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ABSTRACT

In this work, we analyse space–time reduced basis methods for the efficient numerical simulation
of hæmodynamics in arteries. The classical formulation of the reduced basis (RB) method features
dimensionality reduction in space, while finite differences schemes are employed for the time in-
tegration of the resulting ordinary differential equation (ODE). Space–time reduced basis (ST–RB)
methods extend the dimensionality reduction paradigm to the temporal dimension, projecting the
full–order problem onto a low–dimensional spatio–temporal subspace. Our goal is to investigate the
application of ST–RB methods to the unsteady incompressible Stokes equations, with a particular
focus on stability. High–fidelity simulations are performed using the Finite Element (FE) method
and BDF2 as time marching scheme. We consider two different ST–RB methods. In the first one
— called ST–GRB — space–time model order reduction is achieved by means of a Galerkin pro-
jection; a spatio–temporal velocity basis enrichment procedure is introduced to guarantee stability.
The second method — called ST–PGRB — is characterized by a Petrov–Galerkin projection, stem-
ming from a suitable minimization of the FOM residual, that allows to automatically attain stability.
The classical RB method — denoted as SRB–TFO — serves as a baseline for the theoretical de-
velopment. Numerical tests have been conducted on an idealized symmetric bifurcation geometry
and on the patient–specific one of a femoropopliteal bypass. The results show that both ST–RB
methods provide accurate approximations of the high–fidelity solutions, while considerably reduc-
ing the computational cost. In particular, the ST–PGRB method exhibits the best performance, as it
features a better computational efficiency while retaining accuracies in accordance with theoretical
expectations.

Keywords Hæmodynamics · Twofold saddle point problems · Reduced basis method · Space–time model order
reduction · Supremizers enrichment · Least–squares Petrov–Galerkin projection

1 Introduction
Patient–specific high–fidelity numerical simulations of hæmodynamics are traditionally performed solving
parametrized unsteady incompressible Navier–Stokes equations. The Finite Elements (FE) or the Finite Volumes
(FV) methods are typically used for spatial discretization, while implicit linear multistep (such as Backward Diffentia-
tion Formulas – BDF) or multistage (such as Runge–Kutta – RK) methods are employed for the time integration of the
resulting ordinary differential equation (ODE). Overall, this defines the so–called full–order model (FOM). Depending
on the features of the problem at hand — like the shape and dimension of the physical domain, the complexity of the
physical processes of interest or the length of the simulation interval — solving the FOM problem can be extremely
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expensive from a computational standpoint, even exploiting parallel computations [1]. In case of parametric depen-
dence, Reduced Order Models (ROMs) are widely employed to lighten the computational burden of the simulations,
yet retaining a good degree of accuracy. Projection–based ROMs (PROMs) — such as the traditional Reduced Basis
(RB) method — reduce the spatial dimensionality of the dynamical system by means of a projection process, leading to
a low–dimensional ODE. However, the resolution of the latter involves time integration, which is typically performed
adopting the same scheme and with the same timestep size used in the FOM. As a result, traditional space–reduced
ROMs feature a much smaller dimensionality in space than the FOM, but the same one in time. Therefore, in prob-
lems where either the time simulation interval is very large (as for instance in many applications in computational fluid
dynamics), or the timestep size should be very small in order to capture some relevant behaviours happening at small
time scales (as for instance in molecular dynamics), significant computational gains are difficult to realize.

The issue linked to temporal complexity has already been addressed in various ways. A comprehensive literature
review on the topic can be found in [2], where the authors investigate the pros and cons of several approaches. Among
those, we may cite time–parallel methods (such as parareal [3], PITA [4] and MGRIT [5]) and “forecasting” ap-
proaches [6, 7], even though they only allow to reduce the wall–time of simulations and not the temporal complexity
of the problem. A reduction of both the spatial and the temporal dimension of the FOM characterizes the space–time
RB methods presented in [8, 9, 10, 11], that also feature error bounds that grow linearly, rather than exponentially,
with respect to the number of timesteps. However, such methods exhibit some relevant drawbacks, the major ones
being the need for a (uncommon) FE discretization of the time domain and the absence of hyper–reduction techniques
to efficiently handle non–linearities.

In [2] the authors propose a novel approach — called Space–Time Least–Squares Petrov–Galerkin (ST–LSPG) method
— to tackle parametrized non–linear dynamical systems. The idea is to minimize the FOM residual, computed from the
FOM reconstruction of the space–time reduced solution, in a weighted spatio–temporal ℓ2–norm. Different choices
for the reduced basis construction and for the weighting matrix assembling are proposed and analysed. A priori
error bounds, bounding the solution error by the best space–time approximation error, are also retrieved and the
stability constant features a subquadratic growth with respect to the total number of time instances. Even though the
performances of the ST–LSPG method are found to be good on 1D non–linear dynamical systems, a deterioration
is expected when dealing with 2D or 3D geometries. This claim is particularly strong if the space–time collocation
approach is employed for hyper–reduction, since sampling techniques notoriously suffer the curse of dimensionality. In
[12], the drawbacks of the ST–LSPG method are addressed adopting a time–windowed strategy (Windowed ST–LSPG
– WST–LSPG). The simulation interval is partitioned into windows; within each window, a low–dimensional spatio–
temporal subspace is defined and the residual is minimized in a weighted ℓ2–norm. Numerical experiments, carried out
also considering 2D compressible Navier–Stokes equations for the flow around an airfoil, demonstrate that the WST–
LSPG method is better than the ST–LSPG one both in terms of accuracy and of efficiency. However, the coupling
between the different time windows is not taken into account and this could easily deteriorate the performances if their
number is large. Finally, in [13, 14], the time–complexity bottleneck of the RB method is addressed by performing,
respectively, a Galerkin projection and a least–squares Petrov–Galerkin projection of the FOM onto a low–dimensional
spatio–temporal subspace. The resulting methods exhibit good performances on 2D linear dynamical systems and a
priori error bounds, featuring a subquadratic dependency on the total number of time instants, are derived. However,
only linear problems have been considered.

The goal of this work is to investigate the application of Space–Time Reduced Basis (ST–RB) methods to the unsteady
parametrized incompressible Stokes equations, a well–known linearization of the Navier–Stokes equations that models
Newtonian flow at small Reynolds’ numbers. The problem parametrization affects the inflow/outflow rates and a
linear reaction term added to the momentum conservation equation in order to model the presence of blood clots; the
geometry is assumed fixed. Additionally, non–homogeneous Dirichlet boundary conditions (BCs) are weakly imposed
by means of Lagrange multipliers [15]. The application of two different ST–RB methods — which rely on a Galerkin
and on a Petrov–Galerkin projection respectively — to the problem at hand is detailed and the well–posedness of the
resulting problem is investigated. This last step is particularly challenging since, dealing with a twofold saddle point
problem [16, 17], it resorts to inf–sup stability analysis.

The manuscript is structured as follows. In Section 2, we introduce the unsteady parametrized incompressible Stokes
equations and we discuss their full–order discretization. In Section 3, we investigate the application of the afore-
mentioned ST–RB approaches to the problem at hand. In particular, we describe the construction of the space–time
reduced bases and, for both methods, we detail the assembling of the linear systems to be solved. Additionally, we
discuss the stability of the two approaches. Section 4 presents the numerical results, obtained on two different test
cases, characterized by different geometries and parametrizations of the boundary data. Finally, Section 5 provides a
summary, lists some limitations of the work and proposes possible future developments.
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2 Unsteady Parametrized Incompressible Stokes Equations
Even if hæmorheology indicates that blood is a non–Newtonian fluid, the latter can be approximated as a Newtonian
one if the vessels where it flows are sufficiently large. Under this assumption, the blood flow is governed by un-
steady incompressible Navier–Stokes equations. In this work, we make an additional simplification: we neglect the
non–linear convective term characterizing the Navier–Stokes equations, hence modelling blood flow by means of the
unsteady incompressible Stokes equations. This system of linear PDEs well describes incompressible Newtonian flow
at small Reynolds’ numbers, i.e. in a regime where inertial forces are negligible with respect to viscous ones (see e.g.
[18, 19]). In this regard, we remark that blood flow typically features Reynolds’ numbers of ≈ 102 − 103; the Stokes
assumption is thus not valid in practice and an extension of the present work to deal with Navier–Stokes equations is
being planned. Moreover, we consider the presence of blood clots of variable density, which are modelled by suitable
reaction terms in the momentum conservation equation.

2.1 Strong and weak formulation
We consider an open, simply connected and bounded domain Ω ⊂ Rd and we denote its boundary by ∂Ω. We
define the parameter space D ⊂ Rp and we generically denote by µ one of its elements. The unsteady parametrized
incompressible Stokes equations in Ω read as:

ρuµt −∇ · (2µ∇suµ) + ρµc (x)u
µ +∇pµ = fµ(x) in Ω× [0, T ]

∇ · uµ = 0 in Ω× [0, T ]

uµ = gµ(x) on ΓD × [0, T ]

σ(uµ, pµ)n = hµ(x) on ΓN × [0, T ]

uµ = uµ0 in Ω× {0}

(2.1)

Here uµ : Ω×[0, T ]→ Rd and pµ : Ω×[0, T ]→ R are the velocity and the pressure of the fluid (uµt denotes the partial
derivative of the velocity in time); ρ and µ are the fluid’s density and viscosity respectively; ∇su = (∇u +∇Tu)/2
is the strain rate tensor; σ(u, p) = 2µ∇su − pI is the Cauchy stress tensor; ρµc : Ω → R is the “global” blood
clot density, defined as ρµc (x) :=

∑Nc

q=1 ρ
q
c(µ)1Ωq

c
(x) with ρqc : D → R+, where 1A : Rd → R denotes the

indicator function of a set A ⊂ Rd, while Ωq
c ⊂ Ω, ρqc are the location and the density of the q–th clot, respectively;

fµ : Ω × [0, T ] → Rd is a forcing term; gµ : ΓD × [0, T ] → Rd and hµ : ΓN × [0, T ] → Rd are the Dirichlet
and Neumann boundary data, respectively; uµ0 : Ω → Rd is the initial condition; n is the outward unit normal vector
to ∂Ω. {ΓD,ΓN} is a partition of ∂Ω which defines the Dirichlet and the Neumann boundaries, respectively. Since
we deal with cardiovascular simulations, it is useful to define the inlet boundary ΓIN, the outlet boundary ΓOUT and
the vessel wall boundary ΓW . In this work, we always impose homogeneous Dirichlet BCs on ΓW (i.e. no–slip BCs,
so that the artery is approximated as a rigid object) and non–homogeneous Dirichlet BCs on ΓIN . The nature of the
BCs imposed on ΓOUT depends instead on the test case at hand. We also define the non–homogeneous Dirichlet

boundary
∼
ΓD:=

⋃ND

k=1

∼
Γ
k

D, where
∼
Γ
k

D denotes the k–th inlet/outlet boundary where non–homogeneous Dirichlet
BCs are imposed; ND is the number of such boundaries. It is worth highlighting that here we consider the parametric
dependency to exclusively characterize the Dirichlet datum gµ and the blood clot density ρµc . This restriction allows for
an efficient offline/online splitting, hence making the problem more amenable for (space–time) model order reduction;
other choices are of course possible. For the sake of conciseness, from now on we drop all the (·)µ superscripts, except
when referring to the parameter–dependent data gµ and ρµc .

Let us introduce the following spaces:

Vg := (H1|ΓD
(Ω))d =

{
v ∈ (H1(Ω))d s.t. v = gµ on ΓD

}
; Q := L2(Ω); (2.2)

equipped with the usual inner products (·, ·)Vg = (·, ·)(H1)d and (·, ·)Q = (·, ·)L2 . Let us also define V0 := (H1
0 (Ω))

d.
The weak formulation of Eq.(2.1) has the structure of a non–symmetric and non–coercive saddle point problem.
Instead of relying on the definition of a lifting function, we choose to impose non–homogeneous Dirichlet BCs weakly,
using Lagrange multipliers. Such a choice is driven by the possibility of using a similar formulation to couple several
domains [15]. This approach translates into the following weak formulation:

Problem 1. Given f , gµ, h regular enough, find (u, p, λ) ∈ Vg ×Q× L, such that ∀t ∈ [0, T ]:
ρ
∫
Ω
ut · v + µ

∫
Ω
∇su : ∇sv +

∫
Ω
ρµc u · v −

∫
Ω
p∇ · v +

∫
∼
ΓD

λ · v =
∫
Ω
f · v +

∫
ΓN

h · v∫
Ω
q∇ · u = 0∫

∼
ΓD

u · ξ =
∫
∼
ΓD

gµ · ξ
(2.3)

for all
(
v, q, ξ

)
∈ V0 ×Q× L and u = u0 for t = 0.
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Based on the theory on primal hybrid methods, a natural choice for the space of Lagrange multipliers isL :=
∏ND

k=1 Lk,

with Lk =

(
H

−1/2
00 (

∼
Γ
k

D)

)d

. We refer the reader to [15] for details. We remark that Problem 1 features a twofold

saddle point structure, as the dual space Q×L is a product space [16, 17].

2.2 High–fidelity Numerical Discretization
Since Problem 1 is time–dependent, its discretization involves both the spatial and the temporal dimension. Con-
cerning spatial discretization, we rely on the FE method. Therefore, we introduce the following finite dimensional
approximations of velocity, pressure and Lagrange multipliers (for k ∈ {1, . . . , ND}):

uh(x, t) =

Ns
u∑

i=1

ui(t)φ
u
i
(x) ∈ Vg

h; ph(x, t) =

Ns
p∑

i=1

pi(t)φ
p
i (x) ∈ Qh; λkh(x, t) =

Nk
λ∑

i=1

λki (t)η
k
i
(x) ∈ Lk

h.

