupled preconditioner suggested
in (5.2) in the upper left block. Again, we present iteration counts exactly inverting
the blocks in Figure 6.2 and using ILU(0) in the top left block in Figures 6.3. Perhaps
unsurprisingly, we lose some parameter robustness with respect to the Froude and
CFL numbers, but our iteration counts are only about 2-4 times as large as the
respective iteration counts in Figures 6.2 and 6.3. The much-reduced sparsity of the
preconditioner and hence its ILU(0) factorization could compensate for that increase.

Now, we want to comment on the dependence of the preconditioners as a function
of the number of layers. For this, we fixed a N × N mesh with N = 64 divided into
triangles, fixed Fr = ǫ = and dt = 2/N = 0.03125 and considered the number
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Fig. 6.5: Performance of the decoupled preconditioner using ILU(0) for the top left
block.

5 10 15 20
10

20

30

40

50

Layers

It
er
a
ti
o
n
s

Layer Dependence

ILU
Wtd Norm

Layer-decoupled

Wtd Norm/ILU

Layer-decoupled/ILU

Fig. 6.6: Iteration count as a function of the number of layers. We see that the
preformance of our preconditioners seems bounded as we increase the number of
layers, a result better than that predicted in Theorem 5.1.

of iterations required to solve the linear system with various preconditioners – ILU
on the original system and preconditioners (3.1)and (5.2), alternately using exact
inversion or an ILU approximation of the top-left block These results are shown in
Figure 6.6. None of these methods show signicant variation as we increase the number
of layers. This behavior for (3.1) is not unexpected in light of Theorems 3.1 and 3.2,
but is better than one expects given Theorem 5.1.

7. Conclusions and future work. We have presented a new tide model based
on the linearized rotating shallow water equations, but with several layers stratified
by density. A mixed finite element discretization similar to that for single-layer mod-
els [13] gives rise to a large system of equations, with additional complexity arising
from the all-to-all coupling between the layers. We have presented and analyzed
weighted-norm preconditioners that are robust with respect to most of the physical
and discretization parameters. For typical parameter values, additional approxima-
tions such as neglecting inter-layer coupling and approximating inverses of matrix
blocks with incomplete factorizations may result in highly practical methods.

Future directions for this work would include careful energy-type estimates that
sharply describe the physical damping in the system. These would inform a priori

estimates like we have previously derived in the single layer case. Additionally, adapt-
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ing such energy estimates to the fully discrete case, as well as studying the systems
arising from higher-order temporal methods, present further challenges.
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