
This is a version of a publication

in

Please cite the publication as follows:

DOI:

Copyright of the original publication:

This is a parallel published version of an original publication.
This version can differ from the original published article.

published by

Horseshoe Priors for Edge-Preserving Linear Bayesian Inversion

Uribe Felipe, Dong Yiqiu, Hansen Per Christian

Uribe, F., Dong, Y., Hansen, P. C. (2023). Horseshoe Priors for Edge-Preserving Linear
Bayesian Inversion. SIAM Journal on Scientific Computing, vol. 45, iss. 3. DOI:
10.1137/22M151036

Author's accepted manuscript (AAM)

Society for Industrial and Applied Mathematics

SIAM Journal on Scientific Computing

DOI number of the original publication

© 2023 Society for Industrial and Applied Mathematics



Horseshoe priors for edge-preserving linear Bayesian inversion

Felipe Uribea,∗, Yiqiu Dongb, Per Christian Hansenb

aSchool of Engineering Science, Lappeenranta-Lahti University of Technology. Yliopistonkatu 34, 53850 Lappeenranta,
Finland.

bDepartment of Applied Mathematics and Computer Science, Technical University of Denmark. Richard Petersens Plads,
Building 324, 2800 Kgs. Lyngby, Denmark.

Abstract

In many large scale inverse problems, such as computed tomography and image deblurring, characterization
of sharp edges in the solution is desired. Within the Bayesian approach to inverse problems, edge-
preservation is often achieved using Markov random field priors based on heavy-tailed distributions.
Another strategy, popular in sparse statistical modeling, is the application of hierarchical shrinkage priors.
An advantage of this formulation lies in expressing the prior as a conditionally Gaussian distribution
depending on global and local hyperparameters which are endowed with heavy-tailed hyperpriors. In this
work, we revisit the shrinkage horseshoe prior and introduce its formulation for edge-preserving settings.
We discuss a Gibbs sampling framework to solve the resulting hierarchical formulation of the Bayesian
inverse problem. In particular, one of the conditional distributions is high-dimensional Gaussian, and the
rest are derived in closed form by using a scale mixture representation of the heavy-tailed hyperpriors.
Applications from imaging science show that our computational procedure is able to compute sharp
edge-preserving posterior point estimates with reduced uncertainty.

Keywords: Bayesian inverse problems, Bayesian hierarchical modeling, edge-preserving estimation,
horseshoe prior, Gibbs sampler.
MSC : 62F15, 65C05, 65R32, 65F22.

1. Introduction

The integration of data into computational models is fundamental when one is interested in recovering
unknown parameters defining the model. This specifies an inverse problem where the goal is to discover the
parameters that make the model closely match the observed data. Inverse problems are typically ill-posed
and the stability mainly depends on the structure of the mathematical model, the dimension of the
parameter space, and the scarcity and noisiness of the data. Regularization methods are commonly used
to find the solution of inverse problems (see, e.g., [1]). These methods are deterministic and incorporate
penalty functions as stabilization procedure. Another approach relies on Bayesian statistics (see, e.g.,
[2]). These techniques incorporate a probabilistic description of the model parameters that combines
prior information with a likelihood function that accounts for the model and data. In this approach,
the objective is to estimate a so-called posterior distribution of the model parameters. Closed-form
expressions of the posterior can only be derived in some particular cases, and in general the posterior has
to be estimated using sampling-based methods such as Markov chain Monte Carlo (MCMC) [3, 4], or
approximation methods such as variational inference [5], transport maps [6] and Laplace approximations
[7, 8].

The main advantage of the Bayesian formulation lies in the possibility of quantifying parameter
uncertainty due to noise and model errors. However, the approach is generally limited to problems
where the dimension of the parameter space is not prohibitively large. In large-scale scenarios, the
unknown parameters are modeled as random fields discretized pointwise on a fine grid. This complicates
the application of sampling methods for Bayesian inference since one requires the exploration of a
high-dimensional parameter space — even in the case of the linear problems considered here. Another
level of complexity arises when the solution of the inverse problem is non-smooth and the preservation
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of the edges or sharp features in the solution is necessary [9]. This especially occurs in imaging science
such as X-ray computed tomography, image deblurring, segmentation and denoising. In these cases
edge-preservation is generally imposed via the prior probability distribution. These prior models can be
grouped into four categories:

1. Heavy-tailed Markov random fields defined on pairwise parameter increments or differences. The
idea is to increase the probability of large jump events by imposing heavy-tailed distributions on
the increments. Some examples include total variation prior [10], Laplace Markov random fields
[11, 8] and Cauchy Markov random fields [12].

2. Random fields with jump discontinuities, including Besov space priors based on Haar wavelet
expansions [13, 14], Gaussian and compound Poisson process priors [15], and level-set priors that
employ Gaussian random fields with different thresholds via predefined level sets [16].

3. Machine learning-based models, including implicit models such as plug-and-play priors [17] and
Bayesian neural networks with Cauchy weights that promote edge-preservation [18].

4. Shrinkage priors, also known as global-local or component-wise priors, that aim at shrinking small
values towards zero while leaving the larger ones unaffected. These prior models are hierarchical
by nature and include the methods proposed in [19, 20], as well as multiple models used in the
statistics community such as elastic net, spike-slab, horseshoe, discrete Gaussian mixtures, and
others (see, e.g., [21, 22] for reviews).

One of the advantages of shrinkage priors is that they are essentially defined by conditionally Gaussian
distributions. Given one or more hyperparameters such as the variance, a target uncertain parameter
endowed with a Gaussian distribution can have many nice properties [23]. Different shrinkage priors
differ in the definition of the hierarchical structure and probabilistic models used to represent the
hyperparameters. For example, the Lasso prior is based on a scale mixture representation of the Laplace
distribution, and thus it defines an exponential distribution on the variance with a half-Cauchy distributed
rate parameter [24]. The elastic net prior uses a truncated-gamma distribution on the variance with scale
defined by two additional parameters that are half-Cauchy distributed [25]. Another shrinkage model
is the horseshoe prior, in which the variance is defined by two hyperparameters that are half-Cauchy
distributed [26]; one hyperparameter is a scalar that controls the global variability, while the other is
spatially dependent and captures local variations.

Despite being common in statistics, shrinkage priors are not yet fully applied in large-scale linear
inverse problems that require edge-preserving solutions. In this paper, we formulate a Bayesian inference
approach that targets this requirement. We focus on the horseshoe prior, where the target parameter
is Gaussian-distributed conditioned on half-Cauchy-distributed global and local hyperparameters. Our
idea is that when this type of prior is formulated for the parameter increments or differences, the local
hyperparameter assists in the identification of large discontinuities. The Bayesian inverse problem becomes
hierarchical, since hyperparameters associated with the prior and likelihood are also part of the inference
process.

The main difficulty in this formulation is that the resulting hierarchical posterior is challenging
to handle computationally due to the large-scale nature of the target parameter and the heavy-tailed
distributions imposed on the hyperparameters. To alleviate the complexity of the sampling process,
we use the scale mixture representation of the half-Student-t distribution to express the half-Cauchy
distributions of the hyperparameters in terms of inverse gamma distributions. Despite this requires the
addition of extra hyperparameters, the hierarchical posterior is given essentially by products of Gaussian
and inverse gamma densities. Therefore, we can exploit the conjugacy in the hierarchies to define a Gibbs
sampler for which the associated full conditional densities are derived in closed form, and hence they can
be sampled directly without an MCMC algorithm. However, within the Gibbs sampler, the conditional
distribution of the target parameter defines a linear Gaussian Bayesian inverse problem. Although this full
conditional is Gaussian and has an analytical expression, it is prohibitively slow to simulate in large-scale
applications. Hence, the task of sampling from this distribution is formulated as a least-squares problem
that is solved efficiently via standard iterative methods such as CGLS [27] with a preconditioner based on
the prior precision matrix. The computational framework is tested on a one-dimensional deconvolution
problem, as well as, two-dimensional applications of image deblurring and computed tomography (CT).