The definitions of Vg
h and Qh are of key importance for the accuracy of the approximation. Moreover, in the case

of saddle point problems, the quality of the discretization is critical to ensure well–posedness; we refer to Section
2.3 for details. The discretization of the spaces of Lagrange multipliers is based on the definition of orthonormal
basis functions on the unit disk, which are constructed from Chebyshev polynomials of the second kind. Since L :=∏ND

k=1 Lk, we have that Lh =
∏ND

k=1 Lk
h, where Lk

h is a finite–dimensional approximation of Lk. This implies that the

dimensionality of Lh is Nλ =
∑ND

k=1N
k
λ , being Nk

λ := dim(Lk
h). We denote the basis functions of Lk

h as {ηk
i
}N

k
λ

i=1;

they are orthonormal in L2(
∼
Γ
k

D)–norm. We refer the reader to [15] for additional details. We can then introduce the
following matrices and vectors

A ∈ RNs
u×Ns

u : Aij = 2µ

∫
Ω

∇s(φu
j
) : ∇s(φu

i
) M ∈ RNs

u×Ns
u : Mij = ρ

∫
Ω

φu
j
· φu

i

B ∈ RNs
p×Ns

u : Bij = −
∫
Ω

φp
i ∇ · φ

u
j

Ck ∈ RNk
λ×Ns

u : Ck
ij =

∫
∼
Γ

k

D

φu
j
· ηk

i

f ∈ RNs
u : fi =

∫
Ω

f · φu
i
+

∫
ΓN

h · φu
i

g̃k,µ ∈ RNk
λ : g̃k,µi =

∫
∼
Γ

k

D

gk,µ · ηk
i

(2.4)

where gk,µ represents the Dirichlet datum on
∼
Γ
k

D. To ease the notation, we also define

C =
[(
C1

)T | · · · | (CND
)T ]T ∈ RNλ×Ns

u , g̃µ =
[(
g̃1,µ

)T | · · · | (g̃ND,µ
)T ]T ∈ RNλ . (2.5)

Moreover, we define the matrices

Rq ∈ RNs
u×Ns

u : Rq
ij =

∫
Ωq

c

φu
j
· φu

i
with q ∈ {1, . . . , Nc} , (2.6)

that model the presence of Nc blood clots of unitary density in the subdomains {Ωq
c}

Nc

q=1. We also define the “global”

reaction matrix R(µ) :=
∑Nc

q=1 ρ
q
c(µ)R

q; this expression shows the affine parametric dependency of the left-hand
side term of the full–order problem.

Remark. Notice that, in order to strongly enforce homogeneous Dirichlet BCs on the vessel wall ΓW , we need to
suitably modify the rows of the matrices M , A, BT , CT , R(µ) and f . As a result, BT and CT do not exactly
correspond to the transposed ofB and C, respectively.

Regarding temporal discretization, let us introduce a sequence of timesteps {tn}N
t

n=0 such that t0 = 0, tNt = T

and tn+1 = tn + δ; δ is called timestep size. Let wn := [un,pn,λn]
T ∈ RNs

be the solution at time tn, with
Ns := Ns

u + Ns
p + Nλ and for n ∈ {0, · · · , N t}. We apply the second–order implicit BDF2 scheme. So, given

wn−j+1 for j = 1, 2, wn+1 is such that:

r(wn+1) :=Hwn+1 −
2∑

j=1

αjHwn−j+1 − δβf̊(tn+1,wk+1) = 0 , (2.7)

where

H =

M  ; f̊(tn,wn) =

 f(tn)
g̃µ(tn)

−
A+R(µ) BT CT

B

C

un

pn
λn

 . (2.8)

In particular, for the BDF2 method, we have α1 = 4/3, α2 = −1/3 and β = 2/3.

4
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Eq.(2.7) can be rewritten in the form of a single linear system of dimension Nst × Nst — being Nst := NsN t the
number of DOFs of the space–time FOM problem — asAst

1 +Rst(µ) Ast
2 Ast

3

Ast
4

Ast
7

ust

pst

λst

 =

 F st
1

F st
3 (µ)

 (2.9)

or, even more compactly, as Astwst = F st. The blocks of matrix Ast, that features a twofold saddle point structure
of type 1 [17], can be written as follows:

Ast
1 = diag

(
M , · · · ,M︸ ︷︷ ︸

Nt

)
+

2

3
δ diag

(
A, · · · ,A︸ ︷︷ ︸

Nt

)
− 4

3
subdiag(1)

(
M , · · · ,M︸ ︷︷ ︸

Nt−1

)
+

1

3
subdiag(2)

(
M , · · · ,M︸ ︷︷ ︸

Nt−2

)
∈ RNs

uN
t×Ns

uN
t

(2.10)

Ast
2 =

2

3
δ diag

(
BT , · · · ,BT︸ ︷︷ ︸

Nt

)
∈ RNs

uN
t×Ns

pN
t

Ast
3 =

2

3
δ diag

(
CT , · · · ,CT︸ ︷︷ ︸

Nt

)
∈ RNs

uN
t×NλN

t

Ast
4 = diag

(
B, · · · ,B︸ ︷︷ ︸

Nt

)
∈ RNs

pN
t×Ns

uN
t

Ast
7 = diag

(
C, · · · ,C︸ ︷︷ ︸

Nt

)
∈ RNλN

t×Ns
uN

t

Rst(µ) =
2

3
δ diag

(
R(µ), · · · ,R(µ)︸ ︷︷ ︸

Nt

)
=

2

3
δ

Nc∑
q=1

ρqc(µ) diag

(
Rq, · · · ,Rq︸ ︷︷ ︸

Nt

)
∈ RNs

uN
t×Ns

uN
t

Here diag : Rr1×c1 × · · · × RrK×cK → R(r1+···+rK)×(c1+···+cK) is the function that builds a block diagonal matrix
from a set of K input matrices; subdiag(n) (n ∈ N) is equivalent to diag, but with respect to the n–th lower–diagonal.
Before reporting the expressions of the blocks appearing in the right–hand side vector of Eq.(2.9), let us make some
additional assumptions:

1. We assume that f(t) = 0 ∀t ∈ [0, T ]. This implies, for instance, that we neglect the effect of gravity. We also
assume that h(t) = 0 ∀t ∈ [0, T ], which means that we only deal with homogeneous Neumann BCs.

2. We assume that u0 = 0 in Ω. Moreover, we suppose that u(t) = 0 ∀t ≤ 0; in this way the BDF2 scheme can be
employed also in the first iteration.

3. For all k ∈ {1, . . . , ND}, we assume that the Dirichlet datum gk,µ on
∼
Γ
k

D can be factorized as:

gk,µ(x, t) = gs
k
(x)gtk(t;µ) for (x, t) ∈ ∼

Γ
k

D ×[0, T ] . (2.11)

Thus, we have that g̃k,µ(t) = g̃skg
t
k(t;µ), where g̃sk ∈ RNk

λ is such that (g̃sk)i =
∫
∼
Γ

k

D

gs
k
· ηk

i
.

Assumptions 1 and 2 imply that F st
1 = 0 ∈ RNs

u . Therefore, the only non–zero block in F st is F st
3 ∈ RNλN

t

and it
writes as

F st
3 (µ) =

 g̃
st(t1;µ)

...
g̃st(tNt ;µ)

 with g̃st(tn;µ) =

 g̃s1g
t
1(tn;µ)

...
g̃sND

gtND
(tn;µ)

 . (2.12)

2.3 Well–posedness of the FOM problem
As we pointed out in Subsections 2.1–2.2, Problem 1 features a twofold saddle point structure of type 1. In particular,
the velocity is the primal variable, whereas pressure and Lagrange multipliers — associated to the weak imposition
of inhomogeneous Dirichlet BCs — are the dual ones. As discussed in [16, 17], necessary and sufficient conditions
for its well–posedness can be expressed by means of suitable inf–sup conditions, which need to be satisfied both at
continuous and at discrete level. As in [15], we assume Problem 1 to be well–posed in the continuous setting and we
directly focus on the conditions to be enforced at discrete level. Based on classical theoretical results on the well–
posedness of saddle point problems (see e.g. [20, 21, 22]), adopting an algebraic standpoint, the following inequality
must hold

∃βF > 0 : inf
(q,λ) ̸=0

sup
v ̸=0

qTBv + λTCv

||v||Xu

(
||q||Xp

+ ||λ||Xλ

) ≥ βF , (2.13)

5
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whereXu,Xp andXλ are symmetric and positive–definite matrices, defined as follows:

Xu =
1

ρ
M +

1

2µ
A ∈ RNs

u×Ns
u ; Xp =Mp ∈ RNs

p×Ns
p ; Xλ = INλ

∈ RNλ×Nλ . (2.14)

HereMp defines the pressure mass matrix, henceMp
ij =

∫
Ω
φp
iφ

p
j for i, j ∈ {1, . . . , Ns

p}.

Theorem 3.1 in [17] states that Eq.(2.13) can be equivalently expressed in the following ways:

∃βF > 0 : inf
q ̸=0

sup
v ̸=0

qTBv

||v||Xu ||q||Xp

≥ βF and inf
λ ̸=0

sup
v ̸=0

Bv=0

λTCv

||v||Xu ||λ||Xλ

≥ βF ; (2.15a)

∃βF > 0 : inf
q ̸=0

sup
v ̸=0
Cv=0

qTBv

||v||Xu
||q||Xp

≥ βF and inf
λ ̸=0

sup
v ̸=0

λTCv

||v||Xu
||λ||Xλ

≥ βF . (2.15b)

Therefore, on the one side the inf–sup stability of Problem 1 in the discrete setting is guaranteed if two distinct
inf–sup inequalities — one for each of the dual fields — are satisfied. However, on the other side, one of the two
inf–sup inequalities features an additional constraint on the primal variable. Thus, the independent fulfilment of the
conventional inf–sup conditions on the dual variables is not enough to guarantee well–posedness.

In this work, we claim the well–posedness of Problem 1 in the discrete framework by considering Eq.(2.15a), where
the first inequality (related to pressure) is “standard”, while the second one (related to Lagrange multipliers) features a
supremum taken over velocities that satisfy the constraint Bv = 0 (i.e. weakly divergence–free velocities). Proceed-
ing as in [15], on the one hand we guarantee the fulfilment of the first inequality in Eq.(2.15a) by employing P2−P1
Taylor–Hood Lagrangian finite elements [23] (i.e continuous piecewise polynomials of order 2 for the velocity and of
order 1 for the pressure, built on a tetrahedral triangulation of the domain Ω), which are the most popular example of
stable discretization couple. On the other hand, instead, we only assess the second inequality empirically, by com-
puting the condition number of the steady Stokes system matrix (see Eq.(2.8) – right). In all our numerical tests (see
Section 5) such a matrix proved to be well–conditioned, hence suggesting the well–posedness of the FOM problem at
hand.

3 Space–time reduced basis methods for parametrized unsteady incompressible Stokes
equations

Classical applications of PROMs to parametrized PDEs only allow to reduce their dimensionality in space. This could
represent a significant limitation in problems where either the simulation interval should be very large or the timestep
size should be very small in order to properly capture some relevant behaviours. As discussed in Section 1, several
attempts to solve this temporal–complexity bottleneck have been made. Among those, in this work we focus on the
Space–Time Reduced Basis (ST–RB) methods introduced and analysed e.g. in [8, 9, 10, 11, 2, 13, 14].

3.1 ST–RB problem definition
ST–RB methods allow to reduce the dimensionality also in time by projecting the FOM problem onto a low–
dimensional spatio–temporal subspace, spanned by a suitable set of basis functions. We denote the spatio–temporal
basis functions by πu

i ∈ RNs
uN

t

(i ∈ {1, · · · , nstu }) for the velocity, πp
i ∈ RNs

pN
t

(i ∈ {1, · · · , nstp }) for the pressure
and πλ

i ∈ RNλN
t

(i ∈ {1, · · · , nstλ }) for the Lagrange multipliers. The basis functions are generated by applying
a truncated POD algorithm to the matrices storing the FOM solutions got during the so–called offline phase of the
method for Nµ randomly selected parameter values {µi}

Nµ

i=1, with µi ∈ D. By construction the basis functions are
orthonormal with respect to a suitable norm; a more detailed explanation is given in Subsection 3.2. The discrete
manifold of FOM solutions is approximated by the following low–dimensional subspace

ST h,δ = ST u
h,δ × ST

p
h,δ × ST

λ
h,δ with ST w

h,δ = span{πw
i }

nst
w

i=1, w ∈ {u, p, λ} . (3.1)

Additionally, we define nst := nstu + nstp + nstλ as the dimension of ST h,δ . The basis of ST h,δ can be encoded in the
matrix Π, defined as follows:

Π = diag
([
πu
1 |...|πu

nst
u

]
,
[
πp
1 |...|π

p
nst
p

]
,
[
πλ
1 |...|πλ

nst
λ

])
= diag

(
Πu,Πp,Πλ

)
∈ RNst×nst

. (3.2)

The function diag is defined as in Eq.(2.10). We remark that, thanks to the orthonormality of the basis functions, the
matrix Π identifies an orthogonal projection operator (with respect to a suitable norm), going from the spatio–temporal
FOM space of dimension Nst to the spatio–temporal reduced subspace ST h,δ , of dimension nst ≪ Nst.
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Adopting an algebraic perspective and employing the compact notation introduced in Eq.(2.9), the application of
ST–RB methods amounts at solving the following problem:

Find ŵ ∈ Rnst

such that
∼
Π

T (
F st −AstΠŵ

)
= 0, (3.3)

where
∼
Π∈ RNst×nst

is a projection matrix, possibly parameter–dependent. Based on the definition of Π given in
Eq.(3.2), the term Πŵ represents a linear combination of the reduced basis elements, whose weights are given by
the entries of ŵ ∈ Rnst

. Such term represents then the FOM reconstruction of the space–time reduced solution. So,
the quantity rst := F st − AstΠŵ identifies the FOM residual associated to the space–time reduced solution. In
Eq.(3.3) we are imposing such a residual to be orthogonal to some low–dimensional spatio–temporal subspace, whose
basis is encoded in the matrix

∼
Π. We remark that, if we focus on spatial discretization, Eq.(3.3) corresponds to a

(Petrov–) Galerkin projection, equivalent to the one performed in the classical formulation of the RB method, featuring
dimensionality reduction only along the spatial dimension [24]. In particular, a Galerkin projection is performed if
∼
Π= Π and a Petrov–Galerkin projection otherwise. However, the employment of a finite differences scheme — which
does not stem from the weak formulation of the problem, but rather from the strong one — to perform time integration
prevents from identifying Eq.(3.3) with an actual space–time (Petrov–) Galerkin projection.

