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Abstract.
Stochastic rounding (SR) offers an alternative to the deterministic IEEE-754 floating-point round-

ing modes. In some applications such as PDEs, ODEs, and neural networks, SR empirically improves
the numerical behavior and convergence to accurate solutions while the theoretical background re-
mains partial. Recent works by Ipsen, Zhou, Higham, and Mary have computed SR probabilistic
error bounds for basic linear algebra kernels. For example, the inner product SR probabilistic bound
of the forward error is proportional to

√
nu instead of nu for the default rounding mode. To compute

the bounds, these works show that the errors accumulated in computation form a martingale.
This paper proposes an alternative framework to characterize SR errors based on the computation

of the variance. We pinpoint common error patterns in numerical algorithms and propose a lemma
that bounds their variance. For each probability and through Bienaymé–Chebyshev inequality, this
bound leads to better probabilistic error bound in several situations. Our method has the advantage
of providing a tight probabilistic bound for all algorithms fitting our model. We show how the method
can be applied to give SR error bounds for the inner product and Horner polynomial evaluation.

Key words. Stochastic rounding, Floating-point arithmetic, Concentration inequality, Inner
product, Polynomial evaluation, Horner algorithm.
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1. Introduction. Stochastic rounding (SR) is an idea proposed in the 1950s by
von Neumann and Goldstine [28]. First, it can be used to estimate empirically the
numerical error of computer programs; SR introduces a random noise in each floating-
point operation and then a statistical analysis of the set of sampled outputs can be
applied to estimate the effect of rounding errors. To make this simulation available,
various tools such as Verificarlo [13], Verrou [15] and Cadna [22] have been developed.
Second, SR can be used as a replacement for the default deterministic rounding mode
in numerical computations. It has been demonstrated that in multiple domains such
as neural networks, ODEs, PDEs, and Quantum mechanics [9], SR provides better
results compared to the IEEE-754 default rounding mode [3]. Connolly et al. [8] show
that SR successfully prevents the phenomenon of stagnation that takes place in various
applications such as neural networks, ODEs and PDEs. In particular, Gupta et al
show in [16] that deep neural networks are prone to stagnation during the training
phase. For PDEs, solved via Runge-Kutta finite difference methods in low precision,
SR avoids stagnation in the computations of the heat equation solution as proved
in [10].

Hardware units proposing stochastic rounding are still unavailable in most com-
puters. However, it has been introduced in various specialized processors such as
Graphcore IPUs [1], which supports SR for 32 bits floating point, binary32, and 16
bits floating point, binary16, or Intel neuromorphic chip Loihi [12] to improve the accu-
racy of biological neuron and synapse models. Also, AMD [2], NVIDIA [4], IBM [6, 7],
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and other computing companies [17, 23, 24] own several related patents. These de-
velopments support the idea of hardware implementations using SR becoming more
available in the future.

Most current hardware implements the IEEE-754 standard, that defines five
rounding modes for floating-point arithmetic which are all deterministic [3]: round to
nearest ties to even (default), round to nearest ties away, round to zero, round to +∞
and round to −∞. SR, on the other hand, is a non-deterministic rounding mode: for
a number that cannot be represented exactly in the working precision, it randomly
chooses the next larger or smaller floating-point number. In the literature, several
properties and results of SR have been proven. Connolly et al show in [8] that under
SR-nearness, the expected value coincides with the exact value for a large family of
algorithms.

Based on the Azuma-Hoeffding inequality and the martingale theory, recent works
on the inner product [21] show that SR probabilistic bound of the forward error is
proportional to

√
nu rather than nu when nu≪ 1. Also, the martingale central limit

theorem implies that under certain conditions, the error converges in distribution
to a normal distribution that is characterized by its mean and variance [11]. This
behavior is often observed in practice. In this case, the number of significant digits
can be estimated by − log( σ

|µ| ) where σ is the standard deviation (the square root

of the variance) and µ is the expected value [27]. However, the results of this paper
don’t use any of these assumptions.

Variance also allows to use several probabilistic properties, such as concentra-
tion inequalities that provide a bound on how a random variable deviates from some
value (typically, its expected value) [5]. To our knowledge, the variance analysis of
a SR computation has not attracted any attention in the literature. The purpose
of this paper is to further the probabilistic investigation of SR with the following
contributions:

0. We review the works proposed by M. P. Connolly, N. J. Higham and T.
Mary [8] and I. C. F. Ipsen, H. Zhou [21] that show the forward error for
the inner product is proportional respectively to

√
n ln(n)u and

√
nu at any

probability λ ≤ 1 rather than to the deterministic bound of nu [21].
1. Under stochastic rounding and without any additional assumption, we pro-

pose Lemma 3.1, a general framework applicable to a wide class of algorithms
that allows to compute a variance bound. We choose the inner product and
Horner algorithms as applications. Our bound is deterministic and depends
on the condition number, the problem size n and the unit roundoff of the
floating-point arithmetic in use u.

2. We extend the method proposed in [21] to derive a new forward error bound
of the Horner algorithm in O(

√
nu). This illustrates how these tools can be

applied (with some work) to any algorithm based on a fixed sequence of sum
and products.

3. We introduce a new approach to derive a probabilistic bound in O(
√
nu)

based on the variance calculation and Bienaymé–Chebyshev inequality. This
approach gives a tighter forward error bound than the previous bounds [8, 21]
for a probability at most 0.758. This bound remains tight from a rank n high
with respect to u.

Interestingly, the variance method introduces a tight probabilistic error bound in
low precision. In this regard, studying algorithms under stochastic rounding in low
precision, especially bfloat-16 is becoming increasingly attractive due to its higher
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speed and lower energy consumption. Recent works show that in various domains
such as PDEs [10], ODEs [20] and neural networks [16], SR provides positive effects
compared to the deterministic IEEE-754 [3] default rounding mode in this precision
format.

Section 2 presents the background on floating-point arithmetic and more particu-
larly SR-nearness, a stochastic rounding mode introduced in [26, p. 34], that has the
important property of being unbiased. It also satisfies the mean independence prop-
erty, an assumption weaker than independence yet powerful enough to yield important
results by martingale theory.

Section 3 is articulated around Lemma 3.1 that bounds the variance of the nu-
merical error for a wide class of algorithms. We apply this result to the inner product
and Horner algorithms in Theorem 3.2 and Theorem 3.5, respectively.

