
RIEMANNIAN NATURAL GRADIENT METHODS

JIANG HU∗, RUICHENG AO† , ANTHONY MAN-CHO SO‡ , MINGHAN YANG§ , AND

ZAIWEN WEN¶

Abstract. This paper studies large-scale optimization problems on Riemannian manifolds whose
objective function is a finite sum of negative log-probability losses. Such problems arise in various
machine learning and signal processing applications. By introducing the notion of Fisher information
matrix in the manifold setting, we propose a novel Riemannian natural gradient method, which can
be viewed as a natural extension of the natural gradient method from the Euclidean setting to the
manifold setting. We establish the almost-sure global convergence of our proposed method under
standard assumptions. Moreover, we show that if the loss function satisfies certain convexity and
smoothness conditions and the input-output map satisfies a Riemannian Jacobian stability condition,
then our proposed method enjoys a local linear—or, under the Lipschitz continuity of the Riemann-
ian Jacobian of the input-output map, even quadratic—rate of convergence. We then prove that
the Riemannian Jacobian stability condition will be satisfied by a two-layer fully connected neural
network with batch normalization with high probability, provided that the width of the network is
sufficiently large. This demonstrates the practical relevance of our convergence rate result. Numer-
ical experiments on applications arising from machine learning demonstrate the advantages of the
proposed method over state-of-the-art ones.

Key words. Manifold optimization, Riemannian Fisher information matrix, Kronecker-factored
approximation, Natural gradient method

AMS subject classifications. 90C06, 90C22, 90C26, 90C56

1. Introduction. Manifold constrained learning problems are ubiquitous in ma-
chine learning, signal processing, and deep learning. In this paper, we focus on man-
ifold optimization problems of the form

(1.1) min
Θ∈M

Ψ(Θ) := − 1

|S|
∑

(x,y)∈S

log p(y|f(x,Θ)),

where M ⊆ Rm×n is an embedded Riemannian manifold, Θ ∈ M is the parameter
to be estimated, S is a collection of |S| data pairs (x, y) with x ∈ X , y ∈ Y, X and
Y are the input and output spaces, respectively, f(·,Θ) : X → Y is a mapping from
the input space to the output space, and p(y|f(x,Θ)) is the conditional probability
of taking y conditioning on f(x,Θ). If the conditional distribution is assumed to be
Gaussian, the objective function in (1.1) reduces to the square loss. When the condi-
tional distribution p(y|f(x,Θ)) obeys the multinomial distribution, the corresponding
objective function is the cross-entropy loss. As an aside, it is worth noting the equiva-
lence between the negative log probability loss and Kullback-Leibler (KL) divergence
shown in [37].

Let us take the low-rank matrix completion (LRMC) problem [13, 31] as an
example and explain how it can be fitted into the form (1.1). The goal of LRMC

∗Department of Systems Engineering and Engineering Management, The Chinese University of
Hong Kong, Shatin, NT, Hong Kong (hujiangopt@gmail.com).
†School of Mathematical Sciences, Peking University, China (archer arc@pku.edu.cn).
‡Department of Systems Engineering and Engineering Management, The Chinese University of

Hong Kong, Shatin, NT, Hong Kong (manchoso@se.cuhk.edu.hk).
§Beijing International Center for Mathematical Research, Peking University, China (yangming-

han@pku.edu.cn).
¶Beijing International Center for Mathematical Research, Center for Data Science and College of

Engineering, Peking University, Beijing, China (wenzw@pku.edu.cn).

1

ar
X

iv
:2

20
7.

07
28

7v
1

 [
m

at
h.

O
C

]
 1

5
Ju

l 2
02

2

mailto:hujiangopt@gmail.com
mailto:archer\protect _arc@pku.edu.cn
mailto:manchoso@se.cuhk.edu.hk
mailto:yangminghan@pku.edu.cn
mailto:yangminghan@pku.edu.cn
mailto:wenzw@pku.edu.cn

is to recover a low-rank matrix from an observed matrix X of size n×N . Denote by
Ω the set of indices of known entries in X, the rank-p LRMC problem amounts to
solving

(1.2) min
U∈Gr(n,p),A∈Rp×N

1

2
‖PΩ(UA−X)‖2 ,

where Gr(n, p) is the Grassmann manifold consists of all p-dimensional subspaces in
Rn. The operator PΩ(X) is defined in an element-wise manner with PΩ(Xij) = Xij

if (i, j) ∈ Ω and 0 otherwise. Partitioning X = [x1, . . . , xN] leads to the following
equivalent formulation

min
U∈Gr(n,p),ai∈Rp

1

2N

N∑
i=1

∥∥PΩxi
(Uai − xi)

∥∥2
,

where xi ∈ Rn and the j-th element of PΩxi
(v) is vj if (i, j) ∈ Ω and 0 otherwise.

Given U , we can obtain ai by solving a least squares problem, i.e.,

ai = a(U ;xi) := arg min
a

‖PΩxi
(Ua− xi)‖2.

Then, the LRMC problem can be written as

(1.3) min
U∈Gr(n,p)

Ψ(U) :=
1

2N

N∑
i=1

‖PΩxi
(Ua(U ;xi)− xi) ‖2.

For the Gaussian distribution p(y|z) = 1√
(2π)n

exp(− 1
2 (y − z)>(y − z)), it holds that

− log p(y|z) = 1
2‖y− z‖

2 + n log(2π)
2 . Hence, problem (1.3) is a special case of problem

(1.1), in which S = {(xi, 0)}Ni=1, X = Rn, Y = Rn, f(x, U) = PΩx (Ua(U ;x)− x),
M = Gr(n, p), and p(y|z) = 1√

(2π)n
exp(− 1

2 (y− z)>(y− z)). Other applications that

can be fitted into the form (1.1) will be introduced in Section 4.

1.1. Motivation of this work. Since the calculation of the gradient of Ψ in
(1.1) can be expensive when the dataset S is large, various approximate or stochastic
methods for solving (1.1) have been proposed. On the side of first-order methods, we
have the stochastic gradient method [45], stochastic variance-reduced gradient method
[30], and adaptive gradient methods [19, 34] for solving (1.1) in the Euclidean setting
(i.e.,M = Rm×n). We refer the reader to the book [36] for variants of these algorithms
and a comparison of their performance. For the general manifold setting, by utilizing
manifold optimization techniques [1, 26, 12], Riemannian versions of the stochastic
gradient method [11], stochastic variance-reduced gradient method [49, 64, 28], and
adaptive gradient methods [10] have been developed.

On the side of second-order methods, existing algorithms for solving (1.1) in the
Euclidean setting (i.e., M = Rm×n) can be divided into two classes. The first is
based on approximate Newton or quasi-Newton techniques; see, e.g., [46, 43, 15, 57,
58, 21, 44]. The second is the natural gradient-type methods, which are based on
the Fisher information matrix (FIM) [4]. When the FIM can be approximated by a
Kronecker-product form, the natural gradient direction can be computed using relative
low computational cost. It is well known that second-order methods can accelerate
convergence by utilizing curvature information. In particular, natural gradient-type
methods can perform much better than the stochastic gradient method [38, 60, 7, 59, 9,

2

41] in the Euclidean setting. The connections between natural gradient methods and
second-order methods have been established in [37]. Compared with the approximate
Newton/quasi-Newton-type methods, methods based on FIM are shown to be more
efficient when tackling large-scale learning problems. For the general manifold setting,
Riemannian stochastic quasi-Newton-type and Newton-type methods [33, 32, 62] have
been proposed by utilizing the second-order manifold geometry and variance reduction
techniques. However, to the best of our knowledge, there is currently no Riemannian
natural gradient-type method for solving (1.1). In view of the efficiency of Euclidean
natural gradient-type methods, we are motivated to develop their Riemannian analogs
for solving (1.1).

1.2. Our contributions. In this paper, we develop a new Riemannian natural
gradient method for solving (1.1). Our main contributions are summarized as follows.

• We introduce the Riemannian FIM (RFIM) and Riemannian empirical FIM
(REFIM) to approximate the Riemannian Hessian. These notions extend the
corresponding ones for the Euclidean setting [4, 37] to the manifold setting.
Then, we propose an adaptive regularized Riemannian natural gradient de-
scent (RNGD) method. We show that for some representative applications,
Kronecker-factorized approximations of RFIM and REFIM can be construc-
ted, which reduce the computational cost of the Riemannian natural gradient
direction. Our experiment results demonstrate that although RNGD is a
second-order-type method, it has low per-iteration cost and enjoy favorable
numerical performances.

• Under some mild conditions, we prove that RNGD globally converges to a
stationary point of (1.1) almost surely. Moreover, if the loss function satisfies
certain convexity and smoothness conditions and the input-output map f
satisfies a Riemannian Jacobian stability condition, then we can establish the
local linear—or, under the Lipschitz continuity of the Riemannian Jacobian of
f , even quadratic—rate of convergence of the method by utilizing the notion
of second-order retraction. We then show that for a two-layer neural network
with batch normalization, the Riemannian Jacobian stability condition will
be satisfied with high probability when the width of the network is sufficiently
large.

1.3. Notation. For an m × n matrix Θ, we denote its Frobenius norm by ‖Θ‖
and its vectorization by θ = vec(Θ) ∈ Rmn. For a function h : Rm×n → R, we
define its Euclidean gradient and Riemannian gradient onM by ∇h(Θ) ∈ Rm×n and
gradh(Θ) ∈ Rm×n, respectively. For simplicity, we set r = mn. When no confusion
can arise, we use ∇h(θ) and gradh(θ) to denote the vectorizations of ∇h(Θ) and
gradh(Θ), respectively. We use ∇2h(θ) ∈ Rr×r and Hessh(θ) ∈ Rr×r to denote
the Euclidean Hessian and Riemannian Hessian of h(θ), respectively. We denote the
tangent space to M at Θ by TΘM. We write d ∈ TθM to mean mat(d) ∈ TΘM,
where d ∈ Rr and mat(d) converts d into a m-by-n matrix. For a retraction R defined
on M, we write Rθ(d) := vec(RΘ(D)) for D ∈ TΘM, θ = vec(Θ), and d = vec(D).
We shall use θ and Θ interchangeably when no confusion can arise. Basically, Θ is
used when we want to utilize the manifold structure, while θ is used when we want
to utilize the vector space structure of the ambient space.

1.4. Organization. We begin with the preliminaries on manifold optimization
and natural gradient methods in Section 2. In Section 3, we introduce the RFIM and
its empirical version REFIM and derive some of their properties. Then, we present our

3

proposed RNGD method by utilizing the RFIM and REFIM. In Section 4, we discuss
practical implementations of the RNGD method when problem (1.1) enjoys certain
Kronecker-product structure. In Section 5, we study the convergence behavior of the
RNGD method under various assumptions. Finally, we present numerical results in
Section 6.

