Refinement on spectral Turán's theorem*

Yongtao Li, Yuejian Peng ${ }^{\dagger}$
School of Mathematics, Hunan University
Changsha, Hunan, 410082, P.R. China

October 19, 2023

Abstract

A well-known result in extremal spectral graph theory, due to Nosal and Nikiforov, states that if G is a triangle-free graph on n vertices, then $\lambda(G) \leq \lambda\left(K_{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}\right)$, equality holds if and only if $G=K_{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}$. Nikiforov [Linear Algebra Appl. 427 (2007)] extended this result to K_{r+1}-free graphs for every integer $r \geq 2$. This is known as the spectral Turán theorem. Recently, Lin, Ning and Wu [Combin. Probab. Comput. 30 (2021)] proved a refinement on this result for non-bipartite triangle-free graphs. In this paper, we provide alternative proofs for the result of Nikiforov and the result of Lin, Ning and Wu. Our proof can allow us to extend the later result to non-r-partite K_{r+1}-free graphs. Our result refines the theorem of Nikiforov and it also can be viewed as a spectral version of a theorem of Brouwer.

Key words: Turán theorem; Spectral radius; Zykov symmetrization. 2010 Mathematics Subject Classification. 05C50, 05C35.

1 Introduction

Extremal graph theory is becoming one of the significant branches of discrete mathematics nowadays, and it has experienced an impressive growth during the last few decades. With the rapid developments of combinatorial number theory and combinatorial geometry, extremal graph theory has a large number of applications to these areas of mathematics. Problems in extremal graph theory deal usually with the question of determining or estimating the maximum or minimum possible size of graphs satisfying certain requirements, and further characterize the extremal graphs attaining the bound. For example, one of the most well-studied problems is the Turán-type problem, which asks to determine the maximum number of edges in a graph forbidding the occurence of some specific substructures. Such problems are related to other areas including theoretical computer science, discrete geometry, information theory and number theory.

[^0]
1.1 The classical extremal graph problems

Given a graph F, we say that a graph G is F-free if it does not contain an isomorphic copy of F as a subgraph. For example, every bipartite graph is C_{3}-free, where C_{3} is a triangle. The Turán number of a graph F, denoted by $\operatorname{ex}(n, F)$, is the maximum number of edges in an F-free n-vertex graph. An F-free graph on n vertices with $\operatorname{ex}(n, F)$ edges is called an extremal graph for F. We denote by $K_{s, t}$ the complete bipartite graph with parts of sizes s and t. Over a century old, a well-known theorem of Mantel 37] states that if G is an n-vertex triangle-free graph, then $e(G) \leq e\left(K_{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}\right)=\left\lfloor n^{2} / 4\right\rfloor$, equality holds if and only if $G=K_{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}$.

In 1941, Turán [49] studied the question of extending Mantel's theorem to K_{r+1}-free graphs. Let $T_{r}(n)$ denote the complete r-partite graph on n vertices whose part sizes are as equal as possible. That is, $T_{r}(n)=K_{t_{1}, t_{2}, \ldots, t_{r}}$ with $\sum_{i=1}^{r} t_{i}=n$ and $\left|t_{i}-t_{j}\right| \leq 1$ for $i \neq j$. Turán's theorem states that if G is an n-vertex K_{r+1}-free, then $e(G) \leq e\left(T_{r}(n)\right.$), equality holds if and only if G is the r-partite Turán graph $T_{r}(n)$.

Many different proofs of Turán's theorem could be found in the literature; see [1, pp. 269-273] and [4, pp. 294-301] for more details. Furthermore, there are various extensions and generalizations on Turán's theorem; see, e.g., [5, 7. Turán's theorem implies the numerical bound

$$
\begin{equation*}
e(G) \leq\left(1-\frac{1}{r}\right) \frac{n^{2}}{2} \tag{1}
\end{equation*}
$$

for every n-vertex K_{r+1}-free graph G. This bound seems more concise and called the weak version of Turán's theorem. The problem of determining ex (n, F) is usually referred to as the Turán-type extremal graph problem. It is a cornerstone of extremal graph theory to understand ex (n, F) for various graphs F; see [18, 46] for comprehensive surveys.

1.2 The spectral extremal graph problems

Let G be a simple graph on n vertices. The adjacency matrix of G is defined as $A(G)=$ $\left[a_{i j}\right] \in \mathbb{R}^{n \times n}$ where $a_{i j}=1$ if two vertices v_{i} and v_{j} are adjacent in G, and $a_{i j}=0$ otherwise. We say that G has eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ if these values are eigenvalues of the adjacency matrix $A(G)$. Let $\lambda(G)$ be the maximum value in absolute among all eigenvalues of G, which is known as the spectral radius of graph G. The Perron-Frobenius theorem (see, e.g., [57, p. 120-126]) implies that the spectral radius of a graph G is actually the largest eigenvalue of G and it corresponds to a nonnegative eigenvector. Moreover, if G is connected, then $A(G)$ is an irreducible nonnegative matrix, $\lambda(G)$ is an eigenvalue with multiplicity one and there exists an entry-wise positive eigenvector corresponding to $\lambda(G)$.

The classical extremal graph problems usually study the maximum or minimum number of edges that the extremal graphs can have. Correspondingly, the extremal spectral problems are well-studied in the literature. In 1970, Nosal 44 determined the largest spectral radius of a triangle-free graph, which states that if G is a triangle-free graph with m edges, then $\lambda(G) \leq \sqrt{m}$. In order to state this result accurately, we borrow contributions from Nikiforov's work [41], which determined the extremal case of equality. Thus we write it as in the following complete form. When we consider a graph with given number of edges, we shall ignore the possible isolated vertices if there are no confusions.

Theorem 1.1 (Nosal, 1970). Let G be a graph with m edges. If G is triangle-free, then

$$
\begin{equation*}
\lambda(G) \leq \sqrt{m}, \tag{2}
\end{equation*}
$$

equality holds if and only if G is a complete bipartite graph.
Theorem 1.1 implies that if G is bipartite, then $\lambda(G) \leq \sqrt{m}$, equality holds if and only if G is a complete bipartite graph. On the one hand, Theorem 1.1 implies Mantel's theorem. Indeed, applying Rayleigh's inequality, we have $\frac{2 m}{n} \leq \lambda(G) \leq \sqrt{m}$, which yields $m \leq\left\lfloor n^{2} / 4\right\rfloor$. On the other hand, applying Mantel's theorem to (2), we obtain that $\lambda(G) \leq$ $\sqrt{m} \leq \sqrt{\left\lfloor n^{2} / 4\right\rfloor}=\lambda\left(K_{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}\right)$, which is called the spectral Mantel theorem.

Over the past few years, various extensions and generalizations on the Nosal-Nikiforov theorem have been obtained in the literature; see, e.g., [39, 40, 41, 52] for extensions to K_{r+1}-free graphs, [34, 55, 56, 32] for extensions of graphs with given size. In addition, many spectral extremal problems are also obtained recently; see [11, 12] for the friendship graph and the odd wheel, [31, 13] for intersecting odd cycles and cliques, [51] for a recent conjecture. We recommend the surveys [42, 10, 30] for interested readers. The eigenvalues of the adjacency matrix sometimes can give some information about the structure of a graph. There is a rich history on the study of bounding the eigenvalues of a graph in terms of various parameters; see [6] for spectral radius and cliques, [48, 33] for eigenvalues of outerplanar and planar graphs.

In 1986, Wilf 52 provided the first result regarding the spectral version of Turán's theorem and proved that for every n-vertex K_{r+1}-free graph G, we have

$$
\begin{equation*}
\lambda(G) \leq\left(1-\frac{1}{r}\right) n . \tag{3}
\end{equation*}
$$

In 2002, Nikiforov [39] proved that for every m-edge K_{r+1}-free graph G,

$$
\begin{equation*}
\lambda(G) \leq \sqrt{2 m\left(1-\frac{1}{r}\right)} . \tag{4}
\end{equation*}
$$

The case of equality in (4) was later characterized in (41). Both (3) and (4) are direct consequences of Motzkin-Straus' theorem [38]. Combining with $\frac{2 m}{n} \leq \lambda(G)$, we see that either (3) or (4) can imply (1). Moreover, using (1), we know that (4) implies (3) immediately.

In 2007, Nikiforov [40] showed a spectral version of the Turán theorem.
Theorem 1.2 (Nikiforov, 2007). Let G be a graph on n vertices. If G is $K_{r+1}-f r e e$, then

$$
\lambda(G) \leq \lambda\left(T_{r}(n)\right),
$$

equality holds if and only if G is the r-partite Turán graph $T_{r}(n)$.
Theorem 1.2 implies Wilf's result (3). It should be mentioned that the spectral version of Turán's theorem was also studied independently by Guiduli in his PH.D. dissertation [21, pp. 58-61]. In 2021, Lin, Ning and Wu [34, Theorem 1.4] proved a generalization of Theorem 1.1 for non-bipartite triangle-free graphs (Theorem 3.2). In this paper, we shall
extend the result of Lin, Ning and Wu to non-r-partite K_{r+1}-free graphs; see Theorem 1.4 . Our result is also a refinement on Theorem 1.2 in the sense of stability result.

Assume that $T_{1}, T_{2}, \ldots, T_{r}$ are vertex parts of Turán graph $T_{r}(n)$ with sizes $t_{1}, t_{2}, \ldots, t_{r}$, respectively. Moreover, we may assume further that $\left\lfloor\frac{n}{r}\right\rfloor=t_{1} \leq t_{2} \leq \cdots \leq t_{r}=\left\lceil\frac{n}{r}\right\rceil$. Next, we are going to construct a new graph obtained from $T_{r}(n)$.

Definition 1.3 (The extremal graph). Choosing two parts T_{1} and T_{r} of the Turán graph $T_{r}(n)$, we add a new edge into the part T_{r}, denote by $u w$, and then remove all edges between T_{1} and $\{u, w\}$. Moreover, we connect u to a vertex $v \in T_{1}$, and connect w to the remaining vertices of T_{1}. The resulting graph is denoted by $Y_{r}(n)$; see Figure 1.

Figure 1: The graph $Y_{r}(n)$ for $n=13$ and $r=3$.
Now, we present the main result in this paper.
Theorem 1.4 (Main result). Let G be an n-vertex non-r-partite K_{r+1}-free graph. Then

$$
\lambda(G) \leq \lambda\left(Y_{r}(n)\right)
$$

Moreover, the equality holds if and only if $G=Y_{r}(n)$.
This article is organized as follows. In Section 2, we shall give an alternative proof of the spectral Turán's theorem 1.2. To make the proof of Theorem 1.4 more transparent, we will present a quite different proof of the triangle case of Lin, Ning and Wu 34] in Section 3 . Inspired by the works [21, 24, 25], we shall use mainly the spectral Zykov symmetrization [59]. In Section 4, we shall show the detailed proof of Theorem 1.4. In Section 5, we shall discuss the spectral extremal problem in terms of the p-spectral radius. Section 6 contains some spectral problems for F-free graphs with the chromatic number $\chi(G) \geq t$ and the problems in terms of the signless Laplacian spectral radius.

2 Alternative proof of Theorem 1.2

The proof of Nikiforov [40 for Theorem 1.2 is more algebraic and based on the characteristic polynomial of the complete r-partite graph. Moreover, his proof relies on an inequality [39]
relating the spectral radius and the number of cliques, as well as an old theorem of Zykov [59] (see Erdős [15]), which asserts that $k_{s}(G) \leq k_{s}\left(T_{r}(n)\right)$ for every $s \geq 2$, where $k_{s}(G)$ is the number of s-cliques in G. This result is viewed as a clique extension of Turán's theorem.

The proof of Guiduli [21, pp. 58-61] for Theorem 1.2 is completely different from that of Nikiforov. The main idea of Guiduli's proof reduces the problem for K_{r+1}-free graphs to that for complete r-partite graphs by applying a spectral technique of Erdős' degree majorization algorithm [16]. In this way, it is sufficient to show that the Turán graph $T_{r}(n)$ attains the maximum spectral radius among all complete r-partite graphs; see, e.g., [24, 25] for more spectral applications, and [19, 3] for related topics.

In this section, we shall provide an alternative proof of Theorem 1.2. The proof is motivated by the papers [21, 24, 25], and it is based on a spectral extension of the Zykov symmetrization [59], which is becoming a powerful tool for extremal graph problems; see, e.g., [20] for a recent application on the minimum number of triangular edges.