Section 4 shows that, under SR-nearness rounding, the numerical error of these
two algorithms is probabilistically bounded in O(

√
nu) instead of the deterministic

bound in O(nu). We first prove it with the Azuma–Hoeffding inequality and martin-
gale theory: we analyze techniques used for the inner product in works by Higham
and Mary [8, 19] and Ipsen and Zhou [21], point the difference in these two works,
and adapt them to compute the relative error of the Horner method for polynomial
evaluation. We then use the Bienaymé–Chebyshev inequality which, combined to the
previous variance bound, leads to a probabilistic bound in O(

√
nu).

The probabilistic bounds above depend on three parameters: the precision u, the
problem size n, and the probability λ that a SR-nearness computation has an error
greater than the bound. In Section 5, we analyze these probabilistic bounds, and we
show that the one obtained by the Bienaymé-Chebyshev inequality is tighter in many
cases; in particular, for any given λ and u, there exists a problem size n above which
the Bienaymé–Chebyshev bound is tighter.

Numerical experiments in Section 6 illustrate the quality of these bounds on the
two aforementioned algorithms and compare them to deterministic rounding.

2. Notations and definitions.

2.1. Notation. Throughout this paper, for a random variable X, E(X) denotes
its expected value, V (X) denotes its variance, and σ(X) denotes its standard devia-
tion. The conditional expectation of X given Y is E[X/Y ].

2.2. Floating-point background. A normal floating-point number in such a
format is a number x for which there exists a triple (s,m, e) such that x = ±m×βe−p,
where β is the basis, e is the exponent, p is the working precision, and m is an integer
(the significand) such that βp−1 ≤ m < βp. We only consider normal floating-point
numbers; detailed information on the floating-point format most generally in use in
current computer systems is defined in the IEEE-754 norm [3].

Let us denote F ⊂ R the set of normal floating-point numbers and x ∈ R. Upward
rounding ⌈x⌉ and downward rounding ⌊x⌋ are defined by:

⌈x⌉ = min{y ∈ F : y ≥ x}, ⌊x⌋ = max{y ∈ F : y ≤ x},

by definition, ⌊x⌋ ≤ x ≤ ⌈x⌉, with equalities if and only if x ∈ F . The floating-point
approximation of a real number x ̸= 0 is one of ⌊x⌋ or ⌈x⌉:

(2.1) fl(x) = x(1 + δ),

where δ = fl(x)−x
x is the relative error: |δ| ≤ β1−p. In the following, we use the same

notation as [8, 21] u = β1−p. IEEE-754 mode RN (round to nearest, ties to even) has
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the stronger property that |δ| ≤ 1
2β

1−p = 1
2u. In many works focusing on IEEE-754

RN, u is chosen instead to be 1
2β

1−p.
For x, y ∈ F , the considered rounding modes verify fl(x op y) ∈ {⌊x op y⌋, ⌈x op y⌉}

for op ∈ {+,−, ∗, /}. Moreover, for IEEE-754 rounding modes [3] and stochastic
rounding [8] the error in one operation is bounded:

(2.2) fl(x op y) = (x op y)(1 + δ), |δ| ≤ u,

specifically for RN we have |δ| ≤ 1
2u. Let us assume that x is a real that is not

representable: x ∈ R \ F . The machine-epsilon or the distance between the two
floating-point numbers enclosing x is ϵ(x) = ⌈x⌉−⌊x⌋ = βe−p. Since βp−1 ≤ m < βp,
then βe−1 ≤ |x| < βe and

(2.3) |ϵ(x)| = βe−1u ≤ |x|u.

The fraction of ϵ(x) rounded away, as shown in Figure 1, is θ(x) = x−⌊x⌋
⌈x⌉−⌊x⌋ .

⌊x⌋ ⌈x⌉x

1
2ϵ(x)

θ(x)ϵ(x)

Fig. 1: θ(x) is the fraction of ϵ(x) to be rounded away.

Let us denote a problem of size n and precision u, in this paper nu ≪ 1 means
n→∞, u→ 0, and nu→ 0.

2.3. Stochastic rounding definition. Throughout this paper, fl(x) = x̂ is the
approximation of the real number x under stochastic rounding. For x ∈ R \ F , we
consider the following stochastic rounding mode, called SR-nearness:

fl(x) =

{
⌈x⌉ with probability θ(x),
⌊x⌋ with probability 1− θ(x).

⌊x⌋ ⌈x⌉x

1− θ(x)
θ(x)

Fig. 2: SR-nearness.

Contrary to other stochastic rounding modes [14], SR-nearness mode is unbi-
ased [26, p. 34].

E(x̂) = θ(x)⌈x⌉+ (1− θ(x))⌊x⌋
= θ(x)(⌈x⌉ − ⌊x⌋) + ⌊x⌋ = x.
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In the following, we focus on this stochastic rounding mode. In general and under SR-
nearness, the error terms in algorithms appear as a sequence of random variables such
that the independence property does not hold. However, a weaker, and yet fruitful,
assumption, called mean independence, does.

Definition 2.1. A random variable Y is said to be mean independent from random
variableX if its conditional mean E[Y/X] = E(Y ). The random sequence (X1, X2, . . .)
is mean independent if E[Xk/X1, ..., Xk−1] = E(Xk) for all k.

Proposition 2.2. Let X and Y be two real random variables:
1. If X and Y are independent then X is mean independent from Y .
2. If X is mean independent from Y then X and Y are uncorrelated.

The reciprocals of these two implications are false.

For a, b ∈ F , and c← a op b the result of an elementary operation op ∈ {+,−, ∗, /}
obtained from SR-nearness, the relative error δ, such that ĉ = (a op b)(1 + δ), is a
random variable verifying E(δ) = 0 and |δ| ≤ u.

The following lemma has been proven in [8, Lem 5.2] and shows that SR-nearness
satisfies the property of mean independence.

Lemma 2.3. Consider a sequence of elementary operations ck ← ak opk bk, with

δk the error of their kth operation, that is to say, ĉk = (âk opk b̂k)(1+ δk). The δk are
random variables with mean zero such that E[δk/δ1, . . . , δk−1] = E(δk) = 0.

