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Abstract

We consider steady states of dynamics that have an underlying network structure. We study how
a steady state responds to small perturbations in the network parameters and how this sensitivity
is connected to the network structure. We introduce a prototypical linear response equation and
determine its sensitivity. This abstract result is applied to study the sensitivity of steady states in
two common dynamics on networks: continuous-time Markov chains and deterministically modelled
chemical reaction networks. For continuous-time Markov chains, we are able to efficiently compute
the signs of the response in terms of the underlying network structure. The study of chemical
reaction networks extends the sensitivity analysis to open systems with more complex network
structures.

1 Introduction

Sensitivity analysis studies how an equilibrium of a dynamical system behaves under small perturba-
tions in the system parameters. Many mathematical models whose sensitivity is studied in the applied
sciences have underlying network structures, e.g. food webs in ecological network analysis[1, 2, 3],
chemical reaction networks [4, 5, 6, 7] or cognitive radio networks [8] to name a few. Naturally, the
underlying network structure greatly influence the sensitivity of an equilibrium by dictating how pa-
rameter perturbations propagate through the network. We study this connection in a universal setup,
i.e. determine which graph-theoretical structures influence the sensitivity of an equilibrium without
specifying a concrete dynamics. We introduce a prototypical equilibrium equation with an underlying
network structure and characterize its linear response.

These general results are then applied to two types of dynamics with underlying network structures,
namely continuous-time Markov chains and chemical reaction networks. While both of these are
commonly modelled in a stochastic framework, they are easily formulated as systems of ordinary
differential equations. These two types of dynamics already cover a wide range of mathematical
models in application. Continuous-time Markov chains, in short CTMCs, are closed, i.e. there is no
in- or outflow of the system, and have a clear network structure associated to them. Chemical reaction
networks can be open systems that admit in- and outflow. Additionally, the network structure is in
general much more convoluted, as reactions may have multiple inputs and outputs that partially
overlap.

The main results of the paper are the following theorems:

• Theorem 3.2: An explicit formula for the sensitivity of the prototypical equilibrium equation in
terms of its underlying network structure;
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• Corollary 4.4: A complete description of the algebraic signs of the sensitivity of a CTMC, based
on the underlying network structure, which can be computed efficiently;

• Theorem 5.2: An explicit formula for the sensitivity at an equilibrium of a chemical reaction
network in terms of a network structure derived from the set of reactions. This theorem demon-
strates how the prototypical linear response can be applied to open systems with complex network
structures.

In the sensitivity analysis of CTMCs we assume the existence of a unique stationary distribution
and study how it responds to a small perturbation in one of the transition rates. This analysis can
be carried out in two different ways. There is the numerical view-point, which answers the question
of how large these responses can get, and there is the analytical view-point which analyses how the
responses look like. The latter case, which is the one we will focus on, is one of the key steps in the
control problem, i.e. in order to achieve a desired response at the equilibrium one needs to understand
how each possible perturbation of the system parameters influences the equilibrium. For discrete-time
Markov chains, the numerical sensitivity of the stationary distribution has been studied by Schweitzer
[9], Hunter [10] and Funderlic and Meyer [11]. More recently, Wang and Plechac [12] studied the
sensitivity of an observable in a CTMC on a countable state space to the perturbation of a system
parameter.

In the last part of the paper, we apply the prototypical linear response to the sensitivity analysis
of deterministically modelled chemical reaction networks. Chemical reaction networks mathematically
model the evolution of chemicals components in a simplified model. These models may admit equilibria
in which the concentrations of the components no longer fluctuate. Once again, the response of these
equilibria to small perturbations in the system parameters is considered. We study the sensitivity
in an algebraic way, like it has been done by Mochizuki and Fiedler [13], Feliu [7] and Vassena [6].
Our focus lies on the influence of the structure of the reaction network, i.e. the way that the chemical
components are linked to one another by the reactions. We introduce the influence graph of a chemical
reaction network that contains the structural information which is relevant for the sensitivity analysis
and show that our results on the prototypical linear response generalize to this setting.

Section 2 introduces the necessary graph-theoretical definitions and theorems that will be needed
for the following sections. Section 3 presents the abstract sensitivity results of the prototypical linear
response. Section 4 applies these abstract results to CTMCs and derives a full characterization of
the algebraic signs of the sensitivity of the stationary distribution. In Section 5 we briefly introduce
chemical reaction networks and their sensitivity. We then show how the results of the prototypical
linear response can be applied to the sensitivity of chemical reaction networks and present a description
of the sensitivity in terms of the structure of the reaction network. We conclude with an outlook on
open problems in Section 6.

2 Graph theory preliminaries

A directed graph G = (V, E) consists of a finite set of nodes V and a set of edges E ⊂ V × V. We
typically use letters u, v, w for nodes while edges are denoted by the letter j. The direction of an
edge is given by the order of the nodes, i.e. j = (uv) is an edge from u to v while j′ = (vu) is an
edge from v to u. In this paper, we will not allow self-loops, i.e. edges of the form (vv). A directed
graph G = (V, E) is called strongly connected if for each pair of nodes u, v ∈ V there is a path of
directed edges in E that starts in u and ends in v. A directed graph G = (V, E) is called weakly con-
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nected if the graph is connected as an undirected graph i.e. for each pair of nodes u, v ∈ V there is an
undirected path of edges in E that starts in u and ends in v (the directions of the edges do not matter).

Trees are one of the most common structures of interest in graphs. A tree is a weakly connected
subgraph with no undirected cycles. A tree that contains all nodes of the graph is called a spanning
tree. A forest is a subgraph that consists of one or more vertex-disjoint trees. A forest is spanning
if it contains all nodes of the graph. We will focus on a particular class of trees in directed graphs,
so-called rooted trees.

Definition 2.1. Given a directed graph G = (V, E) and a root node v0 ∈ V, we call a subgraph
T = (V ′, E ′) a ’tree rooted in v0’ if T is a tree and every edge is directed towards v0.

For a more detailed description of the objects named above, we refer to [14]. A rooted tree is also
referred to as an arborescence in the literature. Note that a rooted tree does not need to contain all
vertices. In the case T contains all vertices of the graph, i.e. V ′ = V, we call T a rooted spanning
tree. For any root node v0 ∈ V we denote the set of all spanning trees rooted in v0 by

Av0 := {T ⊂ G, T spanning tree rooted in v0}.

The set of all spanning rooted trees in G is then defined as

A :=
⋃

v0∈V

Av0 .

If the graph is equipped with weights (wj)j∈E (in general, we may allow negative weights) we can
define the weight of a rooted tree T (not necessarily spanning) by

‖T ‖ :=
∏

j∈T

wj .

Consequently, we define the quantities

‖Av0‖ :=
∑

T ∈Av0

‖T ‖ ,

‖A‖ :=
∑

v0∈V

‖Av0‖ .
(2.1)

In [15], these quantities are referred to as the focus of v0, respectively the total focus of the weighted
graph G. Note that these quantities naturally depend on the weights wj without being indicated in
the notation. It should be clear from the context what the weights of the graph are such that the
notation is not ambiguous. We include a remark about the extension of rooted trees, which will be a
useful tool in some of the proofs later. It comes in the form of the following lemma.

