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Abstract. Multiple Tensor-Times-Matrix (Multi-TTM) is a key computation in algorithms
for computing and operating with the Tucker tensor decomposition, which is frequently used in
multidimensional data analysis. We establish communication lower bounds that determine how
much data movement is required to perform the Multi-TTM computation in parallel. The crux of
the proof relies on analytically solving a constrained, nonlinear optimization problem. We also present
a parallel algorithm to perform this computation that organizes the processors into a logical grid
with twice as many modes as the input tensor. We show that with correct choices of grid dimensions,
the communication cost of the algorithm attains the lower bounds and is therefore communication
optimal. Finally, we show that our algorithm can significantly reduce communication compared to
the straightforward approach of expressing the computation as a sequence of tensor-times-matrix
operations.
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1. Introduction. The Tucker tensor decomposition is a low-rank representation
or approximation that enables significant compression of multidimensional data. The
Tucker format consists of a core tensor, which is much smaller than the original
data tensor, along with a factor matrix for each mode, or dimension, of the data.
Computations involving Tucker-format tensors, such as tensor inner products, often
require far fewer operations than with their full-format, dense representations. As a
result, the Tucker decomposition is often used as a dimensionality reduction technique
before other types of analysis are done, including computing a CP decomposition [9],
for example.

A 3-way Tucker-format tensor can be expressed using the tensor notation T =
G×1A(1)×2A(2)×3A(3), where G is the 3-way core tensor, A(n) is a tall-skinny factor
matrix corresponding to mode n, and ×n denotes the tensor-times-matrix (TTM)
operation in the nth mode [18]. Here, T is the full-format representation of the tensor
that can be constructed explicitly by performing multiple TTM operations. We call
this collective operation the Multi-TTM computation, which is the focus of this work.

Multi-TTM is a fundamental computation in the context of Tucker-format ten-
sors. When the Tucker decomposition is used as a data compression tool, Multi-TTM
is exactly the decompression operation, which is necessary when the full format is
required for visualization [19], for example. In the case of full decompression, the
input tensor is small and the output tensor is large. One of the quasi-optimal algo-
rithms for computing the Tucker decomposition is the Truncated Higher-Order SVD
algorithm [28, 20], in which each factor matrix is computed as the leading left sin-
gular vectors of a matrix unfolding of the tensor. In this algorithm, the smaller core
tensor is computed via Multi-TTM involving the larger data tensor and the computed
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factor matrices. When the computational costs of the matrix SVDs are reduced us-
ing randomization, Multi-TTM becomes the overwhelming bottleneck computation
[23, 26].

Since the overall size of multidimensional data grows quickly, there have been
many recent efforts to parallelize the computation of the Tucker decomposition and
the operations on Tucker-format tensors [3, 10, 22, 12, 5]. There has also been recent
progress in establishing lower bounds on the communication costs of parallel algo-
rithms for tensor computations, including the Matricized-Tensor Times Khatri-Rao
product (MTTKRP) [6, 7, 29] and symmetric tensor contractions [25]. However, to
our knowledge, no communication lower bounds have been previously established for
computations relating to Tucker-format tensors. In this work, we prove communi-
cation lower bounds for a class of Multi-TTM algorithms. Additionally, we provide
a parallel algorithm that attains the lower bound to within a constant factor and is
therefore communication optimal.

To minimize the number of arithmetic operations in a Multi-TTM computation,
the TTM operations should be performed in sequence, forming temporary interme-
diate tensors after each step. A single TTM corresponds to a matrix multiplication
along a particular mode of the tensor, therefore a series of matrix multiplications
is performed in the sequence approach to compute the final result. One of the key
observations of this work is that when Multi-TTM is performed in parallel, this ap-
proach may communicate more data than necessary, even if communication-optimal
algorithms are used for each individual TTM. By considering the Multi-TTM compu-
tation as a whole, we can devise atomic parallel algorithms that can communicate less
than this TTM-in-Sequence approach, often with negligible increase in computation.
Our proposed algorithm provides greatest benefit when the input and output tensors
vary greatly in size.
The main contributions of this paper are to

• establish communication lower bounds for the parallel atomic Multi-TTM
computation;

• propose a communication optimal parallel algorithm;
• show that in many typical scenarios, the straightforward approach based on

a sequence of TTM operations communicates more than performing Multi-
TTM as a whole.

The rest of the paper is organized as follows. Section 2 describes previous work on
communication lower bounds for matrix multiplication and some tensor operations.
In Section 3, we present our notations and preliminaries for the general Multi-TTM
computation. To reduce the complexity of notations, we first focus on 3-dimensional
Multi-TTM computation for which we present communication lower bounds and a
communication optimal algorithm in Section 4 and Section 5, respectively. In Sec-
tion 6, we validate the optimality of the proposed algorithm and show that it sig-
nificantly reduces communication compared to the TTM-in-Sequence approach with
negligible increase in computation in many practical cases. We present our general
results in Sections 7 and 8, and propose conclusions and perspectives in Section 9.

2. Related Work. A number of studies have focused on communication lower
bounds for matrix multiplication, starting with the work by Hong and Kung [15] to
determine the minimum number of I/O operations for sequential matrix multiplication
using the red-blue pebble game. Irony et al. [16] extended this work for the parallel
case. Demmel et al. [14] studied memory independent communication lower bounds
for rectangular matrix multiplication based on aspect ratios of matrices. Recently,
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Smith et al. [24] and Al Daas et al. [1] have tightened communication lower bounds
for matrix multiplication. Ballard et al. [4] extended communication lower bounds of
the matrix multiplication for any computations that can be written as 3 nested loops.
Christ et al. [13] generalized the method to prove communication lower bounds of 3
nested loop computations for arbitrary loop nesting. We apply their approach to our
Multi-TTM definition.

There is limited work on communication lower bounds for tensor operations.
Solomonik et al. [25] proposed communication lower bounds for symmetric tensor
contraction algorithms. Ballard et al. [6] proposed communication lower bounds for
MTTKRP computation with cubical tensors. This work is extended in [7] to han-
dle varying tensor dimensions. A sequential lower bound for tile-based MTTKRP
algorithms is proved by Ziogas et al. [29]. We use some results from [6, 7] to prove
communication lower bounds for Multi-TTM.

3. Notations and Preliminaries. In this section, we present our notations
and basic lemmas for d-dimensional Multi-TTM computation. In Sections 4 to 6, we

focus on d = 3, i.e., Y = X×1A(1)T×2A(2)T×3A(3)T. We present our general results
in Sections 7 and 8.

We use boldface uppercase Euler script letters to denote tensors (X) and boldface

uppercase letters with superscripts to denote matrices (A(1)). We use lowercase letters
with subscripts to denote sizes (n1) and add the prime symbol to them to denote
the indices (n′1). We use one-based indexing throughout and [d] to denote the set
{1, 2, · · · , d}. To improve the presentation, we denote the product of elements having
the same lowercase letter with all subscripts by the lowercase letter only (n1 · · ·nd by
n and r1 · · · rd by r). We denote the product of the i rightmost terms with the capital

letter with subscript i, Ni =
∏d

j=d−i+1 nj and Ri =
∏d

j=d−i+1 ri, thus n = Nd, and
nd = N1.

Let Y ∈ Rr1×···×rd be the d-mode output tensor, X ∈ Rn1×···×nd be the d-mode
input tensor, and A(k) ∈ Rnk×rk be the matrix of the kth mode. Then the Multi-

TTM computation can be represented as Y = X×1 A(1)T · · · ×d A(d)T. Without loss
of generality and to simplify notation, we consider that the input tensor X is larger
than the output tensor Y, or n ≥ r. This corresponds to computing the core tensor of
a Tucker decomposition given computed factor matrices, for example. However, the
opposite relationship where the output tensor is larger (e.g., X = Y×1A(1) · · ·×dA(d))
is also an important use case, corresponding to forming an explicit representation of
a (sub-)tensor of a Tucker-format tensor. Our results extend straightforwardly to
this case. We consider d-dimensional input and output tensors and therefore assume
ni ≥ 2 and ri ≥ 2 for 1 ≤ i ≤ d. We also assume without loss of generality that the
tensor modes are ordered in such a way that n1r1 ≤ n2r2 ≤ · · · ≤ ndrd.

Definition 3.1. Let X be an n1 × · · · × nd tensor, Y be an r1 × · · · × rd tensor,
and A(j) be an nj × rj matrix for j ∈ [d]. Multi-TTM computes

Y = X×1 A(1)T · · · ×d A(d)T

where for each (r′1, . . . , r
′
d) ∈ [r1]× · · · × [rd],

(3.1) Y(r′1, . . . , r
′
d) =

∑
{n′k∈[nk]}k∈[d]

X(n′1, . . . , n
′
d)
∏
j∈[d]

A(j)(n′j , r
′
j).

Let us consider an example when d = 2. In this scenario, the input and output
tensors are in fact matrices X,Y, and Y = A(1)TXA(2). As mentioned earlier, Multi-



4 H. AL DAAS, G. BALLARD, L. GRIGORI, S. KUMAR, AND K. ROUSE

TTM computation can be performed as a sequence of TTM operations, in this case
two matrix multiplications. However, we define the Multi-TTM to perform all the
products at once for each term of the summation of (3.1). Our definition comes at
greater arithmetic cost, as partial (d+1)-ary multiplies are not computed and reused,
but we will see that this approach can reduce communication cost. We describe how
the extra computation can often be reduced to a negligible cost in Subsection 5.1 and
compare it to the computation cost of TTM-in-Sequence in Subsection 6.2.2.

We can write pseudocode for the Multi-TTM with the following:

for n′1 = 1:n1, . . . , for n′d = 1:nd,

for r′1 = 1:r1, . . . , for r′d = 1:rd,

Y(r′1, . . . , r
′
d) + = X(n′1, . . . , n

′
d) ·A(1)(n′1, r

′
1) · · · · ·A(N)(n′d, r

′
d)

Definition 3.2. A parallel atomic Multi-TTM algorithm computes each term of
the summation of (3.1) atomically on a unique processor, but it can distribute the nr
terms over processors in any way.

Here atomic computation of a single (d+1)-ary multiplication for a parallel al-
gorithm means that all the multiplications of this operation are performed on only
one processor, i.e., all d + 1 inputs are accessed on that processor in order to com-
pute the single output value. This assumption is necessary for our communication
lower bounds. Processors can reorganize their local atomic operations to reduce com-
putational costs without changing the communication or violating parallel atomicity.
However it is reasonable for an algorithm to break this assumption in order to improve
arithmetic costs by reusing partial results across processors, and we compare against
such algorithms in Section 6.

3.1. Parallel Computation Model. We consider that the computation is dis-
tributed across P processors. Each processor has its own local memory and is con-
nected to all other processors via a fully connected network. Every processor can
operate on data in its local memory and must communicate to access data of other
processors. Hence, communication refers to send and receive operations that transfer
data from local memory to the network and vice-versa. Communication cost mainly
depends on two factors – the amount of data communicated (bandwidth cost) and
the number of messages (latency cost). Latency cost is dominated by bandwidth cost
for computations involving large messages, so we focus on bandwidth cost in this
work and refer it as communication cost throughout the text. We assume the links of
the network are bidirectional and that the communication cost is independent of the
number of pairs of processors that are communicating. Each processor can send and
receive at most one message at the same time. In our model, the communication cost
of an algorithm refers to the cost along the critical path.

