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Abstract

In this paper, we focus on the nonconvex-strongly-convex bilevel optimization problem (BLO).
In this BLO, the objective function of the upper-level problem is nonconvex and possibly nons-
mooth, and the lower-level problem is smooth and strongly convex with respect to the underlying
variable y. We show that the feasible region of BLO is a Riemannian manifold. Then we trans-
form BLO to its corresponding unconstrained constraint dissolving problem (CDB), whose objective
function is explicitly formulated from the objective functions in BLO. We prove that BLO is equiv-
alent to the unconstrained optimization problem CDB. Therefore, various efficient unconstrained
approaches, together with their theoretical results, can be directly applied to BLO through CDB.
We propose a unified framework for developing subgradient-based methods for CDB. Remarkably,
we show that several existing efficient algorithms can fit the unified framework and be interpreted
as descent algorithms for CDB. These examples further demonstrate the great potential of our pro-
posed approach.

1 Introduction

In this paper, we focus on the following nonconvex-strongly-convex bilevel optimization problem

min
x∈Rn,y∈Rp

f (x, y) (upper-level problem)

s. t. y = arg min
y∈Rp

g(x, y), (lower-level problem)
(BLO)

where the functions f and g satisfy the following blanket assumptions,

Assumption 1.1. Blanket assumptions

1. f is possibly nonsmooth and M f -Lipschitz continuous over R
n × R

p.

2. The function g(x, y) is twice differentiable and µ-strongly convex with respect to y for any fixed x, i.e.
∇2

yyg(x, y) � µIp holds for any (x, y) ∈ R
n × R

p.

3. The gradient ∇g(x, y) is Lg-Lipschitz continuous.

4. The Hessian matrices ∇2
yyg(x, y) and ∇2

xyg(x, y) are Qg-Lipschitz continuous.

5. ∇2
yyg(x, y) is continuously differentiable over R

n × R
p.

Problem BLO has attracted a lot of attention in the current era of big data and artificial intelligence
due to its close connection with various real-world applications, including reinforcement learning
[36], hyperparameter optimization [49, 32, 21, 41], and meta learning [20, 48]. Interested reader can
refer to several survey papers [14, 40] and the references therein for details.
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The blanket assumption 1.1 is commonly assumed in a great number of existing works. In par-
ticular, Assumptions 1.1 is satisfied in the applications discussed in [18, 43, 47, 22, 24, 38, 25, 33]. It
should be noted that although we assume the Lipschitz smoothness of ∇2

yyg(x, y), it is only necessary
in the theoretical analysis, and we do not involve the computation of any third-order derivatives in
our proposed methods throughout this paper.

1.1 Existing works

Recently, nonconvex-strongly-convex bilevel optimization problems with Lipschitz smooth objec-
tive functions have been extensively studied. For any given x ∈ R

n, we denote y⋆(x) as the unique
minimizer of the lower-level problem, i.e., y⋆(x) := arg miny∈Rp g(x, y). Since the lower-level prob-

lem of BLO is assumed to be strongly convex with respect to y, y⋆(x) is differentiable with respect
to x by the implicit function theorem. Therefore, BLO is equivalent to the following unconstrained
optimization problem that only involves the x-variable,

min
x∈Rn

Φ(x) := f (x, y⋆(x)). (1.1)

Various existing efficient approaches are developed based on solving the unconstrained optimization
problem (1.1). However, Φ(x) is implicitly formulated since the solution to the lower-level problem
usually does not have a closed-form expression [27]. Therefore, it is usually intractable to compute
the exact function value and derivatives of Φ(x).

Some of the existing approaches [18, 47, 24, 25, 33], referred to as double-loop approaches, are de-
veloped by introducing inner loops in each iteration to obtain an approximated estimation for y⋆(x).
Then these approaches inexactly evaluate ∇Φ(x) through the approximated solution for the lower-
level problem and chain rule. Although their theoretical properties are simple to analyze, these algo-
rithms may suffer from poor performance as one has to take multiple steps in the inner loop to solve
the lower-level problem to a desired accuracy [35]. It is usually challenging to balance the computa-
tional cost of the inner loops and the overall performance of these algorithms.

Furthermore, several single-loop approaches [11, 27, 35] are proposed to minimize Φ(x) by updat-
ing the x- and y-variables simultaneously, hence avoiding inner loops for an approximated solution
of the lower-level problem. In each iteration, these single-loop approaches update the x-variable by
taking an approximated gradient descent step to Φ(x), while the y-variable is updated to track y⋆(x)
by taking a descent step for the lower-level problem [27, 35] or other specifically designed schemes
[11]. Although prior arts [27, 35, 11, 54] use Φ(x) as the merit function in their theoretical anal-
ysis, these existing single-loop approaches cannot be simply interpreted as approximated gradient
descent methods to minimize Φ(x). Therefore, establishing the related theoretical analysis for these
approaches becomes more complicated and challenging in these existing works.