Related work. Existing applications of shrinkage priors in the context of inverse problems include the
following. Bayesian inverse problems in sparse signal and image processing are surveyed in [28] where a
variety of shrinkage priors are discussed and applied to multiple problems in imaging science. MCMC and
approximation methods are also suggested in [28] to solve the Bayesian inverse problem depending on the
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choice of the prior. Spike-and-slab priors are used in [29] for linear Bayesian inverse problems subject to
sparsity constraints. The posterior is simulated with an expectation propagation algorithm using different
approximations of the precision matrix of the underlying Gaussian parameter to improve the efficiency in
high-dimensional applications. So-called Gaussian hypermodels are proposed in [19], which are defined
as conditionally Gaussian priors with a single local variance hyperparameter endowed with a gamma
distribution. An iterative alternating sequential algorithm is proposed that converges to the maximum
a posteriori probability estimator of the parameters. Following this idea, in [20] a generalized gamma
distribution is imposed on the local variances and propose two modifications to their iterative algorithm
to exploit the global convexity ensured by gamma hyperpriors and the stronger sparsity promotion of the
generalized gamma hyperpriors.

Our contributions. The main contributions of the paper are highlighted as follows:

(i) We review the horseshoe prior for the representation of parameters that are sparse.

(ii) We introduce the horseshoe prior for the solution of linear Bayesian inverse problems that require
edge-preservation and perform uncertainty quantification.

(iii) We propose a Gibbs sampler to solve the resulting hierarchical formulation of the Bayesian inverse
problem; the full conditional distributions are derived in closed form by exploiting conjugacy.

(iv) We demonstrate the performance of our method through numerical experiments on two inverse
problems.

Structure of the paper. This paper is organized as follows. In section 2, we briefly introduce the
mathematical framework for linear inverse problems and the Bayesian approach, and we present the
standard horseshoe prior. We then derive its generalization for edge-preserving linear Bayesian inversion
in section 3. We show that a scale mixture representation can be applied to express a heavy-tailed
half-Cauchy hyperprior in terms of two inverse gamma distributions. The computational framework is
defined in section 4, where we develop a Gibbs sampling approach to solve the resulting hierarchical
Bayesian inverse problem. Here, we use CGLS to sample the full Gaussian conditional and we derive
the remaining hyperparameter conditionals in closed form. In section 5 we illustrate our computational
approach with imaging science applications, before concluding in section 6.

2. Preliminaries

We commence with the mathematical framework and introduce linear inverse problems and the
Bayesian approach to find solutions to those, as well as the standard horseshoe prior.

2.1. Linear inverse problems
We consider the discrete inverse problem of estimating an unknown model parameter x ∈ Rd using

noisy observed data y ∈ Rm, given a linear forward operator A ∈ Rm×d acting as a link between the
parameters and data. Here, d is the number of parameters and m denotes the number of data points. The
parameter x is spatially varying and exists in connection with a physical domain D, e.g., one-dimensional
signals, two-dimensional images and three-dimensional objects. Using a suitable finite-dimensional
representation, the dimension d will depend on a discretization size N imposed on the physical domain.
For instance, in one- and two-dimensional settings d = N and d = N2 (assuming equal discretization in
both directions), respectively.

In particular, a linear inverse problem estimates an x that approximates the ground truth xtrue in

y = Axtrue + e with e ∼ N (0, σ2
obsIm), (1)

where the additive measurement noise is modeled as a realization of an independent Gaussian random
vector with variance σ2

obs, Im is an identity matrix of size m×m, and N (·, ·) denotes the multivariate
Gaussian distribution depending on mean and covariance parameters. The linear inverse problem
associated to (1) is typically ill-posed and we employ the Bayesian statistical framework to study the
influence of noise in the observed data.
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2.2. Bayesian inverse problems
In the Bayesian approach to inverse problems [2], we treat x,y and e as random variables and the

solution is expressed as the probability distribution of x given an instance of the observed data y. This
allows both modeling the noise via its statistical properties and specifying prior information on the
parameter, i.e., the form of solutions that are believed more likely.

The unknown parameter is modeled as a discretized random field represented as a random vector
X taking values x ∈ Rd. We assume the distribution of X has a so-called prior probability density
πpr(x). The likelihood function is defined from a density πdata(· | x) with fixed argument equal to the
observed data y; then the likelihood becomes a function of x only. The Gaussian statistical model for the
measurement noise assumed in (1) gives

πdata(y | x) = 1
(2π)m/2σm

obs
exp

(
− 1

2σ2
obs
∥y −Ax∥2

2

)
. (2)

Assuming that the measurement noise and model parameters are independent, the solution of the
Bayesian inverse problem combines the prior and likelihood probability models into a so-called posterior
density, given by Bayes’ Theorem as

πpos (x | y) = 1
Z

πdata(y | x) πpr(x), (3)

where Z =
∫
Rd πdata(y | x) πpr(x) dx is the normalizing constant of the posterior.

In practice, point estimates of the posterior (3) are used to represent the solution of the inverse
problem. The two classical choices are the maximum a posteriori (MAP) and the posterior mean (PM)
estimators:

xMAP = arg max
x∈Rd

πpos(x | y) and xPM =
∫
Rd

xπpos(x | y) dx. (4)

The MAP estimator is computed via optimization techniques which is often an advantage, compared
to the calculation of the PM estimator that requires a more involved high-dimensional integration. The
estimation of the posterior mean and related summary statistics is often performed via Monte Carlo
methods (see, e.g., [3, 4]). We point out that when the first two statistical moments of a random
vector do not exist (as it is common for some heavy-tailed distribution models), location and scale
characteristics of the distribution can still be summarized using for instance the posterior median and
median absolute deviation, respectively [30]. These are also a sensible option to describe random variables
whose distribution is heavily skewed.

To find the posterior (3), we will focus on the definition of a prior probability model that allows both,
the preservation of potential sharp features in the unknown parameter and a tractable computation of
the high-dimensional posterior distribution. Our model is based on the horseshoe prior [31], which we
revisit next.

2.3. Horseshoe prior
When our a priori knowledge is that x is sparse, it may be convenient to apply a sparsity-inducing

shrinkage prior (see, e.g., [22]). A well-known continuous shrinkage model is the standard horseshoe [31],
which is defined as the hierarchical prior:

πpr(x, τ,σ) = πpr(x | τ,σ)πhpr(τ)πhpr(σ), (5)

where a zero-mean conditionally Gaussian prior is imposed on x:

πpr(x | τ,σ) = 1
(2π)d/2(detΣ(τ,σ))1/2

exp
(
−1

2x
TΣ−1(τ,σ)x

)
, Σ(τ,σ) = τ2 diag(σ2

1 , . . . , σ2
d).

(6)
Here, the prior covariance matrix Σ(τ,σ) ∈ Rd×d depends on the hyperparameters τ ∈ R>0 controlling

global shrinkage and σ = [σ1, . . . , σd]T ∈ Rd
>0 defining local shrinkage. The global-local scheme is defined

with heavy-tailed distributions. In particular, the horseshoe model uses a half-Cauchy distribution for τ
and an independent standard half-Cauchy distribution for σ:

πhpr(τ) ∝ 2
τ0

(
1 + τ2

τ2
0

) and πhpr(σ) ∝
d∏

i=1

2
1 + σ2

i

with τ, σi > 0, (7)
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where τ0 is a scale parameter. According to existing work, we can set (i) τ0 ≈ σobs [31]; (ii) τ0 =
(d0/(d− d0))σobs, where d0 is the number of nonzero elements [32]; (iii) τ0 as a part of the inference, e.g.,
using a Jeffreys’ hyperprior [26]. In this paper, we numerically compare the influence of the choice of τ0.

Another expression for the horseshoe prior is given by re-writing the density of σi as πhpr(σi) ∝
1/(1 + σ2

i ) = κi for i = 1, . . . , d, where κi is called a shrinkage parameter. The relation between σi

and κi is bijective when σi > 0, then its inverse is continuously differentiable and non-zero. Therefore,
the hyperprior of each parameter κi is found from the half-Cauchy hyperprior of σi using a standard
probabilistic transformation and we obtain

πhpr(κi) ∝
1

√
κi

√
1− κi

, (8)

which is proportional to a horseshoe-shaped beta probability density with shape parameters equal to 1/2,
hence the name of the prior. Small values of κi correspond to σi →∞ and produce almost no shrinkage,
while values κi ≈ 1 corresponding to σi → 0 provide essentially full shrinkage, and hence κi can be used
to describe how many active or inactive variables are present in the model [26].