Lemma 2.2. Let G = (V, E) be a directed graph and consider T ′ = (V ′, E ′) a tree rooted in some
v0 ∈ V ′ with V ′ 6= V, i.e. T ′ is not spanning. Under the assumption that v0 is reachable from any
v ∈ V by a directed path in G, there is a spanning tree T which is rooted in v0 such that T ′ is a
subgraph of T .
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Proof: We provide an explicit construction of T . We start with T = T ′. Consider any node u /∈ T .
By assumption, there is a directed path γ from u to v0. Starting at u, we add the edges of γ to T
until we arrive at a node that is already in T (at the latest, this happens at v0). The resulting T is
still a tree, since we could not have added a loop. Additionally, T is still rooted in v0 since all edges
that were added are directed towards v0. This procedure can be repeated until all nodes are part of
T . By construction T is a spanning tree rooted in v0 such that T ′ is a subgraph of T .

�

Remark 2.3. A special case of this Lemma states that in a strongly connected graph G there is at
least one spanning tree rooted in v0 for any v0 ∈ V. If all edge-weights of the graph are positive, this
implies that ‖Av0‖ > 0 and thereby ‖A‖ > 0.

Finally, we define divided tree pairs, also known in the literature as 2-trees [16], which are sub-
structures of directed graphs. These structures will be the central object in the results of the following
sections.

Definition 2.4. Let G = (V, E) be a directed graph. For w1, w2 ∈ V, we call (Tw1
,Tw2

) a ’divided tree
pair’, in short dTp, if

(i) Twi
⊂ G is a tree rooted in wi, for i = 1, 2;

(ii) ∀ u ∈ V either u ∈ Tw1
(exclusive) or u ∈ Tw2

.

For an edge j ∈ E, we call a dTp (Tw1
,Tw2

) a j-divided tree pair, in short j-dTp, if additionally

(iii) Tw1
∪ Tw2

∪ j is weakly connected.

There are a few observations to point out in this definition. The trees are allowed to consist of a
single node. Condition (ii) forbids w1 = w2. Condition (iii) implies that the edge j has to connect the
two trees and hence is part of neither of them. Additionally, for an edge j = (uv) and any j-divided
tree pair (Tw1

, Tw2
) we find that either u ∈ Tw1

, v ∈ Tw2
or v ∈ Tw1

, u ∈ Tw2
. To distinguish these

cases in formula, we use square brackets to interpret a Boolean term as a numerical value of 0 or 1.
We write

[u ∈ Tw1
] :=

{

1, u ∈ Tw1

0, u /∈ Tw1

. (2.2)

3 Prototypical linear response

In this section we introduce a prototypical system of linear equations with an underlying network
structure. Under mild assumptions, this system has a unique solution. We study how the solution
responds to small perturbations in particular entries of the matrix governing the linear system, in
particular in view of the underlying network structure.

Consider a directed graph G = (V, E) and a matrix L ∈ R
V×V with the properties

(i) For nodes u 6= v we have Lvu 6= 0 ⇐⇒ (uv) ∈ E ;

(ii) Luu = −
∑

v 6=u Lvu.
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The sparse structure of L, i.e. which entries are 0, uniquely characterizes the directed graph G. Hence,
we call G the underlying graph of L. Additionally, L even provides weights for each edge. For
j = (uv) ∈ E we set wj = Lvu. Whenever we refer to the weights of the graph G, e.g. by writing ‖A‖,
we use the weights induced by L. To emphasize this, we write G = (V, E ,L) for the weighted graph
G. Based on the strong similarity to the generator of a continuous-time Markov chain (see Section 4),
we call L a generalized Laplacian.

A generalized Laplacian L has the special property that each column sums to 0. In particular, this
implies that the kernel of L is non-empty since the vector with 1 in ever entry is in the left-kernel of
L. We are interested in solutions µ ∈ R

V of the following system of linear equations which we call the
equilibrium equation

Lµ = 0,
∑

v∈V

µv = 1. (3.1)

In general, neither existence nor uniqueness of solutions of this system can be guaranteed. We intro-
duce the matrix L(v) ∈ R

V×V which is the matrix L with its v-row replaced by a row of 1’s. Then any
solution to (3.1) is also a solution to

L(v)µ = ev, (3.2)

for any v ∈ V. On the other hand, a simple calculation verifies that a solution µ of (3.2) is also a
solution to (3.1). We compute the product of µ with the v-row of L.

Lv · µ = −
∑

w 6=v

Lw · µ

= 0.

Hence, a vector µ ∈ R
V is a solution to (3.1) if and and only if it is a solution to the matrix equation

(3.2) for any choice of v ∈ V. Hence, we may refer to both of them as the equilibrium equation.
The following proposition provides the condition under which there is a unique solution µ to the
equilibrium equation.

Proposition 3.1. For any v ∈ V we find

det(L(v)) = (−1)|V|−1 ‖A‖ .

Assuming that ‖A‖ 6= 0, there is a unique solution µ ∈ R
V to the equilibrium equation (3.1).

We proceed to study the sensitivity of the unique solution, i.e. how it changes when perturbing
a particular entry of L. To guarantee existence and uniqueness of a solution µ ∈ R

V , we assume
‖A‖ 6= 0. We may study the response to perturbation of arbitrary non-diagonal entries of L, not only
those of which correspond to an edge in E . Let ℓv∗u∗ , for u∗ 6= v∗, be the entry want to perturb,
i.e. replace ℓv∗u∗ by ℓv∗u∗ + ǫ. We do not require that (u∗v∗) ∈ E . It is important to notice that
increasing ℓv∗u∗ by ǫ requires us to decrease the diagonal entry ℓu∗u∗ by ǫ to preserve the properties
of a generalized Laplacian. We define the perturbed Laplacian as

L(ǫ) := L+ ǫ
(

Ev∗u∗ − Eu∗u∗

)

, (3.3)

where Evu is the matrix with only 0’s and one 1 in row v and column u. For sufficienly small ǫ, we
still find ‖A(ǫ)‖ 6= 0 and we may define µ(ǫ) as the unique solution to

L(v)(ǫ)µ(ǫ) = ev. (3.4)
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It should be noted that L(v)(ǫ) is the matrix obtained by first adding the ǫ terms and then replacing
the v-row by 1’s. This may overwrite one of the ǫ-terms if v ∈ {u∗, v∗}. We write j∗ = (u∗v∗) even if
j∗ /∈ E . The response vector δj

∗

∈ R
V to a perturbation of j∗ is defined as

δj
∗

:=
∂µ(ǫ)

∂ǫ

∣

∣

∣

ǫ=0
. (3.5)

Theorem 3.2. Consider an generalized Laplacian L and let G = (V, E ,L) be the underlying weighted
graph. We assume ‖A‖ 6= 0. When perturbing j∗ = (u∗v∗), not necessarily in E, the response of the
unique solution of the equilibrium equation (3.1) in a node u′ ∈ V is given by

δj
∗

u′ = µu∗

1

‖A‖

∑

w 6=u′

∑

(Tu′ ,Tw)
j∗-dTp

(−1)[u
∗∈Tu′ ] ‖Tu′‖ ‖Tw‖ . (3.6)

Theorem 3.2 does not provide an efficient way to compute the entries of δj
∗

yet, as determining j∗-
divided tree pairs is a computationally expensive task. However, the formula of the theorem provides
insight into the relation of the graph structure of G and the responses δj

∗

u′ . Additionally, this formula
will be the central tool in the study of the sensitivity in Markov chains and chemical reaction networks
in Section 4 and 5.

3.1 Proofs

This section contains the proofs to Proposition 3.1 and Theorem 3.2. The central tool of the proofs is
the ’All Minors Matrix Tree Theorem’ [17]. It provides a formula for the determinant of a generalized
Laplacian when deleting rows/columns from the matrix.