Ultimately, rearranging the terms in Eq.(3.3), the ST–RB problem writes as follows.

Problem 2. Find ŵ ∈ Rnst

such that

Âstŵ = F̂ st with Âst =
∼
Π

T
AstΠ ∈ Rnst×nst

F̂ st =
∼
Π

T
F st ∈ Rnst

.
(3.4)

3.2 Offline phase: reduced basis generation with POD

Let us consider a set of Nµ FOM velocity snapshots {ust
h (µk)}

Nµ

k=1, with ust
h (µk) ∈ RNs

u×Nt

, computed by solving
Eq.(2.9) for Nµ distinct parameter values. These snapshots are stored in a third–order tensor X u ∈ RNs

u×Nt×Nµ so
that

X u
ijk =

(
ust
h (µk)

)
ij
, i ∈ {1, · · · , Ns

u}, j ∈ {1, · · · , N t}, k ∈ {1, · · · , Nµ}. (3.5)

Firstly, let us focus on the construction of the reduced basis in space, that at discrete level can be encoded in the matrix
Φu ∈ RNs

u×ns
u . We want the reduced basis to be orthonormal with respect to the norm induced by the matrixXu (see

Eq.(2.14)), which is indeed the
(
H1(Ω)

)d
–norm. Denoting with Hu ∈ RNs

u×Ns
u the upper triangular matrix arising

from the Cholesky decomposition of Xu (i.e. Xu =HT
uHu) and with X u

(1) ∈ RNs
u×NtNµ the mode–1 unfolding of

X u (see [2]), we perform the Singular Value Decomposition ofHuX u
(1), so

HuX u
(1) = V ΣZT . (3.6)

V ∈ RNs
u×Ns

u and Z ∈ RNtNµ×NtNµ are orthogonal matrices, whereas Σ ∈ RNs
u×NtNµ is the pseudo–diagonal

matrix storing the singular values {σi}Nσ
i=1 ofHuX u

(1) (with Nσ := min(Ns
u, N

tNµ) and σi ≥ 0 ∀i ∈ {1, · · · , Nσ}).
If the singular values are sorted in decreasing order and if we denote by

∼
Φ

u
∈ RNs

u×ns
u the matrix formed by the first

nsu ≪ Ns
u columns of V , then the velocity reduced basis in space can be computed as Φu =HT

u

∼
Φ

u
= [ϕu

1 | · · · |ϕu
ns
u
].

The columns {ϕu
i }

ns
u

i=1 of the matrix Φu represent the nsu–dimensional orthonormal basis that minimizes the total
projection error of the snapshots — with respect to the norm induced by Xu — onto the column space of X u

(1) [24].
A common strategy consists in selecting nsu as the smallest integer N such that:∑N

j=1 σ
2
j∑Nσ

j=1 σ
2
j

≥ 1− ε2u , (3.7)

where εu ∈ R+ is a tolerance to be chosen a priori. The left–hand side of Eq.(3.7) represents the relative information
(or energy) content of the POD basis.

Remark. Eq.(3.6) represents a huge SVD problem, that oftentimes is computationally prohibitive. However, we are
only interested in performing a truncated SVD, i.e. in computing the nsu ≪ Ns

u most significant modes ofHuX u
(1) and

the associated singular values. Such a task can be performed at a reasonable computational cost via iterative [25]
and/or randomized algorithms [26]. In this work, we employed the randomized POD algorithm proposed in [26].
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Among the possible strategies to compute the velocity reduced basis in time, we choose the Fixed temporal subspace
via ST-HOSVD algorithm, proposed in [2]. It consists in performing a truncated POD (with tolerance εu) to the
mode–2 unfolding of the spatial projection of the snapshots’ tensor X u(Φu)(2) ∈ RNt×ns

uNµ . The third–order tensor
X u(Φu) ∈ Rns

u×Nt×Nµ is defined as X u(Φu) = X u×1Φ
u, so that X u(Φu)(1) = (Φu)TXuX u

(1). The number ntu
of temporal reduced basis elements is chosen according to the criterion in Eq.(3.7) and the velocity temporal reduced
basis is encoded in the matrix Ψu = [ψu

1 | · · · |ψu
nt
u
] ∈ RNt×nt

u , such that (Ψu)
T
Ψu = Int

u
.

In order to derive an expression for the spatio–temporal reduced basis, we work under a space–time factorization
assumption and we suppose that the discrete FOM solution manifold can be well approximated by the low–dimensional
vector space

ST u
h,δ = Suh ⊗ T u

δ with Suh = span
{
ϕu

i

}ns
u

i=1
and T u

δ = span
{
ψu

j

}nt
u

j=1
. (3.8)

A generic element of the velocity space–time reduced basis can then be written as

πu
Fu(i,j)

= ϕu
i ⊗ψu

j ∈ RNs
u×Nt

i ∈ {1, · · · , nsu}, j ∈ {1, · · · , ntu} , (3.9)

where Fu : (i, j) 7→ (i − 1)ntu + j is a bijective mapping from the space and time bases indexes to the space–time
basis index and⊗ : RN×RM → RN×M (with N,M ∈ N) denotes the outer product operator, i.e. (u⊗ v)ij = uivj .

The same procedure is followed to assemble the reduced bases for the other unknowns in Eq.(2.9), i.e. pressure and
Lagrange multipliers. In particular:

• For the pressure, we define ST p
h,δ = Sph ⊗ T

p
δ . We orthonormalize the reduced basis in space with respect to the

L2(Ω)–norm (see Eq.(2.14)).The generic pressure space–time reduced basis element reads as

πp
Fp(i,j)

= ϕp
i ⊗ψ

p
j ∈ RNs

p×Nt

i ∈ {1, · · ·nsp}, j ∈ {1, · · ·ntp} , (3.10)

with Fp : (i, j) 7→ (i− 1)ntp + j. εp ∈ R+ is the pressure POD tolerance (in space and in time). We denote the
pressure reduced basis in space by Φp ∈ RNs

p×ns
p and the pressure reduced basis in time by Ψp ∈ RNt×nt

p .
• We compute a different reduced basis for each set of Lagrange multipliers, corresponding to different portions

of
∼
ΓD. So, for all k ∈ {1, . . . , ND}, we define the spaces ST λk

h,δ such that ST λ
h,δ =

∏ND

k=1 ST
λk

h,δ , with
ST λk

h,δ = Sλk

h ⊗T
λk

δ . Since the space of Lagrange multipliers has been discretized by means of a relatively small
number of basis functions (see [15] for details), we only compute the temporal reduced bases. So, we define the
generic space–time reduced basis element for the k–th set of Lagrange multipliers as:

πλk

Fλk
(i,j) = ei ⊗ψ

λk
j ∈ RNk

λ×Nt

i ∈ {1, · · · , Nk
λ}, j ∈ {1, · · ·ntλk

} , (3.11)

where ei ∈ RNk
λ is the i–th canonical basis vector and Fλk

: (i, j) 7→ (i−1)ntλk
+j. We define the dimension of

the space–time reduced basis as nstλk
:= Nk

λn
t
λk

. The space–time reduced basis for ST λ
h,δ can be then assembled

exploiting the definition of the latter and its dimension is equal to nstλ :=
∑ND

k=1 n
st
λk

. We select the same POD
tolerance ϵλ ∈ R+ for every set of multipliers. We denote the reduced basis in space as Φλ = INλ

— since no
reduction in space takes place — and the reduced basis in time as Ψλ = diag

(
Ψλ1 , · · · ,ΨλND

)
∈ RNt×nt

λ ,
with ntλ :=

∑ND

k=1 n
t
λk

. Finally, for the sake of conciseness we define Fλ : RNλ × Rnt
λ → Rnst

λ as the global
index mapping for Lagrange multipliers.

Ultimately, the global space–time reduced basis can be encoded in the matrix Π ∈ RNst×nst

defined in Eq.(3.2),
where Πu = Φu ⊗Ψu, Πp = Φp ⊗Ψp, Πλ = INλ

⊗Ψλ.

3.3 Offline Phase: assembling of parameter–independent quantities
The second step of the offline phase consists in assembling, once and for all, the space–time reduced parameter–
independent quantities. In this work, we consider a problem featuring an affinely parametrized left–hand side term
and non–affinely parametrized Dirichlet data, whose information is stored in the right–hand side vector. In the general
case, approximate affine decompositions can be retrieved by exploiting the (M)DEIM algorithm [27]. Let us define
the parameter–independent space–reduced matrices

Â = (Φu)TAΦu ∈ Rns
u×ns

u B̂T = (Φu)TBTΦp ∈ Rns
u×ns

p B̂ = (Φp)TBΦu ∈ Rns
u×ns

p

M̂ = (Φu)TMΦu ∈ Rns
u×ns

u ĈT = (Φu)TCT ∈ Rns
u×Nλ Ĉ = CΦu ∈ RNλ×ns

u

(3.12)

8
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and the time–reduced matrices

Ψu,p = (Ψu)TΨp ∈ Rnt
u×nt

p Ψu,λ = (Ψu)TΨλ ∈ Rnt
u×nt

λ . (3.13)

Also, we define the space–reduced affine components of the parametrized reaction matrix

R̂q = (Φu)
T
RqΦu ∈ Rns

u×ns
u such that R̂(µ) = (Φu)

T
R(µ)Φu =

Nc∑
q=1

ρqc(µ)R̂
q . (3.14)

Leveraging the saddle point structure ofAst (see Eq.(2.10)), the space–time reduced left–hand side matrix Âst can be
written as follows

Âst =


( ∼
Π

u)T
Ast

1 Πu
( ∼
Π

u)T
Ast

2 Πp
( ∼
Π

u)T
Ast

3 Πλ( ∼
Π

p)T
Ast

4 Πu( ∼
Π

λ)T
Ast

7 Πu

+


( ∼
Π

u)T
Rst(µ)Πu



=

Âst
1 Âst

2 Âst
3

Âst
4

Âst
7

+

R̂st(µ)
 .

(3.15)

If the left–hand side projection matrices
∼
Π

u
,

∼
Π

p
,

∼
Π

λ
are parameter–independent (as for instance in the case of a

Galerkin projection), all the parameter–independent blocks of Âst can be efficiently computed once and for all, by
combining the matrices in Eqs.(3.12)–(3.13) as follows:(

Âst
1

)
ℓm

=

(
M̂ +

2

3
δÂ

)
ℓsms

δℓt,mt −
4

3
M̂ℓsms(ψ

u
ℓt)

T
2:(ψ

u
mt

):−1 +
1

3
M̂ℓsms(ψ

u
ℓt)

T
3:(ψ

u
mt

):−2(
Âst

2

)
ℓk

=
2

3
δB̂T

ℓsks
Ψu,p

ℓtkt

(
Âst

4

)
km

= B̂ksms
Ψu,p

mtkt(
Âst

3

)
ℓj

=
2

3
δĈT

ℓsjsΨ
u,λ
ℓtjt

(
Âst

7

)
jm

= Ĉjsms
Ψu,λ

mtjt

(3.16)

for ℓ = Fu(ℓs, ℓt), m = Fu(ms,mt) (ℓs,ms ∈ {1, · · ·nsu}, ℓt,mt ∈ {1, · · ·ntu}), k = Fp(ks, kt) (ks ∈ {1, · · ·nsp},
kt ∈ {1, · · ·ntp}), j = Fλ(js, jt) (js ∈ {1, · · ·Nλ}, jt ∈ {1, · · ·ntλ}). The notations vi:, v:−i denote the sub–vector
of a given vector v containing all the entries from the i–th to the last one and from the first one to the i–th from last,
respectively.

Exploiting the affine parametrization of the reaction term (see Eq.(3.14)), it also holds that

R̂st
1 (µ) =

Nc∑
q=1

ρqc(µ)R̂
st
q where R̂st

q =
( ∼
Π

u)T
RqΠu ∈ Rns

un
t
u×ns

un
t
u . (3.17)

Hence, the matrices {R̂st
q }

Nc
q=1 can be pre–assembled during the offline phase, drastically lightening the computational

burden. We refer to Appendix A for a more detailed explanation of the assembling phase, in the particular case of a
Galerkin projection.

Remark. The assembling of the space–time reduced blocks in Eqs.(3.16)–(3.17) reveals the advantage of exploit-
ing the space–time factorization paradigm (see Eq.(3.1)). Indeed, the issue posed by considering a non–factorized
space–time reduced subspace is not related to the reduced bases computation, but rather it stems from the projec-
tion operations. For instance, let us focus on the assembling of the space–reduced blocks {Âst

j }j in Eq.(3.16). The
adoption of a non–factorized approach imposes to compute the projection of the full–order space–time blocks {Ast

j }j
onto the space–time reduced subspace. For any j, the inner block structure of Ast

j can be leveraged and the ex-
plicit storage of the matrix can be avoided by employing ad hoc streaming techniques for the projection computation.
Nevertheless, the cost of the latter remains huge in practical applications, since it involves matrix–matrix multipli-
cations that depend on the number of space–time full–order DOFs. Taking advantage of space–time factorization
allows to drastically lighten the (offline) computational burden. Indeed, space–reduced and time–reduced quantities
can be pre–assembled independently and then suitably combined at a later stage (see Eq.(3.16)). Ultimately, con-
sidering non–factorized space–time reduced subspaces may provide better approximation properties, but the offline
computational cost imposes restrictions to the actual applicability of the method.
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3.4 Online phase
During the online phase, we are interested in computing the solution to the problem at hand for a given parameter
value µ∗ ∈ D. This comprises three steps:

1. The assembling of the reduced parameter–dependent quantities.
2. The computation of the reduced solution.
3. The reconstruction of an approximate FOM solution from the space–time reduced one.