The horseshoe prior is hierarchical by definition and lacks of a proper analytical expression after
marginalizing out the hyperparameters. However, lower and upper bounds for the one-dimensional
horseshoe probability density are available [26]:

1
2
√

2π3
log
(

1 + 4
x2

)
≤ πpr(x) ≤ 1√

2π3
log
(

1 + 2
x2

)
for x ̸= 0. (9)

These bounds are shown in Figure 1 together with other common probability distributions (standard-
ized). Note that the horseshoe prior has heavy tails that are comparable to the Cauchy distribution, and
it has a pole at x = 0. These characteristics typically enable the prior to perform well when handling
sparsity. We exploit this behavior to develop a horseshoe-based model that can be applied to a class of
linear Bayesian inverse problems where edge-preservation is fundamental.
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Figure 1: Comparison of the horseshoe prior bounds (shaded area) with other common probability densities. The zoom-in
highlights the distributions at the tails.

3. Horseshoe prior for edge-preservation

In some applications the solution of inverse problems is sparse; in other applications sharp edges
are present in the solution meaning that pairwise differences or increments of the solution elements
exhibit sparsity. We exploit this fact to define a horseshoe prior on the differences that promote solutions
preserving their sharp features. The resulting prior can be interpreted as an anisotropic conditionally
Gaussian Markov random field prior.

3.1. Horseshoe prior and conditionally Gaussian Markov random fields
Gaussian Markov random fields (GMRF) are typically specified by their conditional independence

structure. Therefore, a natural way to describe a GMRF is by its precision matrix. This is because the
sparsity structure of this matrix determines the so-called neighborhood system explaining conditional
relations in x [33]. Since we are interested in preserving the edges, we define the precision matrix of
the GMRF using increments between elements of the parameter vector. In one-dimensional cases, the
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increments are computed by application of a finite difference matrix D, while in two-dimensional cases we
consider the horizontal and vertical first-order finite difference matrices D(1),D(2). These are given by

D =


1
−1 1

−1 1
. . . . . .

−1 1


N×N

and D(1) = IN ⊗D, D(2) = D ⊗ IN , (10)

where N is domain discretization size, IN is the identity matrix of size N × N , and ⊗ denotes the
Kronecker product. Note that we use, without loss of generality, zero boundary conditions on x at the
left part of the domain.

The structure defined in (10) considers pairwise differences (i.e., in 1D the vector Dx, and in 2D
the vectors D(1)x and D(2)x). We assume that the elements in these random vectors are independent.
The idea now is to impose a horseshoe prior on them. This allows us to rewrite the prior in (6) as a
conditionally GMRF that incorporates information about the increments. The associated probability
density is

πpr(x | τ,w) = (detΛ(τ,w))1/2

(2π)d/2
exp

(
−1

2x
TΛ(τ,w)x

)
, (11)

where Λ(τ,w) is a prior precision matrix (see below) that depends on the global standard deviation
τ ∈ R>0 and local weights w = [w1, . . . , wd]T ∈ Rd

>0. These hyperparameters are defined as in the
standard horseshoe prior and they are half-Cauchy-distributed following (7). In this case, the weights in
w are analogous to local standard deviations in σ, but they will correspond to the increments and not to
the elements of the parameter vector, hence the different notation.

For the conditionally Gaussian prior in (11), the precision matrix is defined such that it takes into
account the increments via (10) (see, e.g., [34, p.68] for the details). Therefore, we can generally write
the precision matrix as

Λ(τ,w) = LTW (τ,w)L, (12)

and for one-dimensional and two-dimensional domains we have

L = D, W (τ,w) =


1

τ2w2
1

. . .
1

τ2w2
d

 (13)

and

L =
[
D(1)

D(2)

]
, W (τ,w) =

[
W (1) 0d

0d W (2)

]
, W (i) =


1

τ2(w
(i)
1 )2

. . .
1

τ2(w
(i)
d

)2

, i = 1, 2, (14)

respectively. Here, L is called the structure matrix, and 0d ∈ Rd×d is a matrix containing zeros. Notice
that in the two-dimensional case we have to consider local weights

w =
[
w(1)

w(2)

]
∈ R2d

>0

for each coordinate direction. These are assumed independent and identically distributed according to
the half-Cauchy prior exactly as in the one-dimensional case. We remark that for GMRFs the (prior)
precision matrix (12) is sparse, which can be exploited in numerical computations.

The conditionally Gaussian prior (11), based on precision matrices of the form (12) with (13)–(14),
and the hyperpriors (7) define a horseshoe prior promoting edge-preservation. Again, this is because we
are now regularizing increments of the unknown parameter using a heavy-tailed probabilistic model. A
main motivation to utilize the horseshoe prior is that the unknown parameter is conditionally Gaussian,
which facilitates the analytical and numerical treatment of the resulting posterior distribution. However,
the main difficulties in applying this prior are: (i) the dimension of the parameter space is increased
since the local weights have the same or even larger dimension than the model parameter, and (ii) the
hyperparameters are endowed with heavy-tailed distributions that cause challenges when computing
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the posterior via sampling methods. For the latter point, a regularized horseshoe prior is proposed
in [32]; this model employs half-Student’s t-distributions with larger degrees of freedom on the local
parameters to overcome the sampling issues. However, increasing the degrees of freedom makes the tail of
the distribution less heavy, which is not desirable when looking for methods that promote sharp features.

3.2. Extended horseshoe prior
Our objective is to present an equivalent model that extends the hierarchical structure of the horseshoe

prior by adding auxiliary parameters. This allows us to write the resulting posterior such that it can be
sampled in a tractable manner without loosing the connection to the original half-Cauchy hyperpriors in
the standard horseshoe. We point out that this idea is also used in [35] for the standard horseshoe prior
applied to logistic regression problems.

We define a scale mixture decomposition of a Student’s t-distributed random variable (see, e.g., [36]).
If A and B are random variables such that

(A2 | B) ∼ IG
(ν

2 ,
ν

B

)
and B ∼ IG

(
1
2 ,

1
c2

)
, then A ∼ t+(ν, 0, c), (15)

where IG(·, ·) denotes the inverse gamma distribution with shape and scale parameters, and t+(·, ·, ·) is
the half-Student’s t-distribution depending on degrees of freedom, location and scale parameters. Both
densities are defined in appendix Appendix A, along with a simple derivation of the mixture representation
given in (15).

The scale mixture representation (15) is utilized to write the standard horseshoe prior as an extended
hierarchical prior. The motivation behind this choice is that the additional auxiliary variables allow the
derivation of full conditional distributions in closed form by exploiting conjugacy. Thereafter, these can
be sampled within a Gibbs sampler scheme [37, Ch.10]. The resulting extended horseshoe prior is defined
as:

πpr(x, τ2,w2, γ, ξ) = πpr(x | τ2,w2)πhpr(τ2 | γ)πhpr(γ)πhpr(w2 | ξ)πhpr(ξ), (16)

where

(x | τ2,w2) ∼ N
(
0,Λ−1(τ,w)

)
, (17a)

(τ2 | γ) ∼ IG
(

ν

2 ,
ν

γ

)
, γ ∼ IG

(
1
2 ,

1
τ2

0

)
, (17b)

(w2
i | ξi) ∼ IG

(
ν

2 ,
ν

ξi

)
, ξi ∼ IG

(
1
2 , 1
)

, (17c)

with the squaring w2 taken elementwise.
We will focus on the standard horseshoe prior with degrees of freedom ν = 1, such that the half-

Student’s t-distribution becomes a half-Cauchy distribution. However, we note that the regularized
horseshoe prior [32], which typically uses ν = 3, can also be included in the formulation.

4. Proposed approach

The extended hierarchical horseshoe prior (16) is used to define the posterior in (3), thereby defining
a hierarchical formulation of the Bayesian inverse problem. In addition to the hyperparameters arising
from the horseshoe prior, we also model the noise variance σ2

obs in the likelihood function as a random
variable. Following the hyperprior distributions imposed on the prior parameters, we define an inverse
gamma hyperprior πhpr(σ2

obs) with shape and scale parameters αobs = 1 and βobs = 10−4, respectively.
This choice makes the hyperprior relatively uninformative [38].