3.2. Existing Results. Our work relies on two fundamental results. The first,
a geometric result on lattices, allows us to relate the volume of computation to the
amount of data accessed by determining the maximum data reuse. The result is a
specialization of the Hölder-Brascamp-Lieb inequalities [8]. This result has previously
been used to derive lower bounds for tensor computations [6, 7, 13, 17] in a similar
way to the use of the Loomis-Whitney inequality [21] in derivations of communication
lower bounds for several linear algebra computations [4]. The result is proved in [13],
but we use the statement from [6, Lemma 4.1]. Here 1 represents a vector of all ones
and ≥ relation between vectors applies elementwise.
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Lemma 3.3. Consider any positive integers ` and m and any m projections φj :
Z` → Z`j (`j ≤ `), each of which extracts `j coordinates Sj ⊆ [`] and forgets the `−`j
others. Define C =

{
s = [s1 · · · sm]T : 0 ≤ si ≤ 1 for i = 1, 2, · · · ,m and ∆ · s ≥ 1

}
,

where the ` ×m matrix ∆ has entries ∆i,j = 1 if i ∈ Sj and ∆i,j = 0 otherwise. If
[s1 · · · sm]T ∈ C, then for all F ⊆ Z`,

|F | ≤
∏

j∈[m]

|φj(F )|sj .

The second result, a general constrained optimization problem, allows us to cast
the communication cost of an algorithm as the objective function in an optimization
problem where the constraints are imposed by properties of the computation within
the algorithm. A version of the result is proved in [7, Lemma 5.1] and used to derive
the general communication lower bound for MTTKRP.

Theorem 3.4. Consider the constrained optimization problem:

min
∑
j∈[d]

xj

such that
nr

P
≤
∏
j∈[d]

xj and 0 ≤ xj ≤ kj for all 1 ≤ j ≤ d

for some positive constants k1 ≤ k2 ≤ · · · ≤ kd with
∏

j∈[d] kj = nr. Then the
minimum value of the objective function is

I (KI/P )
1/I

+
∑

j∈[d−I]

kj

where we use the notation KI =
∏d

j=d−I+1 kj and 1 ≤ I ≤ d is defined such that
LI ≤ P < LI+1.

Here Lj =
Kj

(kd−j+1)j
for 1 ≤ j ≤ d and Ld+1 =∞.

The minimum is achieved at the point x∗ defined by xj
∗ = kj for 1 ≤ j ≤ d − I,

x`
∗ = (KI/P )

1/I
for d− I < ` ≤ d.

While Theorem 3.4 can be straightforwardly derived from the previous work, we
provide an alternate proof in Appendix A. We represent it in this form to be directly
applicable to all the constrained optimization problems in this paper. The constraints
nr/P ≤

∏
j∈[d] xj and

∏
j∈[d] kj = nr are derived from the Multi-TTM computation.

The equality constraint on
∏

j∈[d] kj implies that there is always a feasible solution
to the optimization problem for P ≥ 1. We calculate the ranges of P for each I in
Corollaries 4.1, 4.2 and 7.1.

4. Lower Bounds for 3-dimensional Multi-TTM. We obtain the lower
bound results for 3D tensors in this section, presented as Theorem 4.3. The lower
bound is independent of the size of the local memory of each processor, similar to pre-
vious results for matrix multiplication [1, 14] and MTTKRP [6, 7], and it varies with
respect to the number of processors P relative to the matrix and tensor dimensions
of the problem.
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The proof focuses on a processor that performs 1/P th of the computation and
owns at most 1/P th of the data. It reduces the problem of finding a lower bound
on the amount of data the processor must communicate to solving a constrained
optimization problem: we seek to minimize the number of elements of the matrices
and tensors that the processor must access or partially compute in order to execute
its computation subject to structure constraints of Multi-TTM. The most important
constraint derives from Lemma 3.3, which relates a subset of the computation within
a Multi-TTM algorithm to the data it requires. The other constraints provide upper
bounds on the data required from each array. The upper bounds are necessary to
establish the tightest lower bounds in the cases where P is small. We show that
the optimization problem can be separated into two independent problems, one for
the matrix data and one for the tensor data. Corollaries 4.1 and 4.2 state the two
constrained optimization problems along with their analytic solutions, both of which
follow from Theorem 3.4. That is, setting d = 3, k1 = n1r1, k2 = n2r2 and k3 = n3r3
in Theorem 3.4, we obtain Corollary 4.1. Similarly, setting d = 2 with k1 = r and
k2 = n, we obtain Corollary 4.2. We recall here that r = r1r2r3 and n = n1n2n3.

Corollary 4.1. Consider the following optimization problem:

min
x,y,z

x+ y + z

such that

nr

P
≤ xyz

0 ≤ x ≤ n1r1
0 ≤ y ≤ n2r2
0 ≤ z ≤ n3r3,

where n1r1 ≤ n2r2 ≤ n3r3, and n1, n2, n3, r1, r2, r3, P ≥ 1. The optimal solution
(x∗, y∗, z∗) depends on the relative values of the constraints, yielding three cases:

1. if P < n3r3
n2r2

, then x∗ = n1r1, y∗ = n2r2, z∗ = n3r3
P ;

2. if n3r3
n2r2

≤ P < n2n3r2r3
n2
1r

2
1

, then x∗ = n1r1, y∗ = z∗ =
(
n2n3r2r3

P

) 1
2 ;

3. if n2n3r2r3
n2
1r

2
1
≤ P , then x∗ = y∗ = z∗ =

(
nr
P

) 1
3 ;

which can be visualized as follows.

P1 n3r3
n2r2

n2n3r2r3
n2
1r

2
1x∗ = n1r1

y∗ = n2r2
z∗ = n3r3

P

x∗ = n1r1
y∗ = z∗ =

(
n2n3r2r3

P

)1/2 x∗ = y∗ = z∗ =(
nr
P

)1/3
Corollary 4.2. Consider the following optimization problem:

min
u,v

u+ v

such that

nr

P
≤ uv

0 ≤ u ≤ r
0 ≤ v ≤ n,
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where n ≥ r, and n, r, P ≥ 1. The optimal solution (u∗, v∗) depends on the relative
values of the constraints, yielding two cases:

1. if P < n
r , then u∗ = r, v∗ = n

P ;

2. if n
r ≤ P , then u∗ = v∗ =

(
nr
P

) 1
2 ;

which can be visualized as follows.

P1 n
ru∗ = r

v∗ = n
P

u∗ = v∗ =
(
nr
P

)1/2
4.1. Communication Lower Bounds for Multi-TTM. We now state the

lower bounds for 3-dimensional Multi-TTM. After this, we also present a corollary for
cubical tensors.

Theorem 4.3. Any computationally load balanced atomic Multi-TTM algorithm
that starts and ends with one copy of the data distributed across processors involv-
ing 3D tensors with dimensions n1, n2, n3 and r1, r2, r3 performs at least A + B −(

n
P + r

P +
∑3

j=1
njrj
P

)
sends or receives where

A =


n1r1 + n2r2 + n3r3

P if P < n3r3
n2r2

n1r1 + 2
(
n2n3r2r3

P

) 1
2 if n3r3

n2r2
≤ P < n2n3r2r3

n2
1r

2
1

3
(
nr
P

) 1
3 if n2n3r2r3

n2
1r

2
1
≤ P

B =

{
r + n

P if P < n
r

2
(
nr
P

) 1
2 if n

r ≤ P .

Proof. Let F be the set of loop indices associated with the 4-ary multiplication
performed by a processor. As we assumed the algorithm is computationally load
balanced, |F | = nr/P . We define φX(F ), φY(F ) and φj(F ) to be the projections of

F onto the indices of the arrays X,Y, and A(j) for 1 ≤ j ≤ 3 which correspond to the
elements of the array that must be accessed or partially computed by the processor.

We use Lemma 3.3 to obtain a lower bound on the number of array elements that
must be accessed or partially computed by the processor. The computation involves
5 arrays (2 tensors and 3 matrices) with 6 loop indices (see the atomic Multi-TTM
definition in Section 3), hence the 6×5 matrix corresponding to the projections above
is given by

∆ =

[
I3×3 13 03

I3×3 03 13

]
.

Here 13 and 03 represent the 3-dimensional vectors of all ones and zeros, respectively,
and I3×3 represents the 3×3 identity matrix. We recall from Lemma 3.3 that ∆i,j = 1
if loop index i is used to access array j and ∆i,j = 0 otherwise. The first three columns
of ∆ correspond to matrices and the remaining two columns correspond to tensors.
In this case, we have

C =
{
s = [s1 · · · s5]T : 0 ≤ si ≤ 1 for i = 1, 2, · · · , 5 and ∆ · s ≥ 1

}
.

Recall that 1 represents a vector of all ones. Here ∆ is not full rank, therefore,
we consider all vectors v ∈ C such that ∆ · v = 1. Such a vector v is of the form
[a a a 1-a 1-a] where 0 ≤ a ≤ 1. Therefore, we obtain

nr

P
≤
( ∏

j∈[3]

|φj(F )|
)a(
|φX(F )||φY(F )|

)1-a
for all 0 ≤ a ≤ 1.
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The above constraint is equivalent to nr
P ≤

∏
j∈[3] |φj(F )| and nr

P ≤ |φX(F )||φY(F )|.
To see this equivalence note that the forward direction is implied by setting a = 0
and a = 1. For the opposite direction, taking the first of the two constraints to the
power a and the second to the power 1− a then multiplying the two terms yields the
original.

Clearly a projection onto an array cannot be larger than the array itself, thus
|φX(F )| ≤ n, |φY(F )| ≤ r, and |φj(F )| ≤ njrj for 1 ≤ j ≤ 3.

As the constraints related to projections of matrices and tensors are disjoint,
we solve them separately and then sum the results to get a lower bound on the
set of elements that must be accessed or partially computed by the processor. We
obtain a lower bound on A, the number of relevant elements of the matrices by
using Corollary 4.1, and a lower bound on B, the number of relevant elements of the
tensors by using Corollary 4.2. By summing both, we get the positive terms of the
lower bound.

To bound the sends or receives, we consider how much data the processor could
have had at the beginning or at the end of the computation. Assuming there is
exactly one copy of the data at the beginning and at the end of the computation,
there must exist a processor which owns at most 1/P of the elements of the arrays at
the beginning or at the end of the computation. By employing the previous analysis,
this processor must access or partially compute A + B elements of the arrays, but
can only own n

P + r
P +

∑
j∈[3]

njrj
P elements of the arrays. Thus it must perform the

specified amount of sends or receives.

We denote the lower bound of Theorem 4.3 by LB and use it extensively in
Subsection 5.2 while analyzing the communication cost of our parallel algorithm.

We also state the result for 3-dimensional Multi-TTM computation with cubical
tensors, which is a direct application of Theorem 4.3 with n1 = n2 = n3 = n

1
3 and

r1 = r2 = r3 = r
1
3 .

Corollary 4.4. Any computationally load balanced atomic Multi-TTM algorithm
that starts and ends with one copy of the data distributed across processors involving
3D cubical tensors with dimensions n

1
3 × n 1

3 × n 1
3 and r

1
3 × r 1

3 × r 1
3 (with n ≥ r)

performs at least

3
(nr
P

) 1
3

+ r − 3(nr)
1
3 + r

P

sends or receives when P < n
r and at least

3
(nr
P

) 1
3

+ 2
(nr
P

) 1
2 − n+ 3(nr)

1
3 + r

P

send or receives when P ≥ n
r .

In particular, we note that the lower bound for cubical atomic Multi-TTM algo-
rithms is smaller than that of a TTM-in-Sequence approach for many typical scenarios
in the case P < n/r, as we discuss further in Section 6.

5. Parallel Algorithm for 3-dimensional Multi-TTM. We organize P pro-
cessors into a 6-dimensional p1 × p2 × p3 × q1 × q2 × q3 logical processor grid. We
arrange the grid dimensions such that p1, p2, p3, q1, q2, q3 evenly distribute n1, n2, n3,
r1, r2, r3, respectively. A processor coordinate is represented as (p′1, p

′
2, p
′
3, q
′
1, q
′
2, q
′
3),

where 1 ≤ p′k ≤ pk, 1 ≤ q′k ≤ qk for k = 1, 2, 3. To be consistent with our notation,
we denote p1p2p3 and q1q2q3 by p and q.
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X

X231

n1

n2

n 3

A(2)

A
(2)
31

r2

n2

Fig. 1: Subtensor X231 is distributed evenly among processors (2, 3, 1, ∗, ∗, ∗). Simi-

larly, submatrix A
(2)
31 is distributed evenly among processors (∗, 3, ∗, ∗, 1, ∗).