Concerning the first step, we refer the reader to Appendix A. Upon having constructed Âst and F̂ st, we are left with
solving the nst–dimensional dense linear system of Eq.(2.9). Since nst ≪ Nst, significant speedups with respect to
the FOM can be realized.

Finally, once the space–time reduced solution ŵ(µ∗) ∈ Rnst

is computed, it can be post–processed and re–projected
onto the FOM space. This task can be efficiently performed if the vector ŵ(µ∗) ∈ Rnst

is suitably reshaped into a
matrix ŵM (µ∗) ∈ Rns×nt

, being ns = nsu + nsp + Nλ and nt = ntu + ntp + ntλ. Indeed, the FOM reconstruction
wst

h (µ∗) of ŵ(µ∗) writes as follows:

wst
h (µ∗) = ΦŵM (µ∗)ΨT ∈ RNs×Nt

, (3.18)

where Φ := diag
(
Φu,Φp,Φλ

)
∈ RNs×ns

and Ψ := diag
(
Ψu,Ψp,Ψλ

)
∈ RNt×nt

are the global reduced bases
in space and in time, respectively.

3.5 Definition of the norms
Concerning the spatial dimension, we already introduced the norms that we employed in Subsection 3.2 and we defined
the corresponding matrices in Eq.(2.14).

Since temporal reduced bases are derived by imposing orthonormality in the Euclidean norm, we can define spatio–
temporal norms as the ones induced by the following matrices:

Xst
u = diag

(
Xu, · · · ,Xu︸ ︷︷ ︸

Nt

)
, Xst

p = diag

(
Xp, · · · ,Xp︸ ︷︷ ︸

Nt

)
, Xst

λ = diag

(
Xλ, · · · ,Xλ︸ ︷︷ ︸

Nt

)
. (3.19)

The global spatio–temporal norm matrix is then given byXst := diag(Xst
u ,X

st
p ,X

st
λ ) ∈ RNst×Nst

.

Let us consider φj = vec(ϕj ⊗ ψj) ∈ RNst

(j ∈ N), being ϕj ∈ RNs

the vector of DOFs arising from the FE
discretization of a spatial function ϕj = ϕj(x) andψj ∈ RNt

the vector storing the evaluations of a temporal function
ψj = ψj(t) at the equispaced time instants {tn}N

t

n=1 in [0, T ]. Here vec : RNs×Nt → RNst

denotes the vectorization
operator. Then, we have that:

(φ1,φ2)Xst =

Nt∑
n=1

(ϕ1(ψ1)n,ϕ2(ψ2)n)X = (ϕ1,ϕ2)X

Nt∑
n=1

(ψ1)n(ψ2)n , (3.20)

where Xst ∈ RNst×Nst

is a block–diagonal matrix constructed from the symmetric and positive definite norm ma-
trix X ∈ RNs×Ns

, as the ones in Eq.(3.19). A consequence of Eq.(3.20) is that (φj ,φj)Xst = ||φj ||2Xst =

||ϕj ||2X ||ψj ||22. So, the spatio–temporal norm factorizes into the product between the norms of the spatial and of
the temporal factors. Incidentally, notice that Eq.(3.20) entails that the reduced bases encoded by the columns of the
matrices Πu, Πp, Πλ are orthonormal with respect to the norms induced by the matrices in Eq.(3.19).

3.6 Well-posedness of the ST–RB method
In Subsection 2.3, we highlighted that Problem 1 features a (twofold) saddle point structure and, as a consequence, it
is associated with stability issues, related to the discretization of the spaces of the primal (velocity) and dual (pressure
and Lagrange multipliers) fields. Assuming Problem 1 to be well–posed in the continuous setting, well–posedness in
the discrete framework can be retained by satisfying the two inf–sup conditions in Eqs.(2.15a)-(2.15b). See Subsection
2.3 for details. However, even if a stable discretization is considered for the FOM, there is no guarantee for the inf–sup
conditions to hold also for the reduced system (see e.g. [28, 29, 30, 31]). The literature presents several possibilities
to deal with the loss of stability of saddle point problems in the context of model order reduction in space. In this
work, we considered two of them, namely the supremizers enrichment [32, 33, 34] and the employment of least–
squares Petrov–Galerkin reduced basis (LS–PG–RB) approaches for residual minimization [35, 7]. In the framework
of space–time model order reduction, these two strategies lead to the development of the ST–GRB and ST–PGRB
methods for unsteady parametrized incompressible Stokes equations, respectively.
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3.6.1 Velocity reduced basis enrichment
before tackling space–time model order reduction, let us focus on the stability of the space–reduced formulation. To
this aim, we consider the supremizers enrichment approach, whose central principle is to augment the reduced basis
for the velocity with additional elements (called supremizers) that are computed to ensure inf–sup stability also in the
reduced framework. We remark that, since the “coupling” matrices B (for pressure) and C (for Lagrange multipli-
ers) are not parameter–dependent in the current setting, exact supremizers can be found. In the general case where
parametric dependency involves the “coupling” matrices (as for instance upon a parametrized geometric transforma-
tion of the domain [15]), approximate supremizers should be computed, in order for the velocity reduced basis to be
parameter–independent [33]. To guarantee well–posedness, the two following inf–sup inequalities (reduced counter-
part of Eq.(2.15b)) have to be satisfied:

∃βR > 0 : inf
q̂ ̸=0

sup
v̂ ̸=0

Ĉv̂=0

q̂T B̂v̂

||v̂||2||q̂||2
≥ βR and inf

λ̂ ̸=0

sup
v̂ ̸=0

λ̂T Ĉv̂

||v̂||2||λ̂||2
≥ βR . (3.21)

Here || · ||2 denotes the Euclidean norm, which is identical to the ones induced by the matrices in Eq.(2.14) because of
the orthonormality properties of the reduced bases (see Subsection 3.2).
Since the problem at hand features a twofold saddle point structure, two distinct sets of supremizers are computed.
The first one — denoted as Sph :=

{
su,pj

}ns
p

j=1
— is assembled by selecting, for each pressure mode ϕp

j , the velocity
su,pj that allows to attain the supremum in the pressure inf–sup inequality of Eq.(2.15b). Its elements are computed
from the solutions to the following set of linear systems, featuring a (onefold) saddle point structure:[

Xu CT

C

] [
su,pj

λj

]
=

[
BTϕp

j

]
with j ∈ {1, · · · , nsp} . (3.22)

We define Su,p+h = span
{
{ϕu

i }
ns
u

i=1 ,
{
su,pj

}ns
p

j=1

}
as the space–reduced velocity subspace, enriched with pressure

supremizers. The columns of the matrix Φu,p+ =
[
ϕu

1 | · · · |ϕu
ns
u
|su,p1 | · · · |s

u,p
np
s

]
∈ RNs

u×(ns
u+ns

p) are then a basis of

Su,p+h .

The second set of supremizers is instead constructed from the bases of the spaces of Lagrange multipliers Lk
h. Inci-

dentally, it is worth pointing out that the problem at hand actually features a (ND + 1)–fold saddle point structure,
rather than a twofold one; indeed ND distinct dual fields are defined to weakly impose inhomogeneous Dirichlet BCs.
Therefore, according to [16], the second inf–sup inequality in Eq.(2.15b) should be rewritten in terms of the local
coupling matrices {Ck}ND

k=1 as follows:

∀k ∈ {1, · · · , ND} ∃βk
F > 0 : inf

λk ̸=0
sup
v ̸=0

Cjv=0 ∀j<k

λT
kC

kv

||v||Xu ||λk||Xλk

≥ βk
F . (3.23)

However, for the problem that we are considering, Eq.(3.23) can be equivalently expressed as

∀k ∈ {1, · · · , ND} ∃βk
F > 0 : inf

λk ̸=0
sup
v ̸=0

λT
kC

kv

||v||Xu
||λk||Xλk

≥ βk
F , (3.24)

provided that the inhomogeneous Dirichlet boundaries {∼Γ
k

D}
ND

k=1 are disjoint. Therefore, for each k ∈ {1, · · · , ND},
the Lagrange multipliers supremizers su,λk

j — with j ∈ {1, · · · , Nk
λ}— are computed by solving the following linear

systems:
Xus

u,λk

j = CT
k ej with j ∈ {1, · · · , Nk

λ} , (3.25)

where ej ∈ RNk
λ is the j–th canonical basis element. The global set of Lagrange multipliers supremizers is then

defined as Sλh := {su,λj }
Nλ
j=1 =

ND⋃
k=1

(
{su,λk

j′ }
Nk

λ

j′=1

)
and we consider the space–reduced velocity subspace Su,λ+h =

span
{
{ϕu

i }
ns
u

i=1 , {s
u,λ
j }

Nλ
j=1

}
. A basis for such a subspace is represented by the columns of the matrix Φu,λ+ =[

ϕu
1 | · · · |ϕu

ns
u
|su,λ1 | · · · |s

u,λ
Nλ

]
∈ RNs

u×(ns
u+Nλ).

Ultimately, we consider Su,pλ+h := span
{
{ϕu

i }
ns
u

i=1, {s
u,p
j }

ns
p

j=1, {s
u,λ
j′ }

Nλ

j′=1

}
as the space–reduced velocity subspace.

An orthonormal basis — with respect to the norm induced byXu — for such a subspace is given by

Φu,pλ+ =
[
ϕu

1 | · · · |ϕu
ns
u
|ϕu

ns
u+1| · · · |ϕu

ns
u+np

s
|ϕu

ns
u+ns

p+1| · · · |ϕu
ns
u+ns

p+Nλ

]
∈ RNs

u×ñs
u , (3.26)
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where {ϕu
ns
u+j}

ns
p

j=1 and {ϕu
ns
u+ns

p+j′}
Nλ

j′=1 are computed, respectively, from {su,pj }
ns
p

j=1 and {su,λj′ }
Nλ

j′=1, applying the
Gram-Schmidt algorithm and ñsu := nsu + nsp +Nλ.

Remark. For the supremizers enrichment procedure, one could also consider the inf–sup condition in Eq.(2.15a),
instead of the one in Eq.(2.15b). Under the assumption that the inhomogeneous Dirichlet boundaries are disjoint, this
amounts at solving the following linear systems:

• Pressure supremizers: Xus
u,p
j = BTϕp

j , with j ∈ {1, . . . , ns
p};

• Lagrange multipliers supremizers:
[
Xu BT

B

][
su,λk

j

qj

]
=

[
CT

k ej
]

, with j ∈ {1, . . . , Nk
λ} and k ∈

{1, · · · , ND}. Here ej ∈ RNk
λ denotes the j–th canonical basis vector.

However, being Nλ ≪ Ns
p in common applications, this approach is more computationally expensive. Indeed, ND

saddle point problems featuring the matrix B ∈ RNs
p×Ns

u as constraint matrix have to be solved, instead of a single
one, whose constraint is enforced via the “shorter” matrix C ∈ RNλ×Ns

u .

When performing space–time model order reduction, the problem at hand preserves a twofold saddle point structure
of type 1 (see Eq.(3.15)). In this context, the supremizers enrichment procedure of the velocity reduced basis in space
alone is not enough to guarantee well–posedness, since dimensionality reduction in time may affect inf–sup stability.
However, the following inf–sup inequalities hold, under the assumption that the matrices Ψu,p and Ψu,λ — defined in
Eq.(3.13) — are full rank.

Lemma 1. Let the velocity reduced basis in space be enriched with pressure supremizers Sph. If the columns of the
matrix Ψu,p = (Ψu)

T
Ψp are linearly independent, then

∃ βp
STR > 0 such that inf

q̂ ̸=0

sup
v̂ ̸=0

Âst
7 v̂=0

q̂T Âst
4 v̂

||q̂||2||v̂||2
≥ βp

STR . (3.27)

Proof. To satisfy Eq.(3.27), we need that ∃ βp
STR > 0 such that:

∀q̂ ̸= 0 ∃v̂ ̸= 0 such that
q̂T Âst

4 v̂

||q̂||2||v̂||2
≥ βp

STR and Âst
7 v̂ = 0 ,

where Âst
4 ∈ Rnst

p ×nst
u and Âst

7 ∈ Rnst
λ ×nst

u are defined as in Eq. (3.16). Let vecu : Rns
u×nt

u → Rns
un

t
u and

vecp : Rns
p×nt

p → Rns
pn

t
p be the vectorizing operators for velocity and pressure, respectively. Given q̂ = vecp(q̂s ⊗

q̂t) ∈ Rns
pn

t
p and v̂ = vecu(v̂s ⊗ v̂t) ∈ Rns

un
t
u , we have that

q̂T Âst
4 v̂ =

Nt∑
j=1

(
q̂s (q̂t)j

)T

B̂
(
v̂s (v̂t)j

)
=

Nt∑
j=1

(q̂t)j (v̂t)j

(
q̂Ts B̂v̂s

)
=

(
q̂Ts B̂v̂s

)
(q̂t, v̂t)2 , (3.28)

where (q̂t)j , (v̂t)j denote the j–th entry of q̂t, v̂t, respectively. Let us define v̂ := vecu(ŝs ⊗ v̂t), where ŝs is
such that Ĉŝs = 0 and q̂Ts B̂ŝs ≥ βp

R||q̂s||2||ŝs||2, with βp
R > 0. We have guarantee that ŝs exists, thanks to the

supremizers enrichment procedure in space (see Eq.(3.22)). Firstly, notice that Âst
7 v̂ = 0; indeed, for ℓ = Fλ(ℓs, ℓt),(

Âst
7 v̂

)
ℓ
=

(
Ĉŝs

)
ℓs

((
Ψu,λ

)T
v̂t

)
ℓt
= 0, since Ĉŝs = 0. So, the additional constraint appearing in the supremum

of Eq.(3.27) is trivially satisfied. Then, considering Eq.(3.28), we have that

q̂T Âst
4 v̂ =

(
q̂Ts B̂ŝs

)
(q̂t, v̂t)2 ≥ β

p
RB ||q̂s||2||ŝs||2 (q̂t, v̂t)2 .