As a result, the Bayesian inverse problem of estimating the posterior (3) is written as the hierarchical
Bayesian inverse problem of determining the new posterior density:

πpos(x, σ2
obs, τ2,w2, γ, ξ | y) ∝

πdata(y | x, σ2
obs)πpr(x | τ2,w2)πhpr(τ2 | γ)πhpr(w2 | ξ)πhpr(σ2

obs)πhpr(γ)πhpr(ξ); (18)

whose dependencies are shown in Figure 2.
Performing statistical inference with the posterior (18) generally requires application of sampling

methods based on Markov chain Monte Carlo (MCMC) methods. The goal in MCMC is to compute
samples or realizations of a Markov chain that is stationary with respect to the posterior distribution [4].
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Figure 2: Structure of the hierarchical Bayesian inference model (18) based on the extended horseshoe prior. The nodes
reflect the uncertain parameters and their dimension. Starting from the data y, the solid edges reflect dependencies in the
likelihood (on x and σ2

obs) and prior distribution (on the hyperparameters w2, τ2, ξ, γ). Here, the dimension of the local
parameter vector is k = d or k = 2d, if the problem in one- or two-dimensional, respectively.

However, hierarchical Bayesian inverse problems commonly lead to posterior densities that resemble a
funnel for which small variations of the hyperparameters induce large changes in the posterior density
values. This is a standard difficulty for traditional MCMC algorithms (see, e.g., [39] for a detailed
discussion). To alleviate this problem one typically relies on (i) re-parametrization of the hierarchical
structure in order to break potential correlations between parameters (cf. Figure 2), or (ii) application
of specialized MCMC algorithms that capture the geometry of the joint posterior. For instance, a
Riemannian Hamiltonian Monte Carlo method that uses local curvature information is advocated in
[39]; and for problems involving the horseshoe prior, a Gibbs sampler is proposed in [35] and two further
MCMC methods are developed in [40]. Recently, another Gibbs sampler is discussed in [41] for Bayesian
inverse problems under the regularized horseshoe prior.

Our idea is to exploit the structure presented in section 3.2 to derive full conditional distributions
for each uncertain parameter. The advantage of this approach is that it allows a direct application of
the Gibbs sampler [42], since the conditional densities for each parameter can be derived in closed form.
Therefore, we avoid sampling in the high-dimensional joint space of the posterior. In particular, the full
conditional densities associated with (18) are found to be (cf. fig. 2):

π1
(
x
∣∣ σ2

obs, τ2,w2) ∝ πdata(y | x, σ2
obs)πpr(x | τ2,w2), (19a)

π2(σ2
obs | x) ∝ πdata(y | x, σ2

obs)πhpr(σ2
obs), (19b)

π3(τ2 | x,w2, γ) ∝ πpr(x | τ2,w2)πhpr(τ2 | γ), (19c)
π4(w2 | x, τ2, ξ) ∝ πpr(x | τ2,w2)πhpr(w2 | ξ), (19d)

π5(γ | τ2) ∝ πhpr(τ2 | γ)πhpr(γ), (19e)
π6(ξ | w2) ∝ πhpr(w2 | ξ)πhpr(ξ). (19f)

In the remainder of this section, we determine the full conditional densities for each uncertain parameter
and discuss sampling techniques to obtain draws from them. Due to the extended horseshoe model, we
anticipate that most of the densities in (19) can be sampled directly and a Gibbs sampler can be used to
characterize the posterior.

4.1. Sampling of π1

The conditional for the uncertain parameter x in (19a) defines a Bayesian inverse problem with
Gaussian likelihood and prior. After inserting the corresponding probabilistic models we obtain:

π1
(
x
∣∣ σ2

obs, τ2,w2) ∝ exp
(
−1

2

(
1

σ2
obs
∥y −Ax∥2

2 +
∥∥Λ1/2(τ,w)x

∥∥2
2

))
. (20)

This conditional density is also Gaussian with precision matrix and mean vector given by (see, e.g., [2,
p.78])

Λ̃(τ,w) = 1
σ2

obs
ATA + Λ(τ,w), µ̃(τ,w) = Λ̃−1(τ,w)

(
1

σ2
obs

ATy

)
, (21)

where Λ(τ,w) is given in (12).
Given the hyperparameters σobs, τ and w, the most direct sampling algorithm for a Gaussian

distribution is based on the Cholesky factorization. In this case, a sample from π1 is obtained as
x⋆ = µ̃ + Λ̃−1/2u, where u ∼ N (0, Id) is a standard Gaussian random vector, and Λ̃1/2 is a lower
triangular matrix with real and positive diagonal entries (Cholesky factor). Note that we drop the
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dependence on σobs, τ and w for the sake of notation. We refer to [43, 23] for a review of methods for
sampling high-dimensional Gaussian distributions. The Cholesky strategy is computationally prohibitive
due to the need for computing a factorization of the matrix Λ̃(τ,w). Assuming that matrix-vector
multiplications with Λ̃ can be done efficiently, we rely on Krylov subspace methods to sample from the
Gaussian conditional in (20). In particular, the task of sampling a Gaussian random vector can be written
as a least squares problem, and thus, we draw a sample x⋆ from π1 by solving:

x⋆ = arg min
x∈Rd

∥Mx− z∥2
2 with M =

[
(1/σobs)A

Λ1/2

]
, z =

[
(1/σobs)y

0d

]
+ ũ, (22)

where ũ ∼ N (0, Im+d). Recall that the solution of (22) is required at every Gibbs iteration given new
values of the hyperparameters. We use the CGLS method, which requires one pair of forward and
backward model computations (i.e., multiplications with A and AT) per iteration. A tolerance εcgls on
the relative residual norm of the normal equations or a maximum number of iterations nmax can be used
to control the quality of the computed samples.

One way to accelerate the performance of the CGLS method is to apply a standard-form transformation
to (22) [1, Sec. 8.4]; this is also referred to as priorconditioning [44]. The idea is to compute the Cholesky
factorization of the prior precision matrix Λ = CTC and introduce the change of variables x̃ = Cx, such
that we can transform (22) into

x̃⋆ = arg min
x̃∈Rd

∥Mx̃− z∥2
2 with M =

[
(1/σobs)AC−1

Id

]
, (23)

where z is defined as in (22). Note that the change of variables corresponds to “whitening” the prior, that
is, x̃ ∼ N (0, Id). In the standard-form least squares problem (23), we are now working with the Krylov
subspace span{Λ−1ATy, (Λ−1ATA)Λ−1ATy, (Λ−1ATA)2Λ−1ATy, . . .}, which is in most cases a better
subspace than span{ATy, (ATA)ATy, (ATA)2ATy, . . .} of the general-form least-squares problem (22)
(see, e.g., [1, Sec. 8.4] for the details). Hence, the application of the standard-form transformation tends
to reduce the number of iterations required for convergence and it can be incorporated in a preconditioned
version of the CGLS algorithm ([27, Sec. 7.4]). We denote this variant as pCGLS.

The Cholesky factor of the prior precision matrix, which is instrumental for the standard-form
transformation, can be obtained as follows. In the one-dimensional case, from the definition of the prior
precision in (13) we have that

Λ = LTWL = CTC with L = D, (24)

where W is diagonal and C is either upper or lower triangular. Hence, by simple observation, we can write
C = W 1/2D, which is indeed triangular and constitutes an inexpensive representation of the Cholesky
factor.

In the two-dimensional case, the Cholesky factor is no longer immediately available but still can be
computed in an economical way. From (14) we have

Λ = LTWL with W =
[
W (1) 0d

0d W (2)

]
and L =

[
D(1)

D(2)

]
, (25)

where the difference matrices D(1) and D(2) are sparse and so is L. Now, we can compute the thin QR
factorization of W 1/2L,

W
1/2L =

[
(W (1))1/2D(1)

(W (2))1/2D(2)

]
= QR; (26)

notice that Q is not required and LTWL = RTR. Therefore, C = R is the desired Cholesky factor.
We remark that despite the sparse QR factorization simplifies the presentations of the algorithm, it

does not scale with the dimension. Different preconditioners can be used here for sampling Gaussian
distributions in high dimensions, e.g., [43].

4.2. Sampling of π2 to π6

The conditional densities for each hyperparameter are all obtained in closed form. This is due to
conjugate relations that arise from the extended horseshoe prior formulation.