2. Preliminaries.

2.1. Manifold optimization. Consider the optimization problem

(2.1) min
Θ∈M

h(Θ),

where M ⊆ Rm×n is an embedded Riemannian manifold and h : Rm×n → R is a
smooth function. The design and analysis of numerical algorithms for tackling (2.1)
have been extensively studied over the years; see, e.g., [1, 26, 12] and the references
therein. One of the key constructs in the design of manifold optimization algorithms
is the retraction operator. A smooth mapping R : TM := ∪Θ∈MTΘM→M is called
a retraction operator if

• RΘ(0) = Θ,
• DRΘ(0)[ξ] := d

dtRΘ(tξ) |t=0= ξ, for all ξ ∈ TΘM.

We call R a second-order retraction [1, Proposition 5.5.5] if PTΘM

(
d2

dt2RΘ(tξ)|t=0

)
= 0 for all Θ ∈ M and ξ ∈ TΘM. Some examples of second-order retraction can be
found in [3, Theorem 22]. In the k-th iteration, retraction-based methods for solving
(2.1) update Θk+1 by

Θk+1 = RΘk(tdk),

where dk is a descent direction in the tangent space TΘkM and t > 0 is the step size.
The retraction operator R constrains the iterates onM. For a compact manifold, we
have the following fact [14], which will be used in our later analysis.

Proposition 2.1. Let M be a compact embedded submanifold of Rm×n. For all
Θ ∈M and ξ ∈ TΘM, there exists a constant α > 0 such that the following inequality
holds:

(2.2) ‖RΘ(ξ)−Θ‖ ≤ α‖Θ‖, ∀Θ ∈M, ∀ξ ∈ TΘM.

2.2. Natural gradient descent method. The natural gradient descent (NGD)
method was originally proposed in [4] to solve (1.1) in the Euclidean setting (i.e.,
M = Rm×n). Suppose that y follows the conditional distribution Py|f(x,Θ). Consider
the population loss under Py|x(Θ) := Py|f(x,Θ), i.e.,

(2.3) Φ(Θ) := −EPx
[
EPy|x(Θ) log p(y|f(x,Θ))

]
.

When Py|x(Θ) and Px are replaced by their empirical counterparts defined using S,
the population loss Φ(Θ) reduces to the empirical loss Ψ(Θ). Now, the FIM associated
with Φ is defined as

F (θ) := EPx [EPy|x(θ)[∇ log p(y|f(x, θ))∇ log p(y|f(x, θ))>]] ∈ Rr×r.

Under certain regularity condition [20], we can interchange the order of expectation
and derivative to obtain F (θ) = ∇2Φ(θ). In what follows, we assume that such a
regularity condition holds. Since the distribution of x is unknown, we set Px to be
the empirical distribution defined by S. In practice, we may only be able to get hold

4

of an empirical counterpart of Py|x(Θ). The empirical FIM (EFIM) associated with
Ψ is then defined by replacing Py|x(Θ) with its empirical counterpart [51], i.e.,

F̄ (θ) :=
1

|S|
∑

(x,y)∈S

∇ log p(y|f(x, θ))∇ log p(y|f(x, θ))>.

With the FIM, the natural gradient direction is given by

∇̃Φ(θ) := (F (θ))−1∇Φ(θ) ∈ Rr.

It is shown in [5, Theorem 1] and [42, Proposition 1] that ∇̃Φ(θ) is the steepest descent
direction in the sense that

− ∇̃Φ(θ)

‖∇Φ(θ)‖(F (θ))−1

= lim
ε→0

1

ε
arg min

d∈Rr:KL(Px,y(θ+d)‖Px,y(θ))≤ε2/2
Φ(θ + d),

where ‖∇Φ(θ)‖(F (θ))−1 :=
√
∇Φ(θ)(F (θ))−1∇Φ(θ).

In the k-th iteration, the iterative scheme of NGD for minimizing (2.3) is

θk+1 = θk − tk∇̃Φ(θk),

where tk > 0 is a proper step size. In the case where F (θ) is computationally expensive
or inaccessible, we use the EFIM instead of the FIM. The connections between NGD
and second-order methods are presented in [37].

3. Riemannian natural gradient method.

3.1. Fisher information matrix on manifold. When the parameter to be es-
timated Θ lies on an embedded manifoldM, the Euclidean natural gradient direction
needs not lie on the tangent space to M at Θ and thus cannot be used as a search
direction in retraction-based methods. To overcome this difficulty, we first introduce
the RFIM, which is defined as

(3.1) FR(θ) := EPx
[
EPy|x(θ)

[
grad log p(y|f(x, θ))grad log p(y|f(x, θ))>

]]
∈ Rr×r,

where grad log p(y|f(x, θ)) is the Riemannian gradient of log p(y|f(x, θ)) with respect
to θ. Then, we define the Riemannian natural gradient direction dR(θ) as

(3.2) dR(θ) := (FR(θ))−1gradΦ(θ) ∈ Rr.

The following theorem justifies our definition of RFIM. It extends the corresponding
results on FIM given in [5, Theorem 1] and [42, Proposition 1].

Theorem 3.1. Let M⊆ Rm×n be an embedded manifold and Φ :M→ R be the
function given in (2.3). For any second-order retraction R onM, the steepest descent
direction in the tangent space to M at Θ is given by −dR(θ) in (3.2), i.e.,

−dR(θ)

‖gradΦ(θ)‖(FR(θ))−1

= lim
ε→0

1

ε
arg min

d∈TθM:EPx [KL(Py|x(Rθ(d))‖Py|x(θ))]≤ε2/2
Φ(Rθ(d)),

where ‖gradΦ(θ)‖(FR(θ))−1 =
√

gradΦ(θ)>(FR(θ))−1gradΦ(θ).

5

Proof. For Θ ∈M, from the definition

KL(Py|x(θ)||Py|x(Rθ(td))) = EPy|x(θ) log p(y|f(x, θ))− EPy|x(θ) log p(y|f(x,Rθ(td))),

we have

d

dt
KL(Py|x(θ)||Py|x(Rθ(td))) |t=0 = − d

dt
EPy|x(θ) log p(y|f(x,Rθ(td))) |t=0

= −d>∇EPy|x(θ) log p(y|f(x, θ)).

By definition of the Riemannian gradient, we obtain

d>gradKL(Py|x(θ)||Py|x(Rθ(td))) |t=0= −d>∇EPy|x(θ) log p(y|f(x, θ)), ∀d ∈ TθM,

where gradKL(Py|x(θ) ‖ Py|x(Rθ(td))) |t=0∈ TθM. Then, we have

gradKL(Py|x(θ) ‖ Py|x(Rθ(td))) |t=0= −gradEPy|x(θ) log p(y|f(x, θ)).

Accordingly, using the Leibniz integral rule and the property of second-order retrac-
tions [1, Proposition 5.5.5], we have the second-order derivative

d2

dt2
KL(Py|x(θ)||Py|x(Rθ(td))) |t=0

=EPy|x(θ)[d
>grad log p(y|f(x, θ)) (grad log p(y|f(x, θ)))

>
d].

It follows that gradEPy|x(θ) log p(y|f(x, θ)) = 0. By the definition of FR, we conclude
that

EPxKL(Py|x(θ)||Py|x(Rθ(d)) =
1

2
d>FR(θ)d+O(d3), ∀d ∈ TθM.

From the fact [42, Proposition 1] that

−A−1∇h(θ)

‖∇h(θ)‖A−1

= lim
ε→0

1

ε
arg min
d:‖d‖A≤ε

h(θ + d),

where A is a positive definite matrix and ‖d‖A−1 =
√
d>A−1d, we have

(3.3)
−B−1∇(Φ ◦Rθ)(0)

‖∇(Φ ◦Rθ)(0)‖B−1

= lim
ε→0

1

ε
arg min

d ∈TθM:‖d‖A≤ε
Φ(Rθ(d)),

where B : TθM → TθM is a positive definite linear operator. Note that for all
u ∈ TθM, it holds that

∇(Φ ◦Rθ)(0)[u] = ∇Φ(Rθ(0))[DRθ(0)[u]] = u>gradΦ(θ).

This gives
∇(Φ ◦Rθ)(0) = gradΦ(θ).

Substituting the above into (3.3) and letting B = FR(θ), we have

(3.4)
−(FR(θ))−1gradΦ(θ)

‖gradΦ(θ)‖(FR(θ))−1

= lim
ε→0

1

ε
arg min

d∈TθM:‖d‖FR(θ)≤ε
Φ(Rθ(d)).

Therefore, we conclude that

−(FR(θ))−1gradΦ(θ)

‖gradΦ(θ)‖(FR(θ))−1

= lim
ε→0

1

ε
arg min

d∈TθM:EPx [KL(Py|x(θ)||Py|x(Rθ(d)))]≤ε2/2
Φ(Rθ(d))

for any second-order retraction R.

6

Note that the Riemannian Hessian [2, Equation 7] of Φ at θ along u ∈ TθM is
given by

HessΦ(θ)[u] = PTθM
(
∇2Φ(θ)[u]

)
− PTθMDu(gradΦ(θ)).

Hence, we have HessΦ(θ) = FR(θ) due to the fact that gradΦ(θ) = 0. Similar to
EFIM, we can define REFIM as

(3.5) F̄R(θ) :=
1

|S|
∑

(x,y)∈S

grad log p(y|f(x, θ))grad log p(y|f(x, θ))>.

3.2. Algorithmic framework. In the k-th iteration, once we obtain an esti-
mate Fk of the RFIM associated with Φ or the REFIM associated with Ψ at θk, the
Riemannian natural gradient direction in the tangent space to M at θk is computed
by solving the following optimization problem:

(3.6) dk = arg min
d∈T

θk
M

mk(d) := Ψk +
〈
gk, d

〉
+

1

2
〈(Fk + λkI)d, d〉,

where Ψk and gk are stochastic estimates of Ψ(θk) and gradΨ(θk), respectively and
λk > 0 is usually updated adaptively by a trust region-like strategy. Since Fk +
λkI : TθkM → TθkM is positive definite and gk ∈ TθkM, the solution of (3.6) is
dk = −(Fk + λkI)−1gk. If the inverse of Fk + λkI is costly to compute, then the
truncated conjugated gradient method can be utilized [40].

Once dk is obtained, we construct a trial point

(3.7) zk = Rθk(dk).

To measure whether zk leads to a sufficient decrease in the objective value, we first
calculate the ratio ρk between the reduction of Ψ and the reduction of mk. Since the
exact evaluation of Ψ is costly, one popular way [16] is to construct estimates Ψ0

k and

Ψzk

k of Ψ(θk) and Ψ(zk), respectively. Then, we compute the ratio as

(3.8) ρk =
Ψzk

k −Ψ0
k

mk(dk)−Ψ0
k

.