3. The variance of the error for stochastic rounding. We now turn to
bound the variance of the error in computation. If x̂ = x(1 + δ) is the result of an
elementary operation rounded with SR-nearness, then E(x̂) = x and

V (x̂) = E(x̂2)− x2 = ⌈x⌉2θ(x) + ⌊x⌋2(1− θ(x))− x2

= θ(x)(⌈x⌉2 − ⌊x⌋2)− (x2 − ⌊x⌋2)
= θ(x)ϵ(x)(⌈x⌉+ ⌊x⌋)− θ(x)ϵ(x)(x+ ⌊x⌋)
= θ(x)ϵ(x)(⌈x⌉ − x)
= ϵ(x)2θ(x)(1− θ(x)).

Using (2.3) leads to V (x̂) ≤ x2 u2

4 , in particular V (x̂) ≤ x2u2. Lemma 3.1 below
allows to estimate the variance of the accumulated errors in a sequence of additions
and multiplications. Let K a subset of N of cardinal n. Assume that δ1, δ2, ... in that
order are random errors on elementary operations obtained from SR-nearness. Let us
denote

ψK =
∏
k∈K

(1 + δk).

Since |δk| ≤ u for all k ∈ K we have |ψK | ≤ (1 + u)n. Throughout this paper,
let γn(u) = (1 + u)n − 1 and K△K ′ = (K ∪K ′) \ (K ∩K ′). The following lemma
gives some properties of ψ that allow to bound the variance of errors in an algorithm
consisting in a fixed sequence of sums and products.

Lemma 3.1. Under SR-nearness ψK satisfies
1. E(ψK) = 1.
2. Let K ′ ⊂ N such that |K∩K ′| = m, under the assumption that ∀ j ∈ K△ K ′,
k ∈ K ∩K ′, with j < k we have

0 ≤ Cov(ψK , ψK′) ≤ γm(u2).
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3. V (ψK) ≤ γn(u2),
where γn(u

2) = (1 + u2)n − 1 ≈ exp (nu2)− 1 = nu2 +O(u4).

Proof. The first point is an immediate consequence of [8, lem 6.1]. The third
point is a particular case of the second with K = K ′. Let us prove point 2.

Cov(ψK , ψK′) = E(ψKψK′)− E(ψK)E(ψK′) = E(ψKψK′)− 1.

Assume that K ∩K ′ = {k1, ..., km}. Let us denote

Qm := ψKψK′ =
∏

j∈K△K′

(1 + δj)

km∏
l=k1

(1 + δl)
2,

such that j < ki for all j ∈ K△K ′ and i ∈ {1, ...,m}.
We prove by induction over m that 1 ≤ E(Qm) ≤ (1+u2)m. For m = 0, we have

K ∩ K ′ = ∅ and Q0 =
∏

j∈K△K′(1 + δj), from the first point E(Q0) = 1. Assume
that the inequality holds for Qm−1.

Qm = (1 + δkm
)2

km−1∏
l=k1

(1 + δl)
2

∏
j∈K△K′

(1 + δj) = (1 + δkm
)2Qm−1.

Let us denote SK△K′ = {δj , j ∈ K△K ′)}, using the law of total expectation E(X) =
E(E[X/Y ]) and lemma 2.3 we have

E(Qm) = E
(
(1 + δkm)2Qm−1

)
= E

(
E[(1 + δkm)2Qm−1/SK△K′ , δk1 , ..., δkm−1 ]

)
= E

(
Qm−1E[(1 + δkm

)2/SK△K′ , δk1
, ..., δkm−1

]
)

= E
(
Qm−1E[1 + δ2km

/SK△K′ , δk1 , ..., δkm−1 ]
)
.

Since |δkm
| ≤ u, we have

E(Qm−1) ≤ E
(
Qm−1E[1 + δ2km

/SK△K′ , δk1
, ..., δkm−1

]
)
≤ E

(
Qm−1(1 + u2)

)
.

Thus, 1 ≤ E
(
Qm

)
≤ (1 + u2)m. Finally, by induction, the claim is proven

0 ≤ E
(
Qm

)
− 1 = Cov(ψK , ψK′) ≤ γm(u2).

Under SR-nearness, Lemma 3.1 can now be used to derive a variance bound for
many algorithms, such as inner products, matrix-vector and matrix-matrix products,
solutions of triangular systems, and the Horner algorithm. In the following, we chose
the inner product and Horner algorithms as applications.

3.1. Inner product. Consider the inner product sn = y = a1b1 + . . . + anbn,
evaluated from left to right, i.e, si = si−1+aibi, starting with s1 = a1b1. In this paper,
we address the sequential method which has a deterministic bound proportional to
nu. However, the accumulator implementation of the inner product using a binary
tree leads to a deterministic error bound in O(ln (n)u).

Let δ0 = 0, the computed ŝi satisfies ŝ1 = a1b1(1 + δ1) and

ŝi = (ŝi−1 + aibi(1 + δ2i−2))(1 + δ2i−1), |δ2i−2|, |δ2i−1| ≤ u,

for all 2 ≤ i ≤ n, where δ2i−2 and δ2i−1 represent the rounding errors from the
products and additions, respectively. We thus have

ŷ = ŝn =

n∑
i=1

aibi(1 + δ2i−2)

n∏
k=i

(1 + δ2k−1).
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Theorem 3.2. Under SR-nearness, the computed ŷ satisfies E(ŷ) = y and

(3.1) V (ŷ) ≤ y2K2
1γn(u

2),

where K1 =
∑n

i=1|aibi|
|
∑n

i=1 aibi| is the condition number using the 1-norm for the computed

y =
∑n

i=1 aibi.

Proof. For all 1 ≤ i ≤ n, we have

ŷ =

n∑
i=1

aibi(1 + δ2i−2)

n∏
k=i

(1 + δ2k−1) =

n∑
i=1

aibiψKi ,

with Ki = {2i− 2, 2i− 1, 2i+ 1, . . . , 2n− 1}. Lemma 3.1 shows that E(ψKi
) = 1 for

all 1 ≤ i ≤ n, hence

E(ŷ) = E
( n∑
i=1

aibiψKi

)
=

n∑
i=1

aibiE(ψKi) = y.

For all 1 ≤ i < j ≤ n,Kj∩Ki = {2j−1, 2j+1, ..., 2n−1} and Card(Kj∩Ki) = n−j+1.

V (ŷ) = V
( n∑
i=1

aibiψKi

)
≤

(
n∑

i=1

|aibi|
√
V (ψKi

)

)2

since σ(X + Y ) ≤ σ(X) + σ(Y )

≤

(
n∑

i=1

|aibi|
√
γn−i+1(u2)

)2

by Lemma 3.1

≤ γn(u2)(
n∑

i=1

|aibi|)2 since γn−i+1(u
2) ≤ γn(u2)

= y2K2
1γn(u

2).

