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Abstract. In this work, we revisit the marking decisions made in the standard adaptive finite
element method (AFEM). Experience shows that a naïve marking policy leads to inefficient use of
computational resources for adaptive mesh refinement (AMR). Consequently, using AMR in practice
often involves ad-hoc or time-consuming offline parameter tuning to set appropriate parameters for
the marking subroutine. To address these practical concerns, we recast AMR as a Markov decision
process in which refinement parameters can be selected on-the-fly at run time, without the need
for pre-tuning by expert users. In this new paradigm, the refinement parameters are also chosen
adaptively via a marking policy that can be optimized using methods from reinforcement learning.
We use the Poisson equation to demonstrate our techniques on h- and hp-refinement benchmark
problems, and our experiments suggest that superior marking policies remain undiscovered for many
classical AFEM applications. Furthermore, an unexpected observation from this work is that marking
policies trained on one family of PDEs are sometimes robust enough to perform well on problems
far outside the training family. For illustration, we show that a simple hp-refinement policy trained
on 2D domains with only a single re-entrant corner can be deployed on far more complicated 2D
domains, and even 3D domains, without significant performance loss. For reproduction and broader
adoption, we accompany this work with an open-source implementation of our methods.

1. Introduction. A longstanding challenge for adaptive finite element methods
(AFEMs) is the creation of strategies or policies to guide the iterative refinement
process. An ideal policy should balance the competing goals of maximizing error
reduction against minimizing growth in number of degrees of freedom. The modern
tools of reinforcement learning have the potential to discover optimal policies in an
automated fashion, once a suitable connection between the finite element problem and
the reinforcement learning environment has been established.

In this work, we focus on a very simple connection to the reinforcement learning
community, based exclusively on the mark step of the traditional AFEM process:

(1.1) solve → estimate → mark → refine

We refer to a complete pass through the above sequence as one iteration of the process.
For each iteration, the mark step receives a list of error estimates for each element
in a mesh and must produce a list of elements to mark for h-refinement (subdivide
geometrically), p-refinement (raise the local polynomial approximation order), or de-
refinement (undo a previous refinement). Common practice is to leave parameters that
control the mark step fixed, allowing users to focus on analyzing other aspects of the
process or application problem. Here, we treat the selection of parameters controlling
the mark step as a decision that can be optimized by reinforcement learning and
demonstrate that how such a treatment can improve the overall efficiency and accuracy
of the AFEM process.

We motivate the potential gains from such an approach in the heavily studied
context of h-refinement AFEM for Laplace’s equation over an L-shaped domain with
Dirichlet boundary conditions defined to match a known singular solution. A standard
marking policy in this setting is to mark all elements whose error estimate is greater
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PDE solution θ = 0.1 θ = 0.9

Figure 1.1: The solution to Laplace’s equation on the L-shaped domain (left) is a classical
AFEM test-bed problem. Parameters in the mark step that are typically fixed by the user
in a heuristic fashion can have a dramatic effect on the total computational cost required
to achieve a desired accuracy. The two meshes shown correspond to different parameters
for the same marking policy, yielding similar global error and similar meshes after either 11
iterations and 2441 dofs (middle) or 36 iterations and 2169 dofs (right). Automating the
learning of optimal parameters for the mark step in (1.1) is the primary goal of this work.

than or equal to θ times the maximum error in the list, where θ ∈ [0, 1] is a fixed
parameter. In Figure 1.1, we show final meshes at the end of an AFEM workflow
employing either θ = 0.1 or θ = 0.9, where the refinement process is stopped once
the global error estimate is below 1.07× 10−3. While the meshes have visibly similar
refinement patterns, the computational cost is dramatically different: for θ = 0.1,
the final mesh occurs after 11 iterations and 2441 degrees of freedom (dofs), while
for θ = 0.9 the final mesh occurs after 36 iterations and 2169 dofs. This simple
example highlights the trade-off between iteration count and dof count that presents
an opportunity for optimization. Despite the obvious sensitivity of iteration count to
the selection of θ, the tuning of θ to a particular problem setting is often neglected
in practice and has not—to the best of our knowledge—been studied directly as an
optimization problem.

The example from Figure 1.1 highlights an additional axis on which the parameter
θ can be optimized: each individual refinement iteration. Tuning for a fixed choice of
θ can bring some computational benefits for h-refinement, but allowing θ to change
after each iteration opens a much broader landscape for optimization. By searching
over the entire sequence of refinement steps used to produce a suitable adaptive mesh,
we can search for total computational cost minima and final global error minima
as independent objectives. Furthermore, by introducing an independent parameter
ρ ∈ [0, 1] to control the number of p-refinements at a given iteration, we can add an
additional dimension to the space of refinement processes, enabling an even larger
space of optimization possibilities for hp-refinement.

The space of possible h- or hp-refinement processes and the search for optimal
decisions in this space is very naturally treated as a reinforcement learning (RL)
problem. At a high level, a marking policy receives state information about the
distribution of errors after an estimate step, as well as the remaining “budget” for
searching, and returns an action that controls the subsequent mark step. Pictorially,

(1.2) solve → estimate → decide → mark → refine

We implement the decide step by querying a trained marking policy. During
2



training, the policy receives a reward based on either how much the error decreased
or how few dofs were added, given a particular action. Training is effectively aiming
to induce optimal behavior of a Markov decision process (a type of discrete-time
stochastic control process). Once trained, the policy can be deployed in previously
unseen AFEM environments and then compared directly against other marking policies
in the literature.

As we will demonstrate, trained policies of this type can produce refinement paths
for AFEM processes that are (1) superior to optimal fixed-parameter marking policies
on a fixed geometry, (2) robust to changes in the domain geometry, and (3) suitable
for 3D geometries, even when the policy is trained exclusively in 2D settings. We
motivate the selection of an observation space consisting of three quantities: a measure
of “budget” (either the distance to a target error threshold or the cumulative degrees
of freedom already employed) and normalized mean and standard deviations of error
estimates at the previous step; all of the observables are trivial to compute within
any existing AFEM framework. To be abundantly clear, we emphasize that marking
policies are only involved in parameter selection; marking policies are not meant to
interact in any other way with the underlying finite element code. For the purpose
of reproduction and wider adoption, this work is accompanied by an open-source
Python-based implementation [24].

1.1. Related work. Machine learning for adaptive mesh refinement (AMR)
was first studied in the early 1990s [23], with only a small number of subsequent
contributions [13, 34] appearing in the literature until a few years ago. Since then,
attention has grown significantly [4,5,7,8,11,14,15,30,41,42,44,48,53,59–61]. To date,
machine learning has been used to design goal-oriented AMR strategies [11, 14, 15, 48],
hp-refinement strategies [41], and refinement strategies for polygonal discretizations
[4, 5].

The earliest data-driven approaches to AMR involved learning a mesh density
function [13, 23, 58] or “areas of interest” in the physical domain for refinement [34].
This class of approaches continues to be actively developed [12, 30, 44, 52, 61]. We
note that density-based AMR typically relies on a down-stream mesh generator (see,
e.g., [21]) or some form of mesh transport (see, e.g., [9]). Among other reasons, this
makes density-based AMR fundamentally different from marked element AMR, which
is the paradigm considered in this work.

The first instance of machine learning for marked element AMR that we are aware
of is [8]. In [8], it is shown that error estimation (cf. estimate) and element marking
(cf. mark) for an elliptic partial differential equation (PDE) can be represented by a
recurrent neural network.