Here, we take Ψk = Ψ0
k in the calculation of mk(dk). Lastly, we perform the update

(3.9) θk+1 =

{
zk, if ρk ≥ η1 and ‖gk‖ ≥ η2

σk
,

θk, otherwise,

where η1 ∈ (0, 1) and η2 > 0 are constants and σk > 0 is used to control the regular-
ization parameter λk. Indeed, to ensure the descent property of the original function
Ψ, some assumptions on the accuracy of the estimates of Ψ(θk), Ψ(zk) and the model
mk are needed, and they will be introduced later in the convergence analysis. Due to
the error in the estimates, the regularization parameter λk+1 should not only depend
on the ratio ρk but also on the norm of the estimated Riemannian gradient gk. In
particular, we set λk+1 := σk+1‖gk+1‖ and update σk+1 as

(3.10) σk+1 =

{
max

{
σmin,

1
γσk

}
, if ρk ≥ η1 and ‖gk‖ > η2

σk
,

γσk, otherwise,

where η1 ∈ (0, 1), η2 > 0 are as before and σmin > 0, γ > 1 are parameters. Our
proposed RNGD method is summarized in Algorithm 1.

7

Algorithm 1: Riemannian natural gradient descent (RNGD) for solving
(1.1).

1 Choose an initial point θ0 and parameters σ0 > 0, σmin > 0, λ0 = σ0‖g0‖,
η1 ∈ (0, 1), η2 > 0, and γ > 1. Set k = 0.

2 while stopping conditions not met do
3 Compute the estimated Riemannian gradient gk and the estimated

Riemannian Fisher information matrix Fk.
4 Compute the negative natural gradient direction dk by solving (3.6) and

compute the trial point zk by (3.7).
5 Update θk+1 based on (3.9).
6 Update λk+1 based on (3.10).
7 k ← k + 1.

4. Practical Riemannian natural gradient descent methods. From the
definition of RFIM and REFIM in Section 3, the computational cost of solving sub-
problem (3.6) may be high because of the vectorization of Θ. Fortunately, analogous
to [38], the Riemannian natural gradient direction can be computed with a relatively
low cost if the gradient of a single sample is of low rank, i.e., for a pair of observations
(x, y) ∈ S and ψ(Θ;x, y) := − log p(y|f(x,Θ)), ∇ψ takes the form

(4.1) ∇ψ(Θ;x, y) = G(x, y)A(x, y)>,

where G(x, y) ∈ Rm×q and A(x, y) ∈ Rn×q with q � min(m,n). Let us now elaborate
on this observation.

Recall that the Riemannian gradient of ψ is given by

gradψ(Θ;x, y) = PTΘM(∇ψ(Θ;x, y)).

When ∇ψ has the form (4.1), the linearity of the projection operator implies that

(4.2)
FR(θ) = EPx,y(θ)

[
gradψ(θ;x, y)gradψ(θ;x, y)>

]
≈ P

(
EPx,y(θ)

[
A(x, y)A(x, y)>

]
⊗ EPx,y(θ)

[
G(x, y)G(x, y)>

])
P,

where Px,y(θ) is the joint distribution of (x, y) given θ, P ∈ Rr×r is the matrix
representation of PTΘM (note that P> = P due to the symmetry of orthogonal
projection operators), and the approximation is due to the assumption that A(x, y)
and G(x, y) are approximately independent; see also [23, Theorem 1] for a use of such
an assumption to derive a simplified form of the FIM. By replacing Px,y(θ) with its
empirical distribution observed from S, an approximate REFIM is given by
(4.3)

F̄R(θ) ≈ P

 1

|S|
∑

(x,y)∈S

A(x, y)A(x, y)>

⊗
 1

|S|
∑

(x,y)∈S

G(x, y)G(x, y)>

P.
When a direct inverse of F̄R(θ) is expensive to compute, the truncated conjugated
gradient method can be used. In preparation for the applications, we now show how
to construct computationally efficient approximations of the RFIM and REFIM on
the Grassmann manifold.

8

4.1. RFIM and REFIM on Grassmann manifold. If the matrix represen-
tation P of the projection operator PTΘM has dimensions m-by-m or n-by-n, i.e.,

gradψ(Θ;x, y) = B1G(x, y)A(x, y)> or gradψ(Θ;x, y) = G(x, y)A(x, y)>B2

with B1 ∈ Rm×m and B2 ∈ Rn×n, then we can approximate the RFIM in (4.2) by

FR(θ) ≈ EPx,y(θ)

[
A(x, y)A(x, y)>

]
⊗ EPx,y(θ)

[
B1G(x, y)G(x, y)>B1

]
or

FR(θ) ≈ EPx,y(θ)

[
B2A(x, y)A(x, y)>B2

]
⊗ EPx,y(θ)

[
G(x, y)G(x, y)>

]
.

Moreover, if we replace Px,y(θ) by its empirical distribution observed from S, then
we can approximate the REFIM in (4.3) by

F̄R(θ) ≈

 1

|S|
∑

(x,y)∈S

A(x, y)A(x, y)>

⊗
 1

|S|
∑

(x,y)∈S

B1G(x, y)G(x, y)>B1


or

F̄R(θ) ≈

 1

|S|
∑

(x,y)∈S

B2A(x, y)A(x, y)>B2

⊗
 1

|S|
∑

(x,y)∈S

G(x, y)G(x, y)>

 .

Note that the Kronecker product form allows the inverse of F̄R(θ) to be calculated
efficiently by inverting two smaller matrices [38]. A typical manifold that yields the
above Kronecker product representations is the Grassmann manifold Gr(m,n), which
consists of all n (resp., m) dimensional subspaces in Rm (resp., Rn) if m ≥ n (resp.,
m < n). The matrix representation of the projection operator is B1 = Im − ΘΘ>

(m ≥ n) or B2 = In−Θ>Θ (m < n). In what follows, we derive the RFIMs associated
with three concrete applications involving the Grassmann manifold and explain how
they can be computed efficiently.

4.2. Applications.

4.2.1. Low-rank matrix completion. For simplicity, we derive the RFIM
associated with problem (1.3) for the fully observed case, i.e., Ω = {1, . . . , n} ×
{1, . . . , N}. One can derive the RFIM for the partly observed case in a similar fashion.
By definition, we have f(x, U) = Ua(U ;x)− x and ψ(U ;x, y) = − log p(y|f(x, U)) =
1
2‖f(x, U) − y‖2 + n log(2π)

2 . It follows from [13] that the Jacobian of a along a tan-
gent vector H ∈ TUGr(n, p) is given by Ja(U ;x)[H] = H>x and its adjoint J>a (U ;x)
satisfies J>a (U ;x)[v] = x>v for v ∈ Rp. The Riemannian gradient of ψ(·;x, y) is

gradψ(U ;x, y) =(I − UU>)((Ua(U ;x)− x− y)a(U ;x)>)

+ (I − UU>)x(Ua(U ;x)− x− y)>U.

By assuming that the residual Ua(U ;x) − x is close to zero, we have(I − UU>)x ≈
(I−UU>)Ua(U ;x) = 0. This leads to the following approximate Riemannian gradient
of ψ(·;x, y):

(4.4) gradψ(U ;x, y) ≈ (I − UU>)((Ua(U ;x)− x− y)a(U ;x)>).

9

Plugging the above approximation into (4.2) leads to

FR(u) =EPx
[
EPy|x(u)

[
gradψ(u;x, y)gradψ(u;x, y)>

]]
≈EPx

[
EPy|x(U)

[
[a(U ;x)a(U ;x)>]⊗

[
(I − UU>)(Ua(U ;x)− x− y)

(Ua(U ;x)− x− y)>(I − UU>)
]]]

≈

[
1

N

N∑
i=1

a(U ;xi)a(U ;xi)
>

]
⊗ (I − UU>),

where u = vec(U) is the vectorization of U , the second line is due to (4.4), vec(uv>) =
v ⊗ u, (A ⊗ B)> = A> ⊗ B>, and (A ⊗ B)(A> ⊗ B>) = (AA>) ⊗ (BB>), and the
last line follows from EPy|x(U)

[
(Ua(U ;x)− x− y)(Ua(U ;x)− x− y)>

]
= I and by

substituting Px with its empirical distribution. For H ∈ TUGr(n, p), we have

(4.5)

mat(FR(u)[vec(H)]) ≈

[
1

N

N∑
i=1

a(U ;xi)a(U ;xi)
>

]
⊗ (I − UU>)vec(H)

= H

[
1

N

N∑
i=1

a(U ;xi)a(U ;xi)
>

]
,

where mat(b) converts the vector b ∈ Rnp into an n-by-p matrix and the equality
follows from (I − UU>)H = H. For the partly observed case, the matrix FR(u)
defined in the above equation can serve as a good approximation of the exact RFIM.
Note that 1

N

∑N
i=1 a(U ;xi)a(U ;xi)

> ∈ Rp×p is of low dimension since the rank p is
usually small. Thus, the Riemannian natural gradient direction can be calculated
with a relatively low cost.

4.2.2. Low-dimension subspace learning. In multi-task learning [6, 39], dif-
ferent tasks are assumed to share the same latent low-dimensional feature represen-
tation. Specifically, suppose that the i-th task has the training set Xi ∈ Rdi×n and
the corresponding label set yi ∈ Rdi for i = 1, . . . , N . The multi-task feature learning
problem can then be formulated as

(4.6) min
U∈Gr(n,p)

Ψ(U) =
1

2N

N∑
i=1

‖XiUw(U ;Xi, yi)− yi‖2,

where w(U ;Xi, yi) = arg minw
1
2‖XiUw− yi‖2 + λ‖w‖2 and λ > 0 is a regularization

parameter. Suppose that d1 = · · · = dN = d. Then, problem (4.6) has the form (1.1),
where S = {((Xi, yi), 0)}Ni=1, X = Rd×(n+1), Y = Rd, f(X, y, U) = XUw(U ;X, y)−y,
and p(z|f(X, y, U)) = 1√

(2π)d
exp(− 1

2 (z − f(X, y, U))>(z − f(X, y, U))). By ignoring

the constant d log(2π)
2 and slightly abusing the notation, we define ψ(U ;X, y, z) =

1
2‖XUw(U ;X, y)− y − z‖2. Using the optimality of w(U ;X, y), we have U>X>(XU
w(U ;X, y)− y) + λw(U ;X, y) = 0. Then, we can compute the Euclidean gradient of
ψ(·;X, y, z) as

∇ψ(U ;X, y, z)

=X>(XUw(U ;X, y)− y − z)w(U ;X, y)> + J>w (U)
[
U>X>(XUw(U ;X, y)− y − z)

]
≈X>(XUw(U ;X, y)− y)w(U ;X, y)>,

10

where Jw(U) is the Jacobian of w(U ;X, y), J>w (U) denotes the adjoint of Jw(U),
and the approximation holds for small λ and ‖z‖. Note that z will lie in a small
neighborhood of zero with high probability if f(X, y, U) is close to 0. Besides, z is
always zero in the dataset S. With the above, an approximate Riemannian gradient
of ψ(·;X, y, z) is given by

(4.7) gradψ(U ;X, y, z) ≈ (I − UU>)X>(XUw(U ;X, y)− y − z)w(U ;X, y)>.