Xp′1p
′
2p
′
3

denotes the subtensor of X owned by processors (p′1, p
′
2, p
′
3, ∗, ∗, ∗). Simi-

larly, Yq′1q
′
2q
′
3

denotes the subtensor of Y owned by processors (∗, ∗, ∗, q′1, q′2, q′3). A
(1)
p′1q
′
1
,

A
(2)
p′2q
′
2

and A
(3)
p′3q
′
3

denote submatrices of A(1), A(2) and A(3) owned by processors

(p′1, ∗, ∗, q′1, ∗, ∗), (∗, p′2, ∗, ∗, q′2, ∗) and (∗, ∗, p′3, ∗, ∗, q′3), respectively.
We impose that there is one copy of data in the system at the start and end of

the computation, and every array is distributed evenly among the sets of processors
whose coordinates are different for the corresponding dimensions of the variable. For
example, X111 = X(1 : n1

p1
, 1 : n2

p2
, 1 : n3

p3
) is owned by processors (1, 1, 1, ∗, ∗, ∗).

Similarly, A
(1)
12 = A(1)(1 : n1

p1
, r1q1 + 1 : 2 r1

q1
) is owned by processors (1, ∗, ∗, 2, ∗, ∗).

We assume that data inside these sets of processors is also evenly distributed. For
example, in the beginning, processor (1, 1, 1, 2, 1, 3) owns 1

P th portion of each input

variable: p
P th portion of X111, p1q1

P th portion of A
(1)
12 , p2q2

P th portion of A
(2)
11 , and

p3q3
P th portion of A

(3)
13 . Figure 1 illustrates examples of our data distribution model

for two of the arrays.

Algorithm 5.1 Parallel Atomic 3-dimensional Multi-TTM

Require: X, A(1), A(2), A(3), p1 × p2 × p3 × q1 × q2 × q3 logical processor grid

Ensure: Y such that Y = X×1 A(1)T ×2 A(2)T ×3 A(3)T

1: (p′1, p
′
2, p
′
3, q
′
1, q
′
2, q
′
3) is my processor id

2: //All-gather input tensor X

3: Xp′1p
′
2p
′
3

= All-Gather(X, (p′1, p
′
2, p
′
3, ∗, ∗, ∗))

4: //All-gather input matrices

5: A
(1)
p′1q
′
1

= All-Gather(A(1), (p′1, ∗, ∗, q′1, ∗, ∗))
6: A

(2)
p′2q
′
2

= All-Gather(A(2), (∗, p′2, ∗, ∗, q′2, ∗))
7: A

(3)
p′3q
′
3

= All-Gather(A(3), (∗, ∗, p′3, ∗, ∗, q′3))

8: //Local computations in a temporary tensor T

9: T = Local-Multi-TTM(Xp′1p
′
2p
′
3
, A

(1)
p′1q
′
1
, A

(2)
p′2q
′
2
, A

(3)
p′3q
′
3
)

10: //Reduce-scatter the output tensor in Yq′1q
′
2q
′
3

11: Reduce-Scatter(Yq′1q
′
2q
′
3
, T, (∗, ∗, ∗, q′1, q′2, q′3))

Algorithm 5.1 presents a parallel algorithm to compute 3-dimensional Multi-
TTM. When it completes, Yq′1q

′
2q
′
3

is distributed evenly among processors (∗, ∗, ∗,
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X

n1

n2

n 3

(a) Perform
All-Gather
on processors
(2, 1, 1, ∗, ∗, ∗)
to obtain X211.

A(1)

n1

r1

(b) Perform
All-Gather
on processors
(2, ∗, ∗, 1, ∗, ∗)
to obtain A

(1)
21 .

A(2)

n2

r2

(c) Perform
All-Gather
on processors
(∗, 1, ∗, ∗, 3, ∗)
to obtain A

(2)
13 .

A(3)

n3

r3

(d) Perform
All-Gather
on processors
(∗, ∗, 1, ∗, ∗, 1)
to obtain A

(3)
11 .

Y

r1

r2

r 3

(e) Perform lo-
cal Multi-TTM
to compute par-
tial Y131.

Y

r1

r2

r 3

(f) Perform
Reduce-Scatter
on processors
(∗, ∗, ∗, 1, 3, 1)
to com-
pute/distribute
Y131.

Fig. 2: Steps of Alg. 5.1 for processor (2, 1, 1, 1, 3, 1), where p1 = p2 = p3 = q1 = q2 =
q3 = 3. Highlighted areas correspond to the data blocks on which the processor is
operating. The dark red highlighting represents the input/output data initially/finally
owned by the processor, and the light red highlighting corresponds to received/sent
data from/to other processors in All-Gather/Reduce-Scatter collectives to compute
Y131.

q′1, q
′
2, q

′
3). Figure 2 shows the steps of the algorithm for a single processor in a

3× 3× 3× 3× 3× 3 grid.

5.1. Cost Analysis. Now we analyze computation and communication costs
of the algorithm. The dimension of the local tensor Xp′1p

′
2p
′
3

is n1

p1
× n2

p2
× n3

p3
, the

dimension of the local matrix A
(k)
p′kq
′
k

is ni

pi
× ri

qi
for i = 1, 2, 3, and the dimension of

the temporary tensor T is r1
q1
× r2

q2
× r3

q3
. For simplicity of analysis, we assume that

the numerator is divisible by the denominator for each cost expression.
The local Multi-TTM computation in Line 9 can be performed as a sequence of

TTM operations to mininimize the number of arithmetic operations. Assuming the
TTM operations are performed in their order, first with A(1), then with A(2), and

in the end with A(3), then each processor performs 2
(

n1n2n3r1
p1p2p3q1

+ n2n3r1r2
p2p3q1q2

+ n3r1r2r3
p3q1q2q3

)
operations to perform the local computation.

Communication occurs only in the All-Gather and Reduce-Scatter collectives in
Lines 3, 5, 6, 7 and 11. Each processor is involved in one All-Gather involving the input
tensor, three All-Gathers involving input matrices and one Reduce-Scatter involving
the output tensor. Therefore, the communication cost of the algorithm along the
critical path is the sum of communication costs of these five collectives. Lines 3, 5,
6, and 7 specify p, p1q1, p2q2 and p3q3 All-Gathers over disjoint sets of P

p , P
p1q1

, P
p2q2

and P
p3q3

processors respectively. Similarly, Line 11 specifies q Reduce-Scatters over

disjoint sets of P
q processors.

For simplicity of discussion, we consider that the number of processors involved in
the collectives is a power of 2. We also assume that communication optimal collective
algorithms are used. The optimal latency and bandwidth costs of both collectives
on Q processors are log2(Q) and (1 − 1

Q )w, respectively, where w denotes the words
of data in each processor after All-Gather or before Reduce-Scatter collective. Each
processor also performs (1− 1

Q )w computations for the Reduce-Scatter collective. We

point the reader to [27, 11] for more details on efficient algorithms for collectives.
Hence the bandwidth costs of Lines 3, 5, 6, 7 in Alg. 5.1 are (1 − p

P )n
p , (1 −
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p1q1
P )n1r1

p1q1
, (1− p2q2

P )n2r2
p2q2

, (1− p3q3
P )n3r3

p3q3
respectively to accomplish All-Gather opera-

tions, and the bandwidth cost of performing the Reduce-Scatter operation in Line 11
is (1− q

P ) r
q . Thus the overall bandwidth cost of Alg. 5.1 is

(5.1)
n

p
+
n1r1
p1q1

+
n2r2
p2q2

+
n3r3
p3q3

+
r

q
−
(
n+ n1r1 + n2r2 + n3r3 + r

P

)
.

The latency costs of Lines 3, 5, 6, 7, 11 are log2(P
p ), log2( P

p1q1
), log2( P

p2q2
),

log2( P
p3q3

), log2(P
q ) respectively. Thus the overall latency cost of Alg. 5.1 is log2

(
P
p

)
+

log2

(
P

p1q1

)
+ log2

(
P

p2q2

)
+ log2

(
P

p3q3

)
+ log2

(
P
q

)
= log2

(
P 5

p2q2

)
= 3 log2(P ).

Due to the Reduce-Scatter operation, each processor also performs (1 − q
P ) r

q

computations, which is dominated by the computations of Line 9 (as n3 ≥ p3).

5.2. Selection of pi and qi in Algorithm 5.1. We must select the processor
dimensions carefully such that Alg. 5.1 is communication optimal.

We attempt to select the processor dimensions pi and qi in such a way that
the terms in the communication cost match the optimal solutions of Corollaries 4.1
and 4.2. In other words, we want to select pi and qi such that n1r1

p1q1
= x∗, n2r2

p2q2
= y∗,

and n3r3
p3q3

= z∗ from Corollary 4.1, and n
p = v∗, rq = u∗ from Corollary 4.2.

We need to fix two or three processor grid dimensions for each equation, and each
processor grid dimension appears in two equations. In general, we are able to set the
processor grid dimensions in a way that is consistent with these equations. However,
they are subject to additional constraints that are not imposed by the optimization
problem. Specifically, we have 1 ≤ pi ≤ ni and 1 ≤ qi ≤ ri for 1 ≤ i ≤ 3. The
lower bounds are imposed because processor grid dimensions must be at least 1. The
upper bounds are imposed to ensure that each processor performs its fair share of
the computations. We assume that P ≤ nr, so that every processor has at least
one 4-ary multiplication term to compute. For simplicity, we assume that the final
grid dimensions are integers and perfectly divide the corresponding input and output
dimensions. However, we also discuss how to handle non-integer grid dimensions for
a specific set of inputs in Subsection 6.3.1.

In order to define processor grid dimensions, we begin by determining a set of
values that match the lower bound terms and denote these by p̂i, q̂i with their products
denoted p̂ and q̂. Then, we will consider how to adapt p̂i and q̂i so that the additional
constraints are met. During the adaption, we maintain the tensor communication
costs, modify the matrix communication costs, and then bound the additional costs
in terms of communication lower bounds of tensors.

As X and Y are 3-dimensional tensors, we have ni, ri ≥ 2 for all 1 ≤ i ≤ 3.

For better readability, we use the notation O =
∑

j∈[3] njrj+r+n

P , the amount of data
owned by a single processor at the beginning and end of the algorithm.

Theorem 5.1. There exist pi, qi with 1 ≤ pi ≤ ni, 1 ≤ qi ≤ ri for i = 1, 2, 3 such
that Alg. 5.1 is communication optimal to within a constant factor.

Proof. We break our analysis into 2 scenarios which are further broken down into
cases. In each case, we obtain p̂i and q̂i such that the terms in the communication
cost match the corresponding lower bound terms and also satisfy at least one of the
two constraints: ∀i, 1 ≤ p̂i ≤ ni, 1 ≤ q̂i or ∀i, 1 ≤ q̂i ≤ ri, 1 ≤ p̂i. We handle all cases
from both scenarios together in the end, and adapt these values to get pi and qi which
respect both lower and upper bounds.
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• Scenario I
(
P < n

r

)
: This scenario corresponds to the first case of the tensor term

in LB. Thus, we set p̂i, q̂i in such a way that the tensor terms in the communication
cost match the tensor terms of LB:

(5.2) p̂ = P, q̂ = 1.

This implies q̂i = 1 for 1 ≤ i ≤ 3. We break this scenario into 3 cases, each corre-
sponding to a case in the matrix term of LB.
(Case 1) P < n3r3

n2r2
: Setting the matrix communication costs to the matrix terms in

the corresponding case of the lower bound yields

(5.3)
n1r1
p̂1q̂1

= n1r1,
n2r2
p̂2q̂2

= n2r2,
n3r3
p̂3q̂3

=
n3r3
P

.