The conditional density for the noise variance in (19b) is

π2(σ2
obs | x) ∝ πdata(y | x, σ2

obs)πhpr(σ2
obs) (27a)
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∝ (σ2
obs)−m/2 exp

(
− 1

2σ2
obs
∥y −Ax∥2

2

)[
(σ2

obs)−αobs−1 exp
(
−βobs

σ2
obs

)]
(27b)

∝ (σ2
obs)−m/2−αobs−1 exp

(
− 1

σ2
obs

[
1
2 ∥y −Ax∥2

2 + βobs

])
, (27c)

(σ2
obs | x) ∼ IG

(
m

2 + αobs,
1
2 ∥y −Ax∥2

2 + βobs

)
. (27d)

The conditional density for the squared global shrinkage parameter in (19c) is

π3(τ2 | x,w2, γ) ∝ πpr(x | τ2,w2)πhpr(τ2 | γ) (28a)

∝ (τ2 w2)−k/2 exp
(
−1

2

k∑
i=1

[Lx]2i
τ2 w2

i

)[
(τ2)−ν/2−1 exp

(
− ν

γτ2

)]
(28b)

∝ (τ2)−k/2−ν/2−1 exp
(
− 1

τ2

[
1
2

k∑
i=1

[Lx]2i
w2

i

+ ν

γ

])
, (28c)

(τ2 | x,w2, γ) ∼ IG
(

k + ν

2 ,
1
2

k∑
i=1

[Lx]2i
w2

i

+ ν

γ

)
, (28d)

where k = d or k = 2d in one- and two-dimensional problems, respectively.
Moreover, since the local shrinkage parameters are assumed independent, one can derive the conditional

density for their squared version and at each component (19d), as follows

π4(w2
i | x, τ2, ξi) ∝ πpr(x | τ2, w2

i )πhpr(w2
i | ξi) (29a)

∝ (τ2, w2
i )−1/2 exp

(
−1

2
[Lx]2i
τ2 w2

i

)[
(w2

i )−ν/2−1 exp
(
− ν

ξi w2
i

)]
(29b)

∝ (w2
i )−1/2−ν/2−1 exp

(
− 1

w2
i

[
[Lx]2i
2τ2 + ν

ξi

])
, (29c)

(w2
i | x, τ2, ξi) ∼ IG

(
ν + 1

2 ,
[Lx]2i
2τ2 + ν

ξi

)
. (29d)

For the auxiliary parameters, the conditionals π5
(
γ
∣∣ τ2) and π6

(
ξi

∣∣ w2
i

)
in (19e) and (19f), respec-

tively, are derived in a similar manner. These are inverse gamma distributions such that:(
γ
∣∣ τ2) ∼ IG

(
ν + 1

2 ,
1
τ2

0
+ ν

τ2

)
, (30a)

(
ξi

∣∣ w2
i

)
∼ IG

(
ν + 1

2 , 1 + ν

w2
i

)
. (30b)

4.3. The computational procedure
Based on the sampling approaches for the full conditional densities discussed above, we define a Gibbs

sampler generating ns states of a Markov chain with stationary distribution (18), {x(j), (σ2
obs)(j), (τ2)(j),

(w2)(j), γ(j), ξ(j)}ns
j=1.

The Gibbs sampler draws a single sample from each conditional density at each iteration. This
uses the fact that, under mild conditions, the set of full conditional distributions determine the joint
distribution [45]. The Markov chain approaches its equilibrium condition as the number of iterations
increases. This means that after convergence all samples from the chain will be distributed according to
the target posterior distribution. Convergence conditions for the Gibbs sampler are defined in [46, 47].
From a practical viewpoint, with a finite number of samples, we require application of burn-in and lagging
steps: (i) the ns successive values of the chain are only selected after discarding nb samples during the
warm up phase of the algorithm (burn-in period), and (ii) the sample chain values are only stored every
nt iterations since for large enough nt the samples are virtually independent (lagging steps). As a result,
to obtain ns quasi-independent samples from the posterior, we require n = nb + nsnt Markov chain steps.

Different scanning strategies exist for the Gibbs sampler (see, e.g., [3, 4]). We follow a deterministic
or systematic scan in which all iterations consist of sampling the conditional densities of each component
in the same order. This version of the Gibbs sampler applied to the posterior (18) is summarized in
Algorithm 1. We remark that geometric ergodicity for different Gibbs samplers in the context of the
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Algorithm 1: Gibbs sampling of the posterior (18)
Input: conditional densities (19), number of samples ns, thinning nt, burn-in nb, and maximum

number of CGLS iterations nmax (or tolerance εcgls).
1 Initial states x⋆, σ⋆

obs, τ⋆,w⋆, γ⋆, ξ⋆, and initial Cholesky factor C(τ⋆,w⋆).
2 n← nb + nsnt, and j ← 1
3 for k = 1, . . . , n do
4 // Sample target parameter
5 x⋆ ∼ π1(· | σ⋆

obs, τ⋆,w⋆): solve least-squares problem using preconditioned CGLS with
C(τ⋆,w⋆)

6 // Sample variance hyperparameters
7 σ⋆

obs ∼ π2 (· | x⋆): in closed form (27)
8 τ⋆ ∼ π3 (· | x⋆,w⋆, γ⋆): in closed form (28d)
9 w⋆ ∼ π4 (· | x⋆, τ⋆, ξ⋆): in closed form (29d)

10 // Compute Cholesky factor
11 C(τ⋆,w⋆): based on the approach discussed in section 4.1
12 // Sample auxiliary hyperparameters
13 γ⋆ ∼ π5 (· | τ⋆): in closed form (30a)
14 ξ⋆ ∼ π6 (· | w⋆): in closed form (30b)
15 // Save samples
16 if (k > nb) then
17 if (k mod nt) = 0 then
18 x(j) ← x⋆, (σ2

obs)(j) ← σ⋆
obs, (τ2)(j) ← τ⋆, (w2)(j) ← w⋆, γ(j) ← γ⋆, ξ(j) ← ξ⋆

19 j ← j + 1
20 end
21 end
22 end
23 return {x(j), (σ2

obs)(j), (τ2)(j), (w2)(j), γ(j), ξ(j)}ns
j=1

horseshoe prior has been shown in [48, 41]; this provides indications on the accuracy of asymptotic
standard errors in the MCMC-based posterior estimates.

Furthermore, the efficiency of Algorithm 1 can be measured in terms of the autocorrelation of the
posterior samples. The chain autocorrelation allows the definition of the effective sample size [4]

neff := ns

1 + 2
∑ns

j=1
ρ(j)

ρ(0)

≈
⌈

ns

τint

⌉
, (31)

where ρ(j) denotes the autocorrelation at the jth lag and τint is the integrated autocorrelation time (IACT).
Essentially, the effective sample size is used to compare the variance estimated via correlated MCMC
samples and the ideal case of a variance computed from independent draws. Thus, the aim is to obtain a
value of neff as close as possible to ns.

The computational cost of the Gibbs sampler at each iteration can be given in terms of the number
of model calls (operations with A and AT). Hence, the cost corresponding to the simulation of each
conditional density are: maximum 2nmax calls are needed for π1 and 1 evaluation is required to sample
the density π2. Hence, the total cost of a single iteration of the Gibbs sampler is 2nmax + 1 model calls
maximum.

5. Numerical experiments

In the following, we illustrate the use of the horseshoe prior for edge-preserving inversion and the
Gibbs sampler in Algorithm 1 designed for the computations. We consider linear inverse problems
arising in imaging science. The first example consists of a one-dimensional deconvolution problem that
allows us to test multiple parameter settings in our computational framework. The second example is a
two-dimensional computed tomography problem that highlights the potential of the horseshoe prior in
more realistic applications.
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In our test problems, the point estimates x̄ (posterior mean or median) of the target parameter are
evaluated using the relative reconstruction error defined as

relerr :=
∥∥x̄− xtrue∥∥

2 /
∥∥xtrue∥∥

2 , (32)

where xtrue denotes the underlying true solution.
To further assess the effectiveness of our approach, we compare our solutions with those from the

method proposed in [8] which uses a Laplace Markov random field prior to achieve edge-preservation.
This method, however, relies on a Laplace approximation of the posterior, while Algorithm 1 does not
introduce any approximation.