Consequently, we have

(4.8)

FR(u) = EP(X,y)

[
EPz|(X,y)(u)[gradψ(u;X, y, z)gradψ(u;X, y, z)>]

]
≈ 1

N

N∑
i=1

(wi ⊗ ((I − UU>)X>i))(wi ⊗ ((I − UU>)X>i))>

=
1

N

N∑
i=1

[
(wiw

>
i)⊗ ((I − UU>)X>i Xi(I − UU>))

]
≈ 1

N

[
N∑
i=1

wiw
>
i

]
⊗

[
1

N

N∑
i=1

(I − UU>)X>i Xi(I − UU>)

]
,

where u = vec(U) is the vectorization of U , wi := w(U ;Xi, yi), the second line follows
from (4.7), EPz|(X,y)(u)[(XUw(U ;X, y)−y− z)(XUw(U ;X, y)−y− z)>] = I, and the
empirical approximation of P(X,y), and the last line holds under the same condition
as in (4.2). Though the construction of FR(u) is for the case d1 = · · · = dN , it can
be easily extended to the case where the di’s are not equal.

4.2.3. Fully connected network with batch normalization. Consider an
L-layer neural network with input a0 = x. In the l-th layer, we have

(4.9) sl = Wlal−1 + bl, tl,i =
sl,i − E(sl,i)

Var(sl,i)
× γl,i + βl,i, i = 1, . . . , nl, al = ϕl (tl) ,

where ϕl is an element-wise activation function, Wl ∈ Rnl×nl−1 is the weight, bl ∈ Rnl
is the bias, sl,i is the i-th component of sl ∈ Rnl , γl,i, βl,i ∈ R are two learnable
parameters, Var(sl,i) is the variance of sl,i, and f(x,Θ) = aL ∈ Rm is the output of
the network with Θ being the collection of parameters {Wl, bl, γl, βl}. By default, the
elements of γl,i are set to 1 and the elements of βl,i are set to 0. In [27], tl,i is called
the batch normalization of sl,i.

Given a dataset S, our goal is to minimize the discrepancy between the network
output f(x,Θ) and the observed output y, namely,

(4.10) min
Θ

Ψ(Θ) = − 1

|S|
∑

(x,y)∈S

log p(y|f(x,Θ)).

By [17], each row of Wl lies on the Grassmann manifold Gr(1, nl−1). It follows that Wl

lies on the product of Grassmann manifolds, i.e., Wl ∈ Gr(1, nl−1)×· · ·×Gr(1, nl−1) ∈
Rnl×nl−1 . The remaining parameters lie in the Euclidean space. Rather than batch
normalization, layer normalization [8] and weight normalization [47] have also been
widely investigated in the study of deep neural networks, where vec(Wl) ∈ Gr(nl ×
nl−1, 1) and Wl ∈ Sp(nl−1 − 1)× · · · × Sp(nl−1 − 1) ∈ Rnl×nl−1 with Sp(nl−1 − 1) :=
{u ∈ Rnl−1 : ‖u‖ = 1}, respectively.

11

By back-propagation, the Euclidean gradient of Ψ with respect to Wl is given by

gl ← Dal � ϕ′l (tl)�Dtl, ∇Ψ(Wl)← gla
>
l−1, Dal−1 ←W>l gl.

In particular, we see that ∇Ψ(Wl) has the Kronecker product form (4.1). Moreover,
note that Ψ(wl,i) = Ψ(cwl,i), ∀c 6= 0. Now, we compute

∇Ψ(wl,i)w
>
l,i = lim

t→0

Ψ(wl,i + twl,i)−Ψ(wl,i)

t
= 0.

By definition of the projection operator defined on the product of Grassmann man-
ifolds, the Riemannian gradient grad Ψ(Wl) is actually the same as the Euclidean
gradient ∇Ψ(Wl). Specifically, for the i-th row of gradΨ(Wl), we have

[gradΨ(Wl)]i = gradΨ(wl,i) = ∇Ψ(wl,i)−∇Ψ(wl,i)w
>
l,iwl,i = ∇Ψ(wl,i).

Therefore, the RFIM coincides with the FIM. The inverse of FR(θ) can be computed
easily when the FIM has a Kronecker product form.

5. Convergence Analysis. In this section, we study the convergence behavior
of the RNGD method (Algorithm 1).

5.1. Global convergence to a stationary point. To begin, let us extend
some of the definitions used in the study of Euclidean stochastic trust-region methods
(see, e.g., [16]) to the manifold setting.

Definition 5.1. Let κef , κeg > 0 be given constants. A function mk is called a
(κef , κeg)-fully linear model of Ψ on Bθk(0, 1/σk) if for any y ∈ Bθk(0, 1/σk),

(5.1) ‖∇(Ψ ◦Rθk)(y)−∇mk(y)‖ ≤ κeg

σk
and |Ψ ◦Rθk(y)−mk(y)| ≤ κef

σ2
k

,

where Bθ(0, ρ) := {d ∈ TθM : ‖d‖ ≤ ρ}.
Definition 5.2. Let εF , σk > 0 be given constants. The quantities Ψ0

k and Ψzk

k

are called εF -accurate estimates of Ψ
(
θk
)

and Ψk

(
zk
)
, respectively if

(5.2)
∣∣Ψ0

k −Ψ
(
θk
)∣∣ ≤ εF

σ2
k

and
∣∣∣Ψzk

k −Ψk

(
zk
)∣∣∣ ≤ εF

σ2
k

,

where zk is defined in (3.7).
Analogous to [16, 55], the inequalities (5.1) and (5.2) can be guaranteed when

M is compact, the number of samples is large enough, and ∇(Ψ ◦ R) is Lipschitz
continuous.

Next, we introduce the assumptions needed for our convergence analysis. Their
Euclidean counterparts can be found in, e.g., [16, Assumptions 4.1 and 4.3].

Assumption 5.3. Let θ0 ∈ Rr, σmin > 0 be given. Let L(θ0) denote the set
of iterates generated by Algorithm 1. Then, the function Ψ is bounded from below
on L(θ0). Moreover, the function Ψ ◦ R and its gradient ∇(Ψ ◦ R) are L-Lipschitz
continuous on the set

Lenl(θ
0) =

⋃
θ∈L(θ0)

Bθ

(
0,

1

σmin

)
.

Assumption 5.4. The RFIM or REFIM Fk satisfies ‖Fk‖op ≤ κfim for all k ≥ 0,
where ‖ · ‖op is the operator norm.

12

With the above assumptions, we can prove the convergence of Algorithm 1 by
adapting the arguments in [16]. The main difference is that our analysis makes use of
the pull-back function Ψ ◦R and its Euclidean gradient; see Definitions 5.1 and 5.2.

Theorem 5.5. Suppose that Assumptions 5.3 and 5.4 hold, mk is a (κef , κeg)-

fully linear model for some κef , κeg > 0, and the estimates Ψ0
k and Ψzk

k are εF -

accurate for some εF > 0. Furthermore, suppose that η2 ≥ max
{
κfim,

16κef

1−η1

}
and

εF ≤ min
{
κef ,

1
32η1η2

}
. Then, the sequence of iterates {θk} generated by Algorithm

1 will almost surely satisfy

lim inf
k→∞

∥∥gradΨ(θk)
∥∥ = 0.

Proof. One can prove the conclusion by following the arguments in [16, Theorem
4.16]. We here present a sketch of the proof. Define Fk as the σ-algebra generated by

Ψ0
1,Ψ

z1

1 , . . . ,Ψ
0
k,Ψ

zk

k and m1, . . . ,mk. Consider the random function Φk = vΨ(θk) +
(1− v)/σ2

k, where v ∈ (0, 1) is fixed. The idea is to prove that there exists a constant
τ > 0 such that for all k,

(5.3) E [Φk+1 − Φk | Fk−1] ≤ − τ

σ2
k

< 0.

Summing (5.3) over k ≥ 1 and taking expectations on both sides lead to
∑∞
k=1 1/σ2

k <
∞. The inequality (5.3) can be proved in the following steps. Firstly, a decrease on Ψ
of order −O(1/σ2

k) can be proved using the fully linear model approximation and the
positive definiteness of Fk + σk‖gk‖I with a sufficiently large σk. Secondly, the trial

point zk will be accepted provided that the estimates Ψ0
k and Ψzk

k are εF -accurate with

sufficiently small εF and large σk. In addition, with η2 ≥ max
{
κfim,

16κef

1−η1

}
, if zk is

accepted (i.e., θk+1 = zk), then a decrease of−O(1/σ2
k) on Ψ can always be guaranteed

when εF ≤ min
{
κef ,

1
32η1η2

}
based on the update scheme (3.10). On the other hand,

if zk is rejected (i.e., θk+1 = θk), then E [Φk+1 − Φk|Fk−1] = (1 − v)(1/γ2 − 1)/σ2
k.

By choosing v to be sufficiently close to 1, the inequality (5.3) holds for any k.
Now, we have σk → ∞ as k → ∞ with probability 1. If there exist ε > 0 and

k0 ≥ 1 such that ‖gradΨ(θk)‖ ≥ ε for all k ≥ k0, then the trial point will be accepted

eventually because the estimates Ψ0
k and Ψzk

k are εF -accurate. Recall that σk is
decreasing in the case of accepting zk. This means that σk will be bounded above,
which leads to a contradiction. Hence, we conclude that lim infk→∞ ‖gradΨ(θk)‖ = 0
will hold almost surely.

Remark 5.6. Analogous to [16, Theorem 4.18], one can show that lim
k→∞

‖gradΨ(θk)‖
= 0 will hold almost surely by assuming the Lipschitz continuity of gradΨ.

5.2. Convergence rate analysis of RNGD. In this subsection, we study the
local convergence rate of a deterministic version of the RNGD method. To begin,
let us write L(z, y) := − log p(y|z) and suppose that Px is the empirical distribution
defined by S. Then, according to the definition of RFIM in (3.1) and the chain rule,
we have

FR(θ) =
1

|Sx|
∑
x∈Sx

JR(x, θ)>FL(x, θ)JR(x, θ),

where Sx := {x : (x, y) ∈ S}, FL(x, θ) := EPy|x(θ)[∇z log p(y|z)∇z log p(y|z)>]|z=f(x,θ),

and JR(x, θ) := [gradf1(x, θ), . . . , gradfq(x, θ)]
> is the Riemannian Jacobian of f(x, θ)

13

= [f1(x, θ), . . . , fq(x, θ)]
> with respect to θ. Throughout this subsection, we make the

following assumptions on the loss function L.
Assumption 5.7. For any y ∈ Sy := {y : (x, y) ∈ S}, the loss function L(·, y) is

smooth and µ-strongly convex and has κL-Lipschitz gradient and κH-Lipschitz Hes-
sian, namely,

µI � ∇2
zzL(z, y) � κLI, ‖∇2

zzL(z, y)−∇2
zzL(x, y)‖ ≤ κH‖z − x‖, ∀z, x ∈ Rn.