Thus, we set p̂1 = p̂2 = q̂1 = q̂2 = q̂3 = 1 and p̂3 = P to satisfy (5.2) and (5.3).
(Case 2) n3r3

n2r2
≤ P < n2n3r2r3

n2
1r

2
1

: Setting the matrix communication costs to the matrix

terms in the corresponding case of the lower bound yields

(5.4)
n1r1
p̂1q̂1

= n1r1,
n2r2
p̂2q̂2

=
n3r3
p̂3q̂3

=
(n2n3r2r3

P

)1/2
.

We set p̂1 = q̂1 = q̂2 = q̂3 = 1, p̂2 = n2r2

(
P

n2n3r2r3

) 1
2

, and p̂3 = n3r3

(
P

n2n3r2r3

) 1
2

to

satisfy (5.2) and (5.4). n3r3
n2r2

≤ P implies p̂2 ≥ 1 and p̂3 ≥ 1.
(Case 3) n2n3r2r3

n2
1r

2
1
≤ P : Setting the matrix communication costs to match the matrix

terms in the corresponding case of the lower bound yields

(5.5)
n1r1
p̂1q̂1

=
n2r2
p̂2q̂2

=
n3r3
p̂3q̂3

=
(nr
P

)1/3
.

Thus we set q̂1 = q̂2 = q̂3 = 1, p̂1 = n1r1
(

P
nr

) 1
3 , p̂2 = n2r2

(
P
nr

) 1
3 , and p̂3 = n3r3

(
P
nr

) 1
3

to satisfy (5.2) and (5.5). n2n3r2r3
n2
1r

2
1
≤ P implies p̂i ≥ 1 for 1 ≤ i ≤ 3.

Note that in all the cases of this scenario we have 1 ≤ q̂i = 1 < ri, 1 ≤ p̂i for
1 ≤ i ≤ 3, but we cannot ensure p̂i ≤ ni. We will adapt processor grid dimensions for
both scenarios in the end as they require the same steps.

• Scenario II
(
n
r ≤ P

)
: This scenario corresponds to the second case of the tensor

term in LB. Thus, we set p̂i, q̂i in such a way that

(5.6)
n

p̂
=
r

q̂
=
(nr
P

)1/2
.

Again, we break this scenario into 3 cases each corresponding to a case in the matrix
term of LB.
(Case 1) P < n3r3

n2r2
: Setting the matrix communication costs to the matrix terms in

the corresponding case of the lower bound yields

(5.7)
n1r1
p̂1q̂1

= n1r1,
n2r2
p̂2q̂2

= n2r2,
n3r3
p̂3q̂3

=
n3r3
P

.

Thus we set p̂1 = q̂1 = p̂2 = q̂2 = 1, p̂3 = n
(

P
nr

)1/2
, and q̂3 = r

(
P
nr

)1/2
to satisfy (5.6)

and (5.7). As n
r ≤ P ≤ nr and r ≤ n, we have 1 ≤ p̂3 ≤ n and 1 ≤ q̂3 ≤ r, but cannot
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ensure p̂3 ≤ n3 or q̂3 ≤ r3. However, p̂3q̂3 = P < n3r3
n2r2

implies that at least one is
satisfied. Therefore, we have ∀i, 1 ≤ p̂i ≤ ni, 1 ≤ q̂i and/or ∀i, 1 ≤ p̂i, 1 ≤ q̂i ≤ ri.
(Case 2) n3r3

n2r2
≤ P < n2n3r2r3

n2
1r

2
1

: Setting the matrix communication costs to the matrix

terms in the corresponding case of the lower bound yields

(5.8)
n1r1
p̂1q̂1

= n1r1,
n2r2
p̂2q̂2

=
n3r3
p̂3q̂3

=
(n2n3r2r3

P

)1/2
.

We set p̂1 = q̂1 = 1. Equations (5.6) and (5.8) do not uniquely determine p̂2, p̂3, q̂2, and

q̂3. The following is one possible solution: p̂2 = n2

(
n1P
n2n3r

)1/4
, p̂3 = n3

(
n1P
n2n3r

)1/4
,

q̂2 = r2

(
r1P
nr2r3

)1/4
, and q̂3 = r3

(
r1P
nr2r3

)1/4
. Note that P < n2n3r2r3

n2
1r

2
1

implies that

p̂2 < n2, p̂3 < n3, q̂2 < r2, and q̂3 < r3. We are not able to ensure p̂2, p̂3, q̂2, q̂3 are
all at least 1 in this case. We will handle both Case 2 and Case 3 together as they
require the same analysis.
(Case 3) n2n3r2r3

n2
1r

2
1
≤ P : Setting the matrix communication costs to the matrix terms

in the corresponding case of the lower bound yields

(5.9)
n1r1
p̂1q̂1

=
n2r2
p̂2q̂2

=
n3r3
p̂3q̂3

=
(nr
P

) 1
3

.

Similar to Case 2, the equations (5.6) and (5.9) do not uniquely determine p̂i, q̂i for
1 ≤ i ≤ 3. We choose a cubical distribution, namely n1

p1
= n2

p2
= n3

p3
= r1

q1
= r2

q2
= r3

q3

and obtain the following solution, p̂i = ni
(

P
nr

)1/6
, q̂i = ri

(
P
nr

)1/6
for 1 ≤ i ≤ 3. As

P ≤ nr we have p̂i ≤ ni and q̂i ≤ ri for 1 ≤ i ≤ 3. Again we are not able to ensure p̂i
and q̂i are all greater than 1 for 1 ≤ i ≤ 3.

Now we handle Case 2 and Case 3 of Scenario II here. The communication cost
for the obtained set of values matches the lower bound, and each term in the lower
bound is at least 1, therefore 1 ≤ niri

p̂iq̂i
≤ niri for 1 ≤ i ≤ 3, 1 ≤ n

p̂ ≤ n and 1 ≤ r
q̂ ≤ r.

This implies that 1 ≤ p̂iq̂i ≤ niri for 1 ≤ i ≤ 3, 1 ≤ p̂ ≤ n and 1 ≤ q̂ ≤ r. For
1 ≤ i ≤ 3, at most one of p̂i and q̂i can be smaller than one. In such a case, we
multiply the largest by the smallest (say p̃i = p̂i · q̂i) and set the smallest to one
(q̃i = 1) so that their product remains the same (p̃i · q̃i = p̂i · q̂i). After doing that,
the products p̃ and q̃ might change. Let f = q̃/q̂ be the rate of change, and suppose
f > 1. As q̂ = q̃/f ≥ 1, we can factor f = f1 ·f2 ·f3 with fi ≥ 1 so that q̂i := q̃i/fi ≥ 1
and p̂i := p̃fi ≥ 1. We can obtain the factors fi by the following iterative procedure:

1. for i = 1 : 3
2. if q̃i ≥ f then fi = f , f = 1, (p̂i, q̂i) := (p̃ifi, q̃i/fi)
3. else fi = q̃i, f = f/fi, (p̂i, q̂i) := (p̃ifi, 1)

It is straightforward to verify that at the end of this process, we have 1 ≤ q̂i ≤ ri,
and 1 ≤ p̂i. If f < 1, the process is applied by exchanging the p’s and the q’s so that
we end up with the inequalities 1 ≤ p̂i ≤ ni, and 1 ≤ q̂i.

Now we consider all the cases of both scenarios. It remains to adapt p̂i and q̂i
such that p̂i ≤ ni and q̂i ≤ ri. We can note that due to our particular selections of
pi and qi in each case, @i, j ∈ [3] such that p̂i > ni and q̂j > rj . We will use this fact
while assessing the additional communication cost. We now obtain p1, p2, p3, q1, q2, q3
from p̂i, q̂i such that both lower and upper bounds are respected, and p1p2p3 = p̂ and
q1q2q3 = q̂. The intuition is to maintain the tensor communication terms in the lower
bound.
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Initially we set pi = p̂i, qi = q̂i for 1 ≤ i ≤ 3. If 1 ≤ q̂i ≤ ri, 1 ≤ p̂i for 1 ≤ i ≤ 3
and p̂l > nl for some index l. We represent the other two indices with j and k. As
p̂ ≤ n, therefore p̂j ≤ nj or/and p̂k ≤ nk. Without loss of generality, we assume that
p̂k ≤ nk. Now we first update pl, and then pj , and in the end pk with the following

expressions: pl := nl, pj := min
{
nj ,

p̂
pkpl

}
, pk := p̂

plpj
. We note that the product is

unchanged by these updates as pkplpj = p̂. The same update can be done to qi’s if
1 ≤ p̂i ≤ ni, 1 ≤ q̂i for 1 ≤ i ≤ 3 and q̂l > rl for some l.

Now we assess how much additional communication is required for the matrices.
If @i ∈ [3] such that p̂i > ni or q̂i > ri then

∑
i∈[3]

niri
piqi

=
∑

i∈[3]
niri
p̂iq̂i

. We can note

that due to our particular selections of p̂i and q̂i, @i, j ∈ [3] such that p̂i > ni and
q̂j > rj . Suppose ∃i ∈ [3] such that p̂i > ni then p̂ > 2 and

∑
i∈[3]

niri
piqi

≤
∑
i∈[3]

max

{
niri
p̂iq̂i

,
ri
q̂i

}
qi = q̂i, and pi ≥ p̂i or pi = ni

=
∑
i∈[3]

(niri
p̂iq̂i

+
ri
q̂i
−min

{
niri
p̂iq̂i

,
ri
q̂i

})
max{a, b} = a+ b−min{a, b}

<
∑
i∈[3]

(niri
p̂iq̂i

+
ri
q̂i

)
− 2 p̂iq̂i ≤ niri and q̂i ≤ ri

≤
∑
i∈[3]

niri
p̂iq̂i

+
r

q̂
∀ai ≥ 1, a1 + a2 + a3-2 ≤ a1a2a31

<
∑
i∈[3]

niri
p̂iq̂i

+ 2
(r
q̂
− r

p̂q̂

)
=
∑
i∈[3]

niri
p̂iq̂i

+ 2
(r
q̂
− r

P

)
.

Similarly, if q̂i > ri for some i then
∑

i∈[3]
niri
piqi

is bounded by
∑

i∈[3] max{niri
p̂iq̂i

, ni

p̂i
}

and we can obtain
∑

i∈[3]
niri
piqi

<
∑

i∈[3]
niri
p̂iq̂i

+ 2
(
n
p̂ −

n
P

)
.

Therefore, in all situations,
∑

i∈[3]
niri
piqi

+ r
q + n

p −O ≤ 3
(∑

i∈[3]
niri
p̂iq̂i

+ r
q̂ + n

p̂ −O
)

=

3LB.

6. Simulated Evaluation. In this section, we verify our theoretical claims on
particular sets of 3D tensor dimensions with a simulated evaluation. We use (5.1) to
calculate the communication cost of Alg. 5.1. In Subsection 6.1, we demonstrate that
the communication cost of Alg. 5.1 matches the lower bound of Theorem 4.3, and we
provide intuition for relationships among the communication costs of the individual
tensors and matrices. In Subsection 6.2, we compare the approach of Alg. 5.1 for
evaluating Multi-TTM with a TTM-in-Sequence approach, demonstrating realistic
scenarios when Alg. 5.1 communicates significantly less data and performs a negligible
amount of extra computation.

Throughout this section, we restrict to cases where all tensor dimensions and
numbers of processors are powers of 2. We vary the number of processors P from 2
to Pmax = min{n1r1, n2r2, n3r3, n, r}, which ensures that each processor owns some
data of every tensor and matrix. The costs of Alg. 5.1 depend on the processor grid,

1∀ai ≥ 1, a1a2a3 = (1 + a1 − 1)(1 + a2 − 1)(1 + a3 − 1) ≥ 1 + (a1 − 1) + (a2 − 1) + (a3 − 1) =
a1 + a2 + a3 − 2.
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Fig. 3: Matrix and tensor communication costs in LB and Alg. 5.1 for different config-
urations. The sum of LB(Matrix) and LB(Tensor) equals to the lower bound (LB),
and the sum of Alg. 5.1 (Matrix) and Alg. 5.1 (Tensor) equals to the upper bound
(Alg. 5.1). Lower bounds are almost indistinguishable from the corresponding upper
bounds.

and in these experiments, we perform an exhaustive search for the best configuration.
We describe in Subsection 6.3.1 how to adapt the processor grid selection scheme
described in Subsection 5.2 to obtain integer-valued processor grid dimensions, and
we show that we can obtain nearly optimal configurations without exhaustive search.