5.1. One-dimensional deconvolution
We consider the inverse problem of identifying an unknown piecewise constant signal x : [0, 1]→ R

from noisy convolved data. The mathematical model for convolution can be written as a Fredholm
integral equation of the first kind:

y(t) =
∫ 1

0
A(t− u)x(u) du with A(t) = exp

(
− 1

2s2 (t− u)2
)

, 0 ≤ t ≤ 1, (33)

where y(t) denotes the convolved signal and we employ a Gaussian convolution kernel A(t) with fixed
parameter s = 0.016.

In practice, a finite-dimensional representation of (33) is employed. After discretizing the signal
domain into d = 128 intervals, the convolution model can be expressed as a system of linear algebraic
equations y = Ax. We consider two sets of synthetic observed data y with m = d equally-spaced elements.
The first set is generated with noise standard deviation σtrue

obs = 7.867× 10−3 and the second one with
σtrue

obs = 1.967× 10−2 (corresponding to 2% and 5% errors). Figure 3 shows the true signal together with
the two data sets.

0.00 0.25 0.50 0.75 1.00
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0.5

1.0

1.5
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0.00 0.25 0.50 0.75 1.00
0.0

0.5
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1.0
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Figure 3: Deconvolution example. Left: underlying true signal. Center: convolved and noisy data (dots) with 2% noise.
Right: convolved and noisy data with 5% noise.

The inputs to the Gibbs sampler are studied/selected as follows: (i) The number of samples is
ns = 2 × 104, in addition to a burn-in period of nb = 2 × 103. (ii) The scale parameter τ0 in the
half-Cauchy hyperprior for τ is studied. (iii) The lag or thinning number nt is also analyzed. (iv) The
influence of the number of standard and preconditioned CGLS iterations is studied as well.

We remark that for this example we can afford the factorization of the precision matrix Λ̃ in (21).
Hence, we can directly sample the Gaussian conditional π1 in (20) without using CGLS. This allows us
to obtain an exact sample from π1 at each Gibbs iteration. This method is referred to as “direct” in the
following studies and will be used to compare to the solution obtained by sampling π1 with standard and
preconditioned CGLS.

Influence of the scale parameter τ0. In this case, we use the low-noise data set, fix the lagging steps to
nt = 20, and we directly sample the conditional π1. Moreover, we fix the noise standard deviation to its
true value. We perform a parameter study on τ0 using the values {(d0/(d− d0))σtrue

obs , σtrue
obs , 1}, where we

assume the number of relevant variables is d0 = 10, and thus, τ0 ∈ {6.667× 10−4, 7.867× 10−3, 1}. The
Gibbs sampler is applied for each value and we analyze the output of the Markov chain associated with
the global parameter τ , as well as the relative reconstruction error. For the point estimators, we also
report the median since we observe that the posterior distribution of the τ parameter is right-skewed.
The median is also used for the parameter x as it generates smaller reconstruction errors than the mean
estimator.
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The results are shown in Table 1. We observe that for the smallest value of τ0, the best reconstruction
errors are obtained, however, the effective sample size neff decreases. There are slight variations in
the posterior mean and median of τ but overall the value remains in the same order of magnitude. In
general, for this particular example, we do not observe significant changes in the results by modifying
the parameter τ0. Nevertheless, from this simple study, we notice that the standard recommendation
τ0 ≈ σtrue

obs covers a middle ground in terms of the effective sample size and reconstruction error values.

Table 1: Posterior mean and median of τ , effective sampling size of the τ -chain, and relative reconstruction error based on
the mean and median estimators, for different values of the scale parameter τ0.

τ0 Mean Median neff relerr (mean) relerr (median)
(d0/(d− d0))σtrue

obs 6.218× 10−3 5.675× 10−3 4 036 1.413× 10−2 1.099× 10−2

σtrue
obs 7.603× 10−3 7.059× 10−3 4 896 1.571× 10−2 1.216× 10−2

1 9.096× 10−3 8.364× 10−3 4 426 1.712× 10−2 1.311× 10−2

Remark 5.1. From this study, we select the value of the scale parameter τ0 as the value of the noise
standard deviation σobs. Recall, however, that the true noise variance is unknown and hence we model it
as a hyperparameter with associated conditional density π2 in (27). Therefore, the value of τ2

0 is now
equal to a realization of σ2

obs at a given Gibbs iteration. Due to this modeling choice, the conditional
density for the auxiliary parameter γ in (30a) will now depend on σ2

obs, i.e., π5(γ | τ2, τ2
0 = σ2

obs), and
hence, the sampling of γ in line 13 of Algorithm 1 can be modified accordingly.

Influence of the thinning nt. As in the previous study, we use the small noise data set and we directly
sample π1. However, we now set the squared scale parameter τ2

0 equal to realizations of the noise
variance random variable (cf. Remark 5.1). This parameter study on the lag number nt uses the values
{10, 20, 40, 80}. Once again, the Gibbs sampler is implemented with each value and we analyze the
output of the Markov chain associated to the one-dimensional hyperparameters τ and σobs, and also the
reconstruction error.

The results are shown in Table 2. The noise standard deviation σobs remains essentially unaffected
by the thinning. For global parameter τ , we observe that the IACT and consequently the number of
effective samples improves with larger thinning. Particularly, we require a considerably high value of
nt (in this case 80 or more) to obtain quasi-independent samples from τ . Nevertheless, note that the
mean and standard deviation estimators remain mostly unchanged by the thinning. We also compute the
relative reconstruction error based on the median estimator of x, with increasing thinning. The values
for each parameter nt are relerr = {1.213, 1.216, 1.215, 1.214} × 10−2, thus, the errors are approximately
the same independent of the choice of nt. Based on these results and to strike a balance between the
computational cost and the quality of the posterior samples, the lag number for the thinning step can be
selected between 20 and 40.

Table 2: MCMC chain metrics and posterior statistics for the hyperparameters σobs and τ , with increasing thinning values.

Hyperparam. nt Mean Std IACT neff

σobs

10 7.945× 10−3 5.585× 10−4 1.06 18 899
20 7.947× 10−3 5.559× 10−4 1.03 19 507
40 7.949× 10−3 5.584× 10−4 1.03 19 409
80 7.948× 10−3 5.614× 10−4 1.05 19 036

τ

10 7.631× 10−3 3.190× 10−3 8.13 2 460
20 7.609× 10−3 3.168× 10−3 4.09 4 888
40 7.619× 10−3 3.151× 10−3 2.23 8 986
80 7.596× 10−3 3.145× 10−3 1.29 15 399

Standard and preconditioned CGLS. We use the settings obtained from the previous experiments, and
now we select nt = 40. We run the Gibbs sampler with the draws from π1 computed by standard and
preconditioned CGLS. These are compared with the solution obtained by directly sampling from π1.
Both variants of CGLS are stopped at a given tolerance εcgls ∈ {10−3, 10−4}. To compare the influence
of the tolerance value in CGLS, we compute the relative reconstruction error in the solution.

Figure 4 shows the evolution of the CGLS iterations ncgls with the number of samples obtained at
every Gibbs iteration. These are shown for each predefined tolerance in the CGLS algorithm. Lines track
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the mean number of iterations, and for reference, the dotted vertical line marks the burn-in index. We
directly observe that preconditioned CGLS requires considerably less number of iterations per sample,
compared to standard CGLS.

Figure 4: Comparison of standard and preconditioned CGLS for different tolerances in the algorithm. The solid lines track
the cumulative mean of the number of iterations. The dotted vertical line marks the burn-in period.

Table 3 shows a detailed comparison of standard and preconditioned CGLS using both tolerance
values. The relative reconstruction errors for the mean and median estimates of x are shown. To measure
the quality of the results with respect to the posterior variability of x, we compute the relative error of
the standard deviation estimates; here we assume the standard deviation obtained by the direct method
as true value. Moreover, the average number of CGLS/pCGLS iterations and the average effective sample
size (across the d components of the x chain) are also computed. We observe that with εcgls = 10−4 CGLS
and pCGLS give comparable results, and naturally pCGLS requires much less iterations. However, when
εcgls = 10−3, the results of pCGLS deteriorate particularly in the estimation of the posterior variability.
We see that the relative error in the posterior standard deviation is considerably large, while the errors in
the mean and median estimates actually improve compared to the other cases. This indicates that, for
this tolerance value, there is a concentration of the samples towards the mode, while missing the tails of
the distribution. As a result, we require more stringent tolerances in pCGLS to guarantee convergence in
order to obtain an exact sample from the Gaussian conditional π1. In addition, we see that overall the
samples of the parameter x are almost independent, given the average neff values are close to ns.