The following lemma was proved by Feng, Li and Zhang in [17, Theorem 2.1].
Lemma 2.1 (Feng-Li-Zhang, 2007). If G is an r-partite graph on n vertices, then

$$
\lambda(G) \leq \lambda\left(T_{r}(n)\right),
$$

equality holds if and only if G is the r-partite Turán graph $T_{r}(n)$.
Now, we present our alternative proof of Theorem 1.2,
Proof of Theorem 1.2, Let G be a K_{r+1}-free graph on n vertices with maximum value of the spectral radius. Firstly, we show that G is a connected graph. Otherwise, if G is not connected, then adding a new edge between a component attaining the spectral radius of G and any other component will strictly increase the spectral radius of G, and it does not create a copy of K_{r+1}. Hence we get a new K_{r+1} free graph with larger spectral radius, which contradicts with the choice of G. Since G is connected, we can take $\boldsymbol{x} \in \mathbb{R}^{n}$ as a positive unit eigenvector of $\lambda(G)$. Hence, we have

$$
\lambda(G)=2 \sum_{\{i, j\} \in E(G)} x_{i} x_{j} .
$$

Our goal is to show that G is the Turán graph $T_{r}(n)$. By Lemma 2.1, it suffices to show that G is a complete r-partite graph. Suppose on the contrary that G is not complete r partite. Then there are three vertices $u, v, w \in V(G)$ such that $v u \notin E(G)$ and $u w \notin E(G)$, while $v w \in E(G)$. (This reveals that the non-edge relation between vertices is not an equivalent binary relation, as it does not satisfy the transitivity.) Throughout the paper, we denote by $s_{G}(v, \boldsymbol{x})$ the sum of weights of vertices in $N_{G}(v)$. Namely,

$$
s_{G}(v, \boldsymbol{x}):=\sum_{i \in N_{G}(v)} x_{i} .
$$

Case 1. $s_{G}(u, \boldsymbol{x})<s_{G}(v, \boldsymbol{x})$ or $s_{G}(u, \boldsymbol{x})<s_{G}(w, \boldsymbol{x})$.
We may assume that $s_{G}(u, \boldsymbol{x})<s_{G}(v, \boldsymbol{x})$. Then we duplicate the vertex v, that is, we create a new vertex v^{\prime} which has exactly the same neighbors as v, but $v v^{\prime}$ is not an edge, and

Figure 2: The spectral Zykov symmetrization.
we delete the vertex u and its incident edges; see the left graph in Figure 2. Moreover, we distribute the value x_{u} to the new vertex v^{\prime}, and keep the other coordinates of \boldsymbol{x} unchanged. It is not hard to verify that the new graph G^{\prime} has still no copy of K_{r+1} and

$$
\begin{aligned}
\lambda\left(G^{\prime}\right) \geq 2 \sum_{\{i, j\} \in E\left(G^{\prime}\right)} x_{i} x_{j} & =2 \sum_{\{i, j\} \in E(G)} x_{i} x_{j}-2 x_{u} s_{G}(u, \boldsymbol{x})+2 x_{u} s_{G}(v, \boldsymbol{x}) \\
& >2 \sum_{\{i, j\} \in E(G)} x_{i} x_{j}=\lambda(G),
\end{aligned}
$$

where we used the positivity of vector \boldsymbol{x}. This contradicts with the choice of G.
Case 2. $s_{G}(u, \boldsymbol{x}) \geq s_{G}(v, \boldsymbol{x})$ and $s_{G}(u, \boldsymbol{x}) \geq s_{G}(w, \boldsymbol{x})$.
We copy the vertex u twice, and delete both v and w with their incident edges; see the right graph in Figure 2. Similarly, we distribute the value x_{v} to the new vertex u^{\prime}, and x_{w} to the new vertex $u^{\prime \prime}$, and keep the other coordinates of \boldsymbol{x} unchanged. Moreover, the new graph $G^{\prime \prime}$ contains no copy of K_{r+1} and

$$
\begin{aligned}
\lambda\left(G^{\prime \prime}\right) \geq 2 \sum_{\{i, j\} \in E\left(G^{\prime \prime}\right)} x_{i} x_{j}= & 2 \sum_{\{i, j\} \in E(G)} x_{i} x_{j}-2 x_{v} s_{G}(v, \boldsymbol{x})-2 x_{w} s_{G}(w, \boldsymbol{x}) \\
& \quad+2 x_{v} x_{w}+2 x_{v} s_{G}(u, \boldsymbol{x})+2 x_{w} s_{G}(u, \boldsymbol{x}) \\
> & \sum_{i=1}^{n} x_{i} s_{G}(i, \boldsymbol{x})=\lambda(G) .
\end{aligned}
$$

So we get a contradiction again.
We conclude that the spectral Zykov's symmetrization starts with a K_{r+1} free graph G, and at each step takes two non-adjacent vertices v_{i} and v_{j} such that $s_{G}\left(v_{i}, \boldsymbol{x}\right)>s_{G}\left(v_{j}, \boldsymbol{x}\right)$, and deleting all edges incident to v_{j}, and adding new edges between vertex v_{j} and the neighborhood $N\left(v_{i}\right)$. We do the same if $s_{G}\left(v_{i}, \boldsymbol{x}\right)=s_{G}\left(v_{j}, \boldsymbol{x}\right)$ and $N\left(v_{i}\right) \neq N\left(v_{j}\right)$ for $i<j$. The spectral Zykov's symmetrization does not increase the size of the largest clique and does not decrease the spectral radius \mathbb{T}^{1}. When the process terminates, it yields a complete multipartite graph with at most r vertex parts. Otherwise, there are three vertices $u, v, w \in$

[^1]$V(G)$ such that $v u \notin E(G)$ and $u w \notin E(G)$ but $v w \in E(G)$. Applying the same argument in the proof of Theorem 1.2, we can get a new graph with larger spectral radius, a contradiction.

We illustrate the difference between the spectral Erdős degree majorization algorithm and the spectral Zykov symmetrization. Recall that the spectral Erdős degree majorization algorithm asks us to choose a vertex $v \in V(G)$ with the maximum value of $s_{G}(v, \boldsymbol{x})$ among all vertices of G, and remove all edges incident to vertices of $V(G) \backslash\left(N_{G}(v) \cup\{v\}\right)$, and then add all edges between $N_{G}(v)$ and $V(G) \backslash N_{G}(v)$. This operation makes each vertex of $V(G) \backslash\left(N_{G}(v) \cup\{v\}\right)$ being a copy of the vertex v. Since G is K_{r+1}-free, we see that the subgraph of G induced by $N_{G}(v)$ is K_{r}-free. We denote by $V_{1}=V(G) \backslash N_{G}(v)$. Next, we do the same operation on vertex set $V_{1}^{c}=N_{G}(v)$. More precisely, we further choose a vertex $u \in V_{1}^{c}$ with the maximum value of $s_{G}(u, \boldsymbol{x})$ over all vertices of V_{1}^{c}, and remove all edges incident to vertices $V_{1}^{c} \backslash\left(N_{V_{1}^{c}}(u) \cup\{u\}\right)$, and then add all edges between $N_{V_{1}^{c}}(u)$ and $V_{1}^{c} \backslash N_{V_{1}^{c}}(u)$. Using this operation repeatedly, we get a complete r-partite graph H on the same vertex set $V(G)$. Furthermore, one can verify that the majorization inequality $s_{G}(v, \boldsymbol{x}) \leq s_{H}(v, \boldsymbol{x})$ holds for every vertex $v \in V(G)$; see, e.g., [21, 24, 25].

The spectral Erdős majorization algorithm and the spectral Zykov symmetrization share some similarities. For example, these two operations ask us to compare the sum of weights of neighbors, and turn a K_{r+1}-free graph to a complete r-partite graph. Importantly, these two operations do not create a copy of K_{r+1} and do not decrease the value of spectral radius. The only difference between them is that one step of the Erdős operation will change many vertices with its incident edges, while one step of the Zykov operation will change only two vertices with its incident edges. This subtle difference will bring great convenience in later Sections 3 and 4. As a matter of fact, at each step of the Erdős operation, there are many times of actions of the Zykov operation. In other words, each step of the Erdős operation can be decomposed as a series of the Zykov operation.

3 Refinement for triangle-free graphs

Mantel's Theorem has many interesting applications and miscellaneous generalizations in the literature; see, e.g., [4, 5, 7, 46] and references therein. In particular, Mantel's theorem was refined in the sense of the following stability form.

Theorem 3.1 (Erdős). Let G be an n-vertex triangle-free graph. If G is not bipartite, then

$$
e(G) \leq\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+1
$$

Figure 3: Two drawings of extremal graphs in Theorem 3.1.

It is said that this stability result attributes to Erdős; see [8, Page 306]. The bound in Theorem 3.1 is best possible and the extremal graph is not unique. Taking two vertex sets X and Y with $|X|=\left\lfloor\frac{n}{2}\right\rfloor$ and $|Y|=\left\lceil\frac{n}{2}\right\rceil$, we choose two vertices $u, v \in Y$ and join them, then we put every edge between X and $Y \backslash\{u, v\}$. Partitioning X into two parts X_{1} and X_{2} arbitrarily (this shows that the extremal graph is not unique), we connect u to every vertex in X_{1}, and v to every vertex in X_{2}; see Figure 3. This yields a triangle-free graph G and $e(G)=\left\lfloor\frac{n^{2}}{4}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor+1=\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+1$. Note that G has a 5 -cycle, so it is not bipartite.

In 2021, Lin, Ning and Wu [34, Theorem 1.4] proved a generalization on spectral Mantel theorem for non-bipartite graphs. Let $S K_{\left\lfloor\frac{n-1}{2}\right\rfloor,\left\lceil\frac{n-1}{2}\right\rceil}$ denote the subdivision of the complete bipartite graph $K_{\left\lfloor\frac{n-1}{2}\right\rfloor,\left\lceil\frac{n-1}{2}\right\rceil}$ on one edge; see Figure 4. Clearly, $S K_{\left\lfloor\frac{n-1}{2}\right\rfloor,\left\lceil\frac{n-1}{2}\right\rceil}$ is one of the extremal graphs in Theorem 3.1 by setting $\left|X_{1}\right|=\left\lfloor\frac{\pi}{2}\right\rfloor-1$ and $\left|X_{2}\right|=1$ in Figure 3.

Figure 4: Two drawings of the graph $S K_{\left\lfloor\frac{n-1}{2}\right\rfloor,\left\lceil\frac{n-1}{2}\right\rceil}$.

Theorem 3.2 (Lin-Ning-Wu, 2021). Let G be an n-vertex graph. If G is triangle-free and non-bipartite, then

$$
\lambda(G) \leq \lambda\left(S K_{\left\lfloor\frac{n-1}{2}\right\rfloor,\left\lceil\frac{n-1}{2}\right\rceil}\right),
$$

equality holds if and only if $G=S K_{\left\lfloor\frac{n-1}{2}\right\rfloor,\left\lceil\frac{n-1}{2}\right\rceil}$.
Theorem 3.2 is a corresponding spectral version of Theorem 3.1, while the extremal graph in spectral problem is unique; see [35, 29] for an extension to graphs without short odd cycles. In this section, we shall provide a new proof of Theorem 3.2. One of the key ideas in the proof is to use the spectral Zykov symmetrization, which provides great convenience to obtain a clearly approximate structure of the required extremal graph. Moreover, the ideas in this proof can benefit us to extend Theorem 3.2 to K_{r+1}-free non- r-partite graphs, which will be discussed in Section 4. Before starting the proof, we include the following lemma, which is a direct consequence by computations; see, e.g., [34, Appendix A].