6.1. Verifying Optimality of Algorithm 5.1. Theorem 5.1 states that Alg. 5.1
attains the communication lower bound to within a constant factor, and in this sec-
tion we verify the result in a variety of scenarios. Recall from Theorem 4.3 that the
lower bound is A+B −O, where

A =


n1r1 + n2r2 + n3r3

P if P < n3r3
n2r2

n1r1 + 2
(
n2n3r2r3

P

) 1
2 if n3r3

n2r2
≤ P < n2n3r2r3

n2
1r

2
1

3
(
nr
P

) 1
3 if n2n3r2r3

n2
1r

2
1
≤ P

B =

{
r + n

P if P < n
r

2
(
nr
P

) 1
2 if n

r ≤ P .

O =
n1r1 + n2r2 + n3r3 + r + n

P
.

Here, A corresponds to the matrix entries accessed, B corresponds to the tensor
entries accessed or partially computed, and O corresponds to the data owned by a
single processor. The costs of Alg. 5.1 are given by (5.1), which we re-write here as

n1r1
p1q1

+
n2r2
p2q2

+
n3r3
p3q3

+
n

p
+
r

q
−O,

where {pi} and {qi} specify the processor grid dimensions. The first three terms
correspond to matrix entries and the middle two terms correspond to tensor entries.

Figure 3 shows both components, matrix and tensor communication costs, for
three distinct input sizes as we vary the number of processors. In these plots, we
show both algorithmic costs (upper bounds) and lower bounds, but they are indistin-
guishable because the largest differences in overall costs we observe are 9% for Fig. 3a
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at P = 213 and 13% for Figures 3b and 3c at P = 2, verifying Theorem 4.3 for these
scenarios.

In Fig. 3a, the input and output tensors have varying dimensions: the input tensor
is 212 × 213 × 219 and the output is 28 × 213 × 211. We choose these dimensions so
that all five cases of the values of A and B are represented. For these inputs, the
tensor communication cost dominates the matrix communication for all values of P
considered. When P < 24, the first cases for A and B apply, and the algorithm selects
a processor grid such that p3 = P , implying that only one tensor and two matrices are
communicated. In this case, both expressions simplify to (r+ n1r1 + n2r2)(1− 1/P ),
which is why we see initial increase as P increases at the left end of the plot. For 24 ≤
P < 212, the second case for A and the first case for B apply, and the algorithm selects
a processor grid with p2 > 1 and p3 > 1. Here, the matrix communication begins
to decrease, but it is dominated by the tensor communication, which is maintained
at r(1 − 1/P ). For 212 ≤ P , the second case for B applies, and we see that tensor
communication decreases as P increases (proportional to P−1/2 as we see from the
lower bound). In this regime, the algorithm is selecting grids with both p > 1 and
q > 1 and communicating both tensors. Another transition occurs at P = 216,
switching from the second to third case of A, but this change in matrix cost has a
negligible effect.

Figure 3b demonstrates a scenario where the matrix costs dominate the tensor
costs: the input tensor is cubical with dimension 212 and the output tensor is cubical
with dimension 24. Here we scale P only up to 212, the number of entries in the output
tensor. Because the tensors are cubical, the lower bounds simplify as in Corollary 4.4,
and the algorithm chooses processor grids that are as cubical as possible. For all
values of P in this experiment, the third case of A and the first case of B apply, and
the algorithm selects p1 ≈ p2 ≈ p3 and q = 1. We see that the overall cost is deceasing
proportional to P−1/3 until the tensor communication cost starts to contribute more
significantly.

Figure 3c considers cubical tensors with larger dimensions to show a more general
pattern. For tensor dimensions ni = 220 and ri = 28, we observe a transition point
where tensor communication overtakes matrix communication. Similar to the case
of Figure 3b, matrix costs dominate for small P and scale like P−1/3. However,
for P ≥ 217, the tensor costs dominate the matrix costs and communication costs
scale less efficiently as the first case of B applies. We emphasize that for all three of
these experiments, the algorithmic costs match the lower bounds nearly exactly for
all values of P .

6.2. Comparing Algorithm 5.1 with TTM-in-Sequence. As mentioned
previously, a Multi-TTM computation may be performed as sequence of TTM op-
erations. In this TTM-in-Sequence approach, a single matrix is multiplied with the
tensor and an intermediate tensor is computed and stored. For each remaining matrix,
single-matrix TTMs are performed in sequence until the final result is computed. This
approach can reduce the number of arithmetic operations compared to direct evalu-
ation of atomic expression given in Def. 3.1. The computational cost depends (often
significantly) on the order of the TTMs performed. The TTM-in-Sequence approach
is parallelized in the TuckerMPI library [5]. We note that Theorem 4.3 does not apply
to this parallelization, as it violates the parallel atomicity assumption.

In this section, we provide a comparison between Alg. 5.1 and the TTM-in-
Sequence approach to show that our approach can significantly reduce communication
in important scenarios without performing too much extra computation. In partic-
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(b) ni = 213, ri = 26.
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(c) ni = 220, ri = 28.

Fig. 4: Communication cost comparison of Alg. 5.1 and TTM-in-Sequence [5]. Comp−
Overhead shows the percentage of computational overhead of Alg. 5.1 with respect
to the TTM-in-Sequence approach.

ular, we observe greatest benefit of Alg. 5.1 when r is very small relative to n (or
vice versa) and P is small relative to the ratio of n and r. These scenarios occur in
the context of computing and using Tucker decompositions for highly compressible
tensors that exhibit small multilinear ranks.

The computational cost of TuckerMPI’s algorithm with cubical tensors is the
same for all possible orderings of the TTMs. In our comparison, we consider that
the TTMs are performed in increasing mode order. While no single communication
lower bound exists for all parallel TTM-in-Sequence algorithms, we show in Subsec-
tion 6.3.2 that TuckerMPI’s algorithm attains nearly the same cost as tight matrix
multiplication lower bounds [1] applied to each TTM it chooses to perform. Thus,
no other parallelization of the TTM-in-Sequence approach can reduce communication
without breaking the assumptions of the matrix multiplication lower bounds (e.g.,
using fast matrix multiplication).

The TuckerMPI parallelization uses a 3D logical processor grid with dimensions
p̃1 × p̃2 × p̃3. When the TTMs are performed in increasing mode order, the overall
communication cost of their algorithm is

r1n2n3
p̃2p̃3

+
n1r1
p̃1

+
r1r2n3
p̃1p̃3

+
n2r2
p̃2

+
r1r2r3
p̃1p̃2

+
n3r3
p̃3

(6.1)

− r1n2n3 + r1r2n3 + r1r2r3 + n1r1 + n2r2 + n3r3
P

,

as specified in [5, Section 6.3], though we include the cost of communicating the
matrices (their analysis assumes the matrices are already redundantly distributed).
We use exhaustive search to determine the processor grid that minimizes the cost of
(6.1) in our comparisons.

6.2.1. Communication Cost. To compare communications costs, we perform
4 experiments involving cubical tensors. The first three simulated evaluations consider
strong scaling and are presented in Fig. 4. Two of these experiments use the same
tensor dimensions as the two cubical examples in Fig. 3. The first experiment involves
an input tensor of dimension ni = 212 and output dimension ri = 24 (Fig. 4a), the
second has dimensions ni = 213 and ri = 26 (Fig. 4b), and the third has the largest
dimensions ni = 220 and ri = 28 (Fig. 4c).

Figure 4a shows that Alg. 5.1 performs less communication than TTM-in-Sequence
for P ≤ 212 < n/r. The largest communication reduction occurs at P = 212 and is
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Fig. 5: Comparison of Alg. 5.1 and the TTM-in-Sequence approach for fixed r1 =
r2 = r3 = 26 and P = 212.

approximately 5×. In the second experiment, we see cases where TTM-in-Sequence
performs less communication than Alg. 5.1 and in fact beats the lower bound of Theo-
rem 4.3 (which is possible because it breaks the atomicity assumption). Algorithm 5.1
is more communication efficient for P ≤ 216, achieving a speedup of up to 2×, but
communicates more for larger P . In the third experiment with larger tensors, Fig. 4c
demonstrates similar qualitative behavior to the first, with Alg. 5.1 outperforming
TTM-in-Sequence and a maximum communication reduction of approximately 12×
at P = 221.

In the fourth experiment, with results shown in Fig. 5, we fix the output tensor
dimension ri = 26 and number of processors P = 212 and vary the input tensor
dimension ni. We observe that for 26 ≤ ni < 212, the TTM-in-Sequence approach
communicates less data than Alg. 5.1. For ni ≥ 212, Alg. 5.1 communicates less data,
and the factor of improvement is maintained at approximately 6× as ni scales up.

6.2.2. Computation Cost. Assuming TuckerMPI uses increasing mode order,
the parallel computational cost is

2 · r1n1n2n3 + r1r2n2n3 + r1r2r3n3
P

= 2

(
r1/3n

P
+
r2/3n2/3

P
+
rn1/3

P

)
,

where the right hand side is simplified under the assumption of cubical tensors. In
these experiments where n� r, Alg. 5.1 selects a processor grid such that q = 1 and
p1 ≈ p2 ≈ p3. In this case the computation cost given in Subsection 5.1 simplifies to

2

(
r1/3n

P
+
r2/3n2/3

P 2/3
+
rn1/3

P 1/3

)
.

Note that this cost is much smaller than 4nr/P , the cost of evaluating (3.1) directly
with computational load balance, and it is achieved by performing local computation
using a TTM-in-Sequence approach.

While the first terms of the two computational cost expressions match, we observe
greater computational cost from Alg. 5.1 in the second and third terms. These terms
are lower order when P � n/r, in which case the extra computational cost of Alg. 5.1
is negligible. This is also validated by Fig. 4 for the first three experiments. When
P = n/r, the extra computational cost is no more than 2×.
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In the first three experiments, when our approach reduces communication, the
extra computational costs were at most 6%, 30%, and 7%, respectively. The extra
computation required for the greatest reductions in communication in those experi-
ments were 6%, 2%, and 7%. For the fourth experiment, the extra computation is
approximately 13% at ni = 213, where Alg. 5.1 provides communication reduction,
and decreases as ni increases.

In all these experiments, we see that when Alg. 5.1 provides a reduction in com-
munication costs, the extra computational costs remain negligible.

6.3. Details for Evaluation of Our Algorithm. Here we provide more de-
tails for the simulated evaluation of our algorithm and its comparison to the TTM-
in-Sequence approach. The analysis of the communication optimality of Alg. 5.1 did
not consider integrality constraints on the processor grid dimensions. The simulated
evaluation in the previous subsection considered all possible processor grid configura-
tions using exhaustive search; we explain in Subsection 6.3.1 a more efficient process
for determining an optimal grid when P is a power of two. In the previous subsec-
tion, we also compare Alg. 5.1 against an implementation of the TTM-in-Sequence
approach as implemented by TuckerMPI [5]. We argue in Subsection 6.3.2 that this
implementation is nearly communication optimal given the computation that it per-
forms, validating our comparison against it. Figure 6 presents results relevant to both
Subsections 6.3.1 and 6.3.2.

6.3.1. Obtaining Integral Processor Grids for Alg. 5.1. In order to de-
termine the communication cost of Alg. 5.1, one must determine the processor grid.
Obtaining pi and qi from the procedure in Section 5 may yield non-integer values.
The following procedure allows us to convert these to integers under our assumption
that all parameters are powers of 2. Recall that we consider P = pq with p = p1p2p3
and q = q1q2q3.