Of all of the references above, only [60] characterizes AMR as a sequential decision-
making problem. In particular, the authors of [60] seek to learn a mesh-dependent map
between approximate PDE solutions and elementwise mesh refinement decisions. In
turn, they formulate AMR as a Markov decision process (MDP) with variable-size state
and action spaces. The authors then propose novel policy architectures to support
their unique variable-size spaces. An additional novelty in [60] is that the authors do
not rely on a posteriori error estimators from the finite element literature; see, e.g., [1].
Instead, they replace the estimate and mark steps in (1.1) with an elementwise
decision based on a direct view of the solution about each element. Unfortunately, the
approach is limited to refining only one element at a time [60, Section 7], which is
impractical for most applications.

Although we also characterize AMR as a sequential decision-making problem, our
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approach is different from [60] in numerous ways: for example, (1) we require the user
to provide an a posteriori error estimator that can deliver reliable and efficient local
error estimates (cf. Subsection 2.1); (2) our policy observes a fixed number of statistics
derived from the local error estimates (cf. Subsection 2.5) and returns a fixed number
of bulk refinement parameters (cf. Section 3); in turn, (3) we formulate AMR as an
MDP with fixed -size state and action spaces (i.e., mesh-independent); (4) we rely on
policy architectures that are often used in other reinforcement learning applications
and are, therefore, easy to construct and train with contemporary software libraries
(cf. Remark 1); finally, unlike [60], (5) our approach is not limited to refining only one
element at a time and, in fact, naturally supports refining any number of elements per
refinement step. Our contributions, as well as those in [60], align with a recent trend
in reinforcement learning to improve adaptive algorithms in scientific computing—for
example, adaptive time-stepping for numerical integration [17] and adaptive coarsening
for algebraic multigrid methods [57].

2. Preliminaries. In this section, we introduce the fundamental concepts and
basic notation used throughout the paper. In particular, we first describe classical
concepts from marked element AMR for stationary PDEs. We then recapitulate
marked element AMR as MDP. Finally, we introduce the concept of marking policies,
which can be used to control the associated MDP.

2.1. Marked element AMR. Our focus is on AMR for PDE-based boundary
value problems posed on open Lipschitz domains Ω⊆Rd, where d = 2 or 3. In this
work, we let T denote any shape regular mesh subordinate to the domain,

⋃
T∈T T = Ω

and
⋂

T∈T = ∅, where every element T ∈ T is Lipschitz.
The canonical application scenario begins with an equation of the form

(2.1) Lu = f in Ω, u = 0 on ∂Ω,

where L : V → V ′ is a bijective differential operator on some Hilbert space V with
norm ∥·∥V . A popular method to solve such equations is the finite element method [16].
This method involves constructing a discrete space V (T )⊆V and solving a discrete
version of (2.1):

(2.2) Find uT ∈ V (T ) such that ⟨LuT , v⟩ = ⟨f, v⟩ for all v ∈ V (T ),

where ⟨·, ·⟩ denotes the V ′ × V duality pairing.
In most application scenarios, we have one of two complementary objectives:
(i) Optimal efficiency. Solve (2.2) to a prescribed accuracy (e.g., ∥u− uT ∥V ≤

tol) as efficiently as possible.
(ii) Optimal accuracy. Solve (2.2) to the optimal accuracy allowed by a pre-

scribed computing budget or time constraint.
Objectives (i) and (ii) are difficult to achieve because they involve the solution of an
optimization problem in a complex, infinite-dimensional set of possible discretizations
[18,20,43]. Instead of trying to reach optimal efficiency or accuracy as defined by (i) and
(ii), one typically finds a satisfactory solution through an AMR process. This type of
iterative process begins with a user-defined initial mesh T0 that is sequentially refined,
generating a sequence of meshes T0, T1, . . . , Tk with improving accuracy. The process
then stops once the computing budget is exhausted or the target accuracy is reached
and the convergence rate of the solution error is used to assess its effectiveness [10,38,54].
A benefit of the RL approach employed here is that we can directly address (i) and
(ii), while still adhering to the traditional marked AMR process described above.
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Hereafter, we assume that (2.2) admits a global relative error estimator

ηT =

√∑

T∈T
η2T ≈ ∥u− uT ∥V /∥u∥V ,

where ηT denotes the local error estimator applied to a single element T ∈ T . We
require a relative error estimator to normalize the errors over trivial length scale
changes of the mesh geometry. After constructing such an estimator, we must also
select a marking rule. Two common choices are the greedy and Dörfler marking
rules [22]. Both of these choices are parameterized by a bulk parameter θ ∈ [0, 1]
that determines the how conservative the refinement will be (θ = 1 being the most
conservative). In a greedy rule, we refine all elements T ∈ T satisfying

(2.3) θ ·max
S∈T
{ηS} ≤ ηT .

In a Dörfler rule, we refine a minimal cardinality subset of elements S ⊆T satisfying

(2.4) θ ·
∑

T∈T
η2T ≤

∑

S∈S
η2S .

We now state the standard marked element AMR algorithm for achieving a target
error estimate η∞ > 0; cf. objective (i). Here and onward, we denote ηk = ηTk

and
uk = uTk

. An example follows immediately afterward.

Algorithm 1: Marked element AMR with a target error estimate.
input : Initial mesh T0, fixed parameter θ ∈ (0, 1), target error estimate

η∞ > 0.
output :Discrete solution uk.
k ← 0.
while ηk > η∞ do

Solve (2.2) with T = Tk. // solve
Compute error estimates {ηT }T∈Tk

. // estimate
Mark all T ∈ Tk satisfying (2.3) (or (2.4)). // mark
Form Tk+1 by refining all marked elements in Tk. // refine
k ← k + 1.

Example 1. Assume that T is made up of simplices and, for every T ∈ T ,
denote the space of polynomials of degree less than or equal to p by Pp(T ). We may
now consider the classical order-p finite element variational formulation of the Poisson
equation −∆u = f with homogeneous Dirichlet boundary conditions:

(2.5) Find uT ∈ Vp(T ) such that
∫

Ω

∇uT · ∇v dx =

∫

Ω

fv dx for all v ∈ Vp(T ),

where Vp(T ) = {v ∈ H1
0 (Ω) : v|T ∈ Pp(T ) ∀T ∈ T }. In all numerical experiments in

this work, we utilize the Zienkiewicz–Zhu error estimator [62,63] for (2.5). However,
there are numerous other equally well-qualified candidates in the literature that one
may use instead [1].

2.2. AMR as a Markov process. The remainder of this section is centered on
characterizing an optimal marking policy π through which a new value of θ in (2.3)
(or (2.4)) can be selected after every AMR iteration. The key to our approach is to
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identify every solve–estimate–mark–refine (SEMR) iteration of Algorithm 1
(cf. (1.1)) with the transition of an unknown Markov process that advances the current
state of the discretization to a new state with a transition probability dependent on θ.
This stochastic perspective is appealing in part because it allows us to characterize a
robust marking policy that performs well on a distribution of PDEs (cf. Subsections 5.2
and 5.3).

The SEMR process in Algorithm 1 can be steered to even more computationally
efficient results by modifying the choice of θ at each iteration k. Doing so is equivalent
to enacting an “Adaptive Marking AMR” process, which we will denote by (AM)2R.
The method proceeds via a solve–estimate–decide–mark–refine (SEDMR)
loop that we will now construct (cf. (1.2) and Figure 3.1). Since we are permitted
a parameter decision before each state transition (i.e., refinement), SEDMR is an
example of a discrete-time stochastic control process called a Markov decision process
(MDP) [55].