Consider a generalized Laplacian L with underlying weighted graph G = (V, E ,L). Additionally we
fix an ordering of the vertices, i.e. a bijection σ : V → {1, . . . , |V|}. For two sets of vertices U,W ⊂ V,
not necessarily disjoint, we denote by L(W | U) the submatrix of L obtained from deleting the rows
indexed by W and the columns indexed by U . For U = {u1, . . . , un} and W = {w1, . . . , wn}

1 we may
also write L(u1, . . . , un | w1 . . . wn). The All Minor Matrix Tree Theorem can be stated as follows

Theorem 3.3. [17] For U,W ⊂ V with |U | = |W | we find

det
(

L(U |W )
)

= (−1)|V|−|U |(−1)
∑

u∈U σ(u)+
∑

w∈W σ(w)
∑

F

sgn(πF ) ‖F‖ ,

where the sum is over all spanning forests F of G such that

(i) F contains exactly |W | = |U | trees;

(ii) Each tree in F contains exactly one node in U and exactly one node in W ;

(iii) Each tree in F is rooted in its node of W .

F defines a bijection πF : U → W such that πF (u) = w if and only if u is in the tree of F which is
rooted in w. As a bijection between ordered sets, πF is a permutation whose signature is denoted by
sgn(πF ) ∈ {−1, 1}. The product of the edge weights in F is denoted by ‖F‖.

1We will only ever consider sets with |U | = |W |.
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We will only apply this theorem in the cases |W | = |U | = 1 and |W | = |U | = 2. In the first case,
the forests F are simply spanning trees rooted in the node of W . In the latter case, the forests are
divided tree pairs. More precisely, for U = {u1, u2} and W = {w1, w2} a forest F as in the theorem
is a (u1u2)-divided tree pair (Tw1

,Tw2
).

Proof of Proposition 3.1: Let L be a generalized Laplacian and fix any v ∈ V. We compute the
determinant of L(v) via the Laplace-expansion in the v-row (whose entries are only 1’s)

det(L(v)) =
∑

w∈V

(−1)σ(v)+σ(w) det(L(v | w)).

Theorem 3.3 yields

det(L(v | w)) = (−1)|V|−1(−1)σ(v)+σ(w)
∑

F

sgn(πF ) ‖F‖ .

The sum runs over all spanning trees rooted in w. The bijection πF maps between singleton sets and
thus trivially has sgn(πF ) = +1. We conclude

det(L(v)) = (−1)|V|−1
∑

w∈V

‖Aw‖

= (−1)|V|−1 ‖A‖ .

Now let us assume ‖A‖ 6= 0. Then, the matrix L(v) is invertible for any v ∈ V and µ = (L(v))−1ev is
the unique solution to the equilibrium equation (3.2).

�

Proof of Theorem 3.2: Let L be a generalized Laplacian with underlying weighted graph G = (V, E)
such that ‖A‖ 6= 0. Let j∗ = (u∗v∗) be the entry of L we are perturbing. The solution µ(ǫ) of the
perturbed Laplacian L(ǫ) is the uniquely determined by

L(v)(ǫ)µ(ǫ) = ev,

for any v ∈ V (compare (3.4)). We choose v = u∗, the source node of j∗. This choice simplifies the
matrix L(u∗)(ǫ), since one of the two ǫ terms is replaced by a 1 (compare (3.3)). We find

L(u∗)(ǫ) = L(u∗) + ǫEv∗u∗ .

Hence, all µ(ǫ) satisfy f(ǫ, µ(ǫ)) = 0, where

f : R×R
V −→ R

V

(ǫ, x) −→ L(u∗)x+ ǫxu∗ev∗ − eu∗ .

To apply the implicit function theorem, we verify that

∂f

∂x
(0, µ) = L(u∗),
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is invertible. This is given by Proposition 3.1 and the assumption ‖A‖ 6= 0. By implicit differentiation
we obtain

∂µ(ǫ)

∂ǫ

∣

∣

∣

ǫ=0
= −

(

∂f

∂x
(0, µ)

)−1 ∂f

∂ǫ
(0, µ)

= −
(

L(u∗)
)−1

(µu∗ev∗).

(3.7)

The left-hand-side of the equation is exactly the response vector δj
∗

whose entries we aim to compute.
We can rewrite (3.7) as

L(u∗)δj
∗

= −µu∗ev∗ .

Now let us fix a target node u′ ∈ V in which we compute the response δj
∗

u′ . Using Cramer’s rule

δj
∗

u′ =
det
(

B(u′)
)

det
(

L(u∗)
) ,

where B(u′) is the matrix obtained from replacing the u′-column of L(u∗) by −µu∗ev∗ . The determinant
of L(u∗) in the denominator was already computed in Proposition 3.1. We obtain

δj
∗

u′ = (−1)|V|−1 1

‖A‖
det
(

B(u′)
)

.

The determinant of B(u′) can be described using the Laplace-expansion in the u′-column. Since the
u′-column is −µu∗ev∗ by construction, there is only one non-zero entry. The Laplace-expansion reads

det(B(u′)) = −µu∗(−1)σ(u
′)+σ(v∗) det

(

L(u∗)(v∗ | u′)
)

. (3.8)

However, L(u∗) is not a matrix we may apply Theorem 3.3 to, as it is not a generalized Laplacian.
Therefore, we need to use yet another Laplace-expansion, this time in the u∗-row (which only contains
1’s)

det
(

L(u∗)(v∗ | u′)
)

=
∑

w∈V
w 6=u′

(−1)σ∨v∗ (u
∗)+σ

∨u′ (w) det
(

L(u∗, v∗ | u′, w)
)

.

The terms of the form σ∨a(b) denote the order of b in σ after deleting a. The order of b only changes
if a came before b, i.e. σ(a) < σ(b) in which case it is reduced by one. We can rewrite the term as

σ∨a(b) = σ(b)− [σ(a) < σ(b)],

using the Boolean square bracket notation analogous to (2.2). We summarize

δj
∗

u′ = µu∗

1

‖A‖

∑

w∈V
w 6=u′

sign(u∗, v∗, u′, w) det(L(u∗, v∗ | u′, w)), (3.9)

where, for spatial reasons, we abbreviated the signs of the summands as

sign(u∗, v∗, u′, w) = (−1)(−1)|V|−1(−1)σ(u
∗)+σ(v∗)+σ(u′)+σ(w)(−1)[σ(v

∗)<σ(u∗)]+[σ(u′)<σ(w)].
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Now we apply Theorem 3.3 to compute the determinant of L(u∗, v∗ | u′, w)

det(L(u∗, v∗ | u′, w)) = (−1)|V|−2(−1)σ(u
∗)+σ(v∗)+σ(u′)+σ(w)

∑

F

sgn(πF ) ‖F‖ . (3.10)

As mentioned before, the sum runs over divided tree pairs (Tu′ ,Tw) such that u∗ is in one and v∗ is in
the other tree. Hence, the F are exactly the j∗-dTp of G. To compute the sign of the bijection πF ,
we consider the two cases individually.
Case 1. u∗ ∈ Tu′

The bijection πF is given by

πF (u
∗) = u′ πF (v

∗) = w.

One can check that the sign of this permutation is given by

sgn(πF ) = (−1)(−1)[σ(v
∗)<σ(u∗)]+[σ(u′)<σ(w)].

Case 2. u∗ /∈ Tu′

The bijection πF is given by

πF (u
∗) = w πF (v

∗) = u′.

One can check that the sign of this permutation is given by

sgn(πF ) = (−1)[σ(v
∗)<σ(u∗)]+[σ(u′)<σ(w)].

The two cases are summarized by

sgn(πF ) = (−1)[u
∗∈Tu′ ](−1)[σ(v

∗)<σ(u∗)]+[σ(u′)<σ(w)].