Lemma 3.3. If G is a graph on $n=a+b+1$ vertices obtained from $K_{a, b}$ by subdividing an edge arbitrarily, then

$$
\lambda(G) \leq \lambda\left(S K_{\left\lfloor\frac{n-1}{2}\right\rfloor,\left\lceil\frac{n-1}{2}\right\rceil}\right)
$$

equality holds if and only if $G=S K_{\left\lfloor\frac{n-1}{2}\right\rfloor,\left[\frac{n-1}{2}\right\rceil}$.
Proof. We denote by $S K_{a, b}$ the graph obtained from $K_{a, b}$ by subdividing an edge. Let s, t be two positive integers with $t \geq s \geq 1$. It suffices to show that

$$
\lambda\left(S K_{s+1, t+3}\right)<\lambda\left(S K_{s+2, t+2}\right) .
$$

By computation, the spectral radius of $S K_{a, b}$ is the largest root of

$$
F_{a, b}(x):=x^{5}-(a b+1) x^{3}+(3 a b-2 a-2 b+1) x-2 a b+2 a+2 b-2 .
$$

Hence $\lambda\left(S K_{s+2, t+2}\right)$ is the largest root of

$$
F_{s+2, t+2}(x)=x^{5}-(2 s+2 t+s t+5) x^{3}+(4 s+4 t+3 s t+5) x-2 s-2 t-2 s t-2 .
$$

Similarly, $\lambda\left(S K_{s+1, t+3}\right)$ is the largest root of $F_{s+1, t+3}(x)$. Note that

$$
F_{s+2, t+2}(x)-F_{s+1, t+3}(x)=-(x-1)^{2}(x+2)(t-s+1) .
$$

This implies $F_{s+2, t+2}(x)<F_{s+1, t+3}(x)$ for every $x>1$. Since $K_{2,3}$ is a subgraph of $S K_{s+1, t+3}$, we know that $\lambda\left(S K_{s+1, t+3}\right) \geq \lambda\left(K_{2,3}\right)=\sqrt{6}$. Thus, we have

$$
F_{s+2, t+2}\left(\lambda\left(S K_{s+1, t+3}\right)\right)<F_{s+1, t+3}\left(\lambda\left(S K_{s+1, t+3}\right)\right)=0 .
$$

Therefore, we obtain $\lambda\left(S K_{s+1, t+3}\right)<\lambda\left(S K_{s+2, t+2}\right)$.
Now we are ready to show our proof of Theorem 3.2. For two non-adjacent vertices $u, v \in V(G)$, we denote the Zykov symmetrization $Z_{u, v}(G)$ to be the graph obtained from G by replacing u with a twin of v, that is, deleting all edges incident to vertex u, and then adding new edges from u to $N_{G}(v)$. We can verify that the Zykov symmetrization does not increase both the clique number $\omega(G)$ and the chromatic number $\chi(G)$. More precisely, we have $\omega\left(Z_{u, v}(G)\right)=\omega(G \backslash\{u\})$ and $\chi\left(Z_{u, v}(G)\right)=\chi(G \backslash\{u\})$. Let $\boldsymbol{x} \in \mathbb{R}^{n}$ be a positive unit eigenvector corresponding to $\lambda(G)$. Recall that $s_{G}(v, \boldsymbol{x}):=\sum_{i \in N_{G}(v)} x_{i}$ denotes the sum of weights of all neighbors of v in G.

If $s_{G}(u, \boldsymbol{x})<s_{G}(v, \boldsymbol{x})$, then we replace G with $Z_{u, v}(G)$. Apparently, the spectral Zykov symmetrization does not make triangles. More importantly, it will increase strictly the spectral radius, since

$$
\begin{aligned}
\lambda\left(Z_{u, v}(G)\right) \geq 2 \sum_{\{i, j\} \in E\left(Z_{u, v}(G)\right)} x_{i} x_{j} & =2 \sum_{\{i, j\} \in E(G)} x_{i} x_{j}-2 x_{u} s_{G}(u, \boldsymbol{x})+2 x_{u} s_{G}(v, \boldsymbol{x}) \\
& >2 \sum_{\{i, j\} \in E(G)} x_{i} x_{j}=\lambda(G) .
\end{aligned}
$$

If $s_{G}(u, \boldsymbol{x})=s_{G}(v, \boldsymbol{x})$ and $N_{G}(u) \neq N_{G}(v)$, then we can apply either $Z_{u, v}$ or $Z_{v, u}$. In each case, we will get a new graph such that $N(u)=N(v)$. Similarly, this operation will increase the spectral radius $\lambda(G)$ strictly. Indeed, we can see that

$$
\lambda\left(Z_{u, v}(G)\right) \geq 2 \sum_{\{i, j\} \in E\left(Z_{u, v}(G)\right)} x_{i} x_{j}=2 \sum_{\{i, j\} \in E(G)} x_{i} x_{j}=\lambda(G) .
$$

We claim further that $\lambda\left(Z_{u, v}(G)\right)>\lambda(G)$. Assume on the contrary that $\lambda\left(Z_{u, v}(G)\right)=\lambda(G)$, then the inequality in above becomes an equality. Thus \boldsymbol{x} is an eigenvector of $\lambda\left(Z_{u, v}(G)\right)$, namely, $A\left(Z_{u, v}(G)\right) \boldsymbol{x}=\lambda\left(Z_{u, v}(G)\right) \boldsymbol{x}=\lambda(G) \boldsymbol{x}$. Taking any vertex $z \in N_{G}(v) \backslash N_{G}(u)$, we observe that

$$
\lambda\left(Z_{u, v}(G)\right) x_{z}=\sum_{t \in N_{G}(z) \cup\{u\}} x_{t}>\sum_{t \in N_{G}(z)} x_{t}=\lambda(G) x_{z} .
$$

Consequently, we get $\lambda\left(Z_{u, v}(G)\right)>\lambda(G)$, which contradicts with our assumption. It is worth emphasizing that the positivity of \boldsymbol{x} is necessary in above discussions. Roughly speaking, applying the spectral Zykov symmetrization will make a K_{r+1}-free graph more regular in some sense according to the weights of the eigenvector.

Proof of Theorem 3.2, Let G be a non-bipartite triangle-free graph on n vertices with the largest spectral radius. Our goal is to show that $G=S K_{\left\lfloor\frac{n-1}{2}\right\rfloor,\left\lceil\frac{n-1}{2}\right\rceil}$. Clearly, we know that G is connected. Otherwise, any addition of an edge between a component with the maximum spectral radius and any other component will strictly increase the spectral radius. Since G is connected, there exists a positive unit eigenvector corresponding to $\lambda(G)$, and then we denote such a vector by $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)^{T}$, where $x_{i}>0$ for every i. Since G is triangle-free, we apply repeatedly the spectral Zykov symmetrization for every pair of non-adjacent vertices until it becomes a bipartite graph. Without loss of generality, we may assume that G is triangle-free and non-bipartite, while $Z_{u, v}(G)$ is bipartite. We are going to show that $\lambda(G) \leq \lambda\left(S K_{\left\lfloor\frac{n-1}{2}\right\rfloor,\left\lceil\frac{n-1}{2}\right\rceil}\right)$, equality holds if and only if $G=S K_{\left\lfloor\frac{n-1}{2}\right\rfloor,\left\lceil\frac{n-1}{2}\right\rceil}$.

Since $Z_{u, v}(G)$ is bipartite, we know that $G \backslash\{u\}$ is bipartite. We denote $V(G) \backslash^{2}\{u\}=$ $V_{1} \cup V_{2}$, where V_{1}, V_{2} are disjoint and $\left|V_{1}\right|+\left|V_{2}\right|=n-1$. Assume that $C=N(u) \cap V_{1}$ and $D=N(u) \cap V_{2}$. We denote $A=V_{1} \backslash C$ and $B=V_{2} \backslash D$. Since G is triangle-free, there are no edges between parts C and D. As G attains the largest spectral radius, we know that the pair of parts $(A, B),(A, D)$ and (B, C) are complete bipartite subgraphs; see Figure 5 .

Figure 5: An approximate structure of G.
Note that each vertex in A has the same neighborhood, we know that the coordinates $\left\{x_{v}: v \in A\right\}$ are all equal. This property holds similarly for vertices in B, C and D respectively. Thus, we write x_{a} for the value of the entries of \boldsymbol{x} in vertex set A. And x_{b}, x_{c} and x_{d} are defined similarly.

The remaining steps of our proof are outlined as follows.
If If $|A| x_{a} \geq|B| x_{b}$, then we delete $|C|-1$ vertices in C with its incident edges, and add $|C|-1$ new vertices to D and connect these vertices to $A \cup\{u\}$. We keep the weight of these new vertices being x_{c} and denote the new graph by G^{\prime}. We can verify that

$$
\begin{aligned}
\lambda\left(G^{\prime}\right) & \geq 2 \sum_{\{i, j\} \in E(G)} x_{i} x_{j}-2(|C|-1)|B| x_{c} x_{b}+2(|C|-1)|A| x_{c} x_{a} \\
& \geq 2 \sum_{\{i, j\} \in E(G)} x_{i} x_{j}=\lambda(G) .
\end{aligned}
$$

In fact, we can further prove that $\lambda\left(G^{\prime}\right)>\lambda(G)$. Otherwise, if $\lambda\left(G^{\prime}\right)=\lambda(G)$, then \boldsymbol{x} is the Perron vector of G^{\prime}, that is, $A\left(G^{\prime}\right)=\lambda\left(G^{\prime}\right) \boldsymbol{x}=\lambda(G) \boldsymbol{x}$. Taking any vertex $z \in A$, we observe
that $\lambda\left(G^{\prime}\right) x_{z}=\sum_{v \in N_{G^{\prime}}(z)} x_{v}=\sum_{v \in N_{G}(z)} x_{v}+(|C|-1) x_{c}>\sum_{v \in N_{G}(z)} x_{v}=\lambda(G) x_{z}$, and then $\lambda\left(G^{\prime}\right)>\lambda(G)$, which is a contradiction.

* If $|A| x_{a}<|B| x_{b}$, then we can delete $|D|-1$ vertices from D with its incident edges, and add $|D|-1$ new vertices to C and join these new vertices to every vertex of $B \cup\{u\}$. Similarly, we can show that this process will increase the spectral radius strictly. From the above discussion, we can always remove the vertices to force either $|C|=1$ or $|D|=1$. Without loss of generality, we may assume that $|C|=1$ and $C=\{c\}$.
\star If $x_{u} \geq x_{c}$, then we remove $|B|-1$ vertices from B with its incident edges, and add $|B|-1$ new vertices to D and join these vertices to $A \cup\{u\}$. We keep the weight of these new vertices being x_{b} and denote the new graph by G^{*}. Then

$$
\begin{aligned}
\lambda\left(G^{*}\right) & \geq 2 \sum_{\{i, j\} \in E(G)} x_{i} x_{j}-2(|B|-1) x_{b} x_{c}+2(|B|-1) x_{b} x_{u} \\
& \geq 2 \sum_{\{i, j\} \in E(G)} x_{i} x_{j}=\lambda(G) .
\end{aligned}
$$

Furthermore, by Rayleigh's formula, we know that the first inequality holds strictly. Thus we conclude in the new graph G^{*} that B is a single vertex, say $B=\{b\}$. We observe that the graph G^{*} is a subdivision of a complete bipartite graph on $(A \cup\{u\},\{b\} \cup D)$ by subdividing the edge $\{b, u\}$.
\star If $x_{u}<x_{c}$, then we delete $|D|-1$ vertices from D with its incident edges, and add $|D|-1$ new vertices to B and join these new vertices to $A \cup\{c\}$. Keeping the weight of vertices unchanged, we denote the new graph by G^{\star}. Then we can similarly get $\lambda\left(G^{\star}\right)>\lambda(G)$. In the graph G^{\star}, we have $|D|=1$ and write $D=\{d\}$. Thus G^{\star} is a subdivision of a complete bipartite graph on $(A \cup\{c\}, B \cup\{d\})$ by subdividing the edge $\{c, d\}$.

From our discussion above, we know that if G is an n-vertex triangle-free non-bipartite graph and attains the maximum spectral radius, then G is a subdivision of a complete bipartite by subdividing exactly one edge. Lemma 3.3 implies that G is a subdivision of a balanced complete bipartite graph on $n-1$ vertices.

4 Refinement of spectral Turán theorem

In 1981, Brouwer [9] proved the following improvement on Turán's Theorem.
Theorem 4.1 (Brouwer, 1981). Let $n \geq 2 r+1$ be an integer and G be an n-vertex graph. If G is K_{r+1}-free and G is not r-partite, then

$$
e(G) \leq e\left(T_{r}(n)\right)-\left\lfloor\frac{n}{r}\right\rfloor+1 .
$$

Theorem 4.1 was also independently studied in many references, e.g., [2, 23, 27, 50]. Similar with that of Theorem 3.1, the bound of Theorem 4.1 is sharp and there are many extremal graphs attaining this bound. In particular, the graph $Y_{r}(n)$ in Definition 1.3 is one of the extremal graphs of Brouwer's theorem.