2.3. Marking policies as probability distributions. A marking policy can
be any map between a set of system observables O and refinement actions A. However,
experience from the reinforcement learning literature indicates several advantages of
defining the observable-to-action map through a probability distribution [55]. In turn,
we define a marking policy to be a family of probability distributions π : O×A → [0, 1]
from which we can sample the bulk parameter θ ∼ π(θ|o) for any state observation
o ∈ O.

The most important reason to define a marking policy as a probability distribution
is that it enables the use of stochastic algorithms for optimizing the associated MDP;
cf. Section 3. Furthermore, the distribution perspective provides a way to encode
multivalued maps between O and A, which are helpful when the observation space is
not rich enough to encode all state information.

In the context of marking rules like (2.3) and (2.4), the natural action space A
for AMR is the set of all admissible bulk parameters θ; that is, A = [0, 1]. Unlike
this clearly defined action space, we are free to incorporate any features we deem
important to the PDE discretization into the definition of the observation space O.
For example, any subset of the physical or geometry parameters of the underlying
PDE could be used to define O. Such a choice may be helpful to arrive at a policy
appropriate for a range of PDEs. In this work, we focus on a more generic observation
space derived solely from the local error estimates and refinement objective. In order
to focus now on more general aspects of the policy π, we defer the precise description
of our observation space to Subsection 2.5.

2.4. From problem statements to algorithms. By changing the value of
θ = θk within every SEDMR iteration k, we seek to induce a doubly adaptive refinement
process that is optimal with respect to some prescribed objective function. In problems
(i) and (ii), the objective is to minimize either the final error estimate ηk or some
surrogate of the total simulation cost Jk. We rewrite these problems as follows,

Efficiency problem. Given the target error estimate η∞ > 0, seek

(2.6) min
π,k

Eθ∼π

[
log2 Jk

]
subject to ηk ≤ η∞ a.s.

Accuracy problem. Given the computational budget J∞ > 0, seek

(2.7) min
π,k

Eθ∼π

[
log2 ηk

]
subject to Jk ≤ J∞ a.s.
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In the two problems above, Eθ∼π[X(θ)] denotes the expected value of the random
variable X(θ) when θ is drawn from π and a.s. stands for “almost surely” with respect
to the probability measure defining the expected value.

We are free to define Jk as we choose; however, one basic principle is that the
cost should depend on the entire refinement history, Jk = J(T0, . . . , Tk). The most
direct measures of cost may be the cumulative time-to-solution or the cumulative
energy expended. Both of these are stochastic quantities that are difficult to estimate
precisely. In this work, we use the cumulative degrees of freedom (dofs) to define the
cost function. More precisely,

(2.8) Jk :=

k∑

i=0

ndofs(Ti),

where ndofs(T ) is the number of dofs in the discrete space V (T ). If the PDE solver
scales linearly with number of dofs and the overhead costs of assembly and refinement
are neglected, we believe this is a reasonable surrogate for simulation cost. Future
work may be devoted to designing optimal policies based on other cost functions.

Algorithms 2 and 3 describe the (AM)2R process, as applied to the efficiency
problem and accuracy problem, respectively. In Section 3, we describe how to optimize
for the scalar outputs of these process; i.e., the cost Jk or final global error estimate
ηk.

Algorithm 2: (AM)2R with a target error estimate.
input : Initial mesh T0, marking policy π, target error estimate η∞ > 0.
output :Discrete solution uk, cost Jk.
k ← 0.
while ηk > η∞ do

Solve (2.2) with T = Tk. // solve
Compute error estimates {ηT }T∈Tk

. // estimate
Sample θk ∼ π(·|ok). // decide
Mark all T ∈ Tk satisfying (2.3) or (2.4) with θ = θk. // mark
Form Tk+1 by refining all marked elements in Tk. // refine
k ← k + 1.

Algorithm 3: (AM)2R with a computational budget constraint.
input : Initial mesh T0, marking policy π, computational budget J∞ > 0.
output :Discrete solution uk, error estimate ηk.
k ← 0.
while Jk < J∞ do

Solve (2.2) with T = Tk. // solve
Compute error estimates {ηT }T∈Tk

. // estimate
Sample θk ∼ π(·|ok). // decide
Mark all T ∈ Tk satisfying (2.3) or (2.4) with θ = θk. // mark
Form Tk+1 by refining all marked elements in Tk. // refine
k ← k + 1.

7



2.5. Defining an observation space for h-refinement. When designing a
marking policy, it is limiting to focus only on optimality over the problems seen during
training. In the context of PDE discretizations especially, it is more useful to attain a
generalizable or robust policy that can provide competitive performance on problems
outside the training set. To allow such generalizability, the observation space O must
be defined so that the policy can be applied to a large category of target problems.
This may preclude defining O with, e.g., geometric features of the domain such as
values at interior angles or control points because, in that case, the trained policy
could not be applied to domains that do not have an analogous feature set.

In this work, we choose to define O using only variables that appear in Algorithms 2
and 3. More specifically, we define the observation space in terms of the individual
error estimates {ηT }T∈Tk

and the cost Jk. As a first pass, one might consider including
all possible lists of error estimates ηT in the observation space, but this presents an
immediate challenge due to the varying length of such lists over the course of the
AFEM MDP. Instead, we choose to observe statistics derived from the local error
estimates. In addition, we choose to observe the proximity to a target global error
estimate or cumulative degree of freedom threshold.

The proximity observables are easy to define. In Algorithm 2, the loop ends when
the target error is reached. Therefore, in order to keep track of how far we are from
the end of the refinement process when solving the efficiency problem (2.6), we include
the relative distance to the target error,

(2.9) bk = η∞/ηk,

in the observation space. Alternatively, in Algorithm 3, the loop ends when the com-
putational budget is exhausted. Therefore, when solving the accuracy problem (2.7),
we include the relative budget,

(2.10) bk = Jk/J∞,

in the observation space.
The statistics of ηT that we choose to observe are more complicated to define and

the remainder of this subsection is devoted to motivating our choices. We begin by
defining the empirical mean of any element-indexed set {xT ∈ R : T ∈ Tk}, written

(2.11) Ek[xT ] =
1

|Tk|
∑

T∈Tk

xT ,

where |Tk| denotes the number of elements in the mesh Tk. The corresponding empirical
variance is defined as

(2.12) Vk[xT ] = Ek

[
(xT − Ek[xT ])

2
]
,

and, in turn, the empirical standard deviation is defined SDk[xT ] =
√

Vk[xT ]. Finally,
we define the root mean square of {xT } to be

(2.13) RMSk[xT ] =
√
Ek[x2

T ].

Note that one may rewrite Vk[xT ] = Ek[x
2
T ]− Ek[xT ]

2 and thus see that

(2.14) SDk[xT ] ≤ RMSk[xT ],
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with equality if and only if Ek[xT ] = 0.
The main challenge of defining an appropriate statistic of ηT is ensuring that the

statistic is properly normalized with respect to the number of elements and degrees
of freedom in the discretization. To illustrate this challenge, we consider the error
in (2.5), namely u− uk. A straightforward computation shows that

(2.15) Ek

[
∥∇(u− uk)∥2L2(T )

]
=

1

|Tk|
∥∇(u− uk)∥2L2(Ω).