Table 3: Comparison of standard and preconditioned CGLS for different CGLS tolerances. The direct method that samples
exactly from π1 is also shown.

relerr (mean) relerr (median) relerr (std) Average ncgls Average neff
Direct 1.56× 10−2 1.21× 10−2 – – 19 386

εcgls = 10−3 CGLS 1.52× 10−2 1.20× 10−2 5.81× 10−2 143 19 291
pCGLS 0.89× 10−2 0.69× 10−2 34.5× 10−2 33 18 857

εcgls = 10−4 CGLS 1.55× 10−2 1.21× 10−2 1.99× 10−2 238 19 384
pCGLS 1.54× 10−2 1.19× 10−2 1.78× 10−2 62 19 369

Solution for different noise levels. Now we use both data sets. The solutions are computed using precon-
ditioned CGLS with εcgls = 10−4. First we show in Figure 5 posterior statistics for the hyperparameters
σobs and τ for the low noise data set. In particular, we plot the histogram of the posterior samples
and generated chain, as well as, the ergodic mean and the sample autocorrelation. We observe that the
posterior for the global parameter τ is right-skewed, while the posterior of σobs is almost symmetric. The
posterior samples computed by the Gibbs sampler have significantly small correlation and we also see
that the posterior chain has converged and it is well-mixed. We obtain similar results for the large noise
data set and thus we omit the figure.

Figure 6 shows the posterior mean and 95% credible interval for the local weight parameter w. Note
that the local parameter captures the locations where the signal edges are placed. The uncertainty is
large at those particular locations and essentially zero in the rest of the domain. We observe that as
the noise increases, the magnitude of the weights decreases and the point estimators become less sharp.
Nevertheless, the posterior is still able to capture the edges correctly.
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Figure 5: Posterior of σobs (first row) and τ (second row) using the low noise data set. Histogram, chain, cumulative mean
and sample autocorrelation.
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1Figure 6: Posterior statistics for w using the low noise (left) and high noise (right) data sets. Posterior mean (solid line)
and 95% credible interval (shaded area).

Finally, the main posterior statistics for the target parameter x are shown in Figure 7 together with
the underlying true signal. Similar to the local weights, we plot the posterior mean and 95% credible
interval. The relative reconstruction errors based on the mean, for the low and high noise cases, are
1.54× 10−2 and 6.63× 10−2, respectively. We compare the results based on the horseshoe prior to the
method in [8] which is based on a Laplace Markov random field prior. For the latter, we use the same
number of samples, burn-in and thinning. In the case of the Laplace Markov random field prior, we
obtain the reconstruction errors 5.36× 10−2 and 9.27× 10−2, for each data set. We see that our method
not only generates sharper solutions but also reduces the posterior uncertainty.

5.2. Two-dimensional examples
In this section, we study a couple of linear inverse problems to test the horseshoe prior in two-

dimensional applications. In both examples, the inputs to the Gibbs sampler are selected as follows: (i)
The number of samples is ns = 2× 104, in addition to a burn-in period of nb = 4× 103. (ii) The scale
parameter τ0 is defined from the noise standard deviation as mentioned in Remark 5.1. (iii) The thinning
number is set to nt = 20. (iv) In two-dimensional applications the computation of the QR decomposition
in (26) required in pCGLS dominates the computational cost. Instead, we design the experiments such
that the direct method to sample π1 can be utilized, and for this we employ sparse matrix Cholesky
factorizations using the cholmod package of the scikit-sparse library in python.
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11Figure 7: Comparison of posterior statistics for the target parameter x using the horseshoe prior (first row) and the Laplace
prior (second row). The results are shown using the low noise (left) and high noise (right) data sets. True solution (solid
line), posterior mean (dashed line) and 95% credible interval (shaded area).

5.2.1. Image deblurring
We consider an image deblurring inverse problem where we seek to recover an original sharp image from

a blurred one by using a mathematical model of the blurring process. This is analogous to one-dimensional
deconvolution but now in two dimensions. In this case, we assume that the blurring of the columns in
the image is independent of the blurring of the rows. Therefore, there exist two matrices Ac ∈ RN×N

and Ar ∈ RN×N , such that we can express the forward operator as AcXAT
r with an image X ∈ RN×N .

Here, we set Ac and Ar as in Challenge 1 from [49]; in MATLAB notation these are:

c = zeros(N,1); c(1:5) = [5:-1:1]’/15; Ac = toeplitz(c)

r = zeros(N,1); r(1:10) = [5:-.5:.5]’/15; Ar = toeplitz(c,r).
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Figure 8: Image deblurring example. Left: underlying true image. Right: blurred noisy image.

Since we typically work with a vectorized version of the image, we can define the system matrix as
A = (Ar ⊗Ac) ∈ Rd×d, such that the linear forward operator becomes Ax. In this example, the image
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size is 32-by-32, i.e., N = 32 and d = N2 = 1 024. Moreover, we set the Gaussian noise level to 1%. The
underlying true image and its blurred and noisy version are shown in Figure 8.

The posterior solution for the hyperparameters σobs and τ is shown in Figure 9. As in the previous
example, we plot the histogram of the posterior samples, the Markov chain, the ergodic mean and the
sample autocorrelation. The magnitude of both hyperparameters is very small, especially the global
standard deviation τ that tends to shrink parameters to zero. Furthermore, we observe that the posterior
samples computed by the Gibbs sampler have small correlation and that the chain has converged and it
is well-mixed.
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Figure 9: Posterior of σobs (first row) and τ (second row). Histogram, chain, cumulative mean and sample autocorrelation.
Note the sharp decay in the autocorrelation after first lag, an indication of quasi-independent samples.

Figure 10 shows the posterior mean and standard deviation for the local weight parameter w. Note
that the local parameter captures the locations where the signal edges are placed. Particularly, the
local parameter w(1) captures the locations where the image vertical edges are located, while the weight
w(2) identifies the horizontal edges. Similar as in the one-dimensional example, the weights and their
uncertainty are large at the edge locations in order to escape shrinkage, and essentially zero in the rest of
the domain.

Posterior statistics for the image represented by x are shown in Figure 11. We compare the posterior
mean and standard deviation obtained by using the horseshoe prior with those from the Laplace Markov
random field prior [8]. We show the posterior mean with the same intensity range in both results
for the sake of comparison, however, there are no negative values in the horseshoe case. The relative
reconstruction error based on the mean are 0.098 and 0.065, respectively. Despite the relative error is
slightly larger for the horseshoe prior in this example, we clearly see that the mean of the posterior based
on the horseshoe prior is sharper and has smaller posterior uncertainty. Nevertheless, with the horseshoe
prior the standard deviation is particularly large at the locations that are not identified properly, while
with the Laplace prior the larger values of standard deviation are located at the edges.

Finally, notice that for the posterior based on the horseshoe prior most of the error contribution is
associated to the misrepresentation of a few corners of the objects in the image. To illustrate this we plot
a few posterior samples in Figure 12. In some cases, the samples detect the corner pixels with interior
intensity but others with the outside intensity (see, e.g., bottom right corner of the “round” object). We
observe that with the horseshoe prior the edges are always sharp, but those arising from the Laplace
prior are in general more noisy. This is related to the fact that the horseshoe prior is more heavy tailed
than the Laplace prior.

5.2.2. X-ray CT reconstruction
The objective of 2D CT reconstruction is to estimate an image of the cross-section of an object using

projection data that represents the intensity loss or attenuation of a beam of X-rays as they pass through
the object.
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standard deviation (right).
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11Figure 11: Comparison of posterior statistics for the target parameter x using the horseshoe prior (first row) and the
Laplace prior (second row). Posterior mean and standard deviation.

The discretized CT reconstruction problem takes the form given in (1), where xtrue ∈ Rd is the vector
of attenuation coefficients, which corresponds to an N ×N matrix with d = N2, and y ∈ Rm denotes
the measurement data. The system matrix A ∈ Rm×d is from the discretized Radon transform, and the
number of rows m is the product of the number of detector elements p and the number of projection
angles q (see, e.g., [50, Ch.9] for the details). In this context, y is referred to as projection data that is
typically expressed as a 2D array known as sinogram.
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11Figure 12: Comparison between a few posterior samples generated from the horseshoe prior (first row) and Laplace prior
(second row).