Remark 3.3. Because E(ŷ) = y, under a normality assumption, the number of
significant bits can be lower-bounded by

− log2

(
σ(ŷ)

|E(ŷ)|

)
≥ − log2

(
K1

√
γn(u2)

)
≈ − log2(K1)− log2(u)−

1

2
log2(n).

3.2. Horner algorithm. Horner algorithm is an efficient way of evaluating poly-
nomials. When performed in floating-point arithmetic, this algorithm may suffer from
catastrophic cancellations and yield a computed value less accurate than expected.

Model 3.4. Let P (x) =
∑n

i=0 aix
i, Horner rule consists in writing this polynomial

as
P (x) = (((anx+ an−1)x+ an−2)x . . .+ a1)x+ a0.

We define by induction the following sequence

Operation Floating-point arithmetic Exact computation

r̂0 = an r0 = an

∗ r̂2k−1 = r̂2k−2x(1 + δ2k−1) r2k−1 = r2k−2x

+ r̂2k = (r̂2k−1 + an−k)(1 + δ2k) r2k = r2k−1 + an−k

Output r̂2n = P̂ (x) r2n = P (x)
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for all 1 ≤ k ≤ n, with δ2k−1 and δ2k the rounding errors from the products and the
additions respectively. Let δ0 = 0, we thus have

r̂2n =

n∑
i=0

aix
i

2n∏
k=2(n−i)

(1 + δk).

Theorem 3.5. Using SR-nearness, the computed r̂2n satisfies E(r̂2n) = r2n and

(3.2) V (r̂2n) ≤ r22nK2
1γ2n(u

2),

where K1 =
∑n

i=0|aix
i|

|
∑n

i=0 aixi| is the condition number using the 1-norm for the computed

P (x) =
∑n

i=0 aix
i.

Proof. We have

r̂2n =

n∑
i=0

aix
i

2n∏
k=2(n−i)

(1 + δk) =
n∑

i=0

aix
iψKi

,

with Ki = {2(n − i), 2(n − i) + 1, ..., 2n} for all 0 ≤ i ≤ n. Lemma 3.1 implies
E(ψKi

) = 1, then E(r̂2n) = E
(∑n

i=0 aix
iψKi

)
=
∑n

i=0 aix
iE(ψKi

) = r2n. Therefore,
because δ0 = 0 we have

V (r̂2n) = V
( n∑
i=0

aix
iψKi

)
≤

(
n∑

i=0

|aixi|
√
V (ψKi

)

)2

since σ(X + Y ) ≤ σ(X) + σ(Y )

≤

(
n∑

i=0

|aixi|
√
γ2i(u2)

)2

by Lemma 3.1

≤ γ2n(u2)(
n∑

i=0

|aixi|)2 since γ2i(u
2) ≤ γ2n(u2)

= r22nK2
1γ2n(u

2).

Remark 3.6. Because E(r̂2n) = r2n, under a normality assumption, the number
of significant bits can be lower-bounded by

− log2

(
σ(r̂2n)

|E(r̂2n)|

)
≥ − log2

(
K1

√
γ2n(u2)

)
≈ − log2(K1)− log2(u)−

1

2
log2(2n).

4. Probabilistic bounds of the error for stochastic rounding. Based on
the independence assumption, Higham and Mary [19] have shown that for the inner
product, a probabilistic bound of the error proportional to

√
n ln (n)u can be achieved

rather than the deterministic bound in O(nu). With Connelly, they show in [8] that
this bound always holds for SR-nearness due to mean independence of errors.

We start with the approaches based on the Azuma-Hoeffding inequality and the
martingale property (AH1 and AH2 methods in the following). In this context, firstly,
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we give a rigorous review of the previous results of the inner product forward error by
Higham and Mary [8] and Ilse, Ipsen, and Zhou [21]. Secondly, we extend these tech-
niques to the Horner algorithm, which also gives a probabilistic bound proportional
to
√
nu.
Then, we present a new approach based on Bienaymé–Chebyshev inequality and

the previous variance estimations (BC method in the following), our bound is also in
O(
√
nu) and it is lower than the AH1 and AH2 bounds in several situations for both

inner product and Horner algorithms.

4.1. Azuma-Hoeffding method. Let us recall the concept of a martingale and
the Azuma-Hoeffding inequality for a martingale [25].

Definition 4.1. A sequence of random variables M1, ...,Mn is a martingale with
respect to the sequence X1, ..., Xn if, for all k,

• Mk is a function of X1, ..., Xk,
• E(|Mk|) <∞, and
• E[Mk/X1, ..., Xk−1] =Mk−1.

Lemma 4.2. (Azuma-Hoeffding inequality). Let M0, ...,Mn be a martingale with
respect to a sequence X1, ..., Xn. We assume that there exist ak < bk such that ak ≤
Mk −Mk−1 ≤ bk for k = 1 : n. Then, for any A > 0

P(|Mn −M0| ≥ A) ≤ 2 exp

(
− 2A2∑n

k=1(bk − ak)2

)
.

In the particular case ak = −bk and λ = 2 exp
(
− A2

2
∑n

k=1 b2k

)
we have

P

|Mn −M0| ≤

√√√√ n∑
k=1

b2k
√
2 ln(2/λ)

 ≥ 1− λ,

where 0 < λ < 1.