Inserting this computation into (3.10) and again using the abbreviation of sign(u∗, v∗, u′, w), we arrive
at

det(L(u∗, v∗ | u′, w)) = sign(u∗, v∗, u′, w)
∑

(Tu′ ,Tw)
j∗-dTp

(−1)[u
∗∈Tu′ ] ‖Tu′‖ ‖Tw‖ . (3.11)

Inserting (3.11) into (3.9), we get

δj
∗

u′ = µu∗

1

‖A‖

∑

w∈V
w 6=u′

∑

(Tu′ ,Tw)
j∗-dTp

(−1)[u
∗∈Tu′ ] ‖Tu′‖ ‖Tw‖ .

This completes the proof.

�
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4 Continuous-time Markov chains

Continuous-time Markov chains, in short CTMCs, are one of the most basic types of stochastic
processes. We will briefly describe a CTMC in stochastic terminology before switching to a purely
deterministic characterisation. A CTMC on a finite state space can be described as a random walk
(Xt)t∈R+

on a directed graph G = (V, E). At each point in time, the position of the random walk
is given by a node in V, i.e. Xt ∈ V. The trajectory of X is assumed to be càdlàg. Hence, the
process X jumps between the discrete states at discrete points in time. The directed edges E indicate
which transitions between the states are possible with positive probability. To each edge (uv) ∈ E we
associate a positive rate at which Xt is transitioning to v from node u. For an explicit formulation of
continuous-time Markov chains, we refer to [18]. We denote the transition rate of an edge j = (uv) ∈ E
by ℓvu or simply ℓj . Hence, the rates (ℓj)j∈E can be understood as weights of the edges in the graph.
For (uv) /∈ E we set ℓvu = 0. We define the Laplacian L ∈ R

V×V of the CTMC as

Lvu =

{

ℓvu, u 6= v

−
∑

w 6=v ℓwv, u = v.
(4.1)

The diagonal entries Lvv contain the total outgoing transition rates from a node v. This matrix is
oftentimes referred to as the generator of the CTMC. Note that the Laplacian L is also a generalized
Laplacian as introduced in the previous section.

We shall study the probability distribution p(t) ∈ R
V of the process (Xt)t∈R+

, which is defined as

p(t)v = P
(

Xt = v
)

, ∀v ∈ V.

The Laplacian provides a purely deterministic representations of the Markov chain as a linear differ-
ential equation. Given an initial distribution p0 ∈ R

V of X0, the probability vector p(t) satisfies

ṗ(t) = Lp(t),

p(0) = p0.
(4.2)

We will usually only characterize a CTMC by its Laplacian L. The underlying graph structure can
be derived from the positive values in L. We call G = (V, E) the underlying graph of the CTMC. The
graph G is weighted with edge weights given by (ℓj)j∈E and we write G = (V, E ,L). A CTMC whose
underlying graph is strongly connected is called irreducible.

A probability vector µ ∈ R
V which is in the right kernel of L is called a stationary distribution, in

short stat. dist. A well-known result is that under suitable conditions a stat. dist. exists and is unique.

Theorem 4.1. Consider an irreducible CTMC with Laplacian L. Then, a stat. dist. exists and is
unique. In formula, there is a unique vector µ ∈ R

V such that

Lµ = 0,
∑

v∈V

µv = 1.

Additionally, µv > 0 for any v ∈ V.

For a proof of the theorem, we refer to [19, Chapter 3], in which much more general results are
stated.

Remark 4.2. Comparing the statement of Theorem 4.1 to the equilibrium equation (3.1) shows
that the stat. dist. of a CTMC is uniquely defined as the solution to the equilibrium equation of its
Laplacian L.
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4.1 Sensitivity

In this section we study how the stat. dist. µ of an irreducible Markov chain changes when slightly
perturbing the transition rates. For simplicity, we study the effect of perturbing only one selected
transition rate at a time. Our aim is to characterize how the structure of the underlying graph dic-
tates the response of the stat. dist. to such perturbations.

Consider an irreducible CTMC with Laplacian L and let G = (V, E) be the underlying graph. Let
j∗ = (u∗v∗) ∈ E with rate ℓv∗u∗ > 0 be the transition we want to perturb, i.e. replace ℓv∗u∗ by ℓv∗u∗+ǫ.
It is important to notice that increasing ℓv∗u∗ by ǫ requires us to decrease the leaving rate ℓu∗u∗ by ǫ
to preserve the Laplacian property. We define the perturbed Laplacian

L(ǫ) := L+ ǫ
(

Ev∗u∗ − Eu∗u∗

)

, (4.3)

where Evu is the matrix with only 0’s and one 1 in row v and column u. For sufficiently small ǫ (to
be precise |ǫ| < ℓv∗u∗) the Laplacian L(ǫ) corresponds to an irreducible CTMC, which has a unique
stat. dist. µ(ǫ). Naturally, the underlying graph structure does not change under these perturbations.
We are interested in the quantity

δj
∗

:=
∂µ(ǫ)

∂ǫ

∣

∣

∣

ǫ=0
, (4.4)

which we call the response vector to a perturbation of j∗. Equivalently, we may understand µ as
a function of the transition rates (ℓj)j∈E and define the response as ∂µ(ℓ)

∂ℓj∗
. Our aim is to derive a

description of the response vector δj
∗

in which the transition rates (ℓj)j∈E are left as variables. Hence,
the response vector is a function δj

∗

: RE
+ → R

V which only depends on the underlying (unweighted)
graph G = (V, E). In particular, we study the signed response, i.e. whether the entries of δj

∗

are always
positive / always negative / always zero or may change signs. Formally we define the algebraic sign

of an entry δj
∗

u′ as

sign(δj
∗

u′ ) =























+, ∀ ℓ ∈ R
E
+ : δj

∗

u′ (ℓ) > 0

−, ∀ ℓ ∈ R
E
+ : δj

∗

u′ (ℓ) < 0

0, ∀ ℓ ∈ R
E
+ : δj

∗

u′ (ℓ) = 0

±, else.

(4.5)

We stress again that the algebraic sign of the entries of δj
∗

only depends on the graph structure of
G. Remark 4.2 stated that the stat. dist. µ is the unique solution to the equilibrium equation of the
Laplacian L. Hence, the following theorem is a special case of Theorem 3.2.

Theorem 4.3. Consider an irreducible CTMC with Laplacian L and let G = (V, E ,L) be the underly-
ing weighted graph. When perturbing j∗ = (u∗v∗) ∈ E, the response of the stat. dist. in a node u′ ∈ V
as defined in (4.4) is given by

δj
∗

u′ = µu∗

1

‖A‖

∑

w 6=u′

∑

(Tu′ ,Tw)
j∗-dTp

(−1)[u
∗∈Tu′ ] ‖Tu′‖ ‖Tw‖ . (4.6)

Note that in this setting Remark 2.3 and Theorem 4.1 guarantee that the quantities µu∗, ‖A‖ , ‖Tu′‖
and ‖Tw‖ are all positive. This can be used to derive the following corollary characterizing the algebraic
signs of the response entries in terms of the underlying graph structure.
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Corollary 4.4. Consider an irreducible CTMC with Laplacian L and let G = (V, E) be the underlying

graph. When perturbing j∗ = (u∗v∗) ∈ E, the sign of δj
∗

u′ for u′ ∈ V is

(i) +, if and only if any path from u∗ to u′ contains v∗.

(ii) −, if and only if there is no path from u∗ to u′ containing v∗.

(iii) ±, if and only if there are paths γ1, γ2 from u∗ to u′ such that γ1 ∋ v∗ /∈ γ2.