If u is sufficiently smooth and mild assumptions on the problem context are satis-
fied [33], then for a uniform p-order finite element discretization undergoing uniform
h-refinements, there exist constants C0 and C1 depending on u but independent of Tk
such that

(2.16) C0 ndofs(Tk)−p/d ≤ ∥∇(u− uk)∥L2(Ω) ≤ C1 ndofs(Tk)−p/d.

Together, (2.15) and (2.16) deliver uniform upper and lower bounds on the root mean
square of a normalized distribution of local errors, i.e., for any mesh Tk,

(2.17) C0 ≤ RMSk[ẽT ] ≤ C1,

where ẽT = |Tk|1/2 ndofs(Tk)p/d∥∇(u− uk)∥L2(T ). Typically, we do not have access to
the true local errors. However, one may derive similar uniform bounds on the error
estimates given the assumption ηk ≈ ∥∇(u− uk)∥L2(Ω)/∥∇uk∥L2(Ω). This leads us to
consider the following normalized local error estimates:

(2.18) η̃T = |Tk|1/2 ndofs(Tk)p/dηT .

It is instructive to reflect on (2.17) and see that, if the error estimate converges
optimally (cf. (2.16)), then the root mean square of η̃T remains bounded. Under
the same assumption, the standard deviation of η̃T is bounded due to (2.14). This
observation is summarized in Proposition 2.1.

Proposition 2.1. If there exists a constant C such that

(2.19) ηk ≤ C ndofs(Tk)−p/d

then for all T in Tk

(2.20) SDk[η̃T ] ≤ RMSk[η̃T ] ≤ C.

Proof. The first inequality in (2.20) is an immediate consequence of (2.14). The
second inequality follows from the straightforward identity |Tk|1/2 RMSk[ηT ] = ηk,
assumption (2.19), and definition (2.18).

If the global error estimate does not converge optimally, then neither the standard
deviation nor the root mean square of η̃T is guaranteed to be bounded, as we now
demonstrate by example. In Figure 2.1, the empirical distribution of η̃T is plotted
for four discretized model Poisson problems undergoing h-refinement. In the middle
row of plots, the discretizations are enriched through uniform h-refinement. When
the solution is infinitely smooth, u ∈ C∞(Ω), we witness that the distribution of
η̃T converges after only a few refinements. However, when the solution has only
finite regularity—as in the canonical singular solution on the L-shaped domain, where
u ∈ Hs(Ω), 1 ≤ s < 3/2, u ̸∈ H3/2(Ω)—only the median of η̃T appears to converge

9
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Figure 2.1: Empirical distributions of the normalized local error estimates η̃T (2.18) under
uniform h-refinement (middle row) and standard adaptive h-refinement using Algorithm 1
with θ = 0.5 (bottom row) for two Poisson problems (cf. (2.5)) with p = 1. Left column:
The difference in distributions between uniform and adaptive h-refinement for the infinitely
smooth solution u = sin(πx) sin(πy) over the unit square is noticeable but not significant.
Right column: For the canonical L-shaped domain problem, uniform h-refinement results
in exponentially divergent mean and variance, while AMR keeps both controlled. This
observation guides the design of our RL training regimen for the decide step.

while the mean and variance diverge exponentially. In contrast, the mean and variance
remain bounded under AMR for both regularity scenarios, as evidenced by the bottom
row of Figure 2.1, which employs h-refinement via Algorithm 1 using the greedy
marking strategy (2.3) and θ = 0.5.

A heuristic interpretation of the diverging local error distribution in the uniform
refinement, L-shaped domain case from Figure 2.1 is found through the concept of
error equidistribution [20], which the standard deviation of η̃T allows us to quantify.
In some sense, for an “ideal” mesh, all elements will have precisely the same local error.
This is equivalent to having zero empirical variance in the local error distribution. On
the other hand, when the local errors vary wildly, the variance of η̃T will be accordingly
large. Because uniform refinement is suboptimal when u is singular [22], the local
errors become less equally distributed after every refinement. In other words, this
suboptimal refinement process causes the variance of η̃T to grow with k.

We can now formulate our first observation space (an alternative observation
space for hp-refinement is proposed in Section 4). As motivated previously, there is
an intuitive reason to observe the proximity variable bk corresponding to either (2.9)
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or (2.10), depending on if the efficiency problem or the accuracy problem is being
solved, respectively. Likewise, it is convenient to observe the root mean square of
η̃T , due to its connection to the convergence constants C0 and C1 in (2.17), and the
standard deviation of η̃T , due to its connection to the error equidistribution. Therefore,
we choose to observe some combination of bk, RMSk[η̃T ], and SDk[η̃T ].

In our experiments, we tried multiple combinations of these variables but settled
on the following formulation: Oh = [0, 1] × [0,∞) × [0,∞), where each ok ∈ Oh is
defined by

(2.21) ok = ( bk, log2(1 + RMSk[η̃T ]), log2(1 + SDk[η̃T ]) ) .

The logarithms in the second and third components of ok exist for numerical stability.
Recalling the fact that RMSk[η̃T ] and SDk[η̃T ] may diverge exponentially (cf. Fig-
ure 2.1), we found it more numerically stable to observe logarithms of RMSk[η̃T ] and
SDk[η̃T ] rather than their direct values. We admit our definition of Oh is ad hoc and
encourage future research to explore the benefits of other combinations of these or
other variables.

3. Putting it all together. In the previous section, we characterized marked
element AMR as an MDP in which the value of the refinement parameter θ can be
chosen by querying a marking policy π(θ|o) that depends on the current refinement
state, distinguished by an observable o ∈ O. We then motivated a specific obser-
vation space (2.21) intended for both the efficiency problem (2.6) and the accuracy
problem (2.7).

It remains to formulate a methodology to solve the corresponding optimization
problems. The first step is to define a statistical model for the policy π(θ|o). Experience
has shown that projecting a Gaussian model whose mean µ = µ(o) and standard
deviation σ = σ(o) are parameterized by a feed-forward neural network works well on
this type of problem [55]. In other words, the policy π(θ|o) is sampled by projecting
normally distributed samples θ̃ ∼ π̃(θ̃|o) onto the interval [0, 1]:

(3.1) θ = max{0,min{1, θ̃}}.

The family of Gaussian probability density functions is written

(3.2) π̃(θ̃|o) = 1

σ(o)
√
2π

exp

{
− 1

2

(
θ̃ − µ(o)

σ(o)

)2}
,

where (µ(o), ln(σ(o))) = zL(o) and

(3.3) zℓ+1(o) = WLϕ(zℓ(o)) + bℓ, 1 ≤ ℓ ≤ L,

starting with z1(o) = W1o+ b1. Here, Wℓ ∈ Rnℓ×nℓ−1 is the weight matrix, b ∈ Rnℓ

is the bias vector in the ℓth layer (n0 = dim(O), and nL = 2), and ϕ : R → R is a
nonlinear activation function applied elementwise to its argument. The execution of
the resulting (AM)2R process is described in the flowchart in Figure 3.1.

With the substitutions above, a trained policy is found by optimizing (2.6) or (2.7)
over all weight matrices Wℓ and bias vectors bℓ. To solve the corresponding finite-
dimensional optimization problem, we employ a particular type of reinforcement
learning algorithm called proximal policy optimization (PPO) [50]. PPO methods
fall under the broader class of policy gradient methods. Supporting technical details
on policy gradient methods can be found in [49, 51, 56] and the textbook of Sutton
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Figure 3.1: Flowchart describing the pipeline for training a marking policy. When deployed,
the policy always sets θ̃k to µk, making the trained policy a deterministic function of the
observation space.

and Barto [55]. We also refer the interested reader to our open-source software
implementation [24].