We would like to illustrate the reason why we are interested in the study of the family of non- r-partite graphs. On the one hand, the Erdős degree majorization algorithm [16] or [4, pp. 295-296] implies that if G is an n-vertex K_{r+1}-free graph, then there exists an
r-partite graph H on the same vertex set $V(G)$ such that $d_{G}(v) \leq d_{H}(v)$ for every vertex v. Consequently, we get $e(G) \leq e(H) \leq e\left(T_{r}(n)\right)$. Hence it is meaningful to determine the family of graphs attaining the second largest value of the extremal function. This problem is usually called the stability problem. On the other hand, there are various ways to study the extremal graph problems under some reasonable constraints. For example, the condition of non- r-partite graph is equivalent to saying the chromatic number $\chi(G) \geq r+1$. Moreover, one can also consider the extremal problem under the restriction $\alpha(G) \leq f(n)$ for a given function $f(n)$, where $\alpha(G)$ is the independence number of G. This is the well-known Ramsey-Turán problem; see [47] for a comprehensive survey.

The proof of Theorem 3.2 stated in Section 3 can bring us more effective treatment for the extremal spectral problem when K_{r+1} is a forbidden subgraph. As promised in Introduction, we shall prove Theorem [1.4, which extends Theorem 3.2 to non- r-partite K_{r+1}-free graphs. Next, we restate Theorem 1.4 as below for convenience of readers.

Theorem 4.2. Let G be an n-vertex K_{r+1}-free graph. If G is not r-partite, then

$$
\lambda(G) \leq \lambda\left(Y_{r}(n)\right)
$$

Moreover, the equality holds if and only if $G=Y_{r}(n)$.
Theorem 4.2 is not only a spectral version of Theorem 4.1, but also a refinement of the spectral Turán's theorem 1.2. Our proof is mainly based on the spectral Zykov symmetrization. Before showing the proof, we need to introduce the following lemma.

Lemma 4.3. Let $K_{b_{1}, b_{2}, \ldots, b_{r}}$ be the complete r-partite graph with parts $B_{1}, B_{2}, \ldots, B_{r}$ satisfying $\left|B_{i}\right|=b_{i}$ for every $i \in[r]$ and $\sum_{i=1}^{r} b_{i}=n-1$. Let G be an n-vertex graph obtained from $K_{b_{1}, b_{2}, \ldots, b_{r}}$ by adding a new vertex u and choosing $v \in B_{1}, w \in B_{2}$, and removing the edge $v w$, and adding the edges uv, uw and ut for every $t \in \cup_{i=3}^{r} B_{i}$. Then

$$
\lambda(G) \leq \lambda\left(Y_{r}(n)\right)
$$

Moreover, the equality holds if and only if $G=Y_{r}(n)$.
We illustrate the construction of $Y_{r}(n)$ in another way. Let $T_{r}(n-1)$ be the r-partite Turán graph on $n-1$ vertices whose parts $S_{1}, S_{2}, \ldots, S_{r}$ have sizes $s_{1}, s_{2}, \ldots, s_{r}$ such that $\left\lfloor\frac{n-1}{r}\right\rfloor=s_{1} \leq s_{2} \leq \cdots \leq s_{r}=\left\lceil\frac{n-1}{r}\right\rceil$. Note that the extremal graph $Y_{r}(n)$ could be obtained from $T_{r}(n-1)$ by adding a new vertex u, and choosing two vertices $v \in S_{1}$ and $w \in S_{2}$, then deleting the edge $v w$, and adding the edges $u v, u w$ and $u t$ for every vertex $t \in \cup_{i=3}^{r} S_{i}$. Lemma 4.3 states that G attains the maximum spectral radius only when its part sizes $b_{1}, b_{2}, \ldots, b_{r}$ are as equal as possible, and the two special vertices v, w are located in the smallest two parts, respectively. Since $\lambda(G)$ is the largest root of the characteristic polynomial $P_{G}(x)=\operatorname{det}\left(x I_{n}-A(G)\right)$, it is operable to compute $\lambda(G)$ exactly for some small integers r by using computers, while it seems complicated for large r.

Proof of Lemma 4.3. Let G be a graph satisfying the requirement of Lemma 4.3 and G has the maximum spectral radius. We will show that $G=Y_{r}(n)$. Since G is connected, there exists a positive unit eigenvector $\boldsymbol{x} \in \mathbb{R}^{n}$ corresponding to $\lambda(G)$. Then $A(G) \boldsymbol{x}=\lambda(G) \boldsymbol{x}$ and

$$
\lambda(G)=\boldsymbol{x}^{T} A(G) \boldsymbol{x}=2 \sum_{\{i, j\} \in E(G)} x_{i} x_{j} .
$$

Moreover, the eigen-equation gives that $\lambda(G) x_{v}=\sum_{u \in N(v)} x_{u}$ for every $v \in V(G)$. It follows that if two non-adjacent vertices have the same neighborhood, then they have the same value on the corresponding coordinates of \boldsymbol{x}. Thus all coordinates of \boldsymbol{x} corresponding to the vertices of B_{i} are equal, and then we write x_{i} for the value of those coordinates for each $i \in\{3, \ldots, r\}$. We denote $B_{1}^{-}=B_{1} \backslash\{v\}$ and $B_{2}^{-}=B_{2} \backslash\{w\}$. Similarly, all coordinates of \boldsymbol{x} corresponding to the vertices of B_{i}^{-}are equal for $i \in\{1,2\}$.

Assume on the contrary that G is not isomorphic to $Y_{r}(n)$. In other words, there are two parts B_{i} and B_{j} such that $\left|b_{i}-b_{j}\right| \geq 2$, or $b_{i} \leq b_{j}-1$ for some $i \in\{3,4, \ldots, n\}$ and $j \in\{1,2\}$. By the symmetry, there are four cases listed below.
(A) $b_{i} \leq b_{j}-2$ for some $i, j \in\{3, \ldots, r\}$;
(B) $b_{1} \leq b_{2}-2$;
(C) $b_{1} \leq b_{i}-2$ for some $i \in\{3, \ldots, r\}$;
(D) $b_{i} \leq b_{1}-1$ for some $i \in\{3, \ldots, r\}$.

Case A. First and foremost, we shall consider case that $b_{i} \leq b_{j}-2$ for some $i, j \in$ $\{3, \ldots, r\}$. The treatment for this case has its root in [26]. If $b_{i}+b_{j}=2 b$ for some integer b, then we will balance the number of vertices of parts B_{i} and B_{j}. Namely, we define a new graph G^{\prime} obtained from G by deleting all edges between B_{i} and B_{j}, and then we move some vertices from B_{j} to B_{i} such that the resulting sets, say $B_{i}^{\prime}, B_{j}^{\prime}$, have size b, and then we add all edges between B_{i}^{\prime} and B_{j}^{\prime}. In this process, we keep the other edges unchanged. We define a new vector $\boldsymbol{y} \in \mathbb{R}^{n}$ by setting $y_{s}=\sqrt{\left(b_{i} x_{i}^{2}+b_{j} x_{j}^{2}\right) /(2 b)}$ for each vertex $s \in B_{i}^{\prime} \cup B_{j}^{\prime}$, and $y_{t}=x_{t}$ for each $t \in V\left(G^{\prime}\right) \backslash\left(B_{i}^{\prime} \cup B_{j}^{\prime}\right)$. Then $\sum_{v \in V\left(G^{\prime}\right)} y_{v}^{2}=1$ and

$$
\boldsymbol{y}^{T} A\left(G^{\prime}\right) \boldsymbol{y}-\boldsymbol{x}^{T} A(G) \boldsymbol{x}=2\left(\left(b y_{s}\right)^{2}-b_{i} x_{i} b_{j} x_{j}\right)+2\left(2 b y_{s}-\left(b_{i} x_{i}+b_{j} x_{j}\right)\right) \sum_{t \notin B_{i}^{\prime} \cup B_{j}^{\prime}} x_{t}
$$

Note that $b=\frac{b_{i}+b_{j}}{2}>\sqrt{b_{i} b_{j}}$ and

$$
\left(b y_{s}\right)^{2}=b^{2} \cdot \frac{b_{i} x_{i}^{2}+b_{j} x_{j}^{2}}{2 b} \geq b \sqrt{b_{i} x_{i}^{2} b_{j} x_{j}^{2}}>b_{i} x_{i} b_{j} x_{j}
$$

Moreover, the weighted power-mean inequality gives

$$
2 b y_{s}=2 b\left(\frac{b_{i} x_{i}^{2}+b_{j} x_{j}^{2}}{b_{i}+b_{j}}\right)^{1 / 2} \geq 2 b \frac{b_{i} x_{i}+b_{j} x_{j}}{b_{i}+b_{j}}=b_{i} x_{i}+b_{j} x_{j}
$$

Thus we get $\boldsymbol{y}^{T} A\left(G^{\prime}\right) \boldsymbol{y}>\boldsymbol{x}^{T} A(G) \boldsymbol{x}$. Rayleigh's formula gives

$$
\lambda\left(G^{\prime}\right) \geq \boldsymbol{y}^{T} A\left(G^{\prime}\right) \boldsymbol{y}>\boldsymbol{x}^{T} A(G) \boldsymbol{x}=\lambda(G)
$$

which contradicts with the choice of G.
If $b_{i}+b_{j}=2 b+1$ for some integer b, then we move similarly some vertices from B_{j} to B_{i} such that the resulting sets $B_{i}^{\prime}, B_{j}^{\prime}$ satisfying $\left|B_{i}^{\prime}\right|=b$ and $\left|B_{j}^{\prime}\right|=b+1$. We construct a
vector $\boldsymbol{y} \in \mathbb{R}^{n}$ by setting $y_{s}=\sqrt{\left(b_{i} x_{i}^{2}+b_{j} x_{j}^{2}\right) /(2 b+1)}$ for every vertex $s \in B_{i}^{\prime} \cup B_{j}^{\prime}$, and $y_{t}=x_{t}$ for every $t \in V\left(G^{\prime}\right) \backslash\left(B_{i}^{\prime} \cup B_{j}^{\prime}\right)$. Similarly, we get

$$
\begin{aligned}
\boldsymbol{y}^{T} A\left(G^{\prime}\right) \boldsymbol{y}-\boldsymbol{x}^{T} A(G) \boldsymbol{x}= & 2\left(b(b+1) y_{s}^{2}-b_{i} x_{i} b_{j} x_{j}\right) \\
& +2\left((2 b+1) y_{s}-\left(b_{i} x_{i}+b_{j} x_{j}\right)\right) \sum_{t \notin B_{i}^{\prime} \cup B_{j}^{\prime}} x_{t} .
\end{aligned}
$$

We are going to show that

$$
b(b+1) y_{s}^{2}-b_{i} x_{i} b_{j} x_{j}>0, \quad \text { and } \quad(2 b+1) y_{s}-\left(b_{i} x_{i}+b_{j} x_{j}\right) \geq 0 .
$$

For the first inequality, by applying AM-GM inequality, we get

$$
b(b+1) y_{s}^{2}=b(b+1) \frac{b_{i} x_{i}^{2}+b_{j} x_{j}^{2}}{b_{i}+b_{j}} \geq \frac{2 b(b+1)}{b_{i}+b_{j}} \sqrt{b_{i} b_{j}} x_{i} x_{j} .
$$

It is sufficient to prove that $2 b(b+1)>\left(b_{i}+b_{j}\right) \sqrt{b_{i} b_{j}}$. Note that $b_{i} \leq b_{j}-2$ and $b_{i}+b_{j}=2 b+1$ is odd. Then $b_{i} \leq b-1$ and $b_{j} \geq b+2$. Thus, the first desired inequality holds immediately. For the second one, the weighted power-mean inequality yields

$$
(2 b+1) y_{s}=(2 b+1)\left(\frac{b_{i} x_{i}^{2}+b_{j} x_{j}^{2}}{b_{i}+b_{j}}\right)^{1 / 2} \geq(2 b+1) \frac{b_{i} x_{i}+b_{j} x_{j}}{b_{i}+b_{j}}=b_{i} x_{i}+b_{j} x_{j}
$$

This case also contradicts with the choice of G.
For the remaining three cases, we will show our proof by considering the characteristic polynomial of the graph G and then applying induction on integer r.