Therefore, given that ||q̂||2 = ||q̂s||2 ||q̂t||2 and ||v̂||2 = ||ŝs||2 ||v̂t||2 (see Eq.(3.20)), we have that:

q̂T Âst
4 v̂

||q̂||2||v̂||2
≥ βp

RB

(q̂t, v̂t)2
||q̂t||2||v̂t||2

.

Hence, to conclude, Eq.(3.27) holds if ∃βp
t > 0 such that

∀q̂t ̸= 0 ∃v̂t ̸= 0 such that
(q̂t, v̂t)2
||q̂t||2||v̂t||2

≥ βp
t . (3.29)

12
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Algorithm 1 Velocity temporal reduced basis enrichment

1: function TEMPORALSTABILIZERS(Ψu, Ψd, εt) ▷Ψd is the dual temporal basis matrix
2: Compute Ψu,d = (Ψu)

T
Ψd =

[
ξ1| · · · |ξnt

d

]
▷ nt

d is the number of dual temporal bases

3: for ℓ ∈ {1, · · · , ntd} do
4: if ℓ = 1 then
5: πξ ← 0
6: else

7: πξ ←
ℓ−1∑
j=1

(ξℓ, ξj)2
(ξj , ξj)2

ξj ▷ Compute the projection of ξℓ onto span{ξj}ℓ−1
j=1

8: end if
9: if ||ξℓ − πξ||2 ≤ εt then ▷ Check enrichment condition

10: ψ⋆ ← Ψd
:,ℓ

11: ψ+ =
(
ψ⋆ −

nt
u∑

j=1

(ψ⋆,ψu
j )2ψ

u
j

)/∣∣∣∣∣∣ψ⋆ −
nt
u∑

j=1

(ψ⋆,ψu
j )2ψ

u
j

∣∣∣∣∣∣
2

12: Ψu ← [Ψu|ψ+] ▷ Enrich velocity temporal reduced basis
13: ntu ← ntu + 1

14: Ψu,d =
[
ξ1| · · · |ξnt

p

]
←

[(
Ψu,d

)T ∣∣∣ (
(ψ+)

T
Ψd

)T
]T

▷ Update Ψu,d

15: ℓ← 1
16: else
17: ξℓ ← ξℓ − πξ

18: end if
19: end for
20: end function

This represents an inf–sup condition on the temporal reduced subspaces with respect to the Euclidean norm. Based
on the definition of the matrix Ψu,p in Eq.(3.13), Eq.(3.29) is equivalent to the linear independence of the columns of
Ψu,p.

Lemma 2. Let k ∈ {1, · · · , ND}. Let the velocity reduced basis in space be enriched with Lagrange multipliers
supremizers Sλk

h . If the columns of the matrix Ψu,λk = (Ψu)
T
Ψλk are linearly independent, then

∃ βλk

STR > 0 such that inf
λ̂k ̸=0

sup
v̂ ̸=0

λ̂T
k

(
Âst

7

)k

v̂

||λ̂k||2||v̂||2
≥ βλk

STR , (3.30)

where
(
Âst

7

)k

∈ Rn
λk
st ×nu

st is the k–th block of Âst
7 along its first dimension.

Proof. The proof proceeds as the one of Lemma 1.

Based on Lemmas 1 – 2, the following theorem holds.

Theorem 1. Let the velocity reduced basis in space be enriched with pressure supremizers Sph and Lagrange
multipliers supremizers Sλh , computed by solving Eqs.(3.22)–(3.25), respectively. Assume that the space–reduced
problem is well–posed upon the supremizers enrichment procedure. If the columns of the matrices Ψu,p, Ψu,λk

∀k ∈ {1, · · · , ND} are linearly independent, then the space–time–reduced problem arising from a Galerkin projec-
tion (i.e. Problem 2 with

∼
Π= Π) is well–posed.

Proof. The proof trivially follows from Lemmas 1 – 2, leveraging the assumption on the well–posedness of the space–
reduced problem upon the supremizers enrichment procedure in space.

Since the temporal reduced bases for velocity, pressure and Lagrange multipliers have been derived independently, we
do not have any a priori guarantee that the matrices Ψu,p and {Ψu,λk}ND

k=1 are indeed full column rank. In order for
the inf–sup inequalities in Eqs.(3.27)-(3.30) to be satisfied, it is necessary to enrich also the temporal reduced basis of
the velocity.

13
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Corollary 1. Let the velocity reduced basis in space be enriched with pressure supremizers Sph. Assume that the
columns of Ψu,p are linearly dependent. If the velocity temporal reduced basis Ψu is enriched according to Algorithm
1, setting Ψd = Ψp and fixing εt ≥ 0, then the inf–sup inequality in Eq.(3.27) is satisfied.

Proof. Let us denote the columns of Ψu,p as {ξℓ}
nt
p

ℓ=1. Since the elements of {ξℓ}
nt
p

ℓ=1 are linearly dependent, ∃ᾱ =
[ᾱ1, · · · , ᾱnt

p
] ̸= 0 such that

ϑ :=

nt
p∑

ℓ=1

ᾱℓξℓ =

nt
p∑

ℓ=1

ᾱℓ (Ψ
u)

T
ψp

ℓ = 0 ∈ Rnt
u . (3.31)

The goal is to enrich the temporal velocity reduced basis in such a way that Eq.(3.31) cannot hold and it can be
accomplished by applying Algorithm 1, with pressure as dual field. So, in Algorithm 1, let us set Ψd = Ψp and let
εt ≥ 0 (Line 1). We proceed iteratively, showing that, upon a suitable enrichment procedure, ∀ℓ⋆ ∈ {1, . . . , nt

p},
∄ᾱ = [ᾱ1, . . . , ᾱℓ⋆ ] ∈ Rℓ⋆ , ᾱ ̸= 0 such that

ϑ :=

ℓ⋆∑
ℓ=1

ᾱℓξℓ =

ℓ⋆∑
ℓ=1

ᾱℓ (Ψ
u)

T
ψp

ℓ = 0 ∈ Rnt
u . (3.32)

Firstly, let us consider the case ℓ⋆ = 1. Here, we suppose that ξ1 = 0, so that ||ξ1||2 ≤ εt ∀εt ≥ 0. This means that
the first pressure temporal basis function ψp

1 belongs to the orthogonal complement of the velocity temporal reduced
subspace. In such a case, the matrix Ψu,p cannot be full column rank and any ᾱ = [ᾱ1] ∈ R1 trivially satisfies
Eq.(3.32). Let us now enrich the velocity temporal reduced basis with ψp

1 (Lines 11–12). Upon the enrichment, the
last entry of ξ1 equals (ψp

1 ,ψ
p
1)2 = ||ψp

1 ||22 = 1, so ξ1 ̸= 0. Hence, for ℓ⋆ = 1 Eq.(3.32) is satisfied and by Lemma 1
inf–sup stability with respect to the space spanned by ψp

1 is attained.

Let us now consider ℓ⋆ ∈ {2, . . . , nt
p} and let us suppose that Eq.(3.32) holds for ℓ⋆ − 1. Let Ψu ∈ RNt×nt

u be the
matrix encoding the temporal velocity reduced basis at the ℓ⋆–th step of the algorithm; notice that the value of ntu may
have changed during the application of the algorithm. Now, if the first ℓ⋆ columns of Ψu,p are linearly independent,
then Eq.(3.32) holds by definition and via Lemma 1 inf–sup stability with respect to the space spanned by {ψp

j }ℓ
⋆

j=1

is guaranteed. Otherwise, ξℓ⋆ can be expressed as a linear combination of the previous linearly–dependent columns
{ξℓ}ℓ

⋆−1
ℓ=1 . Such a condition can be verified by comparing ξℓ⋆ with its orthogonal projection πξℓ⋆

onto the (ℓ⋆ − 1)–
dimensional subspace spanned by {ξℓ}ℓ

⋆−1
ℓ=1 . Indeed, if Eq.(3.32) does not hold, then ξℓ⋆ is such that ||ξℓ⋆−πξℓ⋆

||2 = 0
and so ||ξℓ⋆ −πξℓ⋆

||2 ≤ εt ∀εt ≥ 0 (Lines 7–9). In this case, in Algorithm 1 we enrich the velocity temporal reduced
basis with the pressure temporal basis function ψp

ℓ⋆ associated to ξℓ⋆ , i.e. such that ξℓ⋆ = (Ψu)
T
ψp

ℓ⋆ (Lines 11–12).

We have to verify that, upon the enrichment procedure, Eq.(3.32) holds for the current value of ℓ⋆. Let us consider
the last entry of ϑ, that corresponds to the novel velocity temporal basis function ψu

nt
u+1 = ψp

ℓ⋆ . Exploiting the
orthonormality of the pressure temporal basis functions, we have that

(ϑ)nt
u+1 =

ℓ⋆∑
ℓ=1

ᾱℓ (ξℓ)nt
u+1 =

ℓ⋆∑
ℓ=1

ᾱℓ (ψ
p
ℓ⋆ ,ψ

p
ℓ )2 =

ℓ⋆∑
ℓ=1

ᾱℓδℓℓ⋆ = ᾱℓ⋆ = 0 =⇒ ᾱℓ⋆ = 0 .

Therefore, ᾱℓ⋆ = 0 and Eq.(3.32) reduces to ϑ =
∑ℓ⋆−1

ℓ=1 ᾱℓξℓ = 0. However, since the first ntu components of the
vectors {ξℓ}ℓ

⋆−1
ℓ=1 are linearly independent by hypothesis, we also have that ᾱℓ = 0 ∀ℓ ∈ {1, · · · , ℓ⋆ − 1}. Hence,

Eq.(3.32) is satisfied for the current value of ℓ⋆ and, upon the enrichment, the first ℓ⋆ columns of
∼
Ψ

u,p
are linearly

independent. Proceeding by induction up to ℓ⋆ = ntp, we can then prove that, upon the enrichment procedure described
in Algorithm 1, Eq.(3.31) cannot hold. Therefore, the inf–sup inequality in Eq.(3.27) is satisfied.

One remark is necessary in order to conclude the proof. In Line 14 of Algorithm 1, the velocity temporal reduced
basis is not enriched with the “critical” pressure basis function ψp

ℓ⋆ (as we assumed before), but with the normalized

orthogonal complement ψ+ of the latter with respect to the space spanned by {ψu
j }

nt
u

j=1 (Line 11). In this way,
the velocity temporal reduced basis remains orthonormal upon the enrichment procedure. However, this does not
impact the linear independence of the columns of Ψu,p, since the subspaces spanned by {{ψu

j }
nt
u

j=1,ψ
p
ℓ⋆} and by

{{ψu
j }

nt
u

j=1,ψ
+} trivially coincide.

14
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Notice that the velocity reduced basis enrichment in space and in time is performed according to different paradigms.
Indeed, in space we augment the basis with solutions to optimization problems stemming from the inf–sup inequalities,
while in time we iteratively select elements to be added to the basis in order to guarantee numerical stability, but
without any optimization procedure being involved. For this reason, we will refer to the enrichment in space as the
“supremizers enrichment” and to the enrichment in time as the “stabilizers enrichment”.

Remark. The choice εt = 0 is enough to retain inf–sup stability, since it guarantees that βp
t in Eq.(3.29) is strictly

positive. However, if the columns of Ψu,p are “almost” collinear, then βp
t ≳ 0 and the accuracy of the method is

compromised. Hence, from a numerical standpoint, selecting εt > 0 is crucial. We numerically investigated the effect
of εt in Subsection 4.2.

Remark. In principle, the choice of computing fixed temporal POD modes rather than tailored ones, specific to each
spatial POD mode, can be disadvantageous. Higher–index spatial modes are indeed associated to higher–frequency
temporal modes and constructing temporal bases tailored to the elements of the spatial one may improve the accuracy
of the approximation and also reduce the computational cost of the simulation [2, 36]. However, choosing a fixed
temporal basis simplifies the enrichment procedure, since Algorithm 1 can be performed only once (per dual field),
rather than nsun

s
d times, being nsd the number of spatial modes of the dual field of interest.

Corollary 2. Let k ∈ {1, · · · , ND}. Let the velocity reduced basis in space be enriched with the k–th Lagrange
multiplier supremizers Sλk

h . Assume that the columns of Ψu,λk are linearly dependent. If the velocity temporal
reduced basis Ψu is enriched according to Algorithm 1, setting Ψd = Ψλk and fixing εt ≥ 0, then the inf–sup
inequality in Eq.(3.30) is satisfied.

Proof. The proof proceeds as the one of Corollary 1, taking advantage of Lemma 2.

One remark is worth to follow. While supremizers enrichment in space has to be performed with respect to all the
dual fields in order to guarantee inf–sup stability, in time we can often consider only one of them. Indeed, once the
velocity temporal reduced basis has been enriched with respect, say, to pressure (so that Ψu,p is full column rank),
it is often the case that also the columns of the matrices Ψu,λk (with k ∈ {1, · · · , ND}) are linearly independent. If
so, no further stabilizers enrichment is necessary. As a consequence, the “stabilized” velocity temporal reduced basis
depends on the order in which the dual fields are considered. We numerically investigated this aspect in Subsection
4.2.

3.6.2 Least–squares Petrov–Galerkin projection
Least–squares (LS) Petrov–Galerkin (PG) reduced basis (RB) methods have already been proposed in the framework
of space–time model order reduction in [2, 14]. Similarly to the space–reduced case, the main idea is to compute the
reduced solution ŵ ∈ Rnst

by least–squares minimization of the FOM residual rst(ŵ) (see Eq.(3.3)) in a suitable
norm.