Finally, we note that while training a policy involves random draws from the
Gaussian density functions, deploying the policy does not. When deployed, the policy
selects θ̃k to be µk, making it a deterministic function of the observation space. A
traditional fixed-parameter marking rule can thus be thought of as a constant-valued
policy with the constant chosen heuristically, rather than by training on representative
problems.

Remark 1. Our software implementation is based on the open-source C++ finite
element software library MFEM [3, 31] and the open-source Python-based reinforcement
learning toolbox RLlib [32]. To interface between MFEM and RLlib, we rely on the
MFEM Python wrapper PyMFEM [45]. PyMFEM allows us to interact with the rigorously
tested hp-refinement functionalities of MFEM and create Python-based versions of Al-
gorithms 2 and 3. RLlib allows us to design and sample from the corresponding
refinement policies as well as provide numerous state-of-the-art training algorithms
that can be used to solve (2.6) and (2.7). These training routines are made especially
efficient through parallelism provided by the open-source workload manager Ray [39],
which RLlib natively employs.

Remark 2. The following configuration settings for RLlib that control the policy
training regimen ppo.PPOTrainer(...) are common among our experiments. We use
batch mode truncate_episodes, sgd minibatch size = 100, rollout fragment length =
50, number of workers = 10, train batch size = 500, γ = 1.0, learning ratio = 10−4, and
seed = 4000. The neural network that we train (i.e., the “model” in RLlib terminology)
has two hidden layers, each of size 128, with the Swish activation function [47].

4. Extension to hp-refinement. Like (AM)2R (Subsection 2.2), traditional
hp-AMR obeys a generalization of the SEMR sequence (1.1) with an implicit “decision”
step [37]. In particular, after marking the set of elements to be refined, the algorithm
must decide whether to h- or p-refine each marked element [6,19,27,40,46]. One of
the most popular ways to make this decision is to partition the set of marked elements
based on a local regularity estimate [25,28,29,35] or a priori knowledge of the local
solution regularity [2]. Another popular strategy relies on brute force computations
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on an enriched mesh [20]. These and other strategies are compared in the review
article [37].

In general, the philosophy behind an efficient hp-AFEM algorithm is that the
solution should be h-refined in regions with low regularity and p-refined where it has
high regularity [6]. Estimating the local solution regularity often requires multiple
local estimators, which we will not describe further for the sake of time and space
(see, e.g., [37]). Instead, we devise an hp-refinement strategy that requires only one
error estimator and encourage follow-on work that considers using, e.g., multiple local
estimators to make similar hp-refinement decisions. Rather than aiming to provide
a complete view into reinforcement learning for hp-refinement, the purpose of our
investigation is to demonstrate that sophisticated refinement policies can be learned
with our framework. In particular, we will show that employing a multidimensional
action space A is both feasible and practical.

4.1. hp action space. In this work, we rely on a priori knowledge to partition
the set of marked elements into disjoint subsets for h- and p-refinement, respectively.
Our marking rule is inspired by the largely successful “flagging” strategy proposed in [2].
In the “flagging” strategy, the user flags specific geometric features in the mesh where
they anticipate the regularity to be low, and, in turn, a marked element is h-refined if
and only if its closure intersects a flagged feature and all other marked elements are
p-refined. The comparison in [37] demonstrates that flagging can outperform much
more complicated strategies in benchmark problems with singular solutions. However,
it is widely acknowledged that flagging has limited utility because it involves direct
(sometimes ad hoc) user interaction.

In our generalization, we aim to target elliptic PDEs with singular solutions and,
in doing so, assume that the relative size of the local error estimate is correlated to
the physical distance from singularities. Based on this correlation, we can induce
h-refinement near singularities by marking a subset of elements with the largest local
error estimates for h-refinement. We then mark a disjoint subset of elements with the
next largest local error estimates for p-refinement.

More specifically, let A = [0, 1] × [0, 1]. For (θ, ρ) ∈ A, we h-refine all elements
T ∈ T satisfying

(4.1a) θ ·max
S∈T
{ηS} < ηT ,

and we p-refine all elements T ∈ T satisfying

(4.1b) ρθ ·max
S∈T
{ηS} < ηT ≤ θ ·max

S∈T
{ηS}.

One may readily note that conditions (4.1a) and (4.1b) are exclusive, meaning any
given element is marked for h, p, or no refinement, but never for both h and p
refinement. Further, observe that θ = 1 induces only p-refinement and ρ = 1 induces
only h-refinement. Alternatively, θ = 0 induces uniform h-refinement and ρ = 0
induces uniform hp-refinement (with the split between h and p controlled by θ). Thus,
our marking rule provides a wide (but not exhaustive) range of possible refinement
actions. This flexibility is appealing but leads to a difficult parameter specification
problem that has a longstanding precedent for hp marking rules. For instance, one of
the oldest hp strategies in the literature [26] also uses a parameter to partition the
marked elements into h- and p-refinement subsets.
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4.2. hp observation space. Unlike optimal h-refinement, optimal hp-refinement
leads to an exponential convergence rate in error reduction [6] and typically causes p
to vary across elements in the mesh. As a result, the normalization of ηT in (2.18) is
not suitable for hp-refinement because it depends explicitly on the polynomial order
p. Our remedy is to construct an alternative distribution variable based on the local
convergence rate, which takes the place of the exponent p/d in (2.18). In particular,
we define

(4.2) ζT = − ln(|Tk|1/2ηT )
ln(ndofs(Tk))

,

or, equivalently,

(4.3) ndofs(Tk)−ζT = |Tk|1/2 ηT .

It is straightforward to show that Vk[ζT ] = 0 if and only if Vk[ηT ] = 0. Therefore,
the variance of ζT also provides a way to quantify error equidistribution. An interesting
second property is that the expected value of ζT is related to the global convergence
rate, as evidenced by Proposition 4.1.

Proposition 4.1. If there exist constants C, β > 0 such that

(4.4) ηk ≤ C ndofs(Tk)−β ,

then

(4.5) lim inf
k→∞

Ek[ζT ] ≥ β.

Proof. As with (2.15), it is straightforward to show that

(4.6) |Tk|Ek[η
2
T ] = η2k.

Therefore, by (4.3), we have that Ek[ndofs(Tk)−2ζT ] = η2k. We now use this identity
and Jensen’s inequality to derive an upper bound on ln η2k:

ln η2k = lnEk[ndofs(Tk)−2ζT ] ≥ Ek[ln(ndofs(Tk)−2ζT )] = −2Ek[ζT ] ln(ndofs(Tk)).

Thus, by (4.4), we have

(4.7) − 2Ek[ζT ] ln(ndofs(Tk)) ≤ ln η2k ≤ 2 lnC − 2β ln(ndofs(Tk)).

The proof is completed by dividing the left and right sides of (4.7) by −2 ln(ndofs(Tk))
and considering the limit as ndofs(Tk)→∞.