In addition, the following condition holds:

(5.4) FL(x, θ) = ∇2
zzL(z, y)|z=f(x,θ) := HL(f(x, θ)).

We remark that the equality (5.4) holds if ∇2
zzL(z, y)|z=f(x,θ) does not depend

on y, which is the case for the square loss L(z, y) = ‖z − y‖2 and the cross-entropy
loss L(y, z) = −

∑
j yj log zj . We refer the reader to [37, Section 9.2] for other loss

functions that satisfy (5.4). We remark that the square loss L(z, y) = ‖z−y‖2, which
appears in both the LRMC and low-dimension subspace learning problems, satisfies
Assumption 5.7.

Now, we write S = {(xi, yi)}Ni=1 withN = |S| and u(θ) = [f(x1, θ), . . . , f(xN , θ)]
>.

Define JR(θ) := [JR(x1, θ), . . . , J
R(xN , θ)] and HL(u(θ)) := blkdiag(HL(u(θ)1), . . . ,

HL(u(θ)N)). Then, we have FR(θ) = JR(θ)>HL(u(θ))JR(θ). For simplicity, let
uk := u(θk). Note that FR(θ) may be singular when JR(θ) is not of full column rank.

In this case, provided that
(
JR(θk)JR(θk)>

)−1
exists, we can use the pseudo-inverse

FR(θk)† = JR(θk)>(JR(θk)JR(θk)>)−1HL(uk)−1(JR(θk)JR(θk)>)−1JR(θk)

for computation. As mentioned at the beginning of this subsection, we focus on a
deterministic version of the RNGD method, in which we adopt a fixed step size t > 0
and perform the update

(5.5) dk = (FR(θk))†JR(x, θk)>∇L(uk, y), θk+1 = Rθk(−tdk)).

For concreteness, let us take R to be the exponential map for M in our subsequent
development. Our convergence rate analysis of this deterministic RNGD method can
be divided into two steps. The first step is to prove that the iterates {θk} always stay
in a neighborhood of θ0 if JR satisfies certain stability condition. The second step is
to establish the convergence rate of the method by utilizing the strong convexity of L.
Motivated by [63], we now formulate the aforementioned stability condition on JR.

Assumption 5.8. For any θ satisfying ‖θ − θ0‖ ≤ 4κL(µσ0)−1‖u0 − y‖, where
σ0 :=

√
λmin(JR(θ0)JR(θ0)>) > 0, it holds that

(5.6) ‖JR(θ)− JR(θ0)‖ ≤ min

{
1

2
,
µ

6κL

}
σ0.

As will be seen in Section 5.3, Assumption 5.8 is satisfied by the Riemannian
Jacobian that arises in a two-layer fully connected neural network with batch nor-
malization and sufficiently large width. We are now ready to prove the following
theorem.

Theorem 5.9. Let R be the exponential map for M. Suppose that Assumptions
5.7 and 5.8 hold. Let {θk} be the iterates generated by (5.5).

14

(a) There exists a constant κR > 0 such that if ‖u0 − y‖ < µ
3κH

and t ≤
min

{
1,
(

1
6|‖u0−y‖ −

κH
2µ

)
· 3µ2σ0

8κRκ2
L

}
, then

(5.7) ‖uk+1 − y‖ ≤
(

1− t

2

)
‖uk − y‖.

(b) Suppose further that JR is κJ -Lipschitz continuous with respect to θ, i.e.,

(5.8) ‖JR(θ)− JR(ν)‖ ≤ κJ‖θ − ν‖, ∀θ, ν ∈ Rr.

The rate of convergence is quadratic when t = 1, namely, there is a constant
κq > 0 such that

(5.9) ‖uk+1 − y‖ ≤ κq‖uk − y‖2.

Proof. (a). We proceed by induction. Assume that for j ≤ k, we have

‖θj − θ0‖ ≤ 4κL(µσ0)−1‖u0 − y‖, ‖uj − y‖ ≤
(

1− η

2

)
‖uj−1 − y‖.

By the definition of dk in (5.5),

(5.10)

‖dk‖ ≤ ‖JR(θk)>(JR(θk)JR(θk)>)−1‖‖HL(θk)−1‖‖∇uL(uk, y)−∇uL(y, y)‖
≤ µ−1κLσ

−1
min(JR(θk))‖uk − y‖

≤ 2κL(µσ0)−1‖uk − y‖,

where the first inequality is due to ∇L(y, y) = 0 and the last inequality is from
Assumption 5.8. Now, define the map ck : [0, 1] →M as ck(s) = Rθk(−stdk). Note
that for the exponential map R, the geodesic distance between θ and Rθ(ξ) is equal
to ‖ξ‖ [1, Equation (7.25)], and inequality (2.2) holds with α = 1 when we take the
Euclidean metric as the Riemannian metric on M. Thus, for any s ∈ [0, 1],

‖ck(s)− θ0‖ ≤ ‖ck(s)− θk‖+

k−1∑
j=0

‖θj+1 − θj‖ ≤ t
k∑
j=0

‖dj‖

≤ 2κL(µσ0)−1t

k∑
j=0

‖uj − y‖,

where the second inequality is due to (2.2). Since ‖uj − y‖ ≤ (1 − η
2)‖uj−1 − y‖ for

all j ≤ k, we have ‖ck(s) − θ0‖ ≤ 4κL(µσ0)−1‖u0 − y‖ for all s ∈ (0, 1]. This gives
‖θk+1−θ0‖ ≤ 4µκLσ

−1
0 ‖u0−y‖. To prove (5.7), we split ‖uk+1−y‖ into three terms,

namely,

(5.11)

uk+1 − y =uk+1 − uk + uk − y =

∫ 1

0

JR(ck(s))c′k(s)ds+ uk − y

=

∫ 1

0

JR(ck(s))(c′k(s)− tdk)ds︸ ︷︷ ︸
b1

+ t

∫ 1

0

(JR(ck(s))− JR(θk))dkds︸ ︷︷ ︸
b2

+ t

∫ 1

0

JR(θk)dkds+ uk − y︸ ︷︷ ︸
b3

.

15

For the exponential map R [1, Equation (5.24)], it holds that

(5.12) c′k(s)− tdk = c′′k(s)[−stdk] + κ̃Rs
2t2‖dk‖2,

where c′′k(s)[−stdk] belongs to the normal space to M at ck(s) and κ̃R > 0 is the
smoothness constant. Plugging (5.12) into (5.11), we have

‖b1‖ ≤
∫ 1

0

(‖JR(θ0)‖+ ‖JR(ck(s))− JR(θ0)‖)κ̃Rs2t2‖dk‖2ds

≤
∫ 1

0

2σ0κRs
2t2‖dk‖2ds =

2

3
σ0κRt

2‖dk‖2,

where κR := κ̃R · (1/4 + ‖JR(θ0)‖/(2σ0)). By (5.6) and (5.10), we have

‖b2‖ ≤ t
∫ 1

0

min

{
1

2
,
µ

6κL

}
σ0 · 2κL(µσ0)−1‖uk − y‖ds ≤ t

3
‖uk − y‖.

Now, the update (5.5) yields JR
(
uk
)
dk = HL

(
uk
)−1∇L

(
uk, y

)
. It follows that

‖b3‖ = ‖uk − y − tHL

(
uk
)−1 (∇L (uk, y)−∇L(y, y)

)
‖

= ‖HL

(
uk
)−1 (

HL

(
uk
) (
uk − y

)
− t
(
∇L

(
uk, y

)
−∇L(y, y)

))
‖

=

∥∥∥∥HL

(
uk
)−1

(
HL

(
uk
) (
uk − y

)
− t
∫ 1

0

HL

(
uk + s

(
y − uk

)) (
uk − y

)
ds

)∥∥∥∥
=

∥∥∥∥HL

(
uk
)−1

[∫ 1

0

(
HL

(
uk
)
− tHL

(
uk + s

(
y − uk

)))
ds

] (
uk − y

)∥∥∥∥
≤
∫ 1

0

(
1− t+ tµ−1κHs

∥∥uk − y∥∥) ds ·
∥∥uk − y∥∥

=

(
1− t+

κHt

2µ

∥∥uk − y∥∥)∥∥uk − y∥∥ ,
where the first inequality is due to Assumption 5.7. Combining the estimates on
b1, b2, b3, we conclude that
(5.13)

‖uk+1 − y‖ ≤
(

1− 2t

3
+
κHt

2µ
‖uk − y‖

)
‖uk − y‖+

8

3
µ−2κRκ

2
Lσ
−1
0 t2‖uk − y‖2

≤
(

1− t

2

)
‖uk − y‖

whenever ‖uk − y‖ < µ
3κH

and t ≤
(

1
6‖uk−y‖ −

κH
2µ

)
· 3µ2σ0

8κRκ2
L

. Therefore, the inequality

(5.7) holds by using the inductive hypothesis ‖uk − y‖ ≤ ‖u0 − y‖.
(b). The proof is similar to that for (a). Substituting t = 1 into (5.11), we obtain

‖uk+1 − y‖ ≤ κH
2µ
‖uk − y‖2 +

1

2
κJ‖dk‖2 +

8

3
µ−2κRκ

2
Lσ
−1
0 ‖uk − y‖2

≤
[
κH
2µ

+ 2κ2
L(µσ0)−2

(
κJ +

4

3
σ0κR

)]
‖uk − y‖2,

16

where we use (5.8) to get∥∥∥∥∫ 1

0

(JR(ck(s))− JR(θk))dkds

∥∥∥∥
≤κJ

∫ 1

0

‖ck(s)− θk‖‖dk‖ds ≤ 1

2
κJ‖dk‖2 ≤ 2κJκ

2
L(µσ0)−2‖uk − y‖2.

The verification of the neighborhood condition for θk is similar to that in (a). This
completes the proof.