Case B. Now, we consider the case $b_{1} \leq b_{2}-2$. Recall that $B_{1}^{-}=B_{1} \backslash\{v\}$ and $B_{2}^{-}=B_{2} \backslash\{w\}$. We define a graph G^{\prime} obtained from G by deleting a vertex of B_{2}^{-}, and adding a copy of a vertex of B_{1}^{-}. This makes the two parts B_{1}^{-}, B_{2}^{-}more balanced. Our goal is to prove that $\lambda(G)<\lambda\left(G^{\prime}\right)$, which contradicts with the maximality of G. Let x_{v}, x_{w} and x_{u} be the weights of vertices v, w and u respectively. We denote by x_{1}^{-}and x_{2}^{-}the weights of vertices of B_{1}^{-}and B_{2}^{-}respectively. The eigen-equation $A(G) \boldsymbol{x}=\lambda(G) \boldsymbol{x}$ gives $\sum_{j \in N(i)} x_{j}=\lambda(G) x_{i}$ for every $i \in[n]$. Then

Thus $\lambda(G)$ is the largest eigenvalue of the following matrix A_{r} corresponding to eigenvector $\left(x_{v}, x_{w}, x_{u}, x_{1}^{-}, x_{2}^{-}, x_{3}, \ldots, x_{r}\right)$, where $A_{r}(r \geq 3)$ is defined as

$$
A_{r}:=\left[\begin{array}{ccccc:ccc}
0 & 0 & 1 & 0 & b_{2}-1 & b_{3} & \cdots & b_{r} \\
0 & 0 & 1 & b_{1}-1 & 0 & b_{3} & \cdots & b_{r} \\
1 & 1 & 0 & 0 & 0 & b_{3} & \cdots & b_{r} \\
0 & 1 & 0 & 0 & b_{2}-1 & b_{3} & \cdots & b_{r} \\
1 & 0 & 0 & b_{1}-1 & 0 & b_{3} & \cdots & b_{r} \\
\hdashline 1 & 1 & 1 & b_{1}-1 & b_{2}-1 & 0 & \cdots & b_{r} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & & \vdots \\
1 & 1 & 1 & b_{1}-1 & b_{2}-1 & b_{3} & \cdots & 0
\end{array}\right] .
$$

For notational convenience, we denote

$$
A_{2}:=\left[\begin{array}{ccccc}
0 & 0 & 1 & 0 & b_{2}-1 \\
0 & 0 & 1 & b_{1}-1 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & b_{2}-1 \\
1 & 0 & 0 & b_{1}-1 & 0
\end{array}\right],
$$

and

$$
R_{b_{1}, b_{2}}(x):=\operatorname{det}\left[\begin{array}{ccccc}
x+1 & 1 & 0 & b_{1}-1 & 0 \\
1 & x+1 & 0 & 0 & b_{2}-1 \\
0 & 0 & x+1 & b_{1}-1 & b_{2}-1 \\
1 & 0 & 1 & x+b_{1}-1 & 0 \\
0 & 1 & 1 & 0 & x+b_{2}-1
\end{array}\right]
$$

For every $r \geq 2$, the characteristic polynomial of A_{r} is denoted by

$$
F_{b_{1}, b_{2}, \ldots, b_{r}}(x)=\operatorname{det}\left(x I_{r+3}-A_{r}\right) .
$$

In particular, the polynomial $F_{b_{1}, b_{2}}(x)$ is the same as that in Lemma 3.3. By expanding the last column of $\operatorname{det}\left(x I_{r+3}-A_{r}\right)$, we get the following recurrence relations:

$$
\begin{equation*}
F_{b_{1}, b_{2}, b_{3}}(x)=\left(x+b_{3}\right) F_{b_{1}, b_{2}}(x)-b_{3} R_{b_{1}, b_{2}}(x), \tag{5}
\end{equation*}
$$

and for every integer $r \geq 4$,

$$
\begin{equation*}
F_{b_{1}, b_{2}, \ldots, b_{r}}(x)=\left(x+b_{r}\right) F_{b_{1}, b_{2}, \ldots, b_{r-1}}(x)-b_{r} \prod_{i=3}^{r-1}\left(x+b_{i}\right) R_{b_{1}, b_{2}}(x) \tag{6}
\end{equation*}
$$

where $F_{b_{1}, b_{2}}(x)$ and $R_{b_{1}, b_{2}}(x)$ are computed as below:

$$
\begin{aligned}
F_{b_{1}, b_{2}}(x)= & x^{5}-\left(b_{1} b_{2}+1\right) x^{3}+\left(3 b_{1} b_{2}-2 b_{1}-2 b_{2}+1\right) x-2 b_{1} b_{2}+2 b_{1}+2 b_{2}-2, \\
R_{b_{1}, b_{2}}(x)= & x^{5}+\left(b_{1}+b_{2}+1\right) x^{4}+\left(b_{1} b_{2}+1\right) x^{3}-\left(b_{1} b_{2}+b_{1}+b_{2}-3\right) x^{2} \\
& +\left(2 b_{1}+2 b_{2}-3 b_{1} b_{2}-1\right) x+3\left(b_{1}-1\right)\left(b_{2}-1\right) .
\end{aligned}
$$

Note that $b_{1} \leq b_{2}-2$. Upon computations, we obtain

$$
F_{b_{1}+1, b_{2}-1}(x)-F_{b_{1}, b_{2}}(x)=\left(b_{1}-b_{2}+1\right)(x-1)^{2}(x+2)<0,
$$

and

$$
R_{b_{1}+1, b_{2}-1}(x)-R_{b_{1}, b_{2}}(x)=-\left(b_{1}-b_{2}+1\right)(x-1)\left(x^{2}-3\right)>0
$$

Note that $b_{1}-b_{2}+1 \leq-1$. Combining with equation (5), we obtain

$$
\begin{aligned}
& F_{b_{1}+1, b_{2}-1, b_{3}}(x)-F_{b_{1}, b_{2}, b_{3}}(x) \\
& =\left(x+b_{3}\right)\left(F_{b_{1}+1, b_{2}-1}(x)-F_{b_{1}, b_{2}}(x)\right)-b_{3}\left(R_{b_{1}+1, b_{2}-1}(x)-R_{b_{1}, b_{2}}(x)\right) \\
& =\left(b_{1}-b_{2}+1\right)(x-1)^{2}(x+2)\left(x+b_{3}\right)+b_{3}\left(b_{1}-b_{2}+1\right)(x-1)\left(x^{2}-3\right) \\
& =\left(b_{1}-b_{2}+1\right)(x-1)\left((x-1)(x+2)\left(x+b_{3}\right)+b_{3}\left(x^{2}-3\right)\right)<0 .
\end{aligned}
$$

Next we prove by induction that for every $r \geq 3$ and $x \geq 2$,

$$
\begin{equation*}
F_{b_{1}+1, b_{2}-1, b_{3}, \ldots, b_{r}}(x)-F_{b_{1}, b_{2}, b_{3}, \ldots, b_{r}}(x)<0 \tag{7}
\end{equation*}
$$

Firstly, the base case $r=3$ was verified in the above. For $r \geq 4$, we get from (6) that

$$
\begin{aligned}
& F_{b_{1}+1, b_{2}-1, b_{3}, \ldots, b_{r}}(x)-F_{b_{1}, b_{2}, b_{3}, \ldots, b_{r}}(x) \\
& =\left(x+b_{r}\right)\left(F_{b_{1}+1, b_{2}-1, b_{3}, \ldots, b_{r-1}}(x)-F_{b_{1}, b_{2}, b_{3}, \ldots, b_{r-1}}(x)\right) \\
& \quad-b_{r} \prod_{i=3}^{r-1}\left(x+b_{i}\right)\left(R_{b_{1}+1, b_{2}-1}(x)-R_{b_{1}, b_{2}}(x)\right)<0,
\end{aligned}
$$

where the last inequality holds by applying inductive hypothesis on the case $r-1$ and invoking the fact $R_{b_{1}+1, b_{2}-1}(x)-R_{b_{1}, b_{2}}(x)>0$. From inequality 7 , we know that

$$
F_{b_{1}+1, b_{2}-1, b_{3}, \ldots, b_{r}}(\lambda(G))<F_{b_{1}, b_{2}, b_{3}, \ldots, b_{r}}(\lambda(G))=0
$$

Since $\lambda\left(G^{\prime}\right)$ is the largest root of $F_{b_{1}+1, b_{2}-1, b_{3}, \ldots, b_{r}}(x)$, this implies $\lambda(G)<\lambda\left(G^{\prime}\right)$.
Case C. Thirdly, we consider the case $b_{1} \leq b_{i}-2$ for some $i \in\{3, \ldots, r\}$. We may assume by symmetry that $b_{1} \leq b_{3}-2$. Our treatment in this case is similar with that of Case (B). Let G^{*} be the graph obtained from G by deleting a vertex of B_{3} with its incident edges, and add a new vertex to B_{1}^{-}and connect this new vertex to all remaining vertices of B_{3} and all vertices of $B_{2} \cup B_{4} \cup \cdots \cup B_{r}$. We will prove that $\lambda(G)<\lambda\left(G^{*}\right)$. By Case (B), we may assume that $\left|b_{1}-b_{2}\right| \leq 1$. Clearly, $\lambda\left(G^{*}\right)$ is the largest root of $F_{b_{1}+1, b_{2}, b_{3}-1, b_{4}, \ldots, b_{r}}(x)$. First of all, we will show that

$$
\begin{equation*}
F_{b_{1}+1, b_{2}, b_{3}-1}(x)-F_{b_{1}, b_{2}, b_{3}}(x)<0 \tag{8}
\end{equation*}
$$

and then by applying induction, we will prove that for each $r \geq 4$,

$$
\begin{equation*}
F_{b_{1}+1, b_{2}, b_{3}-1, b_{4}, \ldots, b_{r}}(x)-F_{b_{1}, b_{2}, b_{3}, b_{4}, \ldots, b_{r}}(x)<0 \tag{9}
\end{equation*}
$$

Next, we verify inequalities $(\sqrt{8}$ and $\sqrt{9}$ for the case $r=4$ only, since the inductive steps are the same as that of Case (B) with slight differences. By computation, we obtain

$$
\begin{aligned}
& \left(x+b_{3}-1\right) F_{b_{1}+1, b_{2}}(x)-\left(x+b_{3}\right) F_{b_{1}, b_{2}}(x) \\
& =-x^{5}-b_{2} x^{4}+\left(b_{2}\left(b_{1}-b_{3}+1\right)+1\right) x^{3}+\left(3 b_{2}-2\right) x^{2} \\
& \quad+\left(3 b_{2} b_{3}-3 b_{1} b_{2}+2 b_{1}-3 b_{2}-2 b_{3}+3\right) x+2 b_{1} b_{2}-2 b_{1}-2 b_{2} b_{3}+2 b_{3}
\end{aligned}
$$

and

$$
\begin{aligned}
- & \left(b_{3}-1\right) R_{b_{1}+1, b_{2}}(x)+b_{3} R_{b_{1}, b_{2}}(x) \\
= & x^{5}+\left(b_{2}+b_{1}-b_{3}+2\right) x^{4}+\left(b_{2}\left(b_{1}-b_{3}+1\right)+1\right) x^{3} \\
& +\left(-b_{1} b_{2}-b_{1}+b_{2} b_{3}-2 b_{2}+b_{3}+2\right) x^{2} \\
& +\left(3 b_{2} b_{3}-3 b_{1} b_{2}+2 b_{1}-b_{2}-2 b_{3}+1\right) x \\
& +3 b_{1} b_{2}-3 b_{1}-3 b_{2} b_{3}+3 b_{3} .
\end{aligned}
$$

Combining these two equations with (5), we get

$$
\begin{aligned}
& F_{b_{1}+1, b_{2}, b_{3}-1}(x)-F_{b_{1}, b_{2}, b_{3}}(x) \\
& =\left(x+b_{3}-1\right) F_{b_{1}+1, b_{2}}(x)-\left(x+b_{3}\right) F_{b_{1}, b_{2}}(x)-\left(b_{3}-1\right) R_{b_{1}+1, b_{2}}(x)+b_{3} R_{b_{1}, b_{2}}(x) \\
& =\left(b_{1}-b_{3}+2\right) x^{4}+2\left(b_{2}\left(b_{1}-b_{3}+1\right)+1\right) x^{3}+\left(b_{2} b_{3}-b_{1} b_{2}-b_{1}+b_{2}+b_{3}\right) x^{2} \\
& \quad+\left(6 b_{2} b_{3}-6 b_{1} b_{2}+4 b_{1}-4 b_{2}-4 b_{3}+4\right) x+5 b_{1} b_{2}-5 b_{1}-5 b_{2} b_{3}+5 b_{3} .
\end{aligned}
$$