In particular, we consider the reconstruction of a “grains” phantom generated with the phantomgallery
function from [51]. The projection geometry and data acquisition process comes from a fan beam
configuration [50, p.53], whose parameters are defined as follows (in arbitrary units): the distance from
the X-ray source to the origin is 3N , the distance from the origin to the detector is N , and the number of
detector elements is p = N . The discretized domain size is set to N = 64 (thus d = 4 096), and we use
q = 32 equidistantly distributed projection angles in [0◦, 360◦]. Furthermore, the noise standard deviation
is set as σobs = 0.01(∥Axtrue∥2 /

√
m) with m = pq = 2 048. Figure 13 shows the true image together

with the sinogram data.
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Figure 13: Grains phantoms. Left: underlying true image. Right: noisy sinogram data.

For the hyperparameters σobs and τ we obtain a similar behavior to the previous examples (hence
we omit the plot). The posterior mean and standard deviation of σobs and τ are 0.349 ± 0.006 and
4.94× 10−6 ± 3.84× 10−8, respectively. The IACTs for both hyperparameters are close to 1, and thus, we
also obtain quasi-independent samples using the proposed Gibbs sampler in this example.

The posterior mean and standard deviation for the local weight parameter w are shown in Figure 14.
Similarly to the deblurring example, we see that w(1) captures the locations of vertical edges and w(2)

finds the horizontal edges. In this case, it is more noticeable the influence of the assumed zero boundary
conditions on the image; see the leftmost column in w(1) and the topmost row in w(2). We also observe
that some of the edges are missed, especially where there is no significant differences in the attenuation
coefficients of the grains (see, e.g., bottom right area in the posterior means).

The main posterior statistics for the parameter x are shown in Figure 15. We plot the posterior mean
and standard deviation, and compare them with the results from using the Laplace Markov random field
prior. Again, we show the posterior mean with the same intensity range for the sake of comparison,
but no negative values are obtained in the horseshoe case. Using the posterior mean as point estimate,
the relative reconstruction error based on the mean are 0.045 for the horseshoe prior and 0.052 for the
Laplace prior. Similarly to the other examples, it is clear that the horseshoe prior allows us to obtain a
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1Figure 14: Posterior statistics for the local weights w(1) (first row) and w(2) (second row). Posterior mean (left) and
standard deviation (right).

sharper reconstructions with smaller posterior uncertainty compared to the Laplace prior. Despite some
of the grain features are missed in the reconstruction, we observe that the standard deviation values
reflect higher uncertainty at those particular missing locations. Moreover, note there are a few pixels at
which the uncertainty is larger compared to the others; as in the deblurring example, these tend to be
located at the corners of the grains.
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11Figure 15: Comparison of posterior statistics for the target parameter x using the horseshoe prior (first row) and the
Laplace prior (second row). Posterior mean and standard deviation.
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6. Summary and conclusions

We developed a computational framework for solving linear Bayesian inverse problems where preserving
edges or sharp features of the solution is required. Our approach is based on the hierarchical horseshoe
prior which combines a conditionally Gaussian prior on pairwise parameter increments with two half-
Cauchy hyperpriors on global and local variance hyperparameters. The global hyperparameter reduces
small increments towards zero, while the local hyperparameter allows some sufficiently large increments
to escape shrinkage, thereby detecting the edges.

Due to the hierarchical structure and heavy-tailed distributions involved in the prior, sampling of the
posterior distribution is cumbersome. Hence, we employ a scale mixture representation of the half-Cauchy
hyperpriors to obtain a formulation with distributions of simpler form. This incorporates auxiliary
parameters that allow improving convergence by embedding the target posterior into a larger model, as
they assist in the reduction of dependence in the conditional specifications in the joint posterior (see, e.g.,
[52]). Thereafter, sampling of the posterior is performed via the Gibbs sampler where the conditional
densities are derived in closed form by exploiting conjugate relations. In particular, the conditional
density for the target parameter is high-dimensional Gaussian and we formulate the task of sampling
as a least-squares problem that is solved efficiently via CGLS with preconditioner given by the prior
precision matrix. We point out that despite our method is tailored for linear inverse problems, it can also
be extended to nonlinear ones by sampling the conditional densities for the target parameter and the
noise variance hyperparameter with suitable MCMC samplers.

The numerical experiments show that our approach based on the horseshoe prior enables the computa-
tion of sharp point estimates of the posterior, while reducing the posterior uncertainty. This compared with
more traditional prior models based on Laplace Markov random fields. Furthermore, in one-dimensional
applications the computational cost of the algorithm is significantly low since the preconditioner for
CGLS is obtained as a byproduct of the formulation. However, in large-scale two-dimensional problems
our approach becomes prohibitively slow since the preconditioner is expensive to compute.

Finally, some ideas to extend/improve our methodology are as follows:

(i) Further work is needed to reduce the computational cost of sampling the Gaussian conditional in
large-scale inverse problems. Specially, the analysis of its computational cost under mesh refinement.
Methods from linear algebra such as inverse square root and matrix splitting approximations can
be useful (see, e.g., [43, 23]), or MCMC methods that exploit low-dimensional structure [53], as
well as, finding easy-to-compute preconditioners for CGLS.

(ii) Application of the regularized horseshoe prior is a reasonable extension of our framework to make
the posterior inference more robust (see, e.g., [41]). The idea is to control potential issues arising
from the heavy-tails of shrinkage priors.

(iii) The Bayesian inverse problem can be re-parameterized in terms of the increments (see, e.g., [20]),
in this case, the prior precision matrix is equal to the weight matrix. Despite this transformation
complicates the likelihood function, this can prove useful when computing the preconditioner
required in pCGLS since the precision matrix is now diagonal. Moreover, in two-dimensional
settings, the local weights associated to each coordinate direction can be combined to the have the
same size of the target parameter. The idea is to identify redundant edges by adding compatibility
conditions (see also [20]).

(iv) While it has been discussed that the horseshoe prior is typically resistant to problems originating
from weak identifiability (see, e.g., [32]), theoretical and computational studies are required in
connection with potential multi-modality of the posterior under the horseshoe prior, as well as,
posterior concentration properties of the hierarchical horseshoe prior (see, e.g., [54]).

(v) The number of hyperparameters can be reduced using empirical Bayes or maximum marginal
likelihood methods. The idea is to fix the hyperparameter to the value that maximizes the model
evidence. This strategy is used for example in sparse Bayesian learning [55].

Appendix A. Definitions and scale mixture proof

We use this appendix to recall the definition of the inverse gamma and half-Student’s t densities, and
to show a simple derivation of the scale mixture representation given in (15).
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First, the probability densities for the inverse gamma and half-Student’s t random variables (discussed
in section 3.2) are respectively defined as

IG(α, β) =⇒ π(x) = βα

Γ(α)x−α−1 exp
(
−β

x

)
, and (A.1a)

t+(ν, 0, c) =⇒ π(x) =


2Γ
(

ν+1
2
)

Γ
(

ν
2
)√

πν c

(
1 + 1

ν
x2

c2

)− ν+1
2

, if x ≥ 0

0, otherwise.
(A.1b)

Second, the scale mixture (15) can be derived by marginalization of the associated hierarchical prior,
that is

π(a2) =
∫ ∞

0
π(a2 | b)π(b) db ∝ (a2)− ν

2 −1
∫ ∞

0
b− ν+1

2 −1 exp
(
−1

b

(
ν

a2 + 1
c2

))
db (A.2a)

∝ (a2)− ν
2 −1
(

ν

a2 + 1
c2

)− ν+1
2

∝ (a2)− 1
2

(
1 + 1

ν

a2

c2

)− ν+1
2

, (A.2b)

where we use the fact that the integrand in (A.2a) is an unnormalized inverse gamma density with shape
and scale parameters (ν + 1)/2 and ν/a2 + 1/c2, respectively. This allows analytical computation of the
marginalization procedure. Finally, to obtain the density for A from that of A2, we can use a probabilistic
transformation. This results in the half-Student’s t-distribution with degrees of freedom ν and scale
parameter c, defined in (15).
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