5.3. Jacobian stability of two-layer neural network with batch normal-
ization. From the previous subsection, we see that the Jacobian stability condition
in Assumption 5.8 plays an important role in the convergence rate analysis of the
RNGD method. Let us now show that such a condition is satisfied by a two-layer
neural network with batch normalization, thereby demonstrating its relevance. The
difference between our setting and that of [63] lies in the use of batch normalization.
To begin, consider the input-output map f given by

(5.14) f(x, θ, a) =
1√
m

m∑
j=1

ajφ

θ>j (x− E[x])√
θ>j V θj

 ,

where x ∈ Rn is the (random) input vector, V = E[(x − E[x])(x − E[x])>] is the
covariance matrix, θ = [θ>1 , θ

>
2 , . . . , θ

>
m]> ∈ Rmn is the weight vector of the first layer,

aj ∈ R is the output weight of hidden unit j, and φ is the ReLU activation function.
This represents a single-output two-layer neural network with batch normalization.
We fix the aj ’s throughout as in [63] and apply the RNGD method with a fixed
step size on θ, in which each weight vector θj is assumed to be normalized. For the
Grassmann manifold Gr(1, n), we choose d with ‖d‖ = 1 as the representative element
of the one-dimensional subspace {cd : c 6= 0}. With a slight abuse of notation, we
write Gr(1, n) := {d ∈ Rn : ‖d‖ = 1}. Then, we can regard the vector θ as lying on a
Cartesian product of Gr(1, n)’s.

It is well known that if θj is a standard Gaussian random vector, then the random
vector θj/‖θj‖ is uniformly distributed on Gr(1, n). We draw each θj uniformly from
Gr(1, n) and each aj uniformly from {−1,+1}. As mentioned in Section 4.2.3, we have
JR(θ) = J(θ). Thus, our goal now is to establish the stability of J . To begin, let S =
{(xi, yi)}Ni=1 denote the dataset and u(θ) = [f(x1, θ, a), f(x2, θ, a), . . . , f(xN , θ, a)]>

denote the output vector. Following [18, 56, 63], we make the following assumption
on S.

Assumption 5.10. For any (x, y) ∈ S, it holds that ‖x‖ = 1 and |y| = O(1).
For any xi, xj ∈ Sx with i 6= j, it holds that xi 6= ±xj . In addition, the input vector
x satisfies E[x] = 0 and the covariance matrix V = E[xx>] is positive definite with
minimum eigenvalue σV > 0.

Motivated by [63], we use [x>i θ
0
j]k− to represent the k-th smallest entry of [x>i θ

0
1,

x>i θ
0
2, . . . , x

>
i θ

0
m] in absolute value. Since V is positive definite and Gr(1, n) = {d ∈

Rn : ‖d‖ = 1} is compact, for i = 1, . . . , N , the function u 7→ ϕi(u) = xi√
u>V u

−
V uu>xi

(u>V u)3/2 is L-Lipschitz on Gr(1, n) for some constant L > 0, i.e., ‖ϕi(u)− ϕi(v)‖ ≤
L‖u − v‖ for any u, v ∈ Gr(1, n). To prove the desired Jacobian stability result, we
need the following lemmas. They extend those in [63], which are developed for the
Euclidean setting, to the Grassmann manifold setting. In what follows, we use δA to

17

denote the indicator function of an event A, i.e., δA takes the value 1 if the event A
happens and 0 otherwise.

Lemma 5.11. Let θj , θ
0
j ∈ Gr(1, n), where j = 1, . . . ,m, be given. Suppose that

for some k ∈ {1, . . . ,m}, we have
∥∥θ − θ0

∥∥ ≤ √k[x>i θ
0
j]k− for i = 1, 2, . . . , N and

j = 1, 2, . . . ,m. Then, we have

(5.15)
∥∥J(θ)− J(θ0)

∥∥2 ≤ 2NkM +NkL

m
,

where M = maxi∈{1,...,N}

(
maxu∈Gr(1,n)

∥∥∥ xi√
u>V u

− V uu>xi
(u>V u)3/2

∥∥∥2
)

.

Proof. Let Ai,j denote the event that the signs of x>i θj and x>i θ
0
j are different.

We claim that, for i = 1, 2, . . . , N , there are at most 2k non-zero entries of {δAi,j}mj=1.
Otherwise, there exists an i ∈ {1, . . . , N} such that

‖θ − θ0‖2 ≥
m∑
j=1

|x>i θj − x>i θ0
j |2

≥
∑

j∈{j:δAi,j=1}

|x>i θj − x>i θ0
j |2 ≥

∑
j∈{j:δAi,j=1}

|x>i θ0
j |2 > k[x>i θ

0
j]

2
k−,

which contradicts our assumption. Now, the generalized Jacobian of f with respect
to θ is given by

J(θ) =
1√
m

m∑
j=1

N∑
i=1

aj

[
δx>i θ1≥0 · ϕi(θ1)>, . . . , δx>i θm≥0 · ϕi(θm)>

]
.

When x>i θj and x>i θ
0
j have the same sign, the difference δx>i θj≥0 ·

aj√
m
ϕi(θj)−δx>i θ0

j≥0 ·
aj√
m
ϕi(θ

0
j) is either 0 or

aj√
m

(ϕi(θj)−ϕi(θ0
j)). Splitting ‖J(θ)−J(θ0)‖2 into two parts

according to the event Ai,j yields

‖J(θ)− J(θ0)‖2

≤M
m

∑
(xi,yi)∈S

m∑
j=1

δAi,j +
L

m

∑
(xi,yi)∈S

m∑
j=1

‖θj − θ0
j‖2

≤2NkM

m
+
L

m

∑
(xi,yi)∈S

‖θ − θ0‖2

≤2NkM +NkL

m
,

where the last inequality follows from the assumption on ‖θ − θ0‖ and the fact that
|[x>i θ0

j]k−| ≤ 1 for i = 1, . . . , N and j = 1, . . . ,m.

The next lemma gives an upper bound on the probability of the event {|x>i θj | ≤ γ}
for all γ > 0, which will be used to estimate [x>i θ

0
j]k− in Lemma 5.13.

Lemma 5.12. Let v be uniformly distributed on Gr(1, n), x ∈ Gr(1, n) be a given
unit-norm vector, and γ > 0 be a given positive number, where n ≥ 2. Then, we have
P(|x>v| ≤ γ) ≤

√
πnγ. Moreover, the dependence on n in the bound is optimal up to

constant factors.

18

Proof. Without loss of generality, we may assume that x = (1, 0, . . . , 0) since
the Euclidean inner product and the distribution of v are invariant under orthogo-
nal transformation. Then, we have x>v = v1. Let Z1, . . . , Zn be standard Gauss-
ian random variables. Then, the random variable x>v has the same distribution as
B := Z1√

Z2
1+···+Z2

n

. It is well known that B2 follows the distribution Beta(1
2 ,

n−1
2) [29,

Section 25.2]. As a result, the density function h of B can be explicitly written as

(5.16) h(r) =
Γ(n2)

√
πΓ(n−1

2)
(1− r2)

n−3
2 , |r| < 1.

It follows directly that

(5.17) P(|x>v| ≤ γ) = P(|B| ≤ γ) =

∫ γ

−γ
h(r)dr ≤

γΓ(n2)
√
πΓ(n−1

2)
≤
√
πnγ,

where the last step uses the classic result Γ(n2) ≤ π
√
nΓ(n−1

2) in calculus.
To see the optimality of the dependence on n in the bound, note that for γ ≤ 1√

n
,

we have

P(|x>v| ≤ γ) = P(|B| ≤ γ) =

∫ γ

−γ
h(r)dr ≥

γΓ(n2)

2
√
πΓ(n−1

2)
≥ 5

12
√

2e

√
n,

where the third step uses (1 − r2)
n−3

2 ≥ 1 − n−3
2 r2 and the fact that γ ≤ 1√

n
, and

the last step follows from an application of Stirling’s formula; see, e.g., [53, Eq. (33)].
Hence, the dependence on n in the bound is optimal up to constant factors.

Using the above lemmas, we show that Assumption 5.8 will hold with high prob-
ability.

Lemma 5.13. Let θj , θ
0
j ∈ Gr(1, n), where j = 1, . . . ,m, be given. For any given

Q, ε > 0, if ‖θ − θ0‖ ≤ Q, then with probability at least 1− ε, we will have

(5.18) ‖J(θ)− J(θ0)‖2 ≤ 2(πn)
1
3N

5
3MQ

2
3

ε
2
3m

1
3

+
(πn)

1
3N

5
3LQ

2
3

ε
2
3m

1
3

.

Proof. For given integers k ∈ {1, . . . ,m} and i ∈ {1, 2 . . . , N}, we prove that with
probability at least 1 − ε/N , there will be at most k − 1 hidden units θ0

j such that

|x>i θ0
j | ≤ kε

Nm
√
πn

. For τ > 0, let γτ be the positive number such that P(|g| ≤ γτ) = τ ,

where g follows the same distribution as x>i θ
0
j . It follows from Lemma 5.12 that

γτ ≥ 1√
πn
τ . Let τ = kε

Nm . Then, we have

(5.19) E

 m∑
j=1

δ|x>i θ0
j |≤γτ

 =

m∑
j=1

P
[∣∣x>i θ0

j

∣∣ ≤ γτ] ≤ kε

N
.

Applying the Markov inequality yields

(5.20) P

 m∑
j=1

δ|x>i θ0
j |≤γτ ≥ k

 ≤ ε

N
.

Therefore, by taking k = Q
2
3m

2
3 (πn)

1
3N

2
3

ε
2
3

, the inequalities
√
k[x>i θ

0]k− ≥ k
3
2 ε

Nm
√
πn

= Q

will hold simultaneously for i = 1, . . . , N with probability at least 1− ε. The desired
conclusion then follows from Lemma 5.11.

19

With the help of Lemma 5.13, we are now ready to establish the convergence
rate of the RNGD method when applied to the two-layer neural network with batch
normalization.

Theorem 5.14. Suppose that Assumptions 5.7 and 5.10 hold. Let ε > 0 be a
given constant. Suppose that the number m of hidden units satisfy

m = Ω

 128(L+ 2M)3πnN6κ2
L

µ2σ8
0σV ε

3 min
{

1
2 ,

µ
6κL

}6

 ,

where the constants L,M, κL, µ, σ0, σV are defined previously. If we draw θ0
j uni-

formly from Gr(1, n) and aj uniformly from {−1,+1} for j = 1, 2 . . . ,m, then the
Riemannian Jacobian stability condition in Assumption 5.8 will hold with probability

at least 1 − ε. Furthermore, when m ≥ 16(L+2M)3πnN5κ2
L

9σ8
0κ

2
Hε

2 min
{

1
2 ,

µ
6κL

}6 , ‖u0 − y‖ ≤ µ
3κH

, and

η ≤ min
{

1,
(

1
6|‖u0−y‖ −

κH
2µ

)
· 3µ2σ0

8κRκ2
L

}
, with probability at least 1− ε, we will have

(5.21) ‖uk+1 − y‖ ≤
(

1− 1

2
η

)
‖uk − y‖.