Though solving BLO with smooth objective functions has been intensively studied, how to solve
BLO with a nonsmooth upper-level objective function is relatively less explored. Due to the implicit
formulation of Φ(x), existing single-loop and double-loop approaches have to approximately solve
the lower-level problems and evaluate ∇Φ(x) inexactly. Therefore, without the assumption on the
Lipschitz smoothness of f , the above-mentioned approaches have no theoretical guarantee. On the
other hand, computing the exact subdifferential of Φ requires the exact solution to the lower-level
problem, which is usually expensive to achieve in practice. As a result, it is challenging to develop
algorithms for BLO based on Φ(x).

Apart from those existing approaches developed for minimizing Φ(x) over R
n, several other exist-

ing approaches [26, 44] reshape BLO as the following single-level optimization problem with equality
constraints [55]

min
x∈Rn,y∈Rp

f (x, y)

s. t. ∇yg(x, y) = 0.
(1.2)

Then (1.2) can be solved by employing existing approaches for constrained optimization, including
polynomial optimization approach (when the functions involved are polynomials) [46], sequential
quadratic programming methods [15, 53], etc. However, these approaches treat BLO as a constrained
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optimization problem with p equality constraints, hence they are usually not as efficient as those
aforementioned single-loop and double-loop approaches in practice [27].

1.2 Motivation

Our motivation in this paper comes from the constraint dissolving approaches [52] for Riemannian
optimization. Let M be the feasible region of (1.2), i.e.

M := {(x, y) ∈ R
n × R

p : ∇yg(x, y) = 0}. (1.3)

As g(x, y) is twice-order differentiable and strongly convex with respect to y, the constraints ∇yg(x, y) =
0 satisfy linear independent constraint qualification (LICQ) for any (x, y) ∈ M. Therefore, the implicit
function theorem ensures that M is a Riemannian manifold embedded in R

n × R
p [34]. Although

various Riemannian optimization approaches are developed in recent years [1, 6, 28], the required
geometrical materials of the manifold M are usually expensive to compute. For example, computing
the retraction of M can be regraded as computing a projection from the tangent space to M, which
is as expensive as solving the lower-level subproblem exactly. To our best knowledge, there is no
efficient Riemannian optimization approach developed for solving BLO.

When f is assumed to be Lipschitz smooth over R
n × R

p, [52] proposes a general framework for
developing the constraint dissolving function for BLO, which takes the form as

f (Ã(x, y)) +
β

2

∥

∥∇yg(x, y)
∥

∥

2
. (1.4)

Here, the mapping Ã : R
n × R

p → R
n × R

p satisfying the following assumptions is called the
constraint dissolving mapping.

Assumption 1.2. • Ã is locally Lipschitz continuous over R
n × R

p.

• Ã(x, y) = (x, y) for any (x, y) ∈ M.

• The Jacobian of (∇yg) ◦ Ã equals to 0 for any (x, y) ∈ M.

As illustrated in [52, Lemma 3.3], any constraint dissolving mapping Ã will drive any (x, y) ∈
R

n × R
p closer to the feasible region M with the feasibility violation locally quadratically converges

to zero. This property plays a crucial role in establishing the equivalence between the original bilevel
optimization problem (BLO) and minimizing the constraint dissolving function (1.4). The detailed
proof can be found at [52, Section 3].

Moreover, [52] provides some practical schemes for constructing the constraint dissolving map-
ping, see [52, Section 4.1] for instances. However, [52] focuses on smooth optimization over the Rie-
mannian manifold. Existing constraint dissolving approaches for nonsmooth optimization are only
developed for special manifolds [29]. Furthermore, the equivalence established in [52] only holds in a
neighborhood of the feasible region M. For general nonsmooth cases, how to choose an appropriate
constraint dissolving operator Ã for (1.4) and establish the equivalence between (BLO) and (1.4) over
R

n × R
p rather than a neighborhood of M remain to be studied.