Figure 4.1 depicts the distribution of ζT for the same model problems considered
in Figure 2.1. In the top row, we see that variance of ζT remains bounded for both
the smooth and singular solutions undergoing uniform h-refinement. Moreover, both
distributions appear to be converging logarithmically to a fixed distribution. In
the bottom row, we see that adaptive h-refinement decreases the variance for both
types of solutions. In our experiments, we also tried observing different combinations
of statistics of ζT and settled on the following formulation due to its simplicity:
Ohp = [0, 1]× [0,∞)× [0,∞), where each ok ∈ O is defined by

(4.8) ok = ( bk, Ek[ζT ], SDk[ζT ] ) .
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Figure 4.1: Empirical distributions of ζT (4.2), the normalized local error estimate we will
use for hp-refinement. The experimental setup is identical to that of Figure 2.1, replacing η̃T
with ζT . Unlike the prior case, the mean and variance of ζT do not diverge under uniform
refinement for the singular solution case (top right). We observe that the variance of ζT is
bounded more tightly by AMR than by uniform refinement by comparing the scale of the
axes in the right column.

Algorithm 4: hp-(AM)2R with a computational budget constraint.
input : Initial mesh T0, marking policy π, computational budget J∞ > 0.
output :Discrete solution uk, error estimate ηk.
k ← 0.
while Jk < J∞ do

Solve (2.2) with T = Tk. // solve
Compute error estimates {ηT }T∈T0

. // estimate
Sample (θk, ρk) ∼ π(·|ok). // decide
Mark all T ∈ Tk satisfying (4.1a) for h-refinement. // mark
Mark all T ∈ Tk satisfying (4.1b) for p-refinement. // mark
Form Tk+1 by refining all marked elements in Tk. // refine
k ← k + 1.

4.3. hp SEDMR algorithm. In Algorithm 4 we state the hp-(AM)2R algo-
rithm for the accuracy problem. The algorithm for the efficiency problem is similar;
cf. Algorithm 2.

5. Numerical results. We present a collection of numerical experiments to
demonstrate the feasibility and potential benefits of employing a trained (AM)2R
policy. The following examples begin with simple h-refinement validation cases, followed
by extensions to more general hp-refinement on 3D meshes. In all experiments, we
used the Zienkiewicz–Zhu error estimator [62, 63] to compute the local error estimates
ηT ; cf. Example 1. Moreover, all experiments relied on the greedy marking rule (2.3).
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Figure 5.1: Left: Result of training an h-refinement policy for the efficiency problem (2.6)
with uniform polynomial order p = 2. The mean episode cost decreases sharply and levels out,
as desired. Right: When the trained policy is deployed, it dynamically changes the selected θ
value throughout the AFEM workflow, ending with uniform refinement (θ = 0) in the final
iteration of Algorithm 2. This sequence of θ choices is consistent with an intuitively optimal
procedure for the classical L-shaped domain problem, as described in the text.

Similar results can be obtained with the Dörfler rule (2.4).

5.1. Validation example, h-refinement. We begin with the well-known L-
shaped domain problem from Figure 1.1 and allow only h-refinement. Here, we seek
approximations of solutions to Laplace’s equation:

(5.1) ∆u = 0 in Ω, u = g on ∂Ω,

where the exact solution is known, allowing the specification of the appropriate
Dirichlet boundary condition g. Placing a re-entrant corner at the origin of an infinite
L-shaped domain and assigning zero Dirichlet boundary conditions on the incident
edges provides the following nontrivial exact solution to Poisson’s equation in polar
coordinates: rα sin(αθ), where α = 2/3. The boundary condition g for the (bounded)
L-shaped domain in (5.1) is the trace of this function and, therefore, u = rα sin(αθ)
in Ω. Optimal h-refinement converge rates for this problem are attained by grading
refinement depth to be larger for elements closer to the singularity at the re-entrant
corner; this strategy is observed in both refinement patterns shown in Figure 1.1.

To arrive at an h-refinement marking policy for (5.1), we solve the efficiency
problem (2.6) with uniform polynomial order p = 2, error threshold η∞ = 10−4,
and observation space (2.21). Once trained, we deploy the policy as described in
Algorithm 2 (see also Figure 3.1) using the same threshold from training. The results
shown in Figures 5.1 through 5.3 verify that the training and deployment pipelines
function as expected in this simple setting and validate its development for more
complicated problems. Figure 5.1 (left) shows how the mean episode cost decreases and
levels out over a series of 150 training batches, thus indicating that the training has
converged to a locally optimal policy. When we deploy the trained policy, Figure 5.1
(right) shows how the action—i.e., the selected θ value—changes dynamically during
the refinement sequence.

We can provide an intuitive interpretation for the sequence of θ values based on
the problem formulation. The objective of minimizing the cumulative dof count, while
still delivering a fixed target error, is best served by initially refining only a small
fraction of elements with the very highest error; the value θ ≈ 0.6 is determined from
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Figure 5.2: Comparison of the trained (AM)2R policy (blue triangle series) to fixed theta
policies (red circle series) for h-refinement. Left: The (AM)2R policy reduces error as a
function of dofs at the same rate as the AMR policies, but the dynamic change in θ allows it
to take larger steps near the end of the AFEM process, thus improving the overall efficiency.
Right: The (AM)2R policy achieves the same order of error with significantly fewer cumulative
dofs than any of the AMR policies, which is the desired goal of the efficiency problem (2.6).

training to be a balanced choice in this regard. Eventually, the error becomes more
equidistributed across elements, and the objective is better served by refining many
elements at once, resulting in the sharp decrease in θ values in the latter steps and
culminating in uniform refinement at the final step (θ = 0). This dynamic behavior
can be explained by the fact that the cost of refining an individual element grows with
the number of remaining refinement steps. This, in turn, results in a preference to
withhold refinements for as long as possible. A learned policy of transitioning from
fairly limited refinements to more uniform refinements will also be observed in the hp
experiments described later.

In Figure 5.2 (left), we plot the global error estimate ηk as a function of dofs for 9
distinct AMR policies with θ ∈ {0.1, . . . , 0.9} fixed (red dot series) and compare to the
RL-trained policy (blue triangle series). Each point in a series indicates a refinement
step (k) in an AFEM MDP with the associated policy. Observe that the (AM)2R
policy has a path through these axes that is similar to those of many of the fixed θ
policies, reflecting the fact that it is driving down error at the same rate. However,
in the final steps of the (AM)2R policy, notice that many more dofs are added per
step, in accordance with the decrease in θ value seen in Figure 5.1. In particular, the
final step of the trained policy is visibly much longer than the typical step sizes of the
AMR policies. By looking at the raw data, we observe that the final step goes from
5497 to 22, 177 dofs while driving error down by a factor of ≈ 3.7 (from 3.0× 10−4 to
8.3× 10−5), which is a substantially larger step than any of the fixed θ policies.

A related story is shown in the right plot of Figure 5.2. Here, the global error
estimate of each policy is plotted as a function of cumulative dofs at each step, i.e., Jk.
The (AM)2R policy was trained to minimize Jk and indeed it attains the 10−4 error
threshold with 18%− 61% as many cumulative dofs as any of the traditional (fixed θ)
marking policies.