Combining $\left|b_{1}-b_{2}\right| \leq 1$ and $b_{1}-b_{3} \leq-2$, one can verify that $F_{b_{1}+1, b_{2}, b_{3}-1}(x)<F_{b_{1}, b_{2}, b_{3}}(x)$ for every $x \geq 2\left(b_{1}-2\right)$. This completes the proof of (8). We now consider (9) in the case $r=4$. Note that $b_{1}-b_{3}+2 \leq 0$ and

$$
\begin{aligned}
& -\left(x+b_{3}-1\right) R_{b_{1}+1, b_{2}}(x)+\left(x+b_{3}\right) R_{b_{1}, b_{2}}(x) \\
& =\left(b_{1}-b_{3}+2\right) x^{4}+\left(b_{2}\left(b_{1}-b_{3}+2\right)+2\right) x^{3}+\left(b_{2}\left(b_{3}-b_{1}+1\right)+b_{3}-b_{1}\right) x^{2} \\
& \quad+\left(3 b_{2} b_{3}-3 b_{1} b_{2}+2 b_{1}-4 b_{2}-2 b_{3}+4\right) x+3 b_{1} b_{2}-3 b_{1}-3 b_{2} b_{3}+3 b_{3}<0,
\end{aligned}
$$

which together with (6) and the case $r=3$ yields

$$
\begin{aligned}
& F_{b_{1}+1, b_{2}, b_{3}-1, b_{4}}(x)-F_{b_{1}, b_{2}, b_{3}, b_{4}}(x) \\
& =\left(x+b_{4}\right)\left(F_{b_{1}+1, b_{2}, b_{3}-1}(x)-F_{b_{1}, b_{2}, b_{3}}(x)\right) \\
& \quad-b_{4}\left(x+b_{3}-1\right) R_{b_{1}+1, b_{2}}(x)+b_{4}\left(x+b_{3}\right) R_{b_{1}, b_{2}}(x)<0 .
\end{aligned}
$$

Let $t=\min \left\{b_{i}: 1 \leq i \leq r\right\}-1$. Since the complete r-partite $K_{t, t, \ldots, t}$ is a subgraph of G, we know that $\lambda(G) \geq \lambda\left(K_{t, t, \ldots, t}\right)=(r-1) t$. Thus, we can get $F_{b_{1}+1, b_{2}, b_{3}-1, b_{4}, \ldots, b_{r}}(\lambda(G))<$ $F_{b_{1}, b_{2}, b_{3}, b_{4}, \ldots, b_{r}}(\lambda(G))=0$, which yields $\lambda(G)<\lambda\left(G^{*}\right)$, which is a contradiction.

Case D. Finally, we consider the case $b_{i} \leq b_{1}-1$ for some $i \geq 3$. We may assume that $b_{3} \leq b_{1}-1$. This case could be completed by applying a similar argument of Case (C). Let G^{*} be the graph obtained from G by removing a vertex of B_{1}^{-}with its incident edges, and adding a copy of a vertex of B_{3}. In what follows, we will show that

$$
\begin{equation*}
F_{b_{1}-1, b_{2}, b_{3}+1}(x)-F_{b_{1}, b_{2}, b_{3}}(x)<0, \tag{10}
\end{equation*}
$$

and then we prove by induction that for every $r \geq 4$,

$$
\begin{equation*}
F_{b_{1}-1, b_{2}, b_{3}+1, b_{4}, \ldots, b_{r}}(x)-F_{b_{1}, b_{2}, b_{3}, b_{4}, \ldots, b_{r}}(x)<0 . \tag{11}
\end{equation*}
$$

By computation, we obtain that

$$
\left(x+b_{3}+1\right) F_{b_{1}-1, b_{2}}(x)-\left(x+b_{3}\right) F_{b_{1}, b_{2}}(x)
$$

$$
\begin{aligned}
= & x^{5}+b_{2} x^{4}+\left(b_{2}\left(b_{3}-b_{1}+1\right)-1\right) x^{3}+\left(-3 b_{2}+2\right) x^{2} \\
& +\left(3 b_{1} b_{2}-2 b_{1}-3 b_{2} b_{3}-3 b_{2}+2 b_{3}+1\right) x-2 b_{1} b_{2}+2 b_{1}+2 b_{2} b_{3}+4 b_{2}-2 b_{3}-4,
\end{aligned}
$$

and

$$
\begin{aligned}
- & \left(b_{3}+1\right) R_{b_{1}-1, b_{2}}(x)+b_{3} R_{b_{1}, b_{2}}(x) \\
= & -x^{5}+\left(b_{3}-b_{1}-b_{2}\right) x^{4}+\left(b_{2}\left(b_{3}-b_{1}+1\right)-1\right) x^{3} \\
& +\left(b_{1} b_{2}-b_{2} b_{3}+b_{1}-b_{3}-4\right) x^{2} \\
& +\left(3 b_{1} b_{2}-2 b_{1}-3 b_{2} b_{3}-5 b_{2}+2 b_{3}+3\right) x \\
& +3 b_{2} b_{3}-3 b_{1} b_{2}+3 b_{1}+6 b_{2}-3 b_{3}-6 .
\end{aligned}
$$

Combining with the recurrence equation (5), we get

$$
\begin{aligned}
& F_{b_{1}-1, b_{2}, b_{3}+1}(x)-F_{b_{1}, b_{2}, b_{3}}(x) \\
& =\left(x+b_{3}+1\right) F_{b_{1}-1, b_{2}}(x)-\left(x+b_{3}\right) F_{b_{1}, b_{2}}(x)-\left(b_{3}+1\right) R_{b_{1}-1, b_{2}}(x)+b_{3} R_{b_{1}, b_{2}}(x) \\
& =\left(b_{3}-b_{1}\right) x^{4}+\left(2 b_{2}\left(b_{3}-b_{1}+1\right)-2\right) x^{3}+\left(b_{1} b_{2}-b_{2} b_{3}+b_{1}-b_{3}-3 b_{2}-2\right) x^{2} \\
& \quad+\left(6 b_{1} b_{2}-6 b_{2} b_{3}-4 b_{1}-8 b_{2}+4 b_{3}+4\right) x-5 b_{1} b_{2}+5 b_{1}+5 b_{2} b_{3}+10 b_{2}-5 b_{3}-10 .
\end{aligned}
$$

Since $b_{3}-b_{1} \leq-1$ and $\left|b_{1}-b_{2}\right| \leq 1$, one can verify that $F_{b_{1}-1, b_{2}, b_{3}+1}(x)-F_{b_{1}, b_{2}, b_{3}}(x)<0$ for every $x \geq 2\left(b_{3}-1\right)$. This completes the proof of (10). Next we will prove (11) only for the case $r=4$, since the inductive steps are similar with that of Cases (B) and (C). By computation, we have

$$
\begin{aligned}
& -\left(x+b_{3}+1\right) R_{b_{1}-1, b_{2}}(x)+\left(x+b_{3}\right) R_{b_{1}, b_{2}}(x) \\
& =\left(b_{3}-b_{1}\right) x^{4}+\left(b_{2}\left(b_{3}-b_{1}\right)-2\right) x^{3}+\left(b_{1} b_{2}+b_{1}-b_{2} b_{3}-3 b_{2}-b_{3}-2\right) x^{2} \\
& \quad+\left(3 b_{1} b_{2}-2 b_{1}-3 b_{2} b_{3}-2 b_{2}+2 b_{3}\right) x-3 b_{1} b_{2}+3 b_{1}+3 b_{2} b_{3}+6 b_{2}-3 b_{3}-6<0,
\end{aligned}
$$

which together with (6) and the case $r=3$ gives

$$
\begin{aligned}
& F_{b_{1}-1, b_{2}, b_{3}+1, b_{4}}(x)-F_{b_{1}, b_{2}, b_{3}, b_{4}}(x) \\
& =\left(x+b_{4}\right)\left(F_{b_{1}-1, b_{2}, b_{3}+1}(x)-F_{b_{1}, b_{2}, b_{3}}(x)\right) \\
& \quad-b_{4}\left(x+b_{3}+1\right) R_{b_{1}-1, b_{2}}(x)+b_{4}\left(x+b_{3}\right) R_{b_{1}, b_{2}}(x)<0 .
\end{aligned}
$$

Since $F_{b_{1}-1, b_{2}, b_{3}+1, b_{4}, \ldots, b_{r}}(\lambda(G))<F_{b_{1}, b_{2}, b_{3}, b_{4}, \ldots, b_{r}}(\lambda(G))=0$ and $\lambda\left(G^{*}\right)$ is the largest root of $F_{b_{1}-1, b_{2}, b_{3}+1, b_{4}, \ldots, b_{r}}(x)$, we know that $\lambda(G)<\lambda\left(G^{*}\right)$, which contradicts with the choice of G. In summary, we complete the proof of all possible cases.

Remark. It seems possible to prove the last three cases by using a weight-balanced argument similar with that of the first case. Nevertheless, it is inevitable that a great deal of tedious calculations are required in the proof of these cases. Moreover, applying the recursive technique of determinants in the proof of Lemma 4.3, one can compute the characteristic polynomial of the adjacency matrix and signless Laplacian matrix of the n-vertex complete r-partite graph $K_{t_{1}, \ldots, t_{r}}$. More precisely,

$$
\operatorname{det}\left(x I_{n}-A\left(K_{t_{1}, \ldots, t_{r}}\right)\right)=x^{n-r}\left(1-\sum_{i=1}^{r} \frac{t_{i}}{x+t_{i}}\right) \prod_{i=1}^{r}\left(x+t_{i}\right),
$$

and

$$
\operatorname{det}\left(x I_{n}-Q\left(K_{t_{1}, \ldots, t_{r}}\right)\right)=\prod_{i=1}^{r}\left(x-n+t_{i}\right)^{t_{i}-1}\left(x-n+2 t_{i}\right)\left(1-\sum_{i=1}^{r} \frac{t_{i}}{x-n+2 t_{i}}\right) .
$$

It has its own interests to compute the eigenvalues of complete multipartite graphs; see, e.g., [14, 54, 45, 53] for different proofs and related results.

Now, we are ready to give the proof of Theorem 4.2.
Proof of Theorem 4.2. Assume that G is a K_{r+1}-free non- r-partite graph on n vertices with maximum value of the spectral radius. Our goal is to prove that $G=Y_{r}(n)$. Clearly, G must be a connected graph. Let $\boldsymbol{x} \in \mathbb{R}^{n}$ be a positive unit eigenvector of $\lambda(G)$.
Claim 4.1. There exists a vertex $u \in V(G)$ such that $G \backslash\{u\}$ is r-partite.
Proof of Claim 4.1. Recall in Section 3 that for two non-adjacent vertices $u, v \in V(G)$, the spectral Zykov symmetrization $Z_{u, v}(G)$ is defined as the graph obtained from G by removing all edges incident to u and then adding new edges from u to $N_{G}(v)$. We can verify that the spectral Zykov symmetrization does not increase the clique number and the chromatic number. Recall that $s_{G}(v, \boldsymbol{x})=\sum_{i \in N_{G}(v)} x_{i}$ is the sum of weights of all neighbors of v in G. For two non-adjacent vertices u, v, if $s_{G}(u, \boldsymbol{x})<s_{G}(v, \boldsymbol{x})$, then we replace G with $Z_{u, v}(G)$. If $s_{G}(u, \boldsymbol{x})=s_{G}(v, \boldsymbol{x})$, then we can apply either $Z_{u, v}$ or $Z_{v, u}$, which leads to $N(u)=N(v)$ after making the spectral Zykov symmetrization. Obviously, the spectral Zykov symmetrization does not create a copy of K_{r+1}. More significantly, it will increase the spectral radius strictly, since \boldsymbol{x} is entry-wise positive.

The proof of Claim 4.1 is based on the spectral Zykov symmetrization stated in above. Since G is K_{r+1}-free, we can repeatedly apply the spectral Zykov symmetrization on every pair of non-adjacent vertices until G becomes an r-partite graph. Without loss of generality, we may assume that G is K_{r+1}-free and G is not r-partite, while $Z_{u, v}(G)$ is r-partite. Thus $G \backslash\{u\}$ is r-partite, and we assume that $V(G) \backslash\{u\}:=V_{1} \cup V_{2} \cup \cdots \cup V_{r}$ is a r-partition, where $V_{1}, V_{2}, \ldots, V_{r}$ are pairwise disjoint and $\sum_{i=1}^{r}\left|V_{i}\right|=n-1$.