Proof. By Assumption 5.10 and the fact that aj is drawn uniformly from {−1,+1},
we have E

[
u0
]

= 0 and

E
[
(u0
j)

2
]

= E

 1

m

 m∑
j=1

ajφ

 (θ0
j)
>(x− E[x])√
(θ0
j)
>V θ0

j

2


= E

 1

m

m∑
j=1

φ

 (θ0
j)
>x√

(θ0
j)
>V θ0

j

2
 = O

(
1

σV

)
, j = 1, . . . , N.

This gives

(5.22) E
[
‖u0 − y‖2

]
= ‖y‖2 + 2y>E[u0] + E

[
‖u0‖2

]
= O

(
N

σV

)
.

Applying the Markov inequality, we see that ‖u0 − y‖2 = O
(

2N
εσV

)
will hold with

probability at least 1 − 1
2ε. This, together with the result of Lemma 5.13 with Q =

4κL(µσ0)−1‖u0 − y‖, implies that Assumption 5.8 will hold with probability at least

1− ε for m = Ω

(
128(L+2M)3πnN6κ2

L

µ2σ8
0σV ε

3 min
{

1
2 ,

µ
6κL

}6

)
.

To establish the convergence rate result, observe from Theorem 5.9 that ‖θk −
θ0‖ ≤ 4κL(µσ0)−1‖u0−y‖ when ‖u0−y‖ ≤ µ

3κH
and η ≤ min

{
1,
(

1
6|‖u0−y‖ −

κH
2µ

)
· 3µ2σ0

8κRκ2
L

}
.

By taking Q = 4κLσ
−1
0 /(3κH) in Lemma 5.13, we see that Assumption 5.8 will hold

with probability at least 1 − ε if m ≥ 16(L+2M)3πnN5κ2
L

9σ8
0κ

2
Hε

2 min
{

1
2 ,

µ
6κL

}6 . Following the proof of

Theorem 5.9, we conclude that (5.21) will hold for all k ≥ 0 with probability at least
1− ε. This completes the proof.

20

6. Numerical results.

6.1. Low-rank matrix completion. We compare our proposed RNGD method
with the Riemannian stochastic gradient descent (RSGD) method [11], the Riemann-
ian stochastic variance-reduced gradient (RSVRG) method [50], and the Riemannian
conjugate gradient (RCG) method without preconditioner [13]. All algorithms are
initialized by the QR decomposition of a random n-by-p matrix whose entries are
generated from the standard Gaussian distribution. We consider two real datasets.
One is taken from the Jester joke recommender system,1 which contains ratings (with
scores from −10.00 to +10.00) of 100 jokes from 24983 users. The other is the movie
rating dataset MovieLens-1M,2 which contains ratings (with stars from 1 to 5) of
3952 movies from 6040 users. In the experiments, each dataset is randomly divided
into 2 sets, one for training and the other for testing. We utilize the implementa-
tions of RSGD and RSVRG given in the RSOpt package3 and the implementation
of RCG given in the Manopt package.4 The default parameters therein are used.
For RNGD, the same variance reduction technique as that in RSVRG is adopted to
update both the estimated gradient and the approximate RFIM (4.5). Specifically,
we compute ai(U) for all i in each outer iteration and update ai(U) if the i-th sample
is used in the estimation of the gradient. We use fixed step sizes for RNGD and
RSVRG. For RSGD, the step size ηk is set to ηk = η0

1+η0k/10 . We search in the set

{2, 1, 0.5, . . . , 2× 10−8, 10−8, 5× 10−9} to find the best initial step size η0 for RSGD
and the best step size for RSVRG. The step size for RNGD is set to 0.05 for both
datasets.

Figure 6.1 reports the mean squared error (MSE) on both the training and test-
ing datasets, which are defined as ‖PΩtrain

(UA − X)‖2/|Ωtrain| and ‖PΩtest
(UA −

X)‖2/|Ωtest|, respectively, where Ωtrain and Ωtest are the sets of known indices in
the training and testing datasets, respectively. The label #grad/N on the x-axis
means the number of epochs, which is defined as the number of cycles through the
full dataset. We run all algorithms with a specified number of epochs for different
datasets. We can see that RNGD converges the fastest among the four methods on
both datasets.

6.2. Low-dimension subspace learning. We compare our proposed RNGD
with RCG, RSGD, and RSVRG on two real-world datasets: School [22] and Sarcos
[54]. The dimension p is set to be 6 for both datasets. We choose the best step sizes
for RSVRG and RSGD from the set {1, 0.5, 0.2, 0.1, 0.05, 0.02, . . . , 10−8, 5 ×10−9, 2×
10−9, 10−9}. We use the step size 4 (resp., 1) on the School (resp., Sarcos) dataset for
RNGD. All the codes are implemented within the RSOpt framework and the other
parameters of the algorithms are set to the default values therein.

Figure 6.2 reports the normalized MSE (NMSE) [39] on both datasets, which is the
mean of the normalized squared error of all tasks. For both datasets, RNGD returns a
point with the lowest NMSE. Especially for the Sarcos dataset, a significant difference
in the NMSE between RNGD and other methods is observed. Another noteworthy
phenomenon is that RGD and RSVRG tend to be less efficient than RCG. This
demonstrates the advantage of using the Fisher information.

1The dataset Jester can be downloaded from https://grouplens.org/datasets/jester
2The dataset MovieLens-1M can be downloaded from https://grouplens.org/datasets/movielens
3The code of RSOpt can be downloaded from https://github.com/hiroyuki-kasai/RSOpt
4The code of Manopt can be downloaded from https://github.com/NicolasBoumal/manopt

21

https://grouplens.org/datasets/jester
https://grouplens.org/datasets/movielens
https://github.com/hiroyuki-kasai/RSOpt
https://github.com/NicolasBoumal/manopt

Fig. 6.1. Numerical results for LRMC on the Jester dataset (first row) and the MovieLens-1M
dataset (second row).

6.3. Deep Learning. Batch normalization and momentum-based optimizer are
standard techniques to train state-of-the-art image classification models [24, 48, 52].
We evaluate the proposed method with Kronecker-factorized approximate RFIM de-
scribed in Section 4, denoted by MKFAC, on VGG16BN [52] and WRN-16-4 [61] while
the benchmark datasets CIFAR-10/100 [35] are used. The detailed network structures
are described in [52, 61]. In VGG16BN, batch normalization layers are added before
every ReLU activation layer. Additionally, we change the number of neurons in fully
connected layers from 4096 to 512 and remove the middle layer of the last three in
VGG due to memory allocation problems (otherwise, one has to compute the inverse
of 40962-by-40962 matrices). This setting is also adopted in [17, 60].

The baseline algorithms are SGD, Adam, KFAC [38], AdamP, and SGDP [25].
The tangential projections are used to control the increase in norms of the weight
parameters in AdamP and SGDP. These methods can be seen as approximate Rie-
mannian first-order methods. We fine tune the initial learning rates of the base-
line algorithms by searching in the set {0.5, 0.2, 0.1, 0.05, 0.02, 0.01, . . . , 5× 10−5, 2×
10−5, 10−5}. The learning rate decays in epoch 30, 60, and 90 with a decay rate 0.1,
where an epoch is defined as one cycle through the full training dataset. We choose
the parameters β1, β2 in Adam and AdamP from the set {0.9, 0.99, 0.999}. We search
in the set {0.05, 0.1, 0.2, 0.5, 1, 2} to determine the damping parameter λ used in cal-
culating the natural direction (Fk + λI)−1gk and update the KFAC matrix in epoch
30, 60, and 90. The initial damping parameter of KFAC is set to 2 in all four tasks.
We set the weight decay to 5 × 10−4 for all algorithms. Each mini-batch contains
128 samples. The maximum number of epochs is set to 100 for all algorithms. For
MKFAC, we use RNGD for parameters constrained on the Grassmann manifold and

22

Fig. 6.2. Numerical results for multitask learning on the School dataset (first row) and the
Sarcos dataset (second row).

Table 6.1
Classification accuracy of various networks on CIFAR-10/100 (median of five runs).

Dataset CIFAR-10 CIFAR-100
Model WRN-16-4 VGG16BN WRN-16-4 VGG16BN
SGD 93.84 92.88 74.30 71.79

SGDP 93.42 92.49 73.67 71.54
Adam 92.53 89.88 71.64 62.79

AdamP 92.55 91.43 71.23 58.88
KFAC 93.90 94.36 74.31 76.38

MKFAC 94.06 94.76 74.55 77.28

SGD for the remaining parameters. Let η, ηg denote the learning rates for the Euclid-
ean space and Grassmann manifold, respectively. For the dataset CIFAR-10, we set
ηg = 0.25 and η = 0.05 with decay rates 0.2 and 0.1, respectively. The weight decay
is only applied to the unconstrained weights with parameter 5 × 10−4. The initial
MKFAC damping parameters for WRN-16-4 and VGG16BN are set to 1 and 2 with
decay rates 0.8 and 0.5, respectively, when the preconditioners update in epoch 30,
60, and 90. For the dataset CIFAR-100, we set ηg = 0.3 for WRN-16-4, ηg = 0.15
for VGG16BN, and η = 0.05 for both. The learning rate ηg has a decay rate 0.15 for
WRN-16-4 and 0.2 for VGG16BN, while η has a decay rate 0.1 for both of them. The
initial MKFAC damping parameters for VGG16BN and WRN16-4 are set to 0.5 and
1 with decay rates 0.5 and 0.8, respectively. Other settings are the same as KFAC.

Table 6.1 presents the comparison of the baseline and the proposed algorithms
on CIFAR-10 and CIFAR-100 datasets. We list the best classification accuracy in

23

100 epochs, where the results are obtained from the median of 5 runs. The per-
formance of our proposed MKFAC method is the best in all four tasks. Compared
with the second-order type method KFAC, our MKFAC method reaches higher accu-
racy, though KFAC has a much better behavior than SGD on these tasks. Compared
with the manifold geometry-based first-order algorithms SGDP and AdamP, we see
that using second-order information can give better accuracy than using first-order
information alone.

7. Conclusion. In this paper, we developed a novel efficient RNGD method for
tackling the problem of minimizing a sum of negative log-probability losses over a
manifold. Key to our development is a new notion of FIM on manifolds, which we
introduced in this paper and could be of independent interest. We established the
global convergence of RNGD and the local convergence rate of a deterministic ver-
sion of RNGD. Our numerical results on representative machine learning applications
demonstrate the efficiency and efficacy of the proposed method.

REFERENCES

[1] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on matrix manifolds,
Princeton University Press, Princeton, NJ, 2008.

[2] P.-A. Absil, R. Mahony, and J. Trumpf, An extrinsic look at the Riemannian Hessian, in
Geometric science of information, Springer, 2013, pp. 361–368.

[3] P.-A. Absil and J. Malick, Projection-like retractions on matrix manifolds, SIAM Journal
on Optimization, 22 (2012), pp. 135–158.