If blog2(p) + 0.5c = blog2(p)c, then we set p = 2blog2(p)c, otherwise we set p =
2dlog2(p)e, distributing the modification evenly between p1, p2, and p3. Now, we keep
p = p1p2p3 constant, and convert each pi to an integer. We set p1 = 2blog2(p1)+0.5c

distributing the changes evenly among p2 and p3. To see that our new value of p1
must still be smaller than n1, we note that our original p1 was less than n1 which is
a power of 2 by our assumption. If we increased p in our first step, then distributing
the modifications evenly between p1, p2 and p3 increased them by at most 21/6. Thus
p1 ≤ n1 will imply that blog2(p1 · 21/6) + 0.5c ≤ log2(n1). Note that this most recent
modification to p1 changes p2 and p3. Then, we set p2 = 2blog2(p2)+0.5c and adapt p3
accordingly. A similar argument to what is used for p1 will show that p2 and p3 are
also not larger than their corresponding dimensions. Having completed our work on
the processor dimensions associated with the first tensor, we set q = P

p distributing
the changes evenly among the qi, then force each qi to be an integer following the
same procedure as for the pi.

We denote the communication cost of Alg. 5.1 for the grid determined using this
method by Alg. 5.1 (fast) and the communication cost using exhaustive search by
Alg. 5.1 (best). We note that this procedure can increase the total number of accessed
elements of any variable at most 4 times, but we see in Fig. 6 that the communication
costs of both procedures are exactly the same for the examples we consider. These
problems match those presented in Fig. 4.

6.3.2. TTM-in-Sequence Lower Bounds. Here we discuss communication
lower bounds for the TTM-in-Sequence approach with cubical tensors. There has not
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Fig. 6: Communication cost comparison of Alg. 5.1 using best processor grid against
fast method and of the TTM-in-Sequence approach implemented by TuckerMPI
against the lower bounds. Alg. 5.1 (fast) and Alg. 5.1 (best) are the same for all
the configurations.

been any proven bound for this approach other than individual bounds for each TTM
(a single matrix multiply) computation, assuming the sequence of TTMs has been
specified. The sum of individual bounds provides a communication lower bound for
this approach. We obtain the tightest (and obtainable) lower bound for each TTM
from [2], which depends on the relative matrix dimensions and number of processors,
and represent the sum by CLB(TTM-in-Seq). We also note that CLB(TTM-in-Seq)
may not be always attainable as data distributions for two successive TTMs may be
non-compatible and require extra communication. When the input tensor dimensions
are much larger than the output tensor dimensions, most of the computation and
communication occur in the first TTM, so we also consider the communication lower
bound of only that matrix multiplication, which also provides a valid lower bound for
the entire TTM-in-Sequence computation. Recall that we obtain the algorithmic cost
of TTM-in-Sequence by exhaustively searching for the best processor grid configura-
tion given the communication costs specified by (6.1). Figure 6 shows a comparison of
TTM-in-Seq and CLB(TTM-in-Seq) for the tensor dimensions presented in Fig. 4. We
can see that the communication costs of TTM-in-Seq are very close to CLB(TTM-in-
Seq), the largest differences are 7.9% for Fig. 6a at P = 25, 25% for Fig. 6b at P = 26,
and 9.3% for Fig. 6c at P = 221. Comparing CLB(1st TTM) and CLB(TTM-in-Seq),
we see that for these examples at least half the communication of the entire TTM-
in-Sequence is required by the first TTM, and it is completely dominated by the first
TTM when P is large.

7. Lower Bounds of General Multi-TTM. We present our lower bound re-
sults for d-dimensional tensors in this section. Similar to the 3-dimensional lower
bound proof, we consider a single processor that performs 1/P th of the computation
and owns at most 1/P th of the data. We again seek to minimize the number of
elements of the matrices and tensors that the processor must access or partially com-
pute in order to execute its computation subject to the constraints of the structure
of Multi-TTM by solving two independent problems, one for the matrix data and one
for the tensor data.

7.1. General Constrained Optimization Problems. Here we present a gen-
eralization of Corollary 4.1 for d dimensions. As before, this corollary is a direct result
of Theorem 3.4. Recall the notation Ni =

∏d
j=d−i+1 nj and Ri =

∏d
j=d−i+1 ri.
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Corollary 7.1. Consider the following optimization problem:

min
x

∑
i∈[d]

xi

such that
nr

P
≤
∏
i∈[d]

xi and 0 ≤ xi ≤ niri for all 1 ≤ i ≤ d,

where ni, ri, P ≥ 1 and niri ≤ ni+1ri+1. The optimal solution x = [x1
∗ · · · xd∗]

depends on the values of constants, yielding d cases.

P1 N1R1

nd−1rd−1

N2R2

(nd−2rd−2)2
Nd−2Rd−2

(n2r2)d−2

Nd−1Rd−1

(n1r1)d−1x1
∗ = n1r1

...
xd−1

∗ = nd−1rd−1
xd
∗ = N1R1

P

x1
∗ = n1r1

...
xd−2

∗ = nd−2rd−2
xd−1

∗ = xd
∗=(

N2R2

P

)1/2

x1
∗ = n1r1

x2
∗ = · · · = xd

∗ =(Nd−1Rd−1

P

) 1
d−1

x1
∗ = · · · = xd

∗=(
NdRd

P

)1/d

• If P < N1R1

nd−1rd−1
, then

xj
∗ = njrj for 1 ≤ j ≤ d− 1 and xd

∗ =
N1R1

P
.

• If Ni−1Ri−1

(nd+1−ird+1−i)i−1 ≤ P < NiRi

(nd−ird−i)i
for some i = 2, · · · , d− 1, then

xj
∗ = njrj for 1 ≤ j ≤ d− i and xd+1−i

∗ = · · · = xd
∗ = (NiRi/P )

1/i
.

• If Nd−1Rd−1

(n1r1)d−1 ≤ P , then

x1
∗ = · · · = xd

∗ = (NdRd/P )
1/d

.

7.2. Communication Lower Bounds. We now present the lower bounds for
the general Multi-TTM computation. We prove this by applying Corollaries 4.2
and 7.1 and extending the arguments of Theorem 4.3 in a straightforward way (though
with more complicated notation).

Theorem 7.2. Any computationally load balanced atomic Multi-TTM algorithm
that starts and ends with one copy of the data distributed across processors and in-
volves d-dimensional tensors with dimensions n1, n2, . . . , nd and r1, r2, . . . , rd per-

forms at least A+B −
(

n
P + r

P +
∑d

j=1
njrj
P

)
sends or receives where

A =



∑d-1
j=1 njrj + N1R1

P if P < N1R1

nd-1rd-1
,∑(d-i)

j=1 njrj + i
(
NiRi

P

) 1
i if Ni-1Ri-1

(nd+1-ird+1-i)i-1
≤ P < NiRi

(nd-ird-i)i
,

for some 2 ≤ i ≤ d− 1,

d
(
NdRd

P

) 1
d if Nd-1Rd-1

(n1r1)d-1
≤ P .

B =

{
r + n

P if P < n
r ,

2
(
nr
P

) 1
2 if n

r ≤ P .

Proof. Let F be the set of loop indices associated with the (d+1)-ary multiplica-
tions performed by a processor. As we assumed the algorithm is computationally load
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balanced, |F | = nr/P . We define φX(F ), φY(F ) and φj(F ) to be the projections of

F onto the indices of the arrays X,Y, and A(j) for 1 ≤ j ≤ d which correspond to the
elements of the arrays that must be accessed or partially computed by the processor.

We use Lemma 3.3 to obtain a lower bound on the number of array elements that
must be accessed or partially computed by the processor. The matrix corresponding
to the projections above is given by

∆ =

[
Id×d 1d 0d

Id×d 0d 1d

]
.

Here 1d and 0d denote the d-dimensional vectors of all ones and zeros, respectively,
and Id×d denotes the d× d identity matrix. As before we define

C =
{
s = [s1 · · · sd+2]T : 0 ≤ si ≤ 1 for i = 1, 2, · · · , d+ 2 and ∆ · s ≥ 1

}
.

We recall that 1 represents a vector of all ones. As in the proof of Theorem 4.3,
∆ is not full rank, so we again consider each vector v ∈ C such that ∆ ·v = 1. Such a
vector v is of the form

[
a · · · a 1− a 1− a

]
where 0 ≤ a ≤ 1. Thus, we obtain

nr

P
≤
( ∏

j∈[d]

|φj(F )|
)a(
|φX(F )||φY(F )|

)1-a
.

Similar to the 3D case, the above constraint is equivalent to nr
P ≤

∏
j∈[d] |φj(F )|

and nr
P ≤ |φX(F )||φY(F )|.

Clearly a projection onto an array can not be larger than the array itself, thus
|φX(F )| ≤ n, |φY(F )| ≤ r, and |φj(F )| ≤ njrj for 1 ≤ j ≤ d.

As the constraints related to the projections of matrices and tensors are disjoint,
we solve them separately and then sum the results to get a lower bound on the
number of elements that must be accessed or partially computed by the processor.
We obtain a lower bound on A, the number of relevant elements of the matrices by
using Corollary 7.1, and a lower bound on B, the number of relevant elements of the
tensors by using Corollary 4.2. By summing both, we get the positive terms of the
lower bound.

To bound the sends or receives, we consider how much data the processor could
have had at the beginning or at the end of the computation. Assuming there is
exactly one copy of the data at the beginning and at the end of the computation,
there must exist a processor which owns at most 1/P of the elements of the arrays at
the beginning or at the end of the computation. By employing the previous analysis,
this processor must access or partially compute A + B elements of the arrays, but
can only own n

P + r
P +

∑
j∈[d]

njrj
P elements of the arrays. Thus it must perform the

specified amount of sends or receives.

8. Parallel Algorithm for General Multi-TTM. We present a parallel al-
gorithm to compute d-dimensional Multi-TTM in Alg. 8.1, which is analogous to
Alg. 5.1. We organize P processors into a 2d-dimensional logical processor grid with
dimensions p1 × · · · × pd × q1 × · · · × qd. As before, we consider that ∀i ∈ [d], pi
and qi evenly divide ni and ri, respectively. A processor coordinate is represented as
(p′1, · · · , p′d, q′1, · · · , q′d), where ∀i ∈ [d], 1 ≤ p′i ≤ pi and 1 ≤ q′i ≤ qi.



COMMUNICATION LOWER BOUNDS FOR MULTI-TTM COMPUTATION 23

Algorithm 8.1 Parallel Atomic d-dimensional Multi-TTM

Require: X, A(1), · · · , A(d), p1 × · · · × pd × q1 × · · · × qd logical processor grid

Ensure: Y such that Y = X×1 A(1)T · · · ×d A(d)T

1: (p′1, · · · , p′d, q′1, · · · , q′d) is my processor id
2: //All-gather input tensor X

3: Xp′1···p′d = All-Gather(X, (p′1, · · · , p′d, ∗, · · · , ∗))
4: //All-gather all input matrices
5: for i = 1, · · · , d do

6: A
(i)
p′iq
′
i

= All-Gather(A(i), (∗, · · · , ∗, p′i, ∗ · · · , ∗, q′i, ∗))
7: end for
8: //Perform local computations in a temporary tensor T

9: T = Local-Multi-TTM(Xp′1···p′d , A
(1)
p′1q
′
1
,· · · , A

(d)
p′dq
′
d
)

10: //Reduce-scatter the output tensor in Yq′1···q′d
11: Reduce-Scatter(Yq′1···q′d , T, (∗, · · · , ∗, q′1, · · · , q′d))

Here we discuss our data distribution model for Alg. 8.1, which is similar to
that of Alg. 5.1. Xp′1···p′d and Yq′1···q′d denote the subtensors of X and Y owned by

processors (p′1, · · · , p′d, ∗, · · · , ∗) and (∗, · · · , ∗, q′1, · · · , q′d), respectively. A
(i)
p′iq
′
i

denotes

the submatrix of A(i) owned by processors (∗, · · · , ∗, p′i, ∗, · · · , ∗, q′i, ∗, · · · , ∗). We
impose that there is one copy of data in the system at the beginning and the end of
the computation, and each subarray is distributed evenly among the set of processors
which own the data.