In particular, the sign of δj
∗

u∗ is always −, while the sign of δj
∗

v∗ is always +. An entry which has sign
0 cannot occur.

Remark 4.5. The existence of paths as described in Corollary 4.4 can be checked algorithmically
with a complexity of O(|V| · |E|). Hence, the algebraic sign of the response to a perturbation can be
computed efficiently.

Proof of Corollary 4.4: We consider the formula of the response in u′ ∈ V to the perturbation of
an edge j∗ = (u∗v∗) ∈ E

δj
∗

u′ = µu∗

1

‖A‖

∑

w 6=u′

∑

(Tu′ ,Tw)
j∗-dTp

(−1)[u
∗∈Tu′ ] ‖Tu′‖ ‖Tw‖ .

Since all the transition rates (ℓj)j∈E are positive, µu∗
1

‖A‖ are strictly positive and do not influence the

sign of δj
∗

u′ . The products ‖Tu′‖ ‖Tw‖ are monomials of degree |V| − 2 of the positive transition rates.
Note that no monomial can appear twice and each monomial has a coefficient of either +1 or −1.
Hence, the sign of δj

∗

u′ is determined by the existence of monomials with positive, respectively negative
coefficient. This corresponds to the existence of a j∗-divided tree pair such that u∗ ∈ Tw, respectively
u∗ ∈ Tu′ . Indeed, if both types of j∗-dTp exists, the sign of δj

∗

u′ is ± while if only one type exist, the
sign is +, respectively −. This requires the existence of at least one j∗-divided tree pair. As we will
see, this is always the case.

To prove the corollary, it suffices to prove the following claims.
Claim 1. There is a w ∈ V and a j∗-dTp (Tu′ ,Tw) with u∗ ∈ Tw if and only if there is a directed path
γ from u∗ to u′ that contains v∗.
Claim 2. There is a w ∈ V and a j∗-dTp (Tu′ ,Tw) with u∗ ∈ Tu′ if and only if there is a directed
path γ from u∗ to u′ that does not contain v∗.

Proving Claim 1: Consider a j∗-dTp (Tu′ ,Tw) with u∗ ∈ Tw. This implies v∗ ∈ Tu′ , and hence
there is a directed path from v∗ to u′. Adding j∗ to the beginning of the path yields a directed path
γ from u∗ to u′ that contains v∗.

Consider a directed path γ from u∗ to u′ that contains v∗ (This rules out u′ = u∗). This path can
be interpreted as a tree T ′ rooted in u′. By the extension Lemma 2.2, we can find a spanning tree T
rooted in u′ that contains T ′. Deleting the outgoing edge of u∗ splits T into a tree rooted in u′ and
one rooted in u∗. Hence, it becomes a j∗-dTp (Tu′ ,Tu∗) for which it clearly holds that u∗ ∈ Tu∗ (in
this case we have w = u∗).

Proving Claim 2: Consider a j∗-dTp (Tu′ ,Tw) with u∗ ∈ Tu′ . Hence, there is a directed path γ
from u∗ to u′ in Tu′ . Since v∗ ∈ Tw, this path does not contain v∗.
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Consider a directed path γ from u∗ to u′ that does not contain v∗ (This rules out u′ = v∗). This
path can be interpreted as a tree T ′ rooted in u′. By the extension Lemma 2.2, we can find a spanning
tree T rooted in u′ that contains T ′. Deleting the outgoing edge of v∗ splits T into a tree rooted in
u′ an one rooted in v∗. Hence, it becomes a j∗-dTp (Tu′ ,Tv∗) for which u∗ ∈ Tu′ since γ is still part
of Tu′ (in this case we have w = v∗).

Since G is strongly connected, there is at least one directed path from u∗ to u′ and therefore at
least one j∗-dTp exists. Note that Claim 1 covers the case u′ = v∗ Claim 2 covers the case u′ = u∗.

�

We illustrate the application of this Corollary in a toy example.

Example 1. We consider a CTMC with six states that we label from A to F . The transitions between
the states that may occur with positive probability are depicted in Figure 1(a). The Laplacian of the
CTMC is written as

L =

















−(ℓBA + ℓEA) 0 0 ℓAD 0 0
ℓBA −(ℓCB + ℓDB) ℓBC 0 0 0
0 ℓCB −ℓBC 0 0 0
0 ℓDB 0 −(ℓAD + ℓFD) ℓDE 0

ℓEA 0 0 0 −ℓDE ℓEF

0 0 0 ℓFD 0 −ℓEF

















.

The underlying graph G = (V, E) of the CTMC is given by

V := {A,B,C,D,E, F}

E := {(AB), (AE), (BC), (BD), (CB), (DA), (DF ), (ED), (FE)}.

From Figure 1(a) it is easy to see that G is strongly connected. Hence the CTMC is irreducible and
admits a unique stat. dist. whose sensitivity we may study. Corollary 4.4 determines the algebraic
sign of each response entry δj

∗

u′ . We compute the signs for each j∗ ∈ E and u′ ∈ V and write them in
a matrix δ ∈ {+,−,±}V×E . This matrix is depicted in Figure 1(b).

Note that most of the signs of the response entries are determined, i.e. either + or − while only
a few entries are of undetermined sign ±. A special response pattern arises for edges which are the
only outgoing edge of a node, namely edges 3, 7 and 9. Perturbation in these edges lead to a negative
response in the node they are originating from and to a positive response in all other nodes. This is
in accordance with Corollary 4.4.

�

5 Chemical reaction networks

In this section we present an application of the results on the prototypical linear response of generalized
Laplacians to deterministically modelled chemical reaction networks. In this brief introduction to
chemical reaction networks, we closely follow the work of Vassena [6], which summarizes the framework
of Mochizuki, Fiedler and Brehm [13, 20, 5].
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(a) Network structure of the CTMC.

δ =

















1 2 3 4 5 6 7 8 9

A − − + + + − + − +
B + − + − + − + − +
C + + − − + − + − +
D ± − + + − ± + − +
E ± − + + ± + − ± +
F ± − + + − ± + + −

















(b) Algebraic signs of the response entries δj
∗

u′ .

Figure 1: (a) Letters A to F denote the states of the CTMC. Possible transitions are labelled with
numbers 1 to 9. (b) For j∗ ∈ E and u′ ∈ V the entry δu′j∗ contains the algebraic sign of the response

entry δj
∗

u′ .

A reaction network consist of a set of reactants M and set of reactions R between them. A reaction
j ∈ R might look like

j : A+ 2B −→ 2C +D,

where A,B,C,D ∈ M are reactants. We call the reactants on the left side of the reaction the inputs
and those on the right side the outputs. A reactant can be both input and output of one and the same
reaction. In the general form, a reaction j can be represented as

j :
∑

m∈M

sjmm −→
∑

m∈M

s̄jmm,

where sjm, s̄jm are non-negative values. We call them the stoichiometric coefficients. Most of the
times, the stoichiometric coefficients are integer-valued, however this is not required. In this general
definition a reactant m is an input if sjm 6= 0 and an output if s̄jm 6= 0. Reactions that have at
most one input and at most one output are called monomolecular. If every reaction of a reaction
network is monomolecular, we call it a monomolecular reaction network. There are two special types
of reactions that we address explicitly. Those without inputs, which we call feed-reactions and those
without output, which we call exit-reactions. We write these using the notation of the zero-complex
0 [4], i.e. j : 0 → ·, respectively j : · → 0. Feed reactions can be understood as a constant inflow
of certain reactants into the system, while exit reactions can indicate the production of a substance
which is not part of the system, e.g. biomass or energy.