[4] S.-i. Amari, Neural learning in structured parameter spaces-natural Riemannian gradient, In-
ternational Conference on Neural Information Processing Systems, 9 (1996).

[5] S.-I. Amari, Natural gradient works efficiently in learning, Neural computation, 10 (1998),
pp. 251–276.

[6] R. K. Ando, T. Zhang, and P. Bartlett, A framework for learning predictive structures
from multiple tasks and unlabeled data, Journal of Machine Learning Research, 6 (2005).

[7] R. Anil, V. Gupta, T. Koren, K. Regan, and Y. Singer, Scalable second order optimization
for deep learning, arXiv:2002.09018, (2020).

[8] J. L. Ba, J. R. Kiros, and G. E. Hinton, Layer normalization, International Conference on
Neural Information Processing Systems, (2016).

[9] A. Bahamou, D. Goldfarb, and Y. Ren, A mini-block natural gradient method for deep
neural networks, arXiv:2202.04124, (2022).

[10] G. Bécigneul and O.-E. Ganea, Riemannian adaptive optimization methods, International
Conference on Learning Representations, (2019).

[11] S. Bonnabel, Stochastic gradient descent on Riemannian manifolds, IEEE Transactions on
Automatic Control, 58 (2013), pp. 2217–2229.

[12] N. Boumal, An introduction to optimization on smooth manifolds, Available online, May, 3
(2020).

[13] N. Boumal and P.-A. Absil, Low-rank matrix completion via preconditioned optimization on
the Grassmann manifold, Linear Algebra and its Applications, 475 (2015), pp. 200–239.

[14] N. Boumal, P.-A. Absil, and C. Cartis, Global rates of convergence for nonconvex optimiza-
tion on manifolds, IMA Journal of Numerical Analysis, 39 (2018), pp. 1–33.

[15] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer, A stochastic quasi-Newton method
for large-scale optimization, SIAM Journal on Optimization, 26 (2016), pp. 1008–1031.

[16] R. Chen, M. Menickelly, and K. Scheinberg, Stochastic optimization using a trust-region
method and random models, Mathematical Programming, 169 (2018), pp. 447–487.

[17] M. Cho and J. Lee, Riemannian approach to batch normalization, International Conference
on Neural Information Processing Systems, 30 (2017).

[18] S. S. Du, X. Zhai, B. Poczos, and A. Singh, Gradient descent provably optimizes over-
parameterized neural networks, International Conference on Learning Representations,
(2019).

[19] J. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient methods for online learning and
stochastic optimization., Journal of machine learning research, 12 (2011).

[20] H. Flanders, Differentiation under the integral sign, The American Mathematical Monthly,

24

80 (1973), pp. 615–627.
[21] D. Goldfarb, Y. Ren, and A. Bahamou, Practical quasi-Newton methods for training deep

neural networks, International Conference on Neural Information Processing Systems, 33
(2020), pp. 2386–2396.

[22] H. Goldstein, Multilevel modelling of survey data, Journal of the Royal Statistical Society.
Series D (The Statistician), 40 (1991), pp. 235–244.

[23] R. Grosse and J. Martens, A Kronecker-factored approximate Fisher matrix for convolution
layers, in International Conference on Machine Learning, 2016, pp. 573–582.

[24] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,
pp. 770–778.

[25] B. Heo, S. Chun, S. J. Oh, D. Han, S. Yun, G. Kim, Y. Uh, and J.-W. Ha, Adamp: Slowing
down the slowdown for momentum optimizers on scale-invariant weights, International
Conference on Learning Representations, (2021).

[26] J. Hu, X. Liu, Z.-W. Wen, and Y.-X. Yuan, A brief introduction to manifold optimization,
Journal of the Operations Research Society of China, 8 (2020), pp. 199–248.

[27] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing
internal covariate shift, in International conference on machine learning, 2015, pp. 448–456.

[28] B. Jiang, S. Ma, A. M.-C. So, and S. Zhang, Vector transport-free SVRG with general re-
traction for Riemannian optimization: Complexity analysis and practical implementation,
arXiv:1705.09059, (2017).

[29] N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous univariate distributions, volume
2, vol. 289, John wiley & sons, 1995.

[30] R. Johnson and T. Zhang, Accelerating stochastic gradient descent using predictive variance
reduction, International Conference on Neural Information Processing Systems, 26 (2013),
pp. 315–323.

[31] H. Kasai, P. Jawanpuria, and B. Mishra, Riemannian adaptive stochastic gradient al-
gorithms on matrix manifolds, in International Conference on Machine Learning, 2019,
pp. 3262–3271.

[32] H. Kasai and B. Mishra, Inexact trust-region algorithms on Riemannian manifolds., in
NeurIPS, 2018, pp. 4254–4265.

[33] H. Kasai, H. Sato, and B. Mishra, Riemannian stochastic quasi-Newton algorithm with
variance reduction and its convergence analysis, in International Conference on Artificial
Intelligence and Statistics, 2018, pp. 269–278.

[34] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, International Confer-
ence for Learning Representations, (2015).

[35] A. Krizhevsky, G. Hinton, et al., Learning multiple layers of features from tiny images,
(2009).

[36] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, 521 (2015), p. 436.
[37] J. Martens, New insights and perspectives on the natural gradient method, The Journal of

Machine Learning Research, 21 (2020), pp. 5776–5851.
[38] J. Martens and R. Grosse, Optimizing neural networks with Kronecker-factored approximate

curvature, in International conference on machine learning, 2015, pp. 2408–2417.
[39] B. Mishra, H. Kasai, P. Jawanpuria, and A. Saroop, A Riemannian gossip approach to

subspace learning on Grassmann manifold, Machine Learning, 108 (2019), pp. 1783–1803.
[40] J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in Operations Re-

search and Financial Engineering, Springer, New York, second ed., 2006.
[41] L. Nurbekyan, W. Lei, and Y. Yang, Efficient natural gradient descent methods for large-

scale optimization problems, arXiv:2202.06236, (2022).
[42] Y. Ollivier, L. Arnold, A. Auger, and N. Hansen, Information-geometric optimization

algorithms: A unifying picture via invariance principles, Journal of Machine Learning
Research, 18 (2017), pp. 1–65.

[43] M. Pilanci and M. J. Wainwright, Newton sketch: A near linear-time optimization algorithm
with linear-quadratic convergence, SIAM Journal on Optimization, 27 (2017), pp. 205–245.

[44] Y. Ren and D. Goldfarb, Kronecker-factored quasi-Newton methods for convolutional neural
networks, arXiv:2102.06737, (2021).

[45] H. Robbins and S. Monro, A stochastic approximation method, The Annals of Mathematical
Statistics, (1951), pp. 400–407.

[46] F. Roosta-Khorasani and M. W. Mahoney, Sub-sampled Newton methods, Mathematical
Programming, 174 (2019), pp. 293–326.

[47] T. Salimans and D. P. Kingma, Weight normalization: A simple reparameterization to ac-
celerate training of deep neural networks, International Conference on Neural Information

25

Processing Systems, 29 (2016), pp. 901–909.
[48] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, Mobilenetv2: Inverted

residuals and linear bottlenecks, in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 4510–4520.

[49] H. Sato, H. Kasai, and B. Mishra, Riemannian stochastic variance reduced gradient algo-
rithm with retraction and vector transport, SIAM Journal on Optimization, 29 (2019),
pp. 1444–1472.

[50] H. Sato, H. Kasai, and B. Mishra, Riemannian stochastic variance reduced gradient algo-
rithm with retraction and vector transport, SIAM Journal on Optimization, 29 (2019),
pp. 1444–1472.

[51] N. N. Schraudolph, Fast curvature matrix-vector products for second-order gradient descent,
Neural computation, 14 (2002), pp. 1723–1738.

[52] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recog-
nition, arXiv:1409.1556, (2014).

[53] A. M.-C. So, Non-asymptotic performance analysis of the semidefinite relaxation detector in
digital communications. Preprint, 2010.

[54] S. Vijayakumar, A. D’souza, T. Shibata, J. Conradt, and S. Schaal, Statistical learning
for humanoid robots, Autonomous Robots, 12 (2002), pp. 55–69.

[55] X. Wang and Y.-x. Yuan, Stochastic trust region methods with trust region radius depending
on probabilistic models, arXiv:1904.03342, (2019).

[56] X. Wu, S. S. Du, and R. Ward, Global convergence of adaptive gradient methods for an
over-parameterized neural network, arXiv:1902.07111, (2019).

[57] M. Yang, A. Milzarek, Z. Wen, and T. Zhang, A stochastic extra-step quasi-Newton method
for nonsmooth nonconvex optimization, Mathematical Programming, (2021), pp. 1–47.

[58] M. Yang, D. Xu, H. Chen, Z. Wen, and M. Chen, Enhance curvature information by struc-
tured stochastic quasi-Newton methods, in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 10654–10663.

[59] M. Yang, D. Xu, Q. Cui, Z. Wen, and P. Xu, NG+: A multi-step matrix-product natural
gradient method for deep learning, arXiv:2106.07454, (2021).

[60] M. Yang, D. Xu, Z. Wen, M. Chen, and P. Xu, Sketchy empirical natural gradient methods
for deep learning, arXiv:2006.05924, (2020).

[61] S. Zagoruyko and N. Komodakis, Wide residual networks, arXiv:1605.07146, (2016).
[62] D. Zhang and S. D. Tajbakhsh, Riemannian stochastic variance-reduced cubic regularized

Newton method, arXiv:2010.03785, (2020).
[63] G. Zhang, J. Martens, and R. Grosse, Fast convergence of natural gradient descent for

overparameterized neural networks, in International Conference on Neural Information
Processing Systems, 2019, pp. 8082–8093.

[64] H. Zhang, S. J. Reddi, and S. Sra, Riemannian SVRG: Fast stochastic optimization on
Riemannian manifolds, in International Conference on Neural Information Processing Sys-
tems, 2016, pp. 4592–4600.

26

	1 Introduction
	1.1 Motivation of this work
	1.2 Our contributions
	1.3 Notation
	1.4 Organization

	2 Preliminaries
	2.1 Manifold optimization
	2.2 Natural gradient descent method

	3 Riemannian natural gradient method
	3.1 Fisher information matrix on manifold
	3.2 Algorithmic framework

	4 Practical Riemannian natural gradient descent methods
	4.1 RFIM and REFIM on Grassmann manifold
	4.2 Applications
	4.2.1 Low-rank matrix completion
	4.2.2 Low-dimension subspace learning
	4.2.3 Fully connected network with batch normalization

	5 Convergence Analysis
	5.1 Global convergence to a stationary point
	5.2 Convergence rate analysis of RNGD
	5.3 Jacobian stability of two-layer neural network with batch normalization

	6 Numerical results
	6.1 Low-rank matrix completion
	6.2 Low-dimension subspace learning
	6.3 Deep Learning

	7 Conclusion
	References