When Alg. 8.1 completes, Yq′1···q′d is distributed evenly among processors (∗, · · · , ∗,
q′1, · · · , q′d). We recall that

∏d
i=1 pi and

∏d
i=1 qi are denoted by p and q, respectively.

8.1. Cost Analysis. Now we analyze computation and communication costs
of the algorithm. As before, the local Multi-TTM computation in Line 9 can be
performed as a sequence of TTM operations to mininimize the number of arithmetic
operations. Assuming the TTM operations are performed in their order, first with
A(1), then with A(2), and so on until the last is performed with A(d), then each

processor performs
∑d

k=1

(
2
∏k

i=1
ri
qi

∏d
j=k

nj

pj

)
operations. In Line 11, each processor

also performs (1− q
P ) r

q computations due to the Reduce-Scatter operation.
Communication occurs only in All-Gather and Reduce-Scatter collectives in

Lines 3, 6, and 11. Line 3 specifies p All-Gathers over disjoint sets of P
p proces-

sors, Line 6 specifies piqi All-Gathers over disjoint sets of P
piqi

processors in the ith

loop iteration, and Line 11 specifies q Reduce-Scatters over disjoint sets of P
q pro-

cessors. Each processor is involved in one All-Gather involving the input tensor, d
All-Gathers involving input matrices and one Reduce-Scatter involving the output
tensor.

As before, we assume bandwidth and latency optimal algorithms are used for
the All-Gather and Reduce-Scatter collectives. Hence the bandwidth costs of the
All-Gather operations are (1 − p

P )n
p for Line 3, and

∑d
i=1(1 − piqi

P )niri
piqi

for the d
iterations of Line 6. The bandwidth cost of the Reduce-Scatter operation in Line 11 is
(1− q

P ) r
q . Hence the overall bandwidth cost of Alg. 8.1 along the critical path is n

p + r
q +∑d

i=1
niri
piqi
−
(

n+r+
∑d

i=1 niri
P

)
. The latency costs are log2

(
P
p

)
and log2

(
P
q

)
for Lines 3
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and 11 respectively, and
∑d

i=1 log2

(
P

piqi

)
for the d iterations of Line 6. Thus the

overall latency cost of Alg. 8.1 along the critical path is log2

(
P
p

)
+
∑d

i=1 log2

(
P

piqi

)
+

log2

(
P
q

)
= d log2(P ).

We can prove the following theorem by extending the arguments of Theorem 5.1.

Theorem 8.1. There exist pi, qi with 1 ≤ pi ≤ ni, 1 ≤ qi ≤ ri for i = 1, · · · , d
such that Alg. 8.1 is communication optimal to within a constant factor.

Proof. As we did previously, we break our analysis into 2 scenarios which are
further broken down into all possible cases.

In each case, we obtain p̂j and q̂j such that the terms in the communication cost
match the corresponding lower bound terms and satisfy at least one of the two sets
of constraints, 1 ≤ p̂j ≤ nj , 1 ≤ q̂j or 1 ≤ q̂j ≤ rj , 1 ≤ p̂j for 1 ≤ j ≤ d. We
handle all cases of both scenarios together in the end, and adapt these values to get
pj and qj which respect both lower and upper bounds for all values of j. Then we

determine how much additional communication may be required. We denote
∏d

i=1 p̂i
and

∏d
i=1 q̂i by p̂ and q̂.

• Scenario I
(
P < n

r

)
: This scenario corresponds to the first case of the tensor term

in LB. Thus, we set p̂j , q̂j in such a way that the tensor terms in the communication
cost match the tensor terms of LB:

(8.1) p̂ = P, q̂ = 1.

This implies q̂j = 1 for 1 ≤ j ≤ d. We break this scenario into d cases parameterized

by I: NI−1RI−1

(nd−I+1rd−I+1)I−1 ≤ P < min
{

NIRI

(nd−Ird−I)I
, nr
}

. The cases degenerate to P <

min
{

N1R1

nd−1rd−1
, nr
}

, when I = 1, and Nd−1Rd−1

(n1r1)d−1 ≤ P < n
r when I = d.

Setting the matrix communication costs to the matrix terms of the lower bound in
the corresponding cases yields

(8.2)
njrj
p̂j q̂j

= njrj if 1 ≤ j ≤ d− I, njrj
p̂j q̂j

=

(
NIRI

P

) 1
I

if d− I < j ≤ d.

Thus, q̂j = 1 for all 1 ≤ j ≤ d, p̂j = 1 if 1 ≤ j ≤ d − I and p̂j = njrj
(

P
NIRI

) 1
I if

d− I < j ≤ d to satisfy (8.1) and (8.2). Note that when I = 1, pd = P ≥ 1, and for

the other values of I, pj ≥ 1 because n1r1 ≤ · · · ≤ ndrd and NI−1RI−1

(nd−I+1rd−I+1)I−1 ≤ P .

Additionally we have that 1 = q̂j < rj for 1 ≤ j ≤ d. However, we are not able to
ensure p̂j ≤ nj when d−I < j ≤ d. We will handle all cases of both scenarios together
as they require the same analysis.

• Scenario II
(
n
r ≤ P

)
: This scenario corresponds to the second case of the tensor

term in LB. Thus, we set p̂i, q̂i in such a way that

(8.3)
n

p̂
=
r

q̂
=
(nr
P

)1/2
.

Again, we break this scenario into d cases parameterized by I:

max

{
NI−1RI−1

(nd−I+1rd−I+1)I−1
,
n

r

}
≤ P <

NIRI

(nd−Ird−I)I
·

The cases degenerate to P < N1R1

nd−1rd−1
, when I = 1, and max

{
Nd−1Rd−1

(n1r1)d−1 ,
n
r

}
≤ P

when I = d.
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Setting the matrix communication costs to match the corresponding matrix terms in
the lower bound yields

(8.4)
njrj
p̂j q̂j

= njrj if 1 ≤ j ≤ d− I, njrj
p̂j q̂j

=

(
NIRI

P

) 1
I

if d− I < j ≤ d.

Thus we set q̂j = p̂j = 1 for all 1 ≤ j ≤ d−I. When 2 ≤ I ≤ d, the equations above do

not uniquely determine p̂j , q̂j for d− I < j ≤ d. However, setting p̂j = nj

(
nP
rN2

I

)1/2I
and q̂j = rj

(
rP
nR2

I

)1/2I
for d− I < j ≤ d satisfies equations 8.3, 8.4 in all cases. Note

that we cannot ensure lower and upper bounds on p̂j and q̂j . We now look for new
solutions to the equations twice. First, we ensure that all lower bounds are respected,
i.e., 1 ≤ p̂j and 1 ≤ q̂j , and then we guarantee that all upper bounds of p̂j or q̂j are
satisfied, i.e., p̂j ≤ nj or q̂j ≤ rj .

As we compared communication cost of each term with its corresponding lower
bound to obtain p̂j and q̂j , we have 1 ≤ p̂j q̂j ≤ njrj for 1 ≤ j ≤ d, 1 ≤ p̂ ≤ n and
1 ≤ q̂ ≤ r in all d cases. However, we may not have 1 ≤ p̂j or 1 ≤ q̂j for some j. We
now seek new solutions that are all greater than 1. First we will increase all q̂j , p̂j
that are less than 1 in a way that preserves products p̂j q̂j but does not preserve p̂ and
q̂. Then we will adjust p̂j and q̂j to force the products p̂ and q̂ back to their initial
values.

Let qb denote the product of all q̂j such that q̂j < 1, and pb denote the product
of all p̂j such that p̂j < 1. Without loss of generality, if qb ≤ pb, set a = 1 p̂orig = p̂,
and q̂orig = q̂. We perform the following updates:
Looping over the index j from 1 to d, if q̂j < 1 then set a = a· q̂j , p̂j = p̂j q̂j , q̂j = 1; else
if p̂j < 1 then set a = a/p̂j , q̂j = p̂j q̂j , p̂j = 1. This step preserves all products p̂j q̂j and
enforces 1 ≤ p̂j , 1 ≤ q̂j for 1 ≤ j ≤ d, but it does not preserve p̂, q̂. At the end of this
step, we have a = qb/pb < 1, p̂ = a · p̂orig, and q̂ = q̂orig/a. In order to force p̂ and q̂ to
match their initial values, we decrease some q̂j in such a way that q̂ is decreased by a
factor of a. This is possible because 1 ≤ q̂orig = a·q̂. Looping over the index j from 1 to

d, if q̂j > 1 then set q̂j
prev = q̂j , q̂j = max(1, a · q̂j), a = a

(
q̂j

prev

q̂j

)
, p̂j = p̂j

(
q̂j

prev

q̂j

)
.

At the end of this step, q̂ has been decreased by a factor of qb/pb, p̂j q̂j were all
preserved, and thus, p̂ has been increased by a factor of pb/qb, hence q̂ = q̂orig and
p̂ = p̂orig. After the above updates, we have 1 ≤ p̂j , 1 ≤ q̂j for 1 ≤ j ≤ d, and the
products match the initial products thus are valid solutions to the original equations.
If pb < qb we would perform the same process, but changing the actions on the q̂j to
be performed on the p̂j and vice versa.

We now handle upper bounds of p̂j and q̂j . If ∃j, k such that p̂j > nj and
q̂k > rk, we again seek new solutions such that all p̂j or all q̂j satisfy upper bounds
while respecting lower bounds of all variables. Let pt and qt denote the products of
all p̂j and q̂j , respectively, such that p̂j q̂j 6= 1. As ∀j, 1 ≤ p̂j q̂j ≤ njrj , therefore pt

is not more than the product of the corresponding nj and/or qt is not more than the
product of the corresponding rj . If the first constraint is satisfied, then we perform
the following updates:
Looping over the index j from 1 to d, if pt > 1 and p̂j q̂j 6= 1 then set a = p̂j q̂j , p̂j =

min(pt, nj), q̂j = a
p̂j
, pt = pt

p̂j
. After the above updates, we have 1 ≤ p̂j ≤ nj , 1 ≤ q̂j

for 1 ≤ j ≤ d, and p̂j q̂j , p̂ and q̂ are back to their original values. If the first constraint
is not satisfied, we would perform the same process on q̂j instead of p̂j .

Now for all cases of both scenarios, we know that 1 ≤ p̂j and 1 ≤ q̂j for 1 ≤ j ≤ d,
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and either p̂j ≤ nj for 1 ≤ j ≤ d or q̂j ≤ rj for 1 ≤ j ≤ d. It remains to adapt p̂j and
q̂j such that both p̂j ≤ nj and q̂j ≤ rj for 1 ≤ j ≤ d. We obtain p1, . . . , pd, q1, . . . , qd
from p̂j and q̂j such that p1 · · · pd = p̂ and q1 · · · qd = q̂. The intuition is to maintain
the tensor communication terms in the lower bound.

Initially, we set pj = p̂j and qj = q̂j for 1 ≤ j ≤ d. If 1 ≤ pj ≤ nj and 1 ≤ qj ≤ rj
for 1 ≤ j ≤ d, then

∑
j∈[d]

njrj
pjqj

=
∑

j∈[d]
njrj
p̂j q̂j

and the communication cost exactly

matches the lower bound. Otherwise, we adapt the values and determine the effects
on the matrix communication costs. We recall that due of our particular selections
of p̂j and q̂j , @j, ` ∈ [d] such that p̂j > nj and q̂` > r`. If p̂j > nj for some j ∈ [d],

then we iterate over the index j from d to 1 setting pj = min
{
nj ,

p̂∏
`∈[d]−{j} p`

}
. We

iterate again from d to 1 with the same expression. Iterating twice ensures that all
updates are visible to all pj .