Writing sj and s̄j as vectors in R
M we can define the stoichiometric matrix S ∈ R

M×R, whose
j-column is given by

Sj = s̄j − sj.

With this definition, we can describe the reaction network as a system of ordinary differential equations
(ODEs). The quantities we consider are the concentrations xm of the individual reactants m ∈ M.
The values of the concentrations are not normalized, i.e. they are not required to sum to 1 and may
take arbitrary non-negative values. The temporal evolution of the concentration vector x ∈ R

M is
described by the potentially non-linear differential equation

ẋ = Sr(x), (5.1)

14



where r : RM → R
R are the reaction rates. We impose a few constraints on the reaction rates r.

The rate rj(x) of a reaction j is assumed to be differentiable, non-negative and only dependent on
the input reactants of j. Additionally, the rate of j increases monotonically with the concentration of
the inputs. We can specify these constraint via the derivatives of r. Namely, we require that for any
non-negative concentration vector x ∈ R

M
≥0

∂rj
∂xm

(x) > 0 ⇐⇒ m is an input of j. (5.2)

In particular, this implies that feed reactions have a constant rate since their reaction rate does not
depend on the concentration of the reactants. Common choices of the reaction rate function are
defined by the mass-action kinetics or Michaelis-Menten kinetics, both of which satisfy the condition
posed in (5.2). However, we do not focus on any specific choice of the reaction rate function but aim
to study the sensitivity of equilibria for arbitrary reaction rate functions.

An equilibrium of the system is a vector x∗ ∈ R
M
≥0 for which

Sr(x∗) = 0. (5.3)

Existence and uniqueness of equlibria is a topic that can be studied on its own. Here, we assume the
existence of an equilibrium x∗ and study its sensitivity as introduced by Mochizuki and Fiedler in
[13]. In particular, we describe the response of the equilibrium when the rate of a particular reaction
j∗ is increased. In practice, this can be achieved by adding a catalyst of the reaction to the system.
Mathematically, we add an ǫ to the reaction rate of rj∗. We write rj∗(ǫ, x) = rj∗(x) + ǫ. All other
reactions are assumed to be unaffected by ǫ. Hence, we write the perturbed reaction rate vector by

r(ǫ, x) := r(x) + ǫej∗ .

We denote the equilibrium corresponding to r(ǫ, ·) by x∗(ǫ), i.e.

0 = Sr(ǫ, x∗(ǫ)).

In [13] the response vector ∆j∗ ∈ R
M was introduced which is the response of the equilibrium con-

centrations to perturbation of the reaction j∗

∆j∗ :=
∂x∗(ǫ)

∂ǫ

∣

∣

∣

ǫ=0

In [5] it was shown that x∗(ǫ), and thereby the response ∆j∗, are well-defined under non-degeneracy
of the Jacobian of (5.1) at the equilibrium x∗. To compute this Jacobian we define

Rjm :=
∂rj
∂xm

(x∗), (5.4)

the derivatives of the reaction rates at the equilibrium. Writing these values as a matrix R ∈ R
R×M,

the Jacobian of the system is then given by SR. Hence, we require

det(SR) 6= 0. (5.5)

By implicit differentiation of the function

f : R×R
M −→ R

M

(ǫ, x) −→ Sr(ǫ, x)
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in the point (0, x∗), we get

∂x∗(ǫ)

∂ǫ

∣

∣

∣

ǫ=0
= −

(

∂f

∂x
(0, x∗)

)−1(∂f

∂ǫ
(0, x∗)

)

= −(SR)−1Sej∗ .

(5.6)

Using the previously introduced notation, we arrive at a formula for the response vector

∆j∗ = −(SR)−1Sj∗. (5.7)

Note that the response vector does not depend on the actual values of the reaction rate r(x∗), but
only on the derivatives Rjm at the equilibrium. Similar to the CTMC setting in which we considered
arbitrary positive transition rates (ℓj)j∈E , we leave the non-zero values Rjm as positive parameters
and aim to describe the response vector as a function of these values symbolically. By (5.2), an entry
Rjm is a non-zero variable if and only if m is an input to reaction j. The non-degeneracy condition
(5.5) can be understood as the determinant being non-zero as a function of the values in Rjm. In [5,
Theorem 2.1] an analysis of this condition is provided. In [13, 5] it is described under what condition
∆j∗ 6= 0 holds algebraically, i.e. as a function. A function is considered algebraically non-zero if there
is at least one valid input that yields a non-zero output. The work of Vassena [6] then addressed the
question of signed sensitivity, i.e. determining the algebraic sign (compare (4.5)) of ∆j∗.

It should be mentioned that in a system with, for example, the mass-action kinetic, the derivatives
Rjm can not be chosen arbitrarily, since they are tied to the particular equilibrium x∗. This does not
make any of the algebraic statements about ∆ wrong, but makes them vastly over-generalized.

5.1 Sensitivity using generalized Laplacians

As seen in the previous section, the sensitivity of a reaction network depends solely on the linearization
SR in a given equilibrium. In this section, we will interpret SR as part of a generalized Laplacian L
and obtain sensitivity results similar to Theorem 3.2.

Consider a reaction network with set of reactants M and set of reactions R. Let x∗ be a given
equilibrium of the differential equation (5.1) and let SR be the linearization in x∗. We assume
det
(

SR
)

6= 0. We construct a generalized Laplacian L on the set M∪{0} in the following way

L =









0 −1SR

0 SR









, (5.8)

where the first row/column corresponds to the state 0. The symbol 1 is used to denote the vector
of appropriate shape that consists only of 1′s. Hence, 1SR is a row vector containing the column
sums of SR and (5.8) indeed defines a generalized Laplacian, i.e. all columns sum to 0. We call
G = (M ∪ {0}, E), the underlying graph of L, the influence graph of the reaction network in an
equilibrium. Let us stress that the graph structure of G depends neither on the chosen equilibrium
x∗ nor on the values Rjm, but purely on the set of reactants M and set of reactions R. However,
given an equilibrium x∗ and choice of values Rjm, we can equip G with weights using the generalized
Laplacian constructed in (5.8). We write G = (V, E ,L) for the weighted influence graph. Before we
continue, let us provide some intuition for the generalized Laplacian (5.8) and the influence graph, in
particular which edges lie in the set E . We consider an example reaction network.

16



0 A

B

2
C 0

0

1
3

(a) Chemical reaction network

A B C

0

(b) The influence graph G.

Figure 2: Example of a simple chemical reaction network and its influence graph. The edges of the
influence graph are determined by the non-zero entries of (5.9).

Example 2. Consider the chemical reaction network defined by

M := {A,B,C}

R := {j0 : 0 → A, j1 : A → B, j2 : A+B → C, j3 : C → 0}.

See Figure 2(a) for a schematic drawing of the reaction network. For simplicity, we label the reactions
j0, . . . , j3 with their respective index 0, . . . , 3. The stoichiometric matrix S and the derivative matrix
R are given by

S =





0 1 2 3

A 1 −1 −1 0
B 0 1 −1 0
C 0 0 1 −1



, R =









A B C

0 0 0 0
1 R1A 0 0
2 R2A R2B 0
3 0 0 R3C









The generalized Laplacian L as defined in 5.8 is given by

L =









0 R2A R2B R3C

0 −R1A −R2A −R2B 0
0 R1A −R2A −R2B 0
0 R2A R2B −R3C









. (5.9)

The influence graph G = (V, E) is the underlying graph of L. Its vertex set and edge set are given by

V = {A,B,C,0}

E = {(A0), (AB), (AC), (B0), (BA), (BC), (C0)}

See Figure 2(b) for a drawing of G. The weights of G = (V, E ,L) are given by the off-diagonal entries
of L. Note that the weigth of the edge (AB) has the weight R1A − R2A and hence does not consist
of a single variable. Also the variables Rjm no longer appear only once, but in multiple edges. This
makes analyzing these graphs much harder.