In this work, we decided to extend the algebraic LS–PG–RB method that has been proposed for steady parametrized
Stokes equations in [37, 35] to the time–dependent case, in the framework of space–time model order reduction. In the
steady case, the key idea of the method is to define a global parameter–dependent supremizing operator Tµ : Sh → Sh
such that

(Tµ(zh), wh)Sh
= Aµ(zh, wh) . (3.33)

Here Sh is the finite–dimensional subspace where the FOM solutions are sought, equipped with the inner product
(·, ·)Sh

, andAµ is the global (potentially parameter–dependent) steady Stokes operator. The LS–PG–RB method stems

from a Petrov–Galerkin projection, where the trial subspace Sn := span
{
ξ
i
, i ∈ {1, · · · , n}

}
⊂ Sh is computed in

a standard fashion (e.g. via truncated POD of the mode–1 unfolding of the snapshots’ tensor), whereas the test one
is defined as

∼S
µ

n := span
{
Tµ(ξi), i ∈ {1, · · · , n}

}
. From an algebraic standpoint, the basis of the test space can be

encoded in the matrix X−1
h AhΦ ∈ RNs×Ns

, where Xh ∈ RNs×Ns

is the FOM norm matrix, Ah ∈ RNs×Ns

is the
FOM discretization of the global steady Stokes operator and Φ ∈ RNs×ns

is the matrix encoding the reduced basis.
Ultimately, the solution is retrieved by solving the following linear system

Anwn = fn with An = (AhΦ)
T
X−1

h AhΦ ∈ Rns×ns

,

fn = (AhΦ)
T
X−1

h fh ∈ Rns

,
(3.34)

where fh = fh(µ) ∈ RNs

is the (potentially parameter–dependent) FOM right–hand side. A key property of the
LS–PG–RB method is that the choice of the test space

∼S
µ

n automatically guarantees inf–sup stability. Therefore, no

15



R. Tenderini, N. Mueller, S. Deparis ST–RB methods for parametrized unsteady Stokes equations

supremizers enrichment of the velocity reduced basis has to be performed to retain well–posedness. Additionally, it
can be shown that the solution to Eq.(3.34) minimizes the FOM residual in the norm induced by X−1

h . We refer to
[37, 24] for further details.

Focusing on the problem at hand and in the context of space–time model order reduction, the application of the LS–
PG–RB method amounts at solving the following minimization problem:

Find ŵpg ∈ Rnst

such that: ŵpg = argmin
v̂∈Rnst

1

2
||rst(v̂)||2

(Xst)−1 . (3.35)

We refer to Eq.(3.35) as the ST–PGRB problem. Exploiting the convexity of the functional to be minimized, ŵpg can
be computed as the solution to the following linear system:

Âpgŵpg = F̂ pg with Âpg =
(
AstΠ

)T (
Xst

)−1
AstΠ ∈ Rnst×nst

,

F̂ pg =
(
AstΠ

)T (
Xst

)−1
F st ∈ Rnst

.
(3.36)

The block structure of the problem at hand can be exploited to ease the assembling of Âpg and F̂ pg . As in the ST–GRB
approach, parameter–independent blocks can be pre–computed during the offline phase of the method. Nonetheless,
we remark that, compared to ST–GRB, more blocks of the left–hand side matrix feature parametric dependency, hence
inducing an increase of the online computational cost. However, the latter can be reduced and made independent from
the number of space–time full–order DOFs by leveraging the affine parametrization of the reaction term. We refer
to Appendix B for details. By analogy with the steady case (see Eq.(3.33)), we can define a space–time parameter–
dependent global supremizing operator T st

µ : ST h,δ → ST h,δ such that(
T st
µ (zh,δ), wh,δ

)
ST h,δ

= Ast
µ (zh,δ, wh,δ) , (3.37)

where Ast
µ is a parameter–dependent bilinear form corresponding to the space–time global Stokes operator, whose

full–order algebraic counterpart is given by the matrix Ast (see Eq.(2.9)). From an algebraic standpoint, the basis
of the test space — constructed as orthonormal with respect to the norm induced by Xst (see Eq.(3.19)) — can be
encoded in the matrix

∼
Π= (Xst)

−1
AstΠ ∈ RNst×nst

.

Theorem 2. Assume that the conditions in Eq.(2.15a) hold. Define
∼
Π:= (Xst)

−1
AstΠ. Then, the ST–PGRB problem

in Eq.(3.35) is inf–sup stable, i.e.

∃ βSTPG > 0 such that inf
ŵ ̸=0

sup
ŷ ̸=0

ŵT Âpgŷ

||ŵ||2||ŷ||2
≥ βSTPG . (3.38)

We refer to [37, 24] for the proof of a corresponding result in the steady case. Upon defining the global supremizing
operator as in Eq.(3.37), the same proof applies to the time–dependent case, leveraging space–time model order
reduction.

Remark. In [35], the authors present a purely algebraic LS–PG–RB method, based on the substitution of the norm
matrix with a surrogate PX . This provides significant computational gains if parametrized geometries are considered,
since in such cases the norm matrix is parameter–dependent and the online computation of its inverse may represent
a computational bottleneck. A smart choice consists then in choosing the surrogate PX as an easy–to–invert and
parameter–independent matrix. The well–posedness of the resulting problem is proven not to be impacted by such a
choice. Even if we did not focus on problems featuring parametrized geometries, we nevertheless decided to approxi-
mate the spatio–temporal norm matrix Xst with an easy–to–invert surrogate PX . In particular, we chose PX as the
diagonal part ofXst, i.e. (PX)ij = (Xst)ij δij .

4 Numerical results
We evaluated the performances of the ST–GRB and ST–PGRB methods, taking into account both accuracy and com-
putational efficiency. The “standard” RB method (denoted as SRB–TFO), featuring dimensionality reduction only in
space by means of a Galerkin projection, served as a baseline.

4.1 Setup
We solved the unsteady incompressible Stokes equations endowed with an additional parameter–dependent reaction
term (see Eq.(2.1)) in two different geometries (Figure 1): (1) an idealized symmetric bifurcation with characteristic
angle α = 50◦; (2) a patient–specific geometry of a femoropopliteal bypass. The geometry of the bifurcation is
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Figure 1. Geometries of the Symmetric Bifurcation (left) and of the Femoropopliteal Bypass (right).

identical to the one employed in [15] as a building block for the modular geometrical approximation of blood vessels.
The geometry of the femoropopliteal bypass — bridging the circulation between the femoral artery and the popliteal
one in case of severe stenotic formations in the former — has been reconstructed from CT scans as detailed in [38]
and it has been employed e.g. in [39, 40]. For all the simulations, we set the blood density and viscosity to ρ =
1.06 g · cm−3 and µ = 3.5 · 10−3 g · cm−1 · s−1.

Parametric dependency concerns the blood clots density functions {ρqc(x;µ)}
Nc
q=1 and the temporal parts of the Dirich-

let data {gtk(t;µ)}
ND

k=1. Blood clots domains {Ωq
c}

Nc
q=1 are defined as follows:

Ωq
c = {x ∈ Ω : ||x− xq

c ||∗q ≤ rqc} , (4.1)

where xq
c and rqc are, respectively, the center and the radius of the q–th clot, while || · ||∗q : R3 → R+ is such that

||y||∗q =
(
yTXqy

)1/2
with

Xq :=

 | | |
nq tq1 tq2
| | |


σnq

σtq1
σtq2


— (nq)T —

— (tq1)
T —

— (tq2)
T —

 . (4.2)

Here (nq, tq1, t
q
2) is an orthonormal reference system, where nq is the outward unit normal vector to ∂Ω at xq

c and tq1
is parallel to the main flow direction. The values of σnq , σtq1 , σtq2 influence the shape of the clot and, in particular,
determine the “elongation” of the clot domain Ωq

c along the directions nq , tq1, tq2, respectively. The blood clot density
function is defined as follows:

ρqc(x;µ
c
q) =


µc

q if ||x− xq
c ||∗q ≤ (1− εc)rqc ,

µc
q cos

(
π

2

(
||x− xq

c ||∗q − (1− εc)rqc
εcr

q
c

))
if (1− εc)rqc ≤ ||x− xq

c ||∗q < rqc ,

0 otherwise.

(4.3)

For all q ∈ {1, . . . , Nc}, we select µc
q

iid∼ Bern(1/Nc) U(101, 103), where Bern(p) indicates a Bernoulli distribution
of parameter p ∈ [0, 1] and U(a, b) denotes a uniform distribution in the interval [a, b], for a, b ∈ R, a < b. We define
the blood clots parameter domain Dc := [0, 103]Nc . In both test cases, we set εc = 0.1.

Regarding the Dirichlet datum, let us introduce the function gµ
f

ref
: Γ × [0, T ] → R — being Γ a circular surface of

radius R and center x0 — such that gµ
f

ref
(x, t) = gs

ref
(x)gtref (t;µ

f ). The quantity µf defines the parameters that are
related to the flow rate. Firstly, we define

gs
ref

(x) := − 2

πR2

(
1− ||x− x0||2

R2

)
nΓ with x ∈ Γ , (4.4)

which describes a parabolic velocity profile (Poiseuille flow), and nΓ is the outward unit normal vector to Γ.

The Dirichlet datum is then defined as follows in the two test cases:

• Symmetric Bifurcation: we impose a periodic–in–time parabolic–in–space velocity profile with a parametrized
perturbation at the inlet Γ1

IN and we prescribe the flow rate, expressed as a given percentage of the inflow rate, at
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Figure 2. Plots of the parametrized reference flow rate functions gtref (t;µ
f ) for the two considered test cases. In

particular: (left) flow rate of the Symmetric Bifurcation test case for 4 different parameter values, at the extrema of
the parameter domain; (right) flow rate of the Femoropopliteal Bypass test case for parameters
µf

0 = 0.107, µf
1 = 2.157, µf

2 = 18.409, µf
3 = 0.313 (in red), compared to the flow rate imposed in [39, 40]

(parameters: µf
0 = 0.134, µf

1 = 1.541, µf
2 = 14.46, µf

3 = 0.626) (in blue).

the outlet Γ1
OUT . In particular, we have

gtref (t;µ
f ) := 1− cos

2πt

T
+ µf

1 sin
2πµf

0 t

T
t ∈ [0, T ]

gµ
f

(x, t) :=

{
gµ

f

ref
(x, t) (x, t) ∈ Γ1

IN × [0, T ]

µf
2 g

µf

ref
(x, t) (x, t) ∈ Γ1

OUT × [0, T ]

(4.5)

where T = 0.3 s is the final time of the simulation. At the snapshot generation stage, we select µf ∼ U (Df ),
Df := [4, 8] × [0.1, 0.3] × [0.2, 0.8]. In particular: µf

0 models the frequency of the perturbation; µf
1 models

the amplitude of the perturbation; µf
2 models the amount of flow coming out of Γ1

OUT (see Figure 2 – left). On
Γ2
OUT , we impose homogeneous Neumann BCs. This test case features Reynolds’ numbers up to 1.5 · 102.

• Femoropopliteal Bypass: we impose two different parabolic velocity profiles at the two inlets Γ1
IN ,Γ2

IN , con-
straining their sum to be the same for all the snapshots, i.e.

gµ
f

(x, t) :=

µf
4 g

µf
0

ref (x, t) (x, t) ∈ Γ1
IN × [0, T ]

(1− µf
4 ) g

µf
0

ref (x, t) (x, t) ∈ Γ2
IN × [0, T ]

(4.6)

Here gt
ref

(t;µf ) has been chosen as a polynomial parametrization of the systolic part of the inflow profile em-

ployed e.g. in [39, 40], which depends on the parameters µf
0 , µf

1 , µf
2 , µf

3 (see Figure 2 – right). During
the snapshot generation phase, the parameter values are samples uniformly at random, so that µf ∼ U (Df ),
Df := [0.1070, 0.1653]× [0.9246, 2.1574]× [9.9127, 18.4093]× [0.3130, 0.9390]× [0.2, 0.8]. In particular: µf

0

models the time delay of the systolic peak; µf
1 models the flow rate at the beginning of systole; µf

2 models the
peak systolic flow; µf

3 models the flow rate at the end of systole; µf
4 models the partition of flow between the two

inlets Γ1
IN , Γ2

IN . On Γ1
OUT , we impose homogeneous Neumann BCs. This test case features Reynolds’ numbers

up to 8 · 103.

As discussed in Subsection 2.2, we imposed non–homogeneous Dirichlet BCs weakly, using Lagrange multipliers.
Their space is discretized by means of orthonormal basis functions, built from Chebyshev polynomials. We consid-
ered polynomials up to the degree nin = 5 to impose inlet BCs, in order to get a good approximation of parabolic
velocity profiles. Conversely, we chose nout = 0 to impose outlet BCs in the Bifurcation test case, since we are only
interested in enforcing the outflow rate. We remark that in this work we use the cgs (centimeter–gram–second) unit
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system; therefore, the velocity is expressed in (cm/s) and the pressure in (dyn/cm2), where dyn := g · cm · s−2.
Concerning the computational environment, all simulations were run on the Scientific IT and Application Support
(SCITAS) clusters1 at EPFL.

In both test cases, we generated Nµ = 100 training snapshots by solving the FOM problem (see Subsection 2.2)
for 100 different parameter values, suitably sampled from D := Df × Dc. We denote with Dtrain ⊂ D the set
of training parameters. To compute the FOM solutions, we employed the same computational framework of [15],
which is based on LifeV, a C++ FE library with support to high–performance computing [41]. We employed P2–P1
Taylor–Hood Lagrangian finite elements for the discretization of the velocity and pressure subspaces, respectively. We
adopted BDF2 as time integrator; we remark that the space–time full–order linear system in Eq.(2.10) has not been
explicitly assembled. The sparse linear systems arising at each time step have been solved using the preconditioned
GMRES method with the saddle point block preconditioner proposed in [15]. Concerning the temporal velocity basis
enrichment, we set εt = 0.9, unless otherwise specified (see Algorithm 1).