Now we assess how much additional communication is required for the matrices.
As p̂j > nj for some j, it must be the case that p̂ ≥ 2. Thus

∑
j∈[d]

njrj
pjqj

≤
∑
j∈[d]

max

{
njrj
p̂j q̂j

,
rj
q̂j

}
=
∑
j∈[d]

(njrj
p̂j q̂j

+
rj
q̂j
−min

{njrj
p̂j q̂j

,
rj
q̂j

})
<
∑
j∈[d]

(
njrj
p̂j q̂j

+
rj
q̂j

)
− (d− 1)

≤
∑
j∈[d]

njrj
p̂j q̂j

+
r

q̂

<
∑
j∈[d]

njrj
p̂j q̂j

+ 2

(
r

q̂
− r

p̂q̂

)

=
∑
j∈[d]

njrj
p̂j q̂j

+ 2

(
r

q̂
− r

P

)
.

Similarly, if ∃j ∈ [d] such that q̂j > rj , the same update can be performed to the

qj , and we obtain
∑

j∈[d]
njrj
pjqj

<
∑

j∈[d]
njrj
p̂j q̂j

+ 2
(

n
p̂ −

n
P

)
.

Therefore,
∑

j∈[d]
njrj
pjqj

+ r
q + n

p −O ≤ 3
(∑

j∈[d]
njrj
p̂j q̂j

+ r
q̂ + n

p̂ −O
)

= 3LB.

8.2. Simulated Evaluation. Similar to Section 6, we compare communica-
tion costs of our algorithm and a TTM-in-Sequence approach implemented in the
TuckerMPI library. We again restrict to cases where all dimensions are powers of
2, and vary the number of processors P from 2 to Pmax in multiples of 2, where
Pmax = min{n1r1, · · · , ndrd, n, r}.

Like Section 6, we look at all possible processor grid dimensions and represent
the minimum communication costs of our algorithm and TuckerMPI algorithm by
Alg. 8.1 (best) and TTM-in-Seq, respectively. The TTM-in-Sequence approach de-
scribed in [5] organizes P in a d-dimensional p̃1 × · · · × p̃d logical processor grid.
Assuming TTMs are performed in increasing mode order, the overall communication



COMMUNICATION LOWER BOUNDS FOR MULTI-TTM COMPUTATION 27

cost of this algorithm is

r1n2 · · ·nd

P
p̃1

+
r1r2n3 · · ·nd

P
p̃2

+ · · ·+ r1r2 · · · rd
P
p̃d

− r1n2 · · ·nd + r1r2n3 · · ·nd + · · ·+ r1r2 · · · rd
P

+
n1r1
p̃1

+ · · ·+ ndrd
p̃d

− n1r1 + · · ·+ ndrd
P

.

The first line corresponds to tensor communication and the second line corresponds to
matrix communication. As mentioned earlier, the TTM-in-Sequence approach forms a
tensor after each TTM computation. Each positive term of the first line corresponds to
the number of entries of such a tensor partially computed by a processor in TuckerMPI.
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Fig. 7: Communication cost comparison of Alg. 8.1 and the TTM-in-Sequence ap-
proach implemented by the TuckerMPI library. Note that LB is a communication
lower bound for atomic Multi-TTM algorithms, not for the TTM-in-Sequence ap-
proach. Communication cost of our approach (Alg. 8.1 (best)) is very close to the
lower bound (LB).
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Fig. 8: Matrix and Tensor communication costs in Alg. 8.1 and the TTM-in-Sequence
approach.

We again look at cases where the input tensors are large and the output tensors
are small. Figure 7 shows comparison of Alg. 8.1 (best) and TTM-in-Seq with our
communication lower bounds (LB) for 3/4/5-dimensional Multi-TTM computations.
For P = 2, both approaches perform the same amount of communication. After
that, the total number of accessed elements in both approaches decreases, however
the rate of owned elements decreases at the faster rate. Hence we see slight increase
in both curves. This behavior continues roughly till 2ni−ri processors for TTM-in-Seq
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Fig. 9: Communication cost comparison of Alg. 8.1 and the TTM-in-Sequence ap-
proach for 3/4/6-dimensional Multi-TTM computations.

curve. In this region, the TTM-in-Sequence approach selects p̃1 = · · · = ˜pd−1 = 1
and p̃d = P , and our algorithm selects p1 ≈ · · · ≈ pd and q1 = · · · = qd = 1.
These processor grid dimensions result in the same tensor communication cost for
both approaches. However our approach reduces matrix communication cost roughly
(1 − 1

d )P
1
d times, hence it is better than the TTM-in-Sequence approach. Fig. 8

shows the distribution of matrix and tensor communication costs in both approaches.
In general, our approach significantly minimizes the matrix communication costs in
all the plots and is better when the number of the entries in the output tensor is less
than that of the matrices. When the communication cost is dominated by the output
tensor, our approach is outperformed by the TTM-in-Sequence approach, which is the
case in Fig. 7c.

The parallel computational cost of TuckerMPI with cubical tensors is

2

(
r

1
dn

P
+
r

2
dn

d−1
d

P
+ · · ·+ rn

1
d

P

)
.

When n� r, Alg. 8.1 selects a processor grid such that q = 1 and p1 ≈ p2 ≈ · · · ≈ pd.
In this case the computation cost given in Subsection 8.1 simplifies to

2

(
r

1
dn

P
+
r

2
dn

d−1
d

P
d−1
d

+ · · ·+ rn
1
d

P
1
d

)
.

While the first terms of the two computational cost expressions match, we observe
greater computational cost from Alg. 8.1 in the remaining terms. These terms are
lower order when P � n/r, in which case the extra computational cost of Alg. 8.1 is
negligible. We plot computational overheads of our algorithm, with Comp−Overhead
label, in Fig. 7. We can note that the overheads are negligible (less than 0.5%) for
the considered experiments.

Now we consider a different set of experiments. Here the number of entries in the
input tensor is (210)d for d-dimensional computations. We fix the number of entries
in the output tensor to 212 and present comparisons of the considered approaches in
Figure 9 for 3/4/6-dimensional Multi-TTM computations. These dimensions allow
both tensors to be cubical. As the number of entries in the matrices are greater than
the number of entries in the output tensor, our approach is always superior to the
TTM-in-Sequence approach.



COMMUNICATION LOWER BOUNDS FOR MULTI-TTM COMPUTATION 29

Our results are consistent with what we observe for 3-dimensional Multi-TTM
computations in Section 6. When the input tensor is much larger than the output
tensor and the number of entries in the output tensor is less than that of the matrices,
our algorithm significantly reduces communication compared to the TTM-in-Sequence
approach. As in the 3D case, when P � n/r, the extra computation is negligible when
the TTM-in-Sequence approach is used locally to reduce computation.

9. Conclusions. In this work, we establish communication lower bounds for
the parallel Multi-TTM computation and present an optimal parallel algorithm that
organizes the processors in a 2d-dimensional grid for d-dimensional tensors. By judi-
ciously selecting the processor grid dimensions, we prove that our algorithm attains
the lower bounds to within a constant factor. To verify the theoretical analysis, we
simulate Multi-TTM computations using a variety of values for the number of pro-
cessors, P , the dimension, d, and sizes, ni and ri; compute the communication costs
of our algorithm corresponding to each simulation; and compute the optimal commu-
nication cost provided by the theoretical lower bound. These simulations show that
the communication costs of the proposed algorithm are close to optimal. When one
of the tensors is much larger than the other tensor, which is typical in compression
algorithms based on the Tucker decomposition, our algorithm significantly reduces
communication costs over the conventional approach of performing the computation
as a sequence of tensor-times-matrix operations.

Motivated by the simulated communication cost comparisons, our next goal is
to implement the parallel atomic algorithm and verify the performance improvement
in practice. Further, because neither the atomic or TTM-in-sequence approach is
always superior in terms of communication, we wish to explore hybrid algorithms to
account for significant dimension reduction in some modes but modest reduction in
others. Given the computation and communication capabilities of a parallel platform,
it would also be interesting to study the computation-communication tradeoff for these
two approaches and how to minimize the overall execution time in practice. Finally,
this work considers that each processor has enough memory. A natural extension
is to study communication lower bounds for Multi-TTM computations with limited
memory sizes.

Appendix A. Proof of Theorem 3.4.
In this section, we prove Theorem 3.4 as it is written, instead of relying on the

reader to derive this result from [7, Lemma 5.1]. This proof relies on two additional
results. The first, [7, Lemma 2.2], states that the first constraint of the optimization
problem is quasiconvex [2]. The second, [2, Lemma 3], states that satisfying the
Karush-Kuhn-Tucker (KKT) conditions is sufficient for a solution to the optimization
problem to be optimal as the optimization problem minimizes a differentiable convex
function and the contraints are all differentiable quasiconvex functions.

Proof of Theorem 3.4. To begin we note that the objective and all but the first
constraint are affine functions, which are differentiable, convex, and quasiconvex. The
first constraint is differentiable, and it is quasiconvex in the positive orthant by [7,
Lemma 2.2]. Thus the KKT conditions are sufficient to demonstrate the optimality
of any solution by [2, Lemma 3], and we will prove the optimality of the solution
x∗ =

[
x1
∗ x2

∗ · · · xd
∗] by finding dual variables µi

∗ for 0 ≤ i ≤ d such that the
KKT conditions are satisfied.

We now convert the problem to standard notation. The minimization objective



30 H. AL DAAS, G. BALLARD, L. GRIGORI, S. KUMAR, AND K. ROUSE

function is
f(x) =

∑
j∈[d]

xj ,

and the constraints are given by

g0(x) =
nr

P
−
∏
j∈[d]

xj ,

gi(x) = xi − ki for all i ∈ [d].

Partial derivatives for j ∈ [d] are given by

∂f

∂xj
(x) = 1,

∂g0
∂xj

(x) = −
∏

`∈[d]−{j}

x`,

∂gi
∂xj

(x) =

{
1 if i = j

0 else.

The KKT conditions of (x∗, µ∗) are:
• Primal feasibility : gi(x

∗) ≤ 0, for 0 ≤ i ≤ d.

• Stationarity : ∂f
∂xj

(x∗) +
∑d

i=0 µi
∗ ∂gi
∂xj

(x∗) = 0, for j ∈ [d].

• Dual feasibility : µi
∗ ≥ 0, for 0 ≤ i ≤ d.

• Complementary slackness: µi
∗gi(x

∗) = 0, for 0 ≤ i ≤ d.

Recall from the statement of Theorem 3.4 that KI =
∏d

j=d−I+1 kj and 1 ≤ I ≤ d
is defined such that LI ≤ P < LI+1.

Here Lj =
Kj

(kd−j+1)j
for 1 ≤ j ≤ d and Ld+1 =∞.

We claim that the optimal primal solution is

xj
∗ =

{
kj if j ≤ d− I,

(KI/P )1/I if d− I < j ≤ d.

and the optimal dual solution is

µi
∗ =


(KI/P )1/I

nr if i = 0,
(KI/P )1/I

ki
− 1 if 0 < i ≤ d− I,

0 if d− I < i ≤ d.

We now check that x∗ satisfies the primal feasibility condition. By direct verifica-
tion (and the fact that nr =

∏
j∈[d] xj), we have g0(x∗) = 0. Clearly gi(x

∗) = 0 for all

i ∈ [d− I], as xi
∗ = ki for all i ∈ [d− I]. To see that gi(x

∗) ≤ 0 for d− I < i ≤ d, it is
sufficient to recall that KI

(kd−I+1)I
≤ P by the definition of I, and that xi

∗ = (KI/P )1/I

and kd−I+1 ≤ ki for d− I < i ≤ d.
Stationarity follows from direct verification of the condition for j ∈ [d].
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To check dual feasibility, we note that all the factors of µ0
∗ are positive, thus

µ0
∗ > 0. To show that µi

∗ > 0 for i ∈ [d − I], it is sufficient to show that kd−I <

(KI/P )1/I as k1 ≤ · · · ≤ kd−I . This is implied by P < KI+1

(kd−I)I+1 = kd−IKI

(kd−I)I+1 , where

the inequality comes from the definition of I, and the equality from the definition of
the right products Kj .

Finally, complementary slackness is satisfied because gi(x
∗) = 0 for 0 ≤ i ≤ d−I,

and µi = 0 for d− I < i ≤ d.
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