A key difference between the reaction network and its influence graph is that while the reaction
network may contain reactions between complexes, e.g. A+B → C, the influence graph only contains
single reactants as nodes and directed edges between them. This is contrary to the approach of
writing a chemical reaction network as a directed graph on the set of its complexes which is much
more common [4]. The reaction j2 : A + B → C results in a total of 6 edges in the influence graph,
namely (A0), (AC), (B0), (BC) with positive terms and (AB), (BA) with negative terms2. This can

2The edge (AB) also gets a positive term from reaction j1.
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be interpreted as follows. An increase in the concentration of A accelerates the reaction j2. Hence,
C is being produced and we expect its concentration to go up. On the other hand, B is consumed
faster and we expect its concentration to decrease. Therefore (AC) gets a positive term while (AB)
has a negative term. The same applies for an increase in the concentration of B. The edges (A0) and
(B0) indicate that ’mass is lost’ in the reaction j2 meaning that there is only one output while there
were two inputs. Since mass conservation is essential for applying generalized Laplacians we add an
abstract flow from A and B to 0.

�

Remark 5.1. It is convenient to model edges with more than one variable in their weight as mul-
tiedges, i.e. multiple edges with the same start and target node. This turns the influence graph G
into a multigraph. The entire theory of this article can be directly extended to the multigraph set-
ting. However, this is not necessary for the results we present, so for simplicity multigraphs are not
considered.

For a general chemical reaction network, the structure of the influence graph G = (M ∪ {0}, E)
can be characterized in the following way:

• For reactants m1 6= m2, there is an edge (m1m2) ∈ E if and only if there is a reaction j ∈ R in
which m1 is an input and m2 is either an input or an output;

• For m ∈ M there is an edge (m0) ∈ E if and only if m is the input of a reaction j ∈ R that
has an unequal number of inputs and outputs, i.e. 1Sj 6= 0. In particular, this is the case for
exit-reaction m → 0.

Note that feed-reactions do not affect this graph in any way as they have no reactant input. We
obtain the following result which describes the response of x∗ to a reaction perturbation in terms of
the influence graph.

Theorem 5.2. Consider a chemical reaction network that satisfies the non-degeneracy condition
det(SR) 6= 0 at equilibrium x∗. When perturbing a reaction j∗ ∈ R the response of the equilibrium x∗

in a reactant m′ is given by

∆j∗

m′ =
1

‖A0‖

∑

(Tm′ ,T0)
dTp





∑

m∈Tm′

Smj∗



 ‖Tm′‖ ‖T0‖ .

The graph-related terms of the formula refer to the weighted influence graph G = (M∪{0}, E ,L). We
have

∥

∥A0
∥

∥ = det(SR) 6= 0.

Corollary 5.3. When perturbing a monomolecular reaction j∗ ∈ R of the form j∗ : m∗ → m for
m∗,m ∈ M∪ {0}, the response of the equilibrium x∗ in a reactant m′ is given by

∆j∗

m′ =
1

‖A0‖

∑

(Tm′ ,T0)
j∗-dTp

(−1)[m
∗∈Tm′ ] ‖Tm′‖ ‖T0‖ ,

where we may interpret j∗ as the edge (m∗m) ∈ E.
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The proofs to both statements are contained in Section 5.2.

Remark 5.4. Under the assumption det(SR) 6= 0, we find
∥

∥A0
∥

∥ 6= 0. We derive that there is at least
one tree rooted in 0 in the influence graph and hence there are directed paths in the influence graph
from any reactant to 0.

These formulas do not yet provide an efficient way to compute the sensitivity. Instead, they show
that the use of the prototypical linear response can be extended to open systems with a more complex
network structure. In the special case that each reaction is monomolecular, Corollary 5.3 can be used
to determine the signs of the sensitivity efficiently. However, this special case has been extensively
studied by Vassena [21] and we will not further elaborate on monomolecular networks.

Example 3. We revisit Example 2 and compute the entries of the response vector ∆ with the help of
Theorem 5.2. We start by computing

∥

∥A0
∥

∥ and, in particular, verifying that
∥

∥A0
∥

∥ 6= 0. In general,
the number of trees rooted in 0 grows exponentially with the number of nodes. In our case, we can
greatly reduce the effort of computing

∥

∥A0
∥

∥. A tree rooted in 0 requires any node to choose one
outgoing edge. The node C only has one outgoing edge, while A and B both have 3. Hence, there
are 9 potential combinations to consider, each of which defines a subgraph that might or might not
be a tree rooted in 0. Such a subgraph is a tree rooted in 0 if and only if there are no cycles. In our
setting, the only possible cycle is between A and B. Therefore,

∥

∥A0
∥

∥ can be computed by subtracting
this particular combination from the sum of all possible combinations, which is a term that factorizes.
We compute

∥

∥A0
∥

∥ = (ℓBA + ℓCA + ℓ0A)(ℓAB + ℓCB + ℓ0B)ℓ0C − ℓBAℓABℓ0C

= (R1A −R2A +R2A +R2A)(−R2B +R2B +R2B)R3C − (R1A −R2A)(−R2B)R3C

= 2R1AR2BR3C .

This term is non-zero by assumption.
We want to compute ∆j∗

m′ for all choices of m′ ∈ M and j∗ ∈ R with the help of Theorem 5.2. It

is convenient to fix an m′ ∈ M and compute ∆j∗

m′ for all j∗ ∈ R. That way, we only need to determine
all divided tree pairs (Tm′ ,T0) once.

Case 1. m′ = A
A dTp (TA, T0) requires us to choose an outgoing edge for the nodes B and 0 without forming a

cycle. Node C only has one outgoing edge. There is no possibility to create a cycle, hence all three
outgoing edges of B result in a dTp.

A B C

0

A B C

0

A B C

0

(TA,T0)

‖TA‖ ‖T0‖ −R2BR3C R2BR3C R2BR3C
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With this table and Theorem 5.2, we can read off all responses of the form ∆j∗

A for j∗ ∈ R.

∆j0
A =

1

2R1AR2BR3C

(

−R2BR3C +R2BR3C +R2BR3C

)

=
1

2R1A

∆j1
A =

1

2R1AR2BR3C

(

0 · (−R2BR3C) + (−1) ·R2BR3C + (−1) ·R2BR3C

)

= −
1

R1A

∆j2
A =

1

2R1AR2BR3C

(

(−2) · (−R2BR3C) + (−1) · R2BR3C + (−1) · R2BR3C

)

= 0

∆j3
A =

1

R1AR2BR3C

(

0 · (−R2BR3C) + 0 ·R2BR3C + 0 · R2BR3C

)

= 0.

In this case, the signs of the responses are all determined, independent of the precise positive values
in R.

Case 2. m′ = B
This case is almost analogous to the previous one.

A B C

0

A B C

0

A B C

0

(TB ,T0)

‖TB‖ ‖T0‖ (R1A −R2A)R3C R2AR3C R2AR3C

With this table and Theorem 5.2, we can read off all responses of the form ∆j∗

B for j∗ ∈ R.