For each test case, we performed N∗
µ = 20 additional FOM simulations in order to evaluate the performances of the

proposed ROMs. We define Dtest := {µ∗
i }

N∗
µ

i=1 as the set of test parameters, sampled from D and such that Dtest ∩
Dtrain = ∅. The performances of the proposed ROMs are assessed both in terms of accuracy and of computational
efficiency. To evaluate the former, we consider the average (over the test snapshots) relative errors on velocity and
pressure, measured in the norms induced by the symmetric and positive definite matricesXst

u andXst
p (see Eq.(3.19)),

respectively. Therefore, we define:

Eu =
1

N∗
µ

N∗
µ∑

i=1

||Πuû(µ∗
i )− ust

h (µ∗
i )||Xst

u

||ust
h (µ∗

i )||Xst
u

; Ep =
1

N∗
µ

N∗
µ∑

i=1

||Πpp̂(µ∗
i )− psth (µ∗

i )||Xst
p

||psth (µ∗
i )||Xst

p

; (4.7)

being [û(µ∗
i ), p̂(µ

∗
i ), λ̂(µ

∗
i )] ∈ Rnst

the space–time reduced solution obtained with the considered ROM for the
parameter value µ∗

i ∈ Dtest and [ust
h (µ∗

i ),p
st
h (µ∗

i ),λ
st
h (µ∗

i )] ∈ RNst

the corresponding FOM solution. Notice that
Eq.(4.7) applies also to the SRB–TFO method, where no dimensionality reduction in time takes place, by setting the
temporal reduced bases as equal to the canonical one. Accuracy is then expressed by the ratios Eu/εu, Ep/εp, where
εu, εp are, respectively, the velocity and pressure POD tolerances in space and in time; these values being close to 1
means that the ST–RB method is working somehow optimally. Concerning computational efficiency, we consider two
different indicators, namely (1) the speedup (SU), defined as the ratio between the average wall–time of FOM and of
ROM simulations; (2) the reduction factor (RF), computed as the ratio between the FOM DOFs (Nst) and the ROM
DOFs (nst).

Table 1 reports the dimensionality of the full–order problem and the wall–time of a single high–fidelity simulation for
the two considered test cases. Based on the numerical tests carried out in [15], we choose a timestep size δ = 2.5·10−3

s in both test cases, from which the reported values of N t follow. Convergence tests proved that such a choice does
not lead to an overrefinement of the temporal grid; hence, ST–RB methods are not artificially favoured over full–order
in time ones. Table 2 reports the offline computational cost of the reduced–order simulations for the three considered
methods and in the two test cases. Firstly, we highlight that all computational times in Table 2 are a small fraction of a
single FOM solve wall–time (see Table 1); thus snapshot generation configures as the actual bottleneck of the offline
stage for all methods. Neglecting the FOM solves, the computation of the velocity reduced basis in space is by far
the most expensive operation. Indeed, it involves the SVD of a very large matrix and, for the SRB–TFO and ST–GRB
methods, also the supremizers enrichment procedure. The non–negligible cost of the latter makes ST–PGRB the most
efficient approach in both test cases. Concerning the reduced bases, we notice that computing the temporal modes
is much faster than extracting the spatial ones. This is a direct consequence of exploiting dimensionality reduction
in space prior to capturing the most relevant dynamics of the problem. For the ST–GRB method, we remark that the
temporal stabilizers enrichment takes≈ 2 s for the Symmetric Bifurcation test case and≈ 20 s for the Femoropopliteal
Bypass one. Stabilization in time is then much faster than stabilization in space, since the number of temporal FOM
DOFs is significantly lower than the one of spatial FOM DOFs. Finally, we underline that the cost of model order
reduction in space is dominant also for what concerns the (offline) computation of parameter–independent quantities.
Indeed, the assembling wall–time for the ST–GRB method is only≈ 1 s higher than the one for the SRB–TFO method,
even though the latter involves only spatial projections.

4.2 Symmetric Bifurcation
Table 3 reports the results obtained with the SRB–TFO, ST–GRB and ST–PGRB methods on the Symmetric Bifurca-
tion test case, for εu = 10−3, εp = ελ = 10−4. Different enrichments of the velocity reduced basis in time are consid-
ered. For each test, we indicate the dimension (in space and in time) of the velocity reduced basis, the reduction factor,

1https://www.epfl.ch/research/facilities/scitas/hardware/
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Space DOFs Time DOFs

Test case Ns
u Ns

p Nλ N t Wall–time

Bifurcation 76974 3552 66 120 1936 s

Bypass 234936 10158 126 170 9300 s

Table 1. Space and time FOM DOFs for velocity, pressure and Lagrange multipliers and average wall–time of a
full–order simulation in the two test cases.

Bases construction

Test case Method u p λ Assembling

Space Time Space Time Time

Bifurcation SRB–TFO 930 s // 7 s // // 5 s

ST–GRB 930 s 4 s 7 s < 1 s < 1 s 6 s

ST–PGRB 468 s 2 s 7 s < 1 s < 1 s 5 s

Bypass SRB–TFO 3216 s // 28 s // // 29 s

ST–GRB 3216 s 29 s 28 s < 1 s < 1 s 30 s

ST–PGRB 1303 s 9 s 28 s < 1 s < 1 s 20 s

Table 2. Offline computational cost, expressed in terms of wall–time (in s), of the SRB–TFO, ST–GRB and ST–PGRB
methods in the two test cases for εu = εp = ελ = 10−3.

the speedup and the average (normalized) relative test errors on velocity and pressure (see Eq.(4.7)). Figure 3 reports
the line integral convolution on the median slice for the velocity fields obtained for µ∗ = [7.85, 0.14, 0.59, 45.2, 877]
with the three considered ROMs at t = 0.15 s (top row) and the corresponding absolute pointwise errors with respect
to the FOM solution (bottom row).

The impact of dimensionality reduction is evident. Indeed, all methods realize significant SU with respect to the FOM
and attain accuracies of the order of the prescribed POD tolerances. We notice that the efficiency is improved upon
dimensionality reduction in time. Indeed, all ST–RB methods are more than 1000 times faster than the FOM, while
the SRB–TFO method (implemented by iteratively solving N t small linear systems, using the BDF2 time marching
scheme) is slower. However, the efficiency gain due to dimensionality reduction in time is not dramatic, since the
number of timesteps (N t = 120) is small compared to the number of spatial DOFs (see Table 1). More significant
efficiency gains are expected if a higher number of temporal DOFs is considered (see Subsection 4.3). The ST–PGRB
method is faster than the ST–GRB one, thanks to its “automatic” inf–sup stability property (see Subsection 3.6.2). This
prevents from the enrichment of the velocity reduced bases (in space and in time) and it ultimately leads to solve a
smaller linear system. The drawback of such an increased computational efficiency is represented by a slight loss in
accuracy. Indeed, while the average relative test errors for the SRB–TFO method are of the order of the POD tolerance,
the ones got with the two ST–RB methods are larger, particularly for the pressure field.

Setting εu = 10−3 and εp = ελ = 10−4, both dual fields feature temporal reduced bases that are larger than the
primal one. As a consequence, the matrices Ψu,p, {Ψu,λk}ND

k=1 cannot be full column rank and — according to
Corollaries 1 – 2 — the velocity temporal basis enrichment is compulsory in order to retain inf–sup stability with the
ST–GRB method. Indeed, if the velocity temporal reduced basis is not augmented, the linear system stemming from
the application of the ST–GRB method is ill–conditioned and consequently the errors (on both velocity and pressure)
explode. Conversely, if suitable modes are added to the velocity temporal basis, the problem is stabilized and the
errors are comparable with the prescribed POD tolerances. Three remarks are worth to follow. Firstly, the velocity
temporal stabilizers obtained for εt = εt1 are not necessarily a subset of those computed considering εt = εt2 > εt1.
For instance, in this case the temporal modes that are added choosing εt = 0.6 and εt = 0.9, although being 6 in
both cases, are different. Secondly, the order in which the dual fields (i.e. pressure and Lagrange multipliers) are
considered for the velocity temporal basis enrichment does not significantly affect the results. Lastly, the ST–PGRB
method, despite being roughly 3 times faster, exhibits higher errors than the (stabilized) ST–GRB one. In particular,
the relative error on pressure is one order of magnitude larger than the prescribed POD tolerance. Nonetheless, the
last two rows of Table 3 show that accuracies comparable with the ones of ST–GRB are retrieved by enriching the
velocity temporal reduced basis (according to Algorithm 1), without severely impacting the efficiency of the method.
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Method ROM size Efficiency Error
T-sup εt (ns

u, n
t
u) SU Eu/εu Ep/εp

SRB–TFO // // (156,120) 9.37e2 1.00 1.36

ST–GRB // // (156,17) 1.69e3 1.11e17 2.93e40
P 0.6 (156,23∗6 ) 1.06e3 1.01 1.82

0.9 (156,23∗6 ) 1.05e3 1.01 2.42
L 0.6 (156,23∗6 ) 1.04e3 1.01 2.64

0.9 (156,23∗6 ) 1.05e3 1.02 2.80
ST–PGRB // // (66,17) 3.62e3 3.35 40.9

P 0.6 (66,23∗6 ) 2.64e3 1.29 2.52
0.9 (66,23∗6 ) 2.62e3 1.28 3.02

Table 3. Dimensions of the velocity reduced bases, speedups and errors obtained on the Symmetric Bifurcation test
case for different enrichments of the velocity temporal basis, setting εu = 10−3, εp = ελ = 10−4. Notation: “//”
means that no enrichment has been performed, “P” that enrichment has been performed with respect to pressure
modes, “L” that enrichment has been performed with respect to Lagrange multipliers modes. The notation (·)∗n

indicates that the velocity temporal basis has been enriched with n modes.

Figure 3. Surface line integral convolution of the velocity field on the median slice (top) and corresponding absolute
pointwise errors with respect to the FOM solution (bottom), achieved in the Symmetric Bifurcation test case with the
three considered ROMs for εu = 10−3, εp = ελ = 10−4, with µ∗ = [7.85, 0.14, 0.59, 45.2, 877] and at t = 0.15 s.

For instance, the addition of 6 temporal stabilizers via Algorithm 1 (with εt = 0.6 and considering pressure as dual
field) leads to a significant drop in the relative error for both velocity (from 3.35 to 1.29, −61%) and pressure (from
40.9 to 2.52, −94%).

4.3 Femoropopliteal Bypass
We now assess the performances of the two considered ST–RB methods on a patient–specific Femoropopliteal Bypass
geometry [38]. Table 4 reports the results obtained with the ST–GRB and ST–PGRB methods for three different POD
tolerances. The same POD tolerance ε ∈ R+ has been chosen for all the fields, both in space and in time. Figure
4 shows the magnitudes of the velocity, pressure and wall shear stress (WSS) fields for ε = 10−3, at t = 0.1075 s
(systolic peak) and for µ∗ = [0.130, 1.604, 15.025, 0.714, 0.57, 536, 846, 0, 23.3] obtained with the ST–GRB (left)
and ST–PGRB (right) method (top row) and the corresponding absolute pointwise errors with respect to the FOM
solution (bottom row).
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ROM size Efficiency Accuracy
ε (ns

u, n
t
u) (ns

p, n
t
p) ({Nλk},{nt

λk
}) RF SU Eu/εu Ep/εp

SR
B

–T
FO 10−3 (184,170) (7,170) ({63,63},{170,170}) 7.74e2 2.11e3 11.76 2.40

10−4 (220,170) (14,170) ({63,63},{170,170}) 6.81e2 1.79e3 14.59 2.70
10−5 (303,170) (31,170) ({63,63},{170,170}) 5.33e2 1.55e3 12.05 8.13

ST
–G

R
B 10−3 (184,10∗3 ) (7,9) ({63,63},{8,8}) 1.43e4 2.18e4 12.74 4.29

10−4 (220,12∗2 ) (14,11) ({63,63},{11,11}) 9.97e3 8.19e4 14.91 3.17
10−5 (303,16∗4 ) (31,14) ({63,63},{14,14}) 5.92e3 2.39e3 10.02 9.20

ST
–P

G
R

B

10−3 (51,7) (7,9) ({63,63},{8,8}) 2.92e4 1.17e5 16.70 8.22
(51,10∗3 ) (7,9) ({63,63},{8,8}) 2.64e4 9.17e4 12.28 5.48

10−4 (87,10) (14,11) ({63,63},{11,11}) 1.73e4 3.19e4 11.95 11.27
(87,12∗2 ) (14,11) ({63,63},{11,11}) 1.61e3 2.68e4 9.71 10.79

10−5 (146,12) (31,14) ({63,63},{14,14}) 1.06e4 9.00e3 21.98 19.34
(146,16∗4 ) (31,14) ({63,63},{14,14}) 9.19e3 6.00e3 13.45 11.60

Table 4. Summary of the results obtained with the ST–RB methods (top: ST–GRB, bottom: ST–PGRB) on the
Femoropopliteal Bypass test case, for different POD tolerances ε. In particular: (left) number of spatial and
temporal reduced basis elements for velocity, pressure and Lagrange multipliers; (center) RF and average SU;
(right) normalized average test relative errors on velocity and pressure.

Figure 4. Magnitudes of the velocity, pressure and WSS fields (top) and corresponding absolute pointwise errors
with respect to the FOM solution (bottom), achieved in the Femoropopliteal Bypass test case with the ST–GRB
method (left) and ST–PGRB method (right) for ε = 10−3, at t = 0.1075 s (systolic peak) and with
µ∗ = [0.130, 1.604, 15.025, 0.714, 0.57, 536, 846, 0, 23.3].

The performances of both ST–RB methods are good. Indeed, they both realize significant speedups with respect to the
FOM and relative errors are approximately one order of magnitude higher than the prescribed POD tolerance. More-
over, the computational gain with respect to the baseline SRB–TFO approach is more evident than for the Symmetric
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Bifurcation test case, since the number of timesteps is higher (N t = 170 vs. N t = 120). For instance, for ε = 10−3,
the ST–GRB and ST–PGRB methods are roughly 10 and 55 times faster than the baseline. Nevertheless, we remark
that all methods feature larger errors compared to the first test case. We think this is mainly due to the increase of the
Reynolds’ numbers (maximal values at the systolic peak: ≈ 8 · 103 vs. ≈ 1.5 · 102), which hinders the approximation
quality of the reduced subspaces. As in the Symmetric Bifurcation test case, the ST–PGRB method is faster that the
ST–GRB one thanks to its “automatic” inf–sup stability, which prevents from enriching the velocity reduced bases.
However, velocity temporal basis enrichment is necessary in order to retain accuracies comparable with the one of
ST–GRB (stabilized).