In Figure 5.3, we present two additional views of the cumulative dof count data.
In the left plot, the red dots show the cost at the final step (i.e., log2 of the final
cumulative dof count) for each of the traditional AMR policies. If θ is fixed throughout
an AFEM process—as is the case in every production-level AFEM code that we
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Figure 5.3: Cost at final step—in this case log2 of the dof count for the final mesh in which
the desired error threshold is achieved—for both the (AM)2R and AMR policies. Left: The
(AM)2R policy has a noticeably lower cost at final step than a coarse sweep of AMR policies;
an apparent barrier to further improvement in this setting is indicated. Right: A finer sweep
of AMR policies, shown as the red letterbox plot, reveals that the cost of the median fixed
parameter policy is roughly one unit higher than the cost of (AM)2R policy. Hence, the
(AM)2R policy employs half the cumulative degrees of freedom as the median-performing
fixed-parameter policy, meaning it has roughly twice the efficiency by the cumulative degree
of freedom metric.

are aware of—these data suggest that θ ≈ 0.2 or θ ≈ 0.5 is an optimal choice for
minimizing cumulative dof count in this particular setting. The dark blue line indicates
the final cost of the RL policy. Notably, the blue line is well below the cost of any of
the traditional AMR policies. In particular, the median cost of the fixed parameter
policies (≈ 16.3, as seen from the letterbox plot on the right) is a full unit above the
cost of the RL policy. Due to the log2 scaling of the vertical axis, we conclude that
the (AM)2R policy trained here has roughly twice the efficiency as the median fixed
parameter policy, which could be taken as a proxy for a median performant single
parameter choice in a traditional setting. We shade the region below the RL policy
line to indicate that additional RL training is unlikely to discover a lower final cost,
based on our numerical experiments.

Finally, in the right plot of Figure 5.3, we show a “letter-value plot” of a larger set
of AMR policies, for which we tried every θ ∈ {0.1, . . . , 0.99}. No improvement is found
over the coarser sampling of θ values shown in the left plot, and, moreover, some choices
of θ (particularly those very close to 1.0) are observed to perform much worse. With
this experiment, we have demonstrated that dynamically selecting marking parameters
can improve the efficiency of an AFEM pipeline over a fixed parameter selection; we
now move on to experiments that generalize beyond training and deploying on the
same mesh.

5.2. Robustness to domain geometry, hp-refinement. We now move on
to hp-AFEM and more general domain geometries. As described in Algorithm 4,
the action space for the hp decide step is a tuple (θ, ρ) ∈ [0, 1]2. Recall that if
ηmax denotes the maximum error estimate for an element at any kth step of the
MDP, elements T ∈ Tk with error estimates ηT ∈ (ρθηmax, θηmax] will be marked for
p-refinement while elements with error estimates ηT ∈ (θηmax, ηmax] will be marked
for h-refinement. We consider a setting where the optimization goal is best served not
only by per-step changes to θ and ρ but also by allowing the pace of such changes to
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Figure 5.4: Results of a trained hp-(AM)2R policy deployed on five different meshes. First
row: Initial mesh passed to AFEM MDP. Second row: Mesh at conclusion of the deployed
(AM)2R policy. Element shade indicates p order (white = 1; black=8). Third row: Record
of the quantities from (4.8) observed by the policy at each step. Fourth row: Sequences of
actions taken by the policy. At each step, elements whose error estimate is within θ of the
maximum error estimate are marked for h-refinement, while elements whose error estimate
lies between θρ and θ of the maximum error estimate are marked for p-refinement. Visibly,
the actions selected by the policy change in response to the different observed quantities on
each of the meshes.

respond to the computed global error distributions.
We approximate solutions to Laplace’s equation over a family of domain geometries

consisting of the unit disk with a radial section of angle ω ∈ (0, 2π) removed. Example
domains are shown in Figure 5.4. As in the L-shaped domain case, on the straight
edges we assign zero Dirichlet boundary conditions and have an exact solution to (5.1)
in polar coordinates given by u = rα sin(αθ), where α = π/(2π − ω) (see, e.g., [36]).
Boundary conditions for the curved portion of the domain are determined from this
solution. Note that the gradient of the solution is singular at the origin if and only
if ω < π, i.e., if and only if the domain is nonconvex; the singularity is stronger the
closer ω is to 0.

We first train our marking policy on domains with ω drawn uniformly from
[0.1π, 0.9π], representing a range of domains with re-entrant corners and hence solutions
with a range of singularities. The angle drawn is not observed by the policy, as we
are attempting to learn a marking policy that does not require knowledge of the
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Figure 5.5: Comparison of the final cost averaged over deployments on 21 meshes with
ω ∈ [0.1, 0.9]. Left: The landscape plot of this metric for 100 (θ, ρ) pairs reveals a convex
shape for which θ = 0.6, ρ = 0.3 gives the minimum. Right: The letterbox plot compares
the final average cost metric for the (AM)2R policy (blue line) to those of the 100 AMR
policies (red), indicating the ability of our RL methods to discover optimal hp-policies.
Observe that the average final cost of the trained policy is marginally better than the best
chosen fixed-parameter policy in these experiments. In contrast, the follow-on experiments in
Subsection 5.3 demonstrate the superior robustness of the (AM)2R policy.

global geometry. The training is applied on the accuracy problem (2.7) with threshold
J∞ = 104 and observation space (4.8). Once trained, we deploy the policy as described
in Algorithm 4 using the same threshold from training.

In Figure 5.4, we show the effect of the trained policy when deployed on meshes
with five different ω values, spread evenly across the sampling domain including the
extreme values (ω = 0.1π and 0.9π). The top row shows the initial state of each mesh.
The second row shows the final mesh when the cumulative dof threshold is reached; the
shade of an element indicates its assigned order (i.e., p) on a linear scale of 1 (white) to
8 (black). The third row shows the three observed quantities—budget, empirical mean,
and empirical standard deviation as stated in (4.8)—at each step of the deployment.
The bottom row shows the actions of the trained policy during deployment; the blue
circle series indicate the θ values at each step, while the orange triangle series show
the ρ values. In each case, the policy decreases the ρ-parameter monotonically, thus
increasing emphasis on p-refinement, as would be expected to drive down error with
maximum efficiency. The smooth variation of the actions within a deployment and
the moderated adjustments as ω varies suggest that the policy has been well trained.

To compare the results of our deployed policy against a traditional hp-AMR
policy, we carry out a parameter sweep with fixed choices of θ and ρ, emulating how a
practitioner might reasonably choose to set these parameters in a typical computational
setting. We consider 100 distinct policies corresponding to θ, ρ ∈ {0.0, . . . , 0.9} and
apply each policy to 21 meshes defined by ω ∈ {(0.1 + 0.04k)π} for k ∈ {0, . . . , 20}.
We then select the policy that has the lowest average final cost (i.e., Eω[log2 ηkfinal ])
across all 21 meshes and consider that as the “optimal” traditional policy. By this
method, θ = 0.6 and ρ = 0.3 are determined to be optimal. As shown in Figure 5.5,
the average final cost metric for the trained hp-(AM)2R policy is slightly better than
the best fixed parameter AMR policy.