4.1.1. Inner product. Under SR-nearness, the inner product y = a⊤b, where
a, b ∈ Rn is defined as ŷ = ŝn =

∑n
i=1 aibi(1 + δ2(i−1))

∏n
k=i(1 + δ2k−1). The worst

case of the forward error of the computed ŷ is in O(nu). Wilkinson [29, sec 1.33]
had the intuition that the roundoff error accumulated in n operations is proportional
to
√
nu rather than nu. Based on the mean independence of errors established in

Lemma 2.3, Connelly et al. [8] and Ilse, Ipsen and Zhou [21] have investigated this
problem for SR-nearness. Both works build on the mean independence property of
SR-nearness. This allows them to form a martingale, and then to apply the Azuma-
Hoeffding concentration inequality. The difference between these two works is in
the way they form the martingale. In [8, sec 3], the martingale is built using the
errors accumulated in the whole process ψKi

= (1 + δ2(i−1))
∏n

k=i(1 + δ2k−1) for all
1 ≤ i ≤ n. Azuma-Hoeffding inequality implies that |ψKi

| ≤ γ̃n(λ) with probability

at least 1 − 2 exp −λ2

2 , where γ̃n(λ) = exp λ
√
nu+nu2

1−u − 1. This approach uses the
inclusion-exclusion principle to generalize the bound to the summation, which results
in a pessimistic n in the probability. They prove

|ŷ − y|
|y|

≤ K1γ̃n(λ),
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with probability at least 1− 2n exp −λ2

2 . The factor n in the probability disrupts the
√
nu property. δ = 2n exp −λ2

2 implies that λ =
√

2 ln (2n/δ) and

|ŷ − y|
|y|

≤ K1γ̃n
(√

2 ln (2n/δ)
)
,(AH1-IP)

with probability at least 1− δ. When nu≪ 1, we have

γ̃n(
√
2 ln (2n/δ)) = exp

√
2n ln (2n/δ)u+ nu2

1− u
− 1

= u
√
2n ln (2n/δ) +O(u2)

= u
√
2n ln 2n− 2n ln δ +O(u2) = O(u

√
n lnn).

On the other hand, [21, sec 4] forms it by following step-by-step how the error
accumulates in the recursive summation of the inner product. In particular, they
distinguish between the multiplications and additions computed at each step and
carefully monitor their mean independences. This approach leads to the following
probabilistic bound

(AH2-IP)
|ŷ − y|
|y|

≤ K1

√
uγ2n(u)

√
ln(2/δ),

with probability at least 1−δ. This technique avoids the inclusion-exclusion principle
and when nu≪ 1, it leads to√

uγ2n(u)
√
ln(2/δ) = u

√
2n ln 2− 2n ln δ +O(u2).

Note that when nu ≪ 1, (AH1-IP) and (AH2-IP) differ only in the factor
√
lnn

that appears in (AH1-IP) due to the use of the martingale property on each partial
sum. All in all, (AH2-IP) is proportional to u

√
n, while (AH1-IP) is proportional to

u
√
n lnn. An analysis of the case nu≫ 1 will be presented in Section 5.

4.1.2. Horner algorithm. In the following, we derive a probabilistic bound for
the computed P̂ (x) based on the previous method applied for the inner product in [21,
sec 4].

With the notations defined in Model 3.4, let us denote Zi := r̂i − ri for all
0 ≤ i ≤ 2n. The total forward error is |Z2n| = |r̂2n − r2n| = |P̂ (x)− P (x)| and

|P̂ (x)− P (x)| =

∣∣∣∣∣∣
n∑

i=0

aix
i

 2n∏
k=2(n−i)

(1 + δk)− 1

∣∣∣∣∣∣ ≤
n∑

i=0

|aixi|γ2n(u).

Finally,

(4.1)
|P̂ (x)− P (x)|
|P (x)|

≤ K1γ2n(u).

The deterministic bound is proportional to nu. In the following, we prove a proba-
bilistic bound in O(

√
nu).
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The partial sum forward errors satisfy

Z2k−1 = r̂2k−1 − r2k−1 = r̂2k−2x(1 + δ2k−1)− r2k−2x

= xZ2k−2 + r̂2k−2xδ2k−1,

Z2k = r̂2k − r2k = (r̂2k−1 + an−k)(1 + δ2k)− r2k−1 − an−k

= Z2k−1 + (r̂2k−1 + an−k)δ2k,

for all 1 ≤ k ≤ n. The sequence Z0, ..., Z2n does not form a martingale with respect
to δ1, ..., δ2n due to the multiplication in odd steps,

E[Z2k−1/δ1, ..., δ2k−2] = xZ2k−2.

In order to form a martingale and use the Azuma-Hoeffding inequality, we define the
following variable change

Yi =
Zi

xT(i+1)/2U ,

where T(i+ 1)/2U is the integer part of (i+ 1)/2, we thus have{
Y2k−1 = Y2k−2 +

1
xk−1 r̂2k−2δ2k−1,

Y2k = Y2k−1 +
1
xk (r̂2k−1 + an−k)δ2k,

(4.2)

for all 1 ≤ k ≤ n with Y0 = 0.

Theorem 4.3. The sequence of random variables Y0, ..., Y2n is a martingale with
respect to δ1, ..., δ2n.

Proof. We check that the three conditions of Definition 4.1 are satisfied. Through-
out the proof, we note the set Fk = {δ1, ..., δk}.

• The recursion in Model 3.4 shows that Yi is a function of δ1, ..., δi for all
1 ≤ i ≤ 2n.

• E(|Yi|) is finite because x and ak are finite for all n− i ≤ k ≤ n and |δj | ≤ u
for all 1 ≤ j ≤ i.

• We prove that E[Yi/Fi−1] = Yi−1 by distinguishing the even and odd cases.
Firstly, using the mean independence of δ1, ...δ2k−1 and Equation (4.2) we
obtain

E[Y2k−1/F2k−2] = E[Y2k−2/F2k−2] + E[
1

xk−1
r̂2k−2δ2k−1/F2k−2]

= Y2k−2 +
1

xk−1
r̂2k−2E[δ2k−1/F2k−2] = Y2k−2.

Secondly, using the mean independence of δ1, ...δ2k and Equation (4.2) we obtain

E[Y2k/F2k−1] = E[Y2k−1/F2k−1] + E[
1

xk
(r̂2k−1 + an−k)δ2k/F2k−1]

= Y2k−1 +
1

xk
(r̂2k−1 + an−k)E[δ2k/F2k−1] = Y2k−1.

Lemma 4.4. The above martingale Y0, ..., Y2n satisfies |Yi − Yi−1| ≤ Ciu, for all
1 ≤ i ≤ 2n, where{

C2k−1 = |an|(1 + u)2k−2 +
∑k−1

j=1 |an−j ||x|−j(1 + u)2(k−j)−1,

C2k = |an|(1 + u)2k−1 +
∑k

j=1|an−j ||x|−j(1 + u)2(k−j),

for all 1 ≤ k ≤ n.
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Proof. Note that Y0 = 0, then |Y1 − Y0| = |Y1| = |an| and the equality holds for
C1. Using Equation (4.2)

|Y2k−1 − Y2k−2| ≤
1

|x|k−1
|r̂2k−2|u.