We denote $A_{i}=N(u) \cap V_{i}$ for every $i \in[r]:=\{1, \ldots, r\}$. Note that G has maximum spectral radius among all K_{r+1}-free non- r-partite graphs. Then for each $i \in[r]$, every vertex of $V_{i} \backslash A_{i}$ is adjacent to every vertex of V_{j} for every $j \in[r]$ and $j \neq i$. We remark here that the difference between the K_{r+1}-free case (Theorem 1.4) and the triangle-free case (Theorem 3.2) is that there may exist some edges between the pair of sets A_{i} and A_{j}, which makes the problem seem more difficult.
Claim 4.2. There exists a pair $\{i, j\} \subseteq[r]$ such that $G\left[A_{i}, A_{j}\right]$ forms an empty graph, and for other pairs $\{s, t\} \neq\{i, j\}, G\left[A_{s}, A_{t}\right]$ is a complete bipartite subgraph in G.

Proof of Claim 4.2. Let $G\left[A_{1}, A_{2}, \ldots, A_{r}\right]$ be the subgraph of G induced by the vertex sets $A_{1}, A_{2}, \ldots, A_{r}$. Note by Claim 4.1 that $G\left[A_{i}\right]$ has no edge. Claim 4.2 is equivalent to say that $G\left[A_{1} \cup A_{2}, A_{3}, \ldots, A_{r}\right]$ forms a complete ($r-1$)-partite subgraph in G. Since G is K_{r+1}-free, we know that the subgraph $G\left[A_{1}, A_{2}, \ldots, A_{r}\right]$ is a K_{r}-free subgraph in G.

First of all, we choose a vertex $v_{1} \in A_{1}$ such that $s_{G}\left(v_{1}, \boldsymbol{x}\right)$ is the maximum among all vertices of A_{1}, and observe that any two vertices of A_{1} are not adjacent, then we apply
the spectral Zykov operation $Z_{w, v_{1}}$ on G for every vertex $w \in A_{1} \backslash\left\{v_{1}\right\}$. These operations will make all vertices of A_{1} being equivalent, that is, every pair of vertices in A_{1} has the same neighbors. Secondly, we choose a vertex $v_{2} \in A_{2}$ such that $s_{G}\left(v_{2}, \boldsymbol{x}\right)$ is maximum over all vertices of A_{2}, and then we apply similarly the Zykov operation $Z_{w, v_{2}}$ on G for every $w \in A_{2} \backslash\left\{v_{2}\right\}$. Note that all vertices in A_{1} have the same neighbors. After doing Zykov's operations on vertices of A_{2}, we claim that the induced subgraph $G\left[A_{1}, A_{2}\right]$ is either a complete bipartite graph or an empty graph. Indeed, if $v_{2} \in \cap_{v \in A_{1}} N(v)$, then the operations $Z_{w, v_{2}}$ for all $w \in A_{2} \backslash\left\{v_{2}\right\}$ will lead to a complete bipartite graph between A_{1} and A_{2}. If $v_{2} \notin \cap_{v \in A_{1}} N(v)$, then v_{2} is not adjacent to all vertices of A_{1}, and so is w for every $w \in A_{2} \backslash\left\{v_{2}\right\}$, which yields that $G\left[A_{1}, A_{2}\right]$ is an empty graph. Moreover, by applying the similar operations on $A_{3}, A_{4}, \ldots, A_{r}$, we can obtain that for every $i, j \in[r]$ with $i \neq j$, the induced bipartite subgraph $G\left[A_{i}, A_{j}\right]$ is either complete bipartite or empty. Since $G\left[A_{1}, A_{2}, \ldots, A_{r}\right]$ is K_{r}-free and G attains the maximum spectral radius, we know that there is exactly one pair $\{i, j\} \subseteq[r]$ such that $G\left[A_{i}, A_{j}\right]$ is an empty graph.

We may assume that $\{i, j\}=\{1,2\}$. In what follows, we intend to enlarge A_{i} to the whole set V_{i} for every $i \in\{3,4, \ldots, r\}$. Observe that every vertex of $V_{i} \backslash A_{i}$ is adjacent to every vertex of V_{j} for each $j \in[r]$ with $j \neq i$, adding all edges between $\{u\}$ and $V_{i} \backslash A_{i}$ does not create a copy of K_{r+1}, and it increase the spectral radius of G strictly. This observation implies that u is adjacent to every vertex of V_{i} for each $i \in\{3,4, \ldots, r\}$; see (a) in Figure 6 .

Figure 6: Local changes and switches.
Assume that $C:=N(u) \cap V_{1}$ and $D:=N(u) \cap V_{2}$. We denote $A:=V_{1} \backslash C$ and $B:=V_{2} \backslash D ;$ see (a) in Figure 6. Note that there is no edge between C and D. In the remaining of the proof, we will prove that both C and D are single vertex sets. The treatment is similar with that of our proof of Theorem 3.2.

Claim 4.3. One of the sets C or D has size 1 .
Proof of Claim 4.3. If $\sum_{v \in A} x_{v} \geq \sum_{v \in B} x_{v}$, then we choose $|C|-1$ vertices of C and delete its incident edges only in B, then we move these $|C|-1$ vertices into D and connect these vertices to A. In this process, the edges between these $|C|-1$ vertices and $V_{3} \cup \cdots \cup V_{r}$ are unchanged. We write G^{\prime} for the resulting graph. Using the similar computation as in Section 3 , we can verify that $\lambda\left(G^{\prime}\right)>\lambda(G)$.

If $\sum_{v \in A} x_{v}<\sum_{v \in B} x_{v}$, then we can choose $|D|-1$ vertices of D and delete its incident edges only in A, and then move these $|D|-1$ vertices into C and join these vertices to B.

This process will increase strictly the spectral radius. From the above case analysis, we can always remove the vertices of G to force either $|C|=1$ or $|D|=1$.

We may assume by symmetry that $|C|=1$ and denote $C=\{c\}$; see (b) in Figure 6.
Claim 4.4. The set D is a single vertex, i.e., $|D|=1$.
Proof of Claim 4.4. If $x_{u}<x_{c}$, then we choose $|D|-1$ vertices of D and delete its incident edges to vertex u, then we move these $|D|-1$ vertices into B and join these these vertices to c, and keeping the other edges unchanged, we denote the new graph by G^{\star}. Then we can similarly get $\lambda\left(G^{\star}\right)>\lambda(G)$. In the graph G^{\star}, we have $|D|=1$ and write $D=\{d\}$. Thus G^{\star} is the graph obtained from a complete r-partite graph $K_{t_{1}, t_{2}, \ldots, t_{r}}$, where $\sum_{i=1}^{r} t_{i}=n-1$, by adding a new vertex u and then joining u to a vertex $c \in V_{1}$, and joining u to a vertex $d \in V_{2}$, and joining u to all vertices of $V_{3} \cup \cdots \cup V_{r}$, and finally removing the edge $c d \in E\left(K_{t_{1}, t_{2}, \ldots, t_{r}}\right)$.

If $x_{u} \geq x_{c}$, then we choose $|B|-1$ vertices of B and delete its incident edges to vertex c, then we move these $|B|-1$ vertices into D and join these vertices to vertex u. We denote the new graph by G^{*}. Then $\lambda\left(G^{*}\right)>\lambda(G)$. Thus we conclude in the new graph G^{*} that B is a single vertex, say $B=\{b\}$; see (c) in Figure 6. In what follows, we will exchange the position of u and c. Note that $c \in V_{1}$ is adjacent to a vertex $b \in V_{1}$ and all vertices of $V_{3} \cup \cdots \cup V_{r}$. Now, we move vertex c outside of V_{1} and put vertex u into V_{1}. Thus the new center c is adjacent to a vertex $u \in V_{1}$, a vertex $b \in V_{2}$ and all vertices of $V_{3} \cup \cdots \cup V_{r}$. Note that $b u \notin E\left(G^{*}\right)$. Hence G^{*} has the same structure as the previous case, and then we may assume that $|D|=1$.

From the above discussion, we know that G is isomorphic to the graph defined as in Lemma 4.3. By applying Lemma 4.3, we obtain that $\lambda(G) \leq \lambda\left(Y_{r}(n)\right)$. Moreover, the equality holds if and only if $G=Y_{r}(n)$. This completes the proof of Theorem 4.2.

5 Unified extension to the p-spectral radius

Recall that the spectral radius of a graph is defined as the largest eigenvalue of its adjacency matrix. By Rayleigh's theorem, we know that it is also equal to the maximum value of $\boldsymbol{x}^{T} A(G) \boldsymbol{x}=2 \sum_{\{i, j\} \in E(G)} x_{i} x_{j}$ over all $\boldsymbol{x} \in \mathbb{R}^{n}$ with $\left|x_{1}\right|^{2}+\cdots+\left|x_{n}\right|^{2}=1$. The definition of the spectral radius was recently extended to the p-spectral radius; see [28, 25] and references therein. We denote the p-norm of \boldsymbol{x} by $\|\boldsymbol{x}\|_{p}=\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p}$. For every real number $p \geq 1$, the p-spectral radius of G is defined as

$$
\lambda^{(p)}(G):=2 \max _{\|\boldsymbol{x}\|_{p}=1} \sum_{\{i, j\} \in E(G)} x_{i} x_{j}
$$

We remark that $\lambda^{(p)}(G)$ is a versatile parameter. Indeed, $\lambda^{(1)}(G)$ is known as the Lagrangian function of $G, \lambda^{(2)}(G)$ is the spectral radius of its adjacency matrix, and

$$
\begin{equation*}
\lim _{p \rightarrow+\infty} \lambda^{(p)}(G)=2 e(G) \tag{12}
\end{equation*}
$$

which can be guaranteed by $2 e(G) n^{-2 / p} \leq \lambda^{(p)}(G) \leq(2 e(G))^{1-1 / p}$. To some extent, the p-spectral radius could be viewed as a unified extension of the spectral radius as well as the
size of a graph. In addition, it is worth mentioning that if $1 \leq q \leq p$, then $\lambda^{(p)}(G) n^{2 / p} \leq$ $\lambda^{(q)}(G) n^{2 / q}$ and $\left(\lambda^{(p)}(G) / 2 e(G)\right)^{p} \leq\left(\lambda^{(q)}(G) / 2 e(G)\right)^{q}$; see [43, Propositions 2.13 and 2.14]. As commented by Kang and Nikiforov in [25, p.3], linear-algebraic methods are irrelevant for the study of $\lambda^{(p)}(G)$ in general, and in fact no efficient methods are known for it. Thus the study of $\lambda^{(p)}(G)$ for $p \neq 2$ is far more complicated than the classical spectral radius. In 2014, Kang and Nikiforov [25] proved the following result for the p-spectral radius.

Theorem 5.1 (Kang-Nikiforov, 2014). If G is a K_{r+1}-free graph on n vertices, then for every $p>1$,

$$
\lambda^{(p)}(G) \leq \lambda^{(p)}\left(T_{r}(n)\right),
$$

equality holds if and only if G is the n-vertex Turán graph $T_{r}(n)$.
Remark. We remark that a theorem of Motzkin and Straus [38] states that Theorem 5.1 is also valid for $p=1$ except for the extremal graphs attaining the equality. Keeping (12) in mind, we can see that Theorem 5.1 is a unified extension of both Turán's Theorem and spectral Turán's Theorem 1.2 by taking $p \rightarrow+\infty$ and $p=2$, respectively.

A vector $\boldsymbol{x} \in \mathbb{R}^{n}$ is called a unit eigenvector corresponding to $\lambda^{(p)}(G)$ if it satisfies $\sum_{i=1}^{n}\left|x_{i}\right|^{p}=1$ and $\lambda^{(p)}(G)=2 \sum_{\{i, j\} \in E(G)} x_{i} x_{j}$. By Lagrange's multiplier method, there exists a positive unit eigenvector whenever G is connected. The proof of Theorem 4.2 relies on the Rayleigh representation of $\lambda(G)$ and the existence of a positive eigenvector. For the p-spectral radius, there is also a positive vector corresponding to $\lambda^{(p)}(G)$. Applying the similar techniques, one can extend Theorem 4.2 to the p-spectral radius. We leave the details for interested readers.

Theorem 5.2. Let G be an n-vertex graph. If G does not contain K_{r+1} and G is not r-partite, then for every $p>1$, we have

$$
\lambda^{(p)}(G) \leq \lambda^{(p)}\left(Y_{r}(n)\right) .
$$

Moreover, the equality holds if and only if $G=Y_{r}(n)$.