For a more nuanced comparison between the two policies, we record the error
estimate ηk at the final mesh of the AFEM MDPs for each mesh shown in Figure 5.4.
The results are stated in the “training” row of Table 5.1. To measure the improvement
(or decline) in error estimate ηk by switching from the AMR policy to the (AM)2R
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Final error Final error Improvement Improvement
estimate (ηk), estimate (ηk), factor exponent
hp-AMR hp-(AM)2R

T
ra

in
in

g

Disk, ω = 0.1π 0.002613 0.001665 1.57 0.65
Disk, ω = 0.3π 0.001018 0.001106 0.92 -0.12
Disk, ω = 0.5π 0.000338 0.000280 1.21 0.27
Disk, ω = 0.7π 0.000110 0.000081 1.36 0.44
Disk, ω = 0.9π 0.000027 0.000022 1.21 0.27

T
es

ti
ng

L-shape 0.000258 0.000190 1.36 0.44
Staircase 0.002577 0.001609 1.60 0.68
Staircase-Tri 0.005719 0.005601 1.02 0.03
Star 0.001137 0.001307 0.87 -0.20
Disk, ω = 1.5π 0.000015 0.000009 1.69 0.76
Fichera 0.010979 0.007431 1.47 0.56

Table 5.1: Final error estimates for the optimal traditional hp-AMR policy (θ = 0.6, ρ = 0.3)
and an (AM)2R policy on a variety of meshes. The first five rows (disk domains with
ω ∈ [0.1π, 0.9π]) were included in the training regimen for the (AM)2R policy but the
remaining rows were not, thus demonstrating the robustness or generalizability of the trained
policy. The (AM)2R policy outperforms the traditional fixed-parameter policy in all but one
instance from the training set (ω = 0.3π) and one instance from the test set (Star).

policy, we define the improvement exponent and improvement factor metrics as follows:

(5.2) improvement exponent := log2 (improvement factor)

:= log2

(
final ηk, hp-AMR

final ηk, hp-(AM)2R

)
.

Thus, switching to (AM)2R is favorable if the improvement factor is greater than 1 or,
equivalently, if the improvement exponent is greater than 0.

For each ω value except 0.3π, we see improvement factors over 1.2, meaning the
final error estimate is reduced by a factor of at least 1.2 when switching to the (AM)2R
policy. Since all other variables were held constant, such improvement is directly
attributable to the ability of the policy to dynamically adjust the marking parameter
values. For ω = 0.3π, the AMR policy has a slightly better final error estimate,
reflecting the fact that improved performance on average does not ensure improved
performance in every instance. Still, for selecting a policy that performs well over a
range of geometries, the (AM)2R policy is certainly the better choice.

5.3. Deploying a trained policy in new settings. We next deploy the trained
(AM)2R policy, without modification, on different types of domains, PDE problems,
and dimensions. In Figure 5.6, we show five “testing” domains, none of which were
used when training the (AM)2R policy. For the L-shape domain and ω = 1.5π cases,
we use the same Laplace problem defined in Subsections 5.1 and 5.2; for the other
domains we use Poisson’s equation with zero Dirichlet boundary conditions, i.e.,

(5.3) ∆u = 1 in Ω, u = 0 on ∂Ω.

Figure 5.6 recapitulates the conventions from Figure 5.4. The general trends of the
policy actions on these domains are similar to those of the disk domains seen during
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Figure 5.6: Results of the trained hp-(AM)2R policy deployed on five meshes, none of which
were part of the meshes from the training regime. Element shade indicates p order (white =
1; black=8). On the L-shaped and ω = 1.5π disk domains we solve the Laplace problem (5.1),
and on the remaining domains we solve the Poisson problem (5.3). The responsiveness of the
trained policy to changes in the geometry and PDE setting is evident from the variety of
policy actions observed.

training in Subsection 5.2, namely, ρ trends towards zero while θ changes only slightly.
Visibly, the rate at which both parameters change is dependent on the mesh, and,
implicitly, the pace of exhausting the relative budget grows; cf. (2.10).

In the “testing” row of Table 5.1 we show the final error estimates for the five
meshes from Figure 5.6. The (AM)2R policy produces a lower final global error estimate
in every case except the Star mesh, for which it still produces an error estimate of
equivalent order of accuracy. For the Star mesh case, we speculate that the presence of
re-entrant corners on opposing sides of the domain induces a pre-asymptotic response
to refinement that is different from those of the other initial meshes; such effects could
be explored further in future work. The example of a disk with ω = 1.5π is notable;
the solution to this problem has no singularities, and thus an optimal marking policy
should move toward uniform hp-refinement quickly. In agreement with this intuition,
the (AM)2R policy actions quickly move toward ρ = 0 and the largest improvement
over the fixed parameter AMR policy is observed.

We carry out an additional experiment in generalizability by deploying the (AM)2R
policy on a 3D mesh of a Fichera corner, consisting of seven cubes arranged to form
a larger cube with one octant missing; see Figure 5.7. We again solve the Poisson
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Figure 5.7: Solving the Poisson problem on a 3D mesh of the Fichera corner. The visualization
of the the final meshes indicates that the fixed-parameter AMR policy refines higher in p
than the adaptive-parameter (AM)2R policy; the color bar indicates the order of p ranging
from p = 2 in blue to p = 8 in red. The (AM)2R policy attains a lower final error estimate
than the AMR policy for the same cumulative dof threshold (cf. Table 5.1).

problem (5.3). To accommodate the faster rate of growth in dofs in 3D, we raise the
cumulative dof threshold J∞ to 5×105; all training and previous testing had J∞ = 104.
The benefit of not including geometric information in our observation space is now
realized as the (AM)2R policy immediately works without modification or additional
training. Furthermore, as indicated in the last row of Table 5.1, the (AM)2R policy
outperforms the optimal fixed-parameter policy with an improvement factor of 1.47.

6. Discussion. In this work, we focused on learning a map from normalized
statistics of local error estimates to marking parameters. These statistics only par-
tially characterize the space of discretization states such maps should aim to probe.
Therefore, future research may involve learning higher-dimensional maps involving
more sophisticated simulation observables. Doing so may lead to better performing
marking policies for hp-refinement or new policies for, e.g., goal-oriented AMR.

Another important future research direction is the development of marking policies
for time-dependent PDEs. Unpublished experiments by the authors have shown that
the approach presented here can generalize to such settings and the associated training
can be performed using, e.g., policy gradient methods for infinite-horizon environments
(cf. [55, Section 13.6]). Ongoing work by the authors is dedicated to developing
refinement policies for time-dependent PDEs.

Finally, we believe the true benefits of this new AFEM paradigm lie in transfer
learning. That is, training on inexpensive model problems with the aim of improving
performance on more expensive target problems; cf. Subsection 5.3. Future work
should focus in part on innovating new tools and techniques to efficiently train robust
marking policies for more complicated transfer learning applications.

7. Conclusion. In this work, we introduced a doubly adaptive AFEM paradigm
that treats the selection of marking parameters as a state-dependent decision made by
a marking policy which can optimized with policy gradient methods from the reinforce-
ment learning literature. We then demonstrated the potential of this novel paradigm
for h- and hp-refinement applications via experiments on benchmark problems.

In our first experiment (cf. Subsection 5.1), we focused on h-refinement with the
well-studied L-shaped domain problem [36]. Here, we demonstrated that the efficiency
of AFEM can be significantly improved through adaptive parameter selection. In
particular, we witnessed the superior efficiency of a pre-trained adaptive marking policy
when compared against the best performing counterpart fixed-parameter policy. In
this experiment, we also witnessed nearly twice the efficiency when compared against
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the median-performing fixed-parameter policy.
In our second and third experiments (cf. Subsections 5.2 and 5.3, respectively),

we considered learning a robust marking policy for hp-refinement over a distribution
of model problems. The first of these experiments demonstrated that our chosen
observation space is expressive enough to deliver policies with superior average perfor-
mance across a distribution of training problems. The second of these experiments
demonstrated that such robust policies can also deliver superior performance on unseen
model problems. Indeed, after only training a marking policy on 2D Poisson equations
whose domains have a single re-entrant corner, we could apply the trained policy to far
more complicated domains—even 3D domains—without significant loss of efficiency.
For the purpose of reproduction and wider adoption, this work is accompanied by an
open-source Python-based implementation [24].
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