Moreover,

|r̂2k−2| ≤ |r̂2k−3|(1 + u) + |an−k+1|(1 + u) ≤ |r̂2k−4||x|(1 + u)2 + |an−k+1|(1 + u),

by induction we obtain

|r̂2k−2| ≤ |an||x|k(1 + u)2k−2 +

k−1∑
j=1

|an−j ||x|k−j(1 + u)2(k−j)−1.

This completes the proof for C2k−1 for all 1 ≤ k ≤ n. A similar approach can be
applied to prove the same result for C2k for all 1 ≤ k ≤ n.
We now have all the tools to state and demonstrate the main result of this section:

Theorem 4.5. Under SR-nearness, for all 0 < λ < 1 and with probability at least
1− λ

(4.3)
|P̂ (x)− P (x)|
|P (x)|

≤ K1

√
uγ4n(u)

√
ln(2/λ),

where K1 =
∑n

i=0|aix
i|

|P (x)| is the condition number of the polynomial evaluation and

γ4n(u) = (1 + u)4n − 1.

Proof. Recall that |r̂2n − r2n| = |Z2n| = |xn||Y2n|. Therefore, Y0, ..., Y2n is a
martingale with respect to δ1, ..., δ2n and Lemma 4.4 implies |Yi − Yi−1| ≤ Ciu for all
1 ≤ i ≤ 2n. Using the Azuma-Hoeffding inequality yields

P

|Y2n| ≤ u
√√√√ 2n∑

i=1

C2
i

√
2 ln(2/λ)

 ≥ 1− λ,

it follows that

|Z2n| ≤ u

√√√√ 2n∑
i=1

(|x|nCi)2
√
2 ln(2/λ),

with probability at least 1− λ, where

|x|nC2k = |an||x|n(1 + u)2k−1 +

k∑
j=1

|an−jx
n−j |(1 + u)2(k−j)

≤ (1 + u)2k−1
k∑

j=0

|an−jx
n−j | ≤ (1 + u)2k−1

n∑
j=0

|ajxj |,

for all 1 ≤ k ≤ n. Hence,

(|x|nC2k)
2 ≤ (1 + u)2(2k−1)

( n∑
j=0

|ajxj |
)2
.
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In a similar way,

(|x|nC2k−1)
2 ≤ (1 + u)2(2k−2)

( n∑
j=0

|ajxj |
)2
.

Thus,

2n∑
i=1

(|x|nCi)
2 ≤

( n∑
j=0

|ajxj |
)2 2n−1∑

i=0

((1 + u)2)i

=
( n∑
j=0

|ajxj |
)2 ((1 + u)2)2n − 1

(1 + u)2 − 1
=
( n∑
j=0

|ajxj |
)2 γ4n(u)
u2 + 2u

.

As a result,

|P̂ (x)− P (x)| = |Z2n| ≤
n∑

j=0

|ajxj |
√
uγ4n(u)

2 + u

√
2 ln(2/λ),

with probability at least 1− λ. Finally,

|P̂ (x)− P (x)|
|P (x)|

≤ K1

√
uγ4n(u)

√
ln(2/λ),

with probability at least 1− λ.
4.2. Bienaymé–Chebyshev method. Another way to obtain a probabilistic

O(
√
nu) bound is to use Bienaymé–Chebyshev inequality. This method requires only

information on the variance. Moreover, we will see in Section 5 that for any probability
λ there exists n such that this method introduces a tighter probabilistic bound than
the Azuma-Hoeffding method.

Lemma 4.6. (Bienaymé–Chebyshev inequality) Let X be a random variable with
finite expected value and finite non-zero variance. For any real number α > 0,

P
(
|X − E(X)| ≤ α

√
V (X)

)
≥ 1− 1

α2
.

Regarding the two algorithms above, the computed ŷ satisfies E(ŷ) = y, then

P
(
|ŷ − y| ≤ α

√
V (ŷ)

)
≥ 1− 1

α2
,

taking λ = 1
α2 yields |ŷ − y| ≤

√
V (ŷ)/λ with probability at least 1− λ.

4.2.1. Inner product. From Theorem 3.1 we have√
V
(
ŷ)/λ

|y|
≤ K1

√
γn(u2)/λ.

Thus,

|ŷ − y|
|y|

≤

√
V
(
ŷ)/λ

|y|
≤ K1

√
γn(u2)/λ,

and

(4.4) P
(
|ŷ − y|
|y|

≤ K1

√
γn(u2)/λ

)
≥ P

 |ŷ − y|
|y|

≤

√
V
(
ŷ)/λ

|y|

 ≥ 1− λ.
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4.2.2. Horner algorithm. From Theorem 3.2 we have

V
(
P̂ (x)

)
|P (x)|

≤ K1

√
γ2n(u2).

The previous reasoning from Sub-section 4.2.1 leads to

(4.5) P

(
|P̂ (x)− P (x)|
|P (x)|

≤ K1

√
γ2n(u2)/λ

)
≥ 1− λ.

5. Bounds analysis. In the following, we compare the various bounds of the
two previous algorithms and analyze which bound is the tightest depending on the
precision in use, the target probability, and the number of operations.

5.1. Inner product. In the beginning, let us recall all bounds obtained for the
inner product y = a⊤b, where a, b ∈ Rn

|ŷ − y|
|y|

≤ K1γn(u),(Det-IP)

|ŷ − y|
|y|

≤ K1γ̃n(
√
2 ln (2n/λ)) with probability at least 1− λ,(AH1-IP)

|ŷ − y|
|y|

≤ K1

√
uγ2n(u)

√
ln(2/λ) with probability at least 1− λ,(AH2-IP)

|ŷ − y|
|y|

≤ K1

√
γn(u2)

√
1/λ with probability at least 1− λ,(BC-IP)

where γ̃n(
√

2 ln (2n/λ)) = exp

(√
2n ln (2n/λ)u+nu2

1−u

)
− 1.

All bounds have the same condition number K1, but differ in the others factor:
γn(u) for (Det-IP), γ̃n(

√
2 ln (2n/λ)) for (AH1-IP),

√
uγ2n(u)

√
ln(2/λ) for (AH2-IP),

and
√
γn(u2)

√
1/λ for (BC-IP). For a constant λ, we investigate two cases: nu ≪ 1

and nu≫ 1.
For n and u such that nu≪ 1 we have

exp

√
2n ln (2n/λ)u+ nu2

1− u
− 1 = u

√
2n ln (2n/λ) +O(u2).