5 Conclusions
In this work, we discussed the application of space–time reduced basis methods to the unsteady incompressible Stokes
equations in fixed 3D geometries, endowed with a reaction term in order to model the presence of blood clots. We
supposed the parametric dependency to characterize the blood clots densities and the inhomogeneous Dirichlet BCs,
weakly imposed by means of Lagrange multipliers. As a result, the problem at hand features a twofold saddle point
structure. Upon detailing the application of ST–RB methods, we focused on the well–posedness of the resulting prob-
lem, which resorts to inf–sup stability analysis. To this aim, we proposed two different approaches. The first one,
called ST–GRB, involves a Galerkin projection and it is characterized by a suitable enrichment of the spatio–temporal
velocity reduced basis. The second one, called ST–PGRB, features instead a Petrov–Galerkin projection, stemming
from the minimization of the FOM residual in a suitable norm, so that inf–sup stability can be “automatically” guar-
anteed. Both methods showed efficiency gains with respect to the baseline space–reduced approach and accuracies in
accordance with theoretical expectations.

Two main limitations can be identified. On the one hand, we focused on a linear problem, neglecting the non–linear
convective term that characterizes the Navier–Stokes equations and whose role is of primary importance for the re-
alistic modelling of hæmodynamics. On the other hand, we considered fixed geometries, while one major challenge
in patient–specific model order reduction is to efficiently deal with intra–patient and inter–patient geometrical vari-
ability. Therefore, we plan to extend the proposed ST–RB approaches to the incompressible unsteady Navier–Stokes
equations in parametrized 3D geometries, possibly leveraging modular geometrical approximation [15]. Furthermore,
we envision the use of RFSI models — as the Coupled Momentum model [42, 39, 40] — and of physiological BCs
[43, 44] — in order to bridge the gap with clinical applications.
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A ST–GRB method: details of the assembling phase

In this appendix, we provide a detailed explanation of the assembling of the left–hand side matrix Âst and of the
right–hand side vector F̂ st in Eq.(3.4), in the case of a Galerkin projection (i.e. Π =

∼
Π).

Firstly, let us consider the left–hand side matrix Âst. In order to compute its five parameter–independent non–zero
blocks (see Eq.(3.15)), we can exploit the properties of the spatio–temporal reduced basis Π. For instance, let us
compute the value of (Âst

1 )ℓm for a couple of indexes (ℓm) ∈ {1, · · · , nstu } × {1, · · · , nstu }, such that ℓ = Fu(ℓs, ℓt)
and m = Fu(ms,mt), with ℓs,ms ∈ {1, · · ·nsu}, ℓt,mt ∈ {1, · · ·ntu}. We have that
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T
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(A.1)

where M̂ and Â = (Φu)TAΦu are the space–reduced mass and stiffness matrices, respectively (see Eq.(3.12)).
Furthermore, δi,j is the Kronecker Delta function, which appears in Eq.(A.1) since the columns of Ψu are orthonormal
in Euclidean norm by construction, and the notations vi:, v:−j denote the sub–vectors of a given vector v containing
all the entries from the i–th to the last one and from the first one to the j–th from last, respectively. Similar expressions
characterize the other four parameter–independent non–zero blocks of Âst. Thus, the assembly of the parameter–
independent part of the reduced left–hand side matrix only requires the spatial projection of the FOM matrices and
some trivial multiplications between elements of the reduced bases in time. In particular, recalling the definition of
the space–reduced matrices in Eq.(3.12) and of the time–reduced matrices in Eq.(3.13), the parameter–independent
blocks of Âst (other than Âst

1 , already defined in Eq.(A.1)) read as:

Âst
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(A.2)

for ℓ,m defined as in Eq.(A.1); k = Fp(ks, kt) with ks ∈ {1, . . . , ns
p}, kt ∈ {1, . . . , nt

p}; j ∈ Fλ(js, jt) with
js ∈ {1, . . . , Nλ}, jt ∈ {1, . . . ,tλ }.

Since
∼
Π= Π (so parameter–independent), the assembling of the parameter–dependent part of the left–hand side

matrix only involves the computation of the velocity–velocity block R̂st
1 (µ). To this aim, we can exploit the affine

parametrization of the reaction term (see Eq.(3.17)). Indeed, we have that

R̂st
1 (µ) =

Nc∑
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ρqc(µ)R̂
st
q with R̂st
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, (A.3)

being ℓ,m defined as in Eq.(A.1) and {R̂q}Nc
q=1 the space–reduced affine components of the matrix associated to the

reaction term (see Eq.(3.14)). Hence, the online computational cost of the left–hand side matrix assembling is small,
since it only involves the linear combination of N c + 1 space–time reduced matrices. In the general case, where the
left–hand side term does not feature affine parametric dependency, approximate affine decompositions can be retrieved
exploiting the MDEIM algorithm.

Finally, let us focus on the assembling of the right–hand side vector F̂ st. Based on Eq.(2.12), we only have to compute
its third block F̂ st

3 (µ∗) = (Πλ)TF st
3 (µ∗) ∈ Rnst

λ , as all the other ones are null. To this end, we can leverage the
space–time factorization of the Dirichlet datum (see Eq.(2.11)). Indeed, the k–th block of the space–time reduced
right–hand side, F̂ st

3,k(µ
∗) (k ∈ {1, . . . , ND}), is given by

F̂ st
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Since the global space of Lagrange multipliers L is such that L =
∏ND

k=1 Lk, we have that

F̂ st
3 (µ∗) =

[(
F̂ st
3,1(µ

∗)
)T

, · · · ,
(
F̂ st
3,ND

(µ∗)
)T

]T
∈ Rnst

λ . (A.5)

Notice that this assembling step is extremely cheap, as it only involves ND inner products between N t–dimensional
vectors.

B ST–PGRB method: details of the assembling phase

In this appendix, we show how the left–hand side matrix Âpg and the right–hand side vector F̂ pg of the linear system
arising from the application of the ST–PGRB method (see Eq.(3.36)) can be efficiently computed, leveraging the
block structure of the problem at hand and the affine parametrization of its left–hand side term. Firstly, we define
the diagonal preconditioners of the spatio–temporal norm matrices for velocity, pressure and Lagrange multipliers as
P st

Xu
, P st

Xp
, P st

Xλ
, respectively. In addition, we define the diagonal preconditioners of the spatial norm matrices for

velocity, pressure and Lagrange multipliers as PXu , PXp , PXλ
, respectively. We recall thatXλ = PXλ

= INλ
.

Let us consider the left–hand side matrix Âpg . Exploiting the block structure of the FOM left–hand side matrix Ast

and differentiating between parameter–independent and parameter–dependent components (see Eq.(2.9)), we have that
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The parameter–independent blocks have the following expressions:
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while the parameter–dependent ones write as:
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Firstly, we focus on the parameter–independent blocks in Eq.(B.1), that can be assembled once and for all during the
offline phase of the method. Let us define the following matrices:

A = AΦu ∈ RNs
u×ns

u B
T
= BTΦp ∈ RNs

u×ns
p B = BΦu ∈ RNs

p×ns
u

M =MΦu ∈ RNs
u×ns

u C
T
= CT ∈ RNs

u×Nλ C = CΦu ∈ RNλ×ns
u

(B.3)

Also, let us define the matrixMA :=M + 2
3δA. Let us define the following indexes:

• ℓ = Fu(ℓs, ℓt), m = Fu(ms,mt) with ℓs,ms ∈ {1, . . . , ns
u}, ℓt,mt ∈ {1, . . . , nt

u};
• k = Fp(ks, kt), r = Fp(rs, rt) with ks, rs ∈ {1, . . . , ns

p}, kt, rt ∈ {1, . . . , nt
p};

• i = Fλ(is, it), j = Fλ(js, jt) with is, js ∈ {1, . . . , Nλ}, it, jt ∈ {1, . . . , nt
λ}.

As in Eq.(A.1), the notations vi:, v:−j ,vi:−j denote the sub–vectors of a given vector v containing all the entries from
the i–th to the last one, from the first one to the j–th from last and from the i–th one to the j–th from last, respectively.
Finally, for a given matrix Q ∈ RN1×N2 , we use the notations Qc or Q:,c (with c ∈ {1, . . . , N2}) to denote the c–th
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column ofQ andQr,: (with r ∈ {1, . . . , N1}) to denote the r–th row ofQ. Then, we have that:(
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Let us now focus on the parameter–dependent blocks of the left–hand side matrix. Let us define the matrices

R
q
= RqΦu ∈ RNs

u×ns
u with q ∈ {1, . . . , Nc} . (B.4)

For q, q′ ∈ {1, . . . Nc} and considering the indexes ℓ,m as in Eq.(A.1), the following space–time–reduced matrices
can be assembled offline:
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R̂pg

1,q

)
ℓm

=

((
R

q

ℓs

)T

(PXu
)
−1
MAms

)
δℓt,mt

+

((
R

q

ℓs

)T

(PXu)
−1
Mms

)(
−4

3
(ψu

ℓt)
T
2:(ψ

u
mt

):−1

+
1

3
(ψu

ℓt)
T
3:(ψ

u
mt

):−2

)
R̂pg

1∗,(q,q′) ∈ Rnst
u ×nst

u :
(
R̂pg

1∗,(q,q′)

)
ℓm

=

((
R

q

ℓs

)T

(PXu
)
−1
R

q′

ms

)
δℓt,mt

R̂pg
2,q ∈ Rnst

u ×nst
u :

(
R̂pg

2,q

)
ℓm

=

((
R

q

ℓs

)T

(PXu)
−1
B

T

ms

)((
ψu

ℓt

)T (
ψp

mt

))
R̂pg

3,q ∈ Rnst
u ×nst

u :
(
R̂pg

3,q

)
ℓm

=

((
R

q

ℓs

)T

(PXu
)
−1
C

T

ms

)((
ψu

ℓt

)T (
ψλ

mt

))

Exploiting the affine parametrization of the reaction term, the left–hand side parameter–dependent blocks can be then
assembled online as follows:

R̂pg
1 (µ) =

2

3
δ

Nc∑
q=1

ρqc(µ)R̂
pg
1,q R̂pg

1∗(µ) =
4

9
δ2

Nc∑
q=1

Nc∑
q′=1

ρqc(µ)ρ
q′

c (µ)R̂
pg
1∗,(q,q′)

R̂pg
2 (µ) =

2

3
δ

Nc∑
q=1

ρqc(µ)R̂
pg
2,q R̂pg

3 (µ) =
2

3
δ

Nc∑
q=1

ρqc(µ)R̂
pg
3,q

(B.5)

Finally, let us consider the right–hand side vector F̂ pg . Exploiting the block structure of the FOM matrix Ast and of
the FOM right–hand side vector F st (see Eq.(2.9)), we have that

F̂ pg =
(
AstΠ

)T (
P st

X

)−1
F st

=

((Ast
1 +Rst(µ))Πu)T (Ast

4 Πu)T (Ast
7 Πu)T

(Ast
2 Πp)T

(Ast
3 Πλ)T



P st

Xu

P st
Xp

P st
Xλ




−1 
F st
3 (µ)



=

(Ast
7 Πu)TF st

3 (µ)
 ,

(B.6)

since P st
Xλ

= Inst
λ

. Based on the expression of F st
3 (µ) in Eq.(2.12), the only non–zero block in F̂ pg — denoted as

F̂ pg
7,3(µ) — writes as:

F̂ pg
7,3(µ) =

[(
F̂ pg,1
7,3 (µ)

)T

, · · · ,
(
F̂ pg,ND

7,3 (µ)
)T

]T
∈ Rnst

λ . (B.7)

For k ∈ {1, . . . , ND} and considering jk = Fλk
(jks , j

k
t ) with jks ∈ {1, . . . , Nk

λ}. jkt ∈ {1, . . . , nt
λk
}, F̂ pg,k

7,3 (µ) ∈
Rnst

λk is such that

(
F̂ pg,k
7,3 (µ)

)
jk

=

(((
Ast

7

)k
Πu

)T
)

jk,:

 g̃
s
kg

t
k(t

1;µ)
...

g̃skg
t
k(t

Nt

;µ)

 =


Ck

jks
(ψu

jkt
)1

...
Ck

jks
(ψu

jkt
)Nt


T  g̃

s
kg

t
k(t

1;µ)
...

g̃skg
t
k(t

Nt

;µ)


=

((
Ck

jks

)T

g̃sk

)((
ψu

jkt

)T

gtk(µ)

)
.

(B.8)

29



R. Tenderini, N. Mueller, S. Deparis ST–RB methods for parametrized unsteady Stokes equations

Here (Ast
7 )

k denotes the k–th block of Ast
7 along its first dimension and the vector gtk(µ) ∈ RNt

is such that
(gtk(µ))i = gtk(t

i;µ), for i ∈ {1, · · · , N t}.

30


	Introduction
	Unsteady Parametrized Incompressible Stokes Equations
	Strong and weak formulation
	High–fidelity Numerical Discretization
	Well–posedness of the FOM problem

	Space–time reduced basis methods for parametrized unsteady incompressible Stokes equations
	ST–RB problem definition
	Offline phase: reduced basis generation with POD
	Offline Phase: assembling of parameter–independent quantities
	Online phase
	Definition of the norms
	Well-posedness of the ST–RB method
	Velocity reduced basis enrichment
	Least–squares Petrov–Galerkin projection


	Numerical results
	Setup
	Symmetric Bifurcation
	Femoropopliteal Bypass

	Conclusions
	ST–GRB method: details of the assembling phase
	ST–PGRB method: details of the assembling phase