∆j0
B =

1

2R1AR2BR3C

(

(R1A −R2A)R3C + 0 · R2AR3C + 0 · R2AR3C

)

=
R1A −R2A

2R1AR2B

∆j1
B =

1

2R1AR2BR3C

(

0 · (R1A −R2A)R3C +R2AR3C +R2AR3C

)

=
R2A

R1AR2B

∆j2
B =

1

2R1AR2BR3C

(

(−2) · (R1A −R2A)R3C + (−1) · R2AR3C + (−1) ·R2AR3C

)

= −
1

R2B

∆j3
B =

1

R1AR2BR3C

(

0 · (R1A −R2A)R3C + 0 ·R2AR3C + 0 ·R2AR3C

)

= 0.

In this case, there is a response entry of undetermined sign. The sign of ∆j0
B depends on the inequality

R1A ≷ R2A. If R1A = R2A, the response ∆j0
B is 0.

Case 3. m′ = C
This case is significantly more tedious than the previous two. For m′ = C there are a total of 8

divided tree pairs (Tm′ ,T0).
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A B C

0

A B C

0

A B C

0

A B C

0

(TC ,T0)

‖TC‖ ‖T0‖ R2AR2B R2AR2B −R2AR2B (R1A −R2A)R2B

A B C

0

A B C

0

A B C

0

A B C

0

(TC ,T0)

‖TC‖ ‖T0‖ (R1A −R2A)R2B R2AR2B R2AR2B −R2AR2B

We will not write out entire calculations of the response entries as before. We compute

∆j0
C =

1

2R3C
∆j1

C = 0

∆j2
C = 0 ∆j3

C = −
1

R3C

These 4 responses have an intuitive explanation. For the chemical reaction network we consider it
makes sense to associate a ’mass’ of 1 to both reactants A and B and a mass of 2 to reactant C. For
this assignment of mass, the inner reaction j1 and j2 are mass preserving. We deduce that the total
inflow and outflow of mass of the reaction network have to be equal. In particular, the reaction rates
of j0 and j3 must satisfy

rj0 = 2rj3(x
∗
C), (5.10)

where rj0 is the constant rate of the inflow reaction j0 and rj3(x
∗
C) is the rate of the outflow reaction

j3 at equilibrium x∗. Since C is the only input of j3 the concentration of C directly determines the
rate rj3 . Hence, the concentration of C cannot change as long as the inflow stays the same. There are
only two ways to achieve a response in the concentration of C. Either by adding additional inflow via
reaction j0 or by accelerating the outflow reaction j3 and thereby requiring a lower concentration of
C to obtain the same outflow. This explains why ∆j1

C and ∆j2
C are 0. The terms for ∆j1

C and ∆j2
C can

be derived by adding and ǫ to either one side of (5.10).

�

5.2 Proofs

Proof of Theorem 5.2: To prove this theorem, we build a connection between the sensitivity of reaction
networks and the prototypical linear response of generalized Laplacians. First, we find that L has at
least one solution to the equilibrium equation (3.1), which is given by µ = e0 (compare (5.8)). One
can check that det

(

L(0)
)

= det(SR) 6= 0 such that µ is in fact the unique solution to the equilibrium
equation by Proposition 3.1. We show that the response δ of µ to certain perturbations in L has the
same form as the responses ∆ of the reaction network. We start with the case of perturbing an entry
of the form Lm0 and studying the response vector δjm ∈ R

M∪{0} as defined in (3.5). We obtain from
(3.7), the implicit differentiation of µ(ǫ),

δjm = −
(

L(0)
)−1

(µ0em).

21



Since µ0 = 1, the factor can be omitted. The inverse of L(0) is easily verified to be given by

(

L(0)
)−1

=









1 −1(SR)−1

0 (SR)−1









.

We find that the response vector δjm restricted to the set of reactants M has a similar form as the
response vectors in the reaction network (compare (5.7))

δjm |M = −(SR)−1em.

We observe from (5.7) that the response to the perturbation of a reaction j∗ ∈ R can be decomposed
into summands of this form

∆j∗ = −(SR)−1Sj∗ =
∑

m∈M

Smj∗
(

−(SR)−1em
)

.

Using the formula of Theorem 3.2 to describe the entries of δjm , we compute for m′ ∈ M

∆j∗

m′ =
∑

m∈M

Smj∗
(

−(SR)−1em
)

m′

=
∑

m∈M

Smj∗δ
jm
m′

=
∑

m∈M

Smj∗









1

‖A0‖

∑

(Tm′ ,T0)
dTp

[m ∈ Tm′ ] ‖Tm′‖ ‖T0‖









=
1

‖A0‖

∑

(Tm′ ,T0)
dTp

(

∑

m∈M

Smj∗ [m ∈ Tm′ ]

)

‖Tm′‖ ‖T0‖

=
1

‖A0‖

∑

(Tm′ ,T0)
dTp





∑

m∈Tm′

Smj∗



 ‖Tm′‖ ‖T0‖ .

This completes the proof of Theorem 5.2.

�

Proof of Corollary 5.3: To prove the Corollary, consider a monomolecular reaction j∗ : m∗ → m ∈
R. Theorem 5.2 provides

∆j∗

m′ =
1

‖A0‖

∑

(Tm′ ,T0)
dTp





∑

m∈Tm′

Smj∗



 ‖Tm′‖ ‖T0‖ .
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The vector Sj∗ = em − em∗ only has two non-zero-entries and therefore

∆j∗

m′ =
1

‖A0‖

∑

(Tm′ ,T0)
dTp

(

[m ∈ Tm′ ]− [m∗ ∈ Tm′ ]
)

‖Tm′‖ ‖T0‖ .

The middle part is only non-zero if exactly one of the nodes m∗,m is in Tm′ . By Definition 2.4 this is
equivalent to (Tm′ ,T0) being a j∗-dTp. The factor is −1 if m∗ ∈ Tm′ and +1 if m∗ /∈ Tm′ . We conclude

∆j∗

m′ =
1

‖A0‖

∑

(Tm′ ,T0)
j∗-dTp

(−1)[m
∗∈Tm′ ] ‖Tm′‖ ‖T0‖ .

This concludes the proof.

�

6 Outlook

Analyzing the sensitivity of an equilibrium is one of the key steps in approaching the control problem,
i.e. achieving a desired response equilibrium by perturbing particular system parameters. In the case
of CTMCs on finite state spaces that admit a unique stat. dist. Theorem 4.3 provides a solid basis
for this setting. However, to achieve a desired response in the stat. dist. it is in general necessary to
perturb more than one transition rate. This may result in cancellation when the sign of two responses
differ. Understanding these cancellations is crucial in order to effectively apply the results we presented
to the control problem.

The final goal of the sensitivity study of chemical reaction networks as we carried it out is to
precisely link the algebraic sign of the response to the underlying network structure, similar to Corol-
lary 4.4. The formula of Theorem 5.2 reduced this problem to determining whether positive/negative
summands occur. However, determining the sign of a summand is non-trivial for general networks.
The difficulty does not necessarily lie in the existence of both positive and negative rates, but rather
in the fact that the same variable may occur multiple times in the generalized Laplacian (compare
(5.9)). For monomolecular networks, this is not an issue and the algebraic sign of the sensitivity can
be characterized precisely from the network structure. Such a result for monomolecular networks can
be found in [21]. It is not ruled out that for general reaction networks determining the algebraic signs
of the sensitivity based on the graph structure is in NP (assuming P 6=NP) such that a simple char-
acterization is impossible. In that case, further assumptions on the network, e.g. ruling out catalytic
reactions (reaction in which a reactant is both input and output), could make a ’simple’ characteri-
zation possible. In order to find these suitable assumptions, one needs to study which conditions the
influence graph of a reaction network needs to satisfy such that determining the signs in Theorem 5.2
becomes easier.
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