Moreover, [18, Lemma 3.1] implies

γn(u) ≤
nu

1− nu
,

it follows that for 2nu < 1,

√
uγ2n(u) ≤

√
2nu2

1− 2nu
= u
√
n

√
2

1− 2nu
,

and for nu2 < 1

√
γn(u2) ≤

√
nu2

1− nu2
= u
√
n

1√
1− nu2

.
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Interestingly, for the inner product, at any fixed probability, when nu≪ 1, (AH2-
IP) and (BC-IP) bounds are proportional to

√
nu unlike

√
n lnnu for the (AH1-IP)

bound. Note that the deterministic bound is in O(nu).
For n and u such that nu≫ 1 and nu2 ≪ 1, we have

exp

√
2n ln (2n/λ)u+ nu2

1− u
− 1 ≈ exp

√
2n ln (2n/λ)u+ nu2

1− u
≈ exp (

√
n ln (n)u),

then

(5.1) γ̃n(
√
2 ln (2n/λ)) ≈ exp (

√
n ln (n)u).

Furthermore

(5.2)
√
uγ2n(u) ≈

√
u exp (2nu)− 1 ≈

√
u exp (nu),

and

(5.3)
√
γn(u2) ≈

√
exp (nu2)− 1 ≈

√
nu+O(u2).

Therefore, (5.1), (5.2) and (5.3) show that (BC-IP) ≤ (AH1-IP) ≤ (AH2-IP) when
nu≫ 1 and nu2 ≪ 1.

5.2. Horner algorithm. Let us recall all bounds obtained for the Horner algo-
rithm

|P̂ (x)− P (x)|
|P (x)|

≤ K1γ2n(u),(Det-H)

|P̂ (x)− P (x)|
|P (x)|

≤ K1

√
uγ4n(u)

√
ln

2

λ
with probability ≥ 1− λ,(AH-H)

|P̂ (x)− P (x)|
|P (x)|

≤ K1

√
γ2n(u2)

√
1

λ
with probability ≥ 1− λ.(BC-H)

Similar reasoning to Section 5.1 shows that the probabilistic bounds for the Horner
algorithm forward error are in O(

√
nu) versus O(nu) for the deterministic bound.

With the Horner method, the degree of the polynomial, n, is seldom very large in
practice.

In conclusion, these probabilistic approaches show that the roundoff error accu-
mulated in n operations is proportional to

√
nu rather than nu. In the next section,

we analyze these two probabilistic methods.

5.3. Bienaymé–Chebyshev vs Azuma-Hoeffding. In the following, we com-
pare the three probabilistic bounds (AH1-IP), (AH2-IP) and (BC-IP) on the inner
product forward error (similar reasoning can be applied to the Horner algorithm with
the same result). When nu≪ 1, at any fixed probability, (AH2-IP) and (BC-IP) are
proportional O(

√
nu). First, we focus on this case. The two probabilistic bounds have

the same condition number K1. Thus, it is enough to compare
√

u
2 γ2n(u)

√
2 ln(2/λ)

and
√
γn(u2)

√
1/λ. These two bounds depend on n and λ. Firstly, using the binomial
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theorem, we have

u

2
γ2n(u)− γn(u2) =

u

2

n∑
k=1

(
n

k

)
(u2 + 2u)k −

n∑
k=1

(
n

k

)
(u2)k

≥
2∑

k=1

(
n

k

)[u
2
(u2 + 2u)k − (u2)k

]
≥ n(n− 1

2
)u3.

We can conclude that

(5.4)
√
γn(u2) ≤

√
u

2
γ2n(u) for all n ≥ 1.

Now, let us compare
√
1/λ and

√
2 ln(2/λ) for λ ∈]0; 1[,

0.0 0.2 0.4 0.6 0.8 1.0
1

100

2 × 100

3 × 100

4 × 100

f(
)

2ln(2/(1 ))
1/(1 )

Fig. 3: Illustration of
√
1/λ and√

2 ln(2/λ) behaviour for all λ ∈]0; 1[.
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Fig. 4: AH1, AH2 and BC bounds with
probability 0.9 and u = 2−23 for the inner
product.

Figure 3 and the inequality (5.4) show that whatever the problem size n and for a
probability at most ≈ 0.758, the BC method gives a tighter probabilistic bound than
the AH2 method.

Figure 4 confirms the discussion of Section 5.1 and it shows that with a probability
0.9, when nu ≫ 1, AH2 bound grows rapidly compared to AH1 and BC bounds.
Regarding BC bound, the variance calculation and the mean independence allow to
bound the error terms (1+δ)2 by (1+u2) and avoid all δ terms of degree one because
E(δ) = 0. In contrast, the AH1 and AH2 methods require bounded increments leading
to terms (1+ u)2. As n increases, the advantage of Azuma-Hoeffding inequality for a
probability near 1 becomes negligible.

For all asymptotic comparisons between the bounds in this paper, we have chosen
to work with u→ 0, n→∞ and fixed probability λ, which we think adapted to many
if not most current practical use cases. A situation with λ→ 0 and fixed n gives the
advantage to the Azuma-Hoeffding bounds over the Bienaymé-Chebyshev one.

Table 1 illustrates how BC is tighter than AH2 when n grows. The n threshold
above which BC is preferable to AH2 bound depends on the format precision. The
lower the precision, the lower the threshold becomes. Using SR in low precision is
of high interest in the areas of machine learning [16], PDEs [10], and ODEs [20],
motivating the use of our improved BC method.
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Probability u Precision format n ≳
1− λ = 0.95 2−7 bfloat16 110

2−10 binary16 890

2−23 binary32 7.3 e06

2−52 binary64 3.9 e15

1− λ = 0.99 2−7 bfloat16 220

2−10 binary16 1810

2−23 binary32 1.48 e07

2−52 binary64 7.9 e15

Table 1: The smallest n such that BC method gives a tighter probabilistic bound
than AH2 method for the inner product.

6. Numerical experiments. This section presents numerical experiments that
support and complete the theory presented previously. The various bounds are com-
pared on two numerical applications: the inner product and the evaluation of the
Chebyshev polynomial.