6 Concluding remarks

We shall conclude with some possible problems for interested readers. To begin with, we define an extremal function $\psi(n, F, t)$ as the maximum number of edges in an n-vertex F-free graph with the chromatic number $\chi(G) \geq t$. In particular, Theorem 4.1 says that $\psi\left(n, K_{r+1}, r+1\right)=e\left(T_{r}(n)\right)-\left\lfloor\frac{n}{r}\right\rfloor+1$. Similarly, we can define the spectral extremal function as $\psi_{\lambda}(n, F, t):=\max \{\lambda(G):|G|=n, F \nsubseteq G, \chi(G) \geq t\}$. In Theorem 1.4, we have proved that $\psi_{\lambda}\left(n, K_{r+1}, r+1\right)=\lambda\left(Y_{r}(n)\right)$. It is meaningful to study the functions $\psi(n, F, t)$ and $\psi_{\lambda}(n, F, t)$ in general.

We write $q(G)$ for the signless Laplacian spectral radius, i.e., the largest eigenvalue of the signless Laplacian matrix $Q(G)=D(G)+A(G)$, where $D(G)=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ is the degree diagonal matrix and $A(G)$ is the adjacency matrix. In 2013, He, Jin and Zhang [24, Theorem 1.3] proved the signless Laplacian spectral version of Turán's theorem, which states that if G is a K_{r+1}-free graph on n vertices, then $q(G) \leq q\left(T_{r}(n)\right)$, equality holds if and only if $r=2$ and $G=K_{t, n-t}$ for some t, or $r \geq 3$ and $G=T_{r}(n)$. Similar with
the adjacency spectral radius, the signless Laplacian spectral version also implies the edge Turán theorem. It is interesting to study whether it is possible to extend the results of our paper in terms of $q(G)$. For example, given an integer $r \geq 3$, whether $Y_{r}(n)$ is the extremal graph attaining the maximum signless Laplacian spectral radius among all non-r-partite K_{r+1}-free graphs.

After the paper is submitted, we are aware of some recent results [22, 58] for nonbipartite $C_{2 k+1}$-free graphs with $k \geq 2$, and [36] for the signless Laplacian spectral radius of non-bipartite C_{3}-free graphs.

Acknowledgements

We are thankful to the reviewers for reading the manuscript carefully, checking all the details and giving insightful comments to help improve the manuscript. The research was supported by NSFC (Grant No.11931002).

References

[1] M. Aigner, G. M. Ziegler, Proofs from THE BOOK, 5th edition, Springer-Verlag, NewYork, 2014. See Chapter 40.
[2] K. Amin, J. Faudree, R.J. Gould, E. Sidorowicz, On the non- $(p-1)$-partite K_{p}-free graphs, Discuss. Math. Graph Theory 33 (2013) 9-23.
[3] J. Balogh, N. Bushaw, M. Collares, H. Liu, R. Morris, M. Sharifzadeh, The typical structure of graphs with no large cliques, Combinatorica 37 (4) (2017) 617-632.
[4] B. Bollobás, Extremal Graph Theory, Academic Press, New York, 1978.
[5] B. Bollobás, A. Thomason, Dense neighbourhoods and Turán's theorem, J. Combin. Theory Ser. B 31 (1981) 111-114.
[6] B. Bollobás, V. Nikiforov, Cliques and the spectral radius, J. Combin. Theory Series В 97 (2007) 859-865.
[7] J.A. Bondy, Large dense neighbourhoods and Turán's theorem, J. Combin. Theory Ser. В 34 (1983) 109-111.
[8] J.A. Bondy, U.S.R. Murty, Graph Theory, Vol. 244 of Graduate Texts in Mathematics, Springer, 2008.
[9] A.E. Brouwer, Some Lotto Numbers From an Extension of Turán's Theorem, Math. Centr. report ZW152, Amsterdam (1981), 6pp.
[10] M.-Z. Chen, X.-D. Zhang, Some new results and problems in spectral extremal graph theory, (Chinese), J. Anhui Univ. Nat. Sci. 42 (2018) 12-25.
[11] S. Cioabă, L.H. Feng, M. Tait, X.-D. Zhang, The spectral radius of graphs with no intersecting triangles, Electron. J. Combin. 27 (4) (2020) P4.22.
[12] S. Cioabă, D.N. Desai, M. Tait, The spectral radius of graphs with no odd wheels, European J. Combin. 99 (2022) 103420.
[13] D.N. Desai, L. Kang, Y. Li, Z. Ni, M. Tait, J. Wang, Spectral extremal graphs for intersecting cliques, Linear Algebra Appl. 644 (2022) 234-258.
[14] C. Delorme, Eigenvalues of complete multipartite graphs, Discrete Math. 312 (17) (2012) 2532-2535.
[15] P. Erdős, On the number of complete subgraphs contained in certain graphs, Magy. Tud. Akad. Mat. Kut. Intéz. Közl. 7 (1962) 459-474.
[16] P. Erdős, On the graph theorem of Turán, Mat. Lapok 21 (1970) 249-251.
[17] L.H. Feng, Q. Li, X.-D. Zhang, Spectral radii of graphs with given chromatic number, Applied Mathematics Letters, 20 (2007), 158-162.
[18] Z. Füredi, M. Simonovits, The history of degenerate (bipartite) extremal graph problems, in Erdős Centennial, Bolyai Soc. Math. Stud., 25, János Bolyai Math. Soc., Budapest, 2013, pp. 169-264.
[19] Z. Füredi, A proof of the stability of extremal graphs, Simonovits' stability from Szemerédi's regularity, J. Combin. Theory, Series B 115 (2015) 66-71.
[20] Z. Füredi, Z. Maleki, The minimum number of triangular edges and a symmetrization method for multiple graphs, Combin. Probab. Comput. 26 (4) (2017) 525-535.
[21] B.D. Guiduli, Spectral extrema for graphs, Ph.D. Thesis, University of Chicago, 1996. See http://people.cs.uchicago.edu/~laci/students/guiduli-phd.pdf
[22] H. Guo, H. Lin, Y. Zhao, A spectral condition for the existence of a pentagon in non-bipartite graphs, Linear Algebra Appl. 627 (2021) 140-149.
[23] D. Hanson, B. Toft, k-saturated graphs of chromatic number at least k, Ars Combin. 31 (1991) 159-164.
[24] B. He, Y.-L. Jin, X.-D. Zhang, Sharp bounds for the signless Laplacian spectral radius in terms of clique number, Linear Algebra Appl. 438 (2013) 3851-3861.
[25] L. Kang, V. Nikiforov, Extremal problem for the p-spectral radius of graphs, Electronic J. Combin. 21 (3) (2014) 87-101.
[26] L. Kang, V. Nikiforov, X. Yuan, The p-spectral radius of k-partite and k-chromatic uniform hypergraphs, Linear Algebra Appl. 478 (2015) 81-107.
[27] M. Kang, O. Pikhurko, Maximum K_{r+1}-free graphs which are not r-partite, Mat. Stud. 24 (2005) 12-20.
[28] P. Keevash, J. Lenz, D. Mubayi, Spectral extremal problems for hypergraphs, SIAM J. Discrete Math. 28 (4) (2014) 1838-1854.
[29] S. Li, W. Sun, Y. Yu, Adjacency eigenvalues of graphs without short odd cycles, Discrete Math. 345 (2022) 112633.
[30] Y. Li, W. Liu, L.H. Feng, A survey on spectral conditions for some extremal graph problems, Advances in Math. (China), 51 (2) (2022) 193-258. arXiv:2111.03309v2.
[31] Y. Li, Y. Peng, The spectral radius of graphs with no intersecting odd cycles, Discrete Math. 345 (2022) 112907.
[32] Y. Li, Y. Peng, The maximum spectral radius of non-bipartite graphs forbidding short odd cycles, Electron. J. Combin. 29 (4) (2022), \#P4.2.
[33] H. Lin, B. Ning, A complete solution to the Cvetković-Rowlinson conjecture, J. Graph Theory 97 (3) (2021) 441-450.
[34] H. Lin, B. Ning, B. Wu, Eigenvalues and triangles in graphs, Combin. Probab. Comput. 30 (2) (2021) 258-270.
[35] H. Lin, H. Guo, A spectral condition for odd cycles in non-bipartite graphs, Linear Algebra Appl. 631 (2021) 83-93.
[36] R. Liu, L. Miao, J. Xue, Maxima of the Q-index of non-bipartite C_{3}-free graphs, Linear Algebra Appl. 673 (2023) 1-13.
[37] W. Mantel, Problem 28, Solution by H. Gouwentak, W. Mantel, J. Teixeira de Mattes, F. Schuh and W. A. Wythoff. Wiskundige Opgaven, 10 (1907) 60-61.
[38] T.S. Mokzkin, E.G. Straus, Maxima for graphs and a new proof of a theorem of Turán, Canad. J. Math. 17 (1965), 533-540.
[39] V. Nikiforov, Some inequalities for the largest eigenvalue of a graph, Combin. Probab. Comput. 11 (2002) 179-189.
[40] V. Nikiforov, Bounds on graph eigenvalues II, Linear Algebra Appl. 427 (2007) 183-189.
[41] V. Nikiforov, More spectral bounds on the clique and independence numbers, J. Combin. Theory Ser. B 99 (2009), no. 6, 819-826.
[42] V. Nikiforov, Some new results in extremal graph theory, Surveys in Combinatorics, London Math. Soc. Lecture Note Ser., 392, Cambridge Univ. Press, Cambridge, 2011, pp. 141-181.
[43] V. Nikiforov, Analytic methods for uniform hypergraphs, Linear Algebra Appl. 457 (2014) 455-535.
[44] E. Nosal, Eigenvalues of graphs, Master's thesis, University of Calgary, 1970.
[45] M.R. Oboudi, A relation between the signless Laplacian spectral radius of complete multipartite graphs and majorization, Linear Algebra Appl. 565 (2019) 225-238.
[46] M. Simonovits, Paul Erdős' influence on extremal graph theory, in The Mathematics of Paul Erdős II, R.L. Graham, Springer, New York, 2013, pp. 245-311.
[47] M. Simonovits, V.T. Sós, Ramsey-Turán theory, in: Combinatorics, Graph Theory, Algorithms and Applications, Discrete Math. 229 (2001) 293-340.
[48] M. Tait, J. Tobin, Three conjectures in extremal spectral graph theory, J. Combin. Theory Ser. B 126 (2017) 137-161.
[49] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941), pp. 436-452. (in Hungarian).
[50] M. Tyomkyn, A.J. Uzzell, Strong Turán stability, Electron. J. Combin. 22 (2015) P3-9.
[51] J. Wang, L. Kang, Y. Xue, On a conjecture of spectral extremal problems, J. Combin. Theory Ser. B 159 (2023) 20-41.
[52] H. Wilf, Spectral bounds for the clique and indendence numbers of graphs, J. Combin. Theory Ser. B 40 (1986) 113-117.
[53] L. You, M. Yang, W. So, X. Weige, On the spectrum of an equitable quotient matrix and its application, Linear Algebra Appl. 577 (2019) 21-40.
[54] G. Yu, Y. Wu, J. Shu, Signless Laplacian spectral radii of graphs with given chromatic number, Linear Algebra Appl. 435 (2011) 1813-1822.
[55] M. Zhai, H. Lin, J. Shu, Spectral extrema of graphs with fixed size: Cycles and complete bipartite graphs, European J. Combin. 95 (2021), 103322.
[56] M. Zhai, J. Shu, A spectral version of Mantel's theorem, Discrete Math. 345 (2022), 112630.
[57] X. Zhan, Matrix Theory, Graduate Studies in Mathematics, vol. 147, Amer. Math. Soc., Providence, RI, 2013.
[58] Z. Zhang, Y. Zhao, A spectral condition for the existence of cycles with consecutive odd lengths in non-bipartite graphs, Discrete Math. 346 (6) (2023), No. 113365.
[59] A.A. Zykov, On some properties of linear complexes (in Russian), Mat. Sbornik N.S. 24 (66) (1949) 163-188.

[^0]: ${ }^{*}$ This paper was firstly announced in April, 2022, and was later published on SIAM J. Discrete Math. 37 (4) (2023) 2462-2485. See https://doi.org/10.1137/22M1507814. The research was supported by National Natural Science Foundation of China grant 11931002. E-mail addresses: ytli0921@hnu.edu.cn (Yǒngtāo Li), ypeng1@hnu.edu. on (Yuèjiàn Péng, corresponding author).

[^1]: ${ }^{1}$ Combining Rayleigh's formula or Lagrange's multiplier method, one can show further that the spectral radius will increase strictly whenever all coordinates of the vector \boldsymbol{x} are positive.