We show that the probabilistic bounds are tighter than the deterministic bound
and faithfully capture the behavior of SR-nearness forward error. For an inner product
of large vectors, we show that BC bound is smaller than AH1 and AH2 bounds. All
SR computations are repeated 30 times with verificarlo [13]; we plot all samples and
the forward error of the average of the 30 SR instances.

6.1. Horner algorithm. We use Horner’s method to evaluate the polynomial

P (x) = TN (x) =
∑TN

2 U
i=0 ai(x

2)i where TN is the Chebyshev polynomial of even degree
N = 2n. The previous error bounds, (Det-H), (AH-H), and (BC-H) apply to this
computation.
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1  = 0.5 
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1  = 0.9 

Fig. 5: Probabilistic error bounds with probability 1− λ = 0.5 (left) and 1− λ = 0.9
(right) vs deterministic bound for the Horner’s evaluation of T20(x) and u = 2−23.
Triangles mark 30 instances of the SR-nearness relative errors evaluation in binary32
precision, a circle marks the relative errors of the 30 instances average, and a star
represents the IEEE RN-binary32 value.
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Chebyshev polynomial is ill-conditioned near 1 as shown in Figure 5, which eval-
uates T20(x) for x ∈ [ 8

64 ; 1]. Due to catastrophic cancellations among the polynomial
terms, the condition number increases from 100 to 107 in the chosen x interval, re-
sulting in an increasing numerical error for both RN-binary32 and SR-nearness com-
putations.

The left plot confirms that the Bienaymé–Chebyshev bound (BC-H) is more ac-
curate than the Azuma-Hoeffding bound (AH-H) for probability 1 − λ = 0.5. With
a higher probability 1 − λ = 0.9 (right plot), since N = 20 and u = 2−23 Azuma-
Hoeffding bound (AH-H) is tighter, as predicted in Figure 4. Both probabilistic
bounds are tighter than the deterministic bound. For N = 20, there is no significant
difference between SR-nearness and RN-binary32. However, as expected, the average
of the SR-nearness computations is more precise than the nearest round evaluation
for almost all values of x.
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Fig. 6: Normalized forward error (error/cond(P, x)) with probability 1−λ = 0.5 (left)
and 1− λ = 0.9 (right) for Horner’s evaluation of TN (24/26).

In Figure 6, the three previous bounds and the forward error are normalized by
the condition number cond(P, x). The evaluation in x = 24/26 ≈ 0.923 is plotted
for various polynomial degrees N. As expected, when N increases, the deterministic
bound grows faster than the probabilistic bounds. The right plot shows that Azuma-
Hoeffding bound is tighter for a high probability and a small n. Overall, Chebyshev
polynomial numerical experiment illustrates the advantage of the probabilistic error
bounds over the deterministic error bound. However, for most of the evaluations
in this experiment, RN-binary32 is more accurate than one instance of SR-nearness.
This result is unsurprising because the degree n is small. To illustrate the behavior
of these errors with a large n, we now turn to the inner product.

6.2. Inner product. To showcase the advantage of using BC method for large
n, we present a numerical application of the inner product for vectors with positive
floating-points chosen uniformly at random between 0 and 1.
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Fig. 7: Probabilistic bounds with probability 1 − λ = 0.9 vs deterministic bound of
the computed forward errors of the inner product of with u = 2−23.

For small n, AH1, AH2, and BC bounds are comparable with a slight advantage
for (AH2-IP). However, as shown in Section 5.1, when nu≫ 1, the AH2 bound grows
exponentially faster than AH1 and BC bounds. Asymptotically, the AH1 and BC
bounds are therefore much tighter.

Interestingly, when n increases, a single instance of SR-nearness in binary32 pre-
cision is more accurate than RN-binary32. This is because the summation terms are
chosen uniformly between 0 and 1. The terms closest to zero are absorbed. With
RN-binary32 the absorption errors are biased and will add up, while SR avoids stag-
nation and mitigates absorption errors. If we choose the terms in [−1; 1], SR and
RN-binary32 have the same behavior. In this case, the absorption errors for RN-
binary32 compensate because positive and negative errors are uniformly distributed.
If we choose the terms in [1/2; 1], no absorption occurs for n < 223, and on this
domain, SR and RN-binary32 behave similarly.
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Fig. 8: AH1 bound vs BC bound with probability 1 − λ = 0.9 and u = 2−23 for the
inner product of with.
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Figure 8 illustrates the advantage of using (BC-IP) and shows that for a large
n ≥ 1013 and u = 2−23, the AH1 bound increases faster than the BC bound.

For large vectors, using stochastic rounding instead of the default round to nearest
improves the computation accuracy of the inner product. However, this experiment
raises concerns regarding the use of SR as a model to estimate RN rounding errors [13,
27], in particular for a large number of operations. Further studies are required to
assess precisely the limits of this model and possibly give criteria to detect them.

7. Conclusion. For a wide field of applications, SR results in a smaller accumu-
lated error, for example by avoiding stagnation effects. Moreover, SR errors satisfy
the mean independence property allowing to derive tight probabilistic error bounds
from either our variance bound or the martingale property.

For an inner product y = a⊤b, Sub-section 4.1 compares the benefits of construct-
ing the martingale from the recursive summation of the inner product [21] versus
the construction from the errors accumulated in the whole process at each product
aibi [8]. In particular, with a fixed probability, the construction in [21] gives a O(

√
nu)

probabilistic bound, tighter than the O
(
u
√
n ln (n)

)
bound in [8] when nu≪ 1. Nev-

ertheless, when nu ≫ 1, Figure 7 shows that the (AH2-IP) bound increases faster
than (AH1-IP) bound.

An extension of the method in [21] to the Horner algorithm is presented. Unlike
the inner product, Horner algorithm does not explicitly satisfy the martingale property
on the partial sums requiring a change of variable before one can use the Azuma-
Hoeffding inequality.

Lemma 3.1 is a variance bound for the family of algorithms whose error can
be written as a product of error terms of the form 1 + δ. Based on the Bien-
aymé–Chebyshev inequality, a new method is proposed to obtain probabilistic error
bounds. This method allows to get tighter probabilistic error bound in various situa-
tions, such as computations with a large n. We demonstrate the strength of this new
approach on two algorithms: the inner product which has been previously studied,
and Horner polynomial evaluation, for which no SR results were known beforehand.

The scripts for reproducing the numerical experiments in this paper are published
in the repository https://github.com/verificarlo/sr-variance-bounds/.

Acknowledgment. We thank the anonymous reviewers for their insightful com-
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