1.3 Contributions

In this paper, we consider the mapping (x, y) 7→ (x,A(x, y)), where A is defined by

A(x, y) := y −
(

∇2
yyg(x, y)

)−1
∇yg(x, y) (1.5)

as a special choice of Ã. Substituting this Ã into (1.4), we obtain a constraint dissolving function for
bilevel optimization (CDB)

min
x∈Rn,y∈Rp

h(x, y) := f (x,A(x, y)) +
β

2

∥

∥∇yg(x, y)
∥

∥

2
. (CDB)
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We prove that such an Ã satisfies Assumption 1.2 and hence is a constraint dissolving mapping
[52]. Clearly, h can be explicitly formulated from f and the derivatives of g. Under mild conditions,
we prove that BLO and CDB have the same stationary points over R

n × R
p from the perspective of

both the Clarke subdifferential and the conservative field [4]. As a result, the bilevel optimization
problem BLO is equivalent to the unconstrained optimization problem CDB, and various optimiza-
tion approaches for unconstrained nonsmooth optimization can be directly implemented to solve
BLO through CDB.

We propose a unified framework for developing subgradient-based methods to solve CDB and
prove their global convergence. We provide several illustrative examples on how to develop single-
loop subgradient-based methods and how to establish their convergence properties from the pro-
posed framework. Moreover, we can interpret the updating schemes in the deterministic versions of
several existing single-loop algorithms [27, 11, 35] as approximated gradient-descent steps for CDB.
Therefore, we provide a clear explanation for the updating schemes in these existing algorithms, ex-
tend these algorithms to nonsmooth cases and prove their convergence properties based on our pro-
posed framework. These examples further highlight the significant advantages and great potentials
of CDB.

2 Preliminaries

2.1 Basic notations

Let 〈·, ·〉 be the standard inner product and ‖·‖ be the ℓ2-norm of a vector or an operator. Bδ(x, y) :=

{(x̃, ỹ) ∈ R
n × R

p : ‖x̃ − x‖2 + ‖ỹ − y‖2 ≤ δ2} refers to the ball centered at (x, y) with radius δ.
Moreover, for a given set X , dist(x,X ) denotes the distance between x and a set X , i.e. dist(x,X ) :=
arg miny∈X ‖x − y‖, clX denotes the closure of X and conv X denotes the convex hull of X . For

any differentiable function g : R
n × R

p → R, let ∇xg and ∇yg be the partial derivatives of g with

respect to x and y, respectively. Moreover, ∇2
xyg(x, y) and ∇2

yyg(x, y) denotes the partial Jacobian of

∇yg(x, y) with respect to variable x and y, respectively. More precisely,

∇2
xyg(x, y) :=









∂2g(x,y)
∂x1∂y1

· · · ∂2g(x,y)
∂x1∂yp

...
. . .

...
∂2g(x,y)
∂xn∂y1

· · · ∂2g(x,y)
∂xn∂yp









∈ R
n×p, ∇2

yyg(x, y) :=









∂2g(x,y)
∂y1∂y1

· · · ∂2g(x,y)
∂y1∂yp

...
. . .

...
∂2g(x,y)
∂yp∂y1

· · · ∂2g(x,y)
∂yp∂yp









∈ R
p×p,

and ∇2
yxg(x, y) is the transpose of ∇2

xyg(x, y). Furthermore, ∇3
xyyg(x, y) is the partial derivative of

∇2
xyg(x, y) with respect to variable y, which is expressed as the linear mapping from R

p to R
n×p by

∇3
xyyg(x, y)[d] := lim

t→0

1
t

(

∇2
xyg(x, y + td)−∇2

xyg(x, y)
)

. Similarly, ∇3
yyyg(x, y) is the partial deriva-

tive of ∇2
yyg(x, y) with respect to variable y, which is expressed as the linear mapping from R

p to

R
p×p by ∇3

yyyg(x, y)[d] := lim
t→0

1
t

(

∇2
yyg(x, y + td)−∇2

yyg(x, y)
)

. Under Assumption 1.1, it is easy to

verify that the inequalities
∥

∥

∥∇3
yyxg(x, y)[dx]

∥

∥

∥ ≤ Qg ‖dx‖ and
∥

∥

∥∇3
yyyg(x, y)[dy]

∥

∥

∥ ≤ Qg

∥

∥dy

∥

∥ hold for

all (x, y) ∈ R
n × R

p and (dx, dy) ∈ R
n × R

p.

2.2 Clarke subdifferential

Definition 2.1. For any given locally Lipschitz continuous function f : R
n × R

p → R and any (x, y) ∈
R

n × R
p, the generalized directional derivative of f at (x, y) in the direction (dx, dy) ∈ R

n × R
p, denoted by

f ◦(x, y; dx, dy), is defined as

f ◦(x, y; dx, dy) := lim sup
(x̃,ỹ)→(x,y), t↓0

f (x̃ + tdx, ỹ + tdy)− f (x̃, ỹ)

t
.
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Then the generalized gradient or the Clarke subdifferential of f at (x, y), denoted by ∂ f (x, y), is defined as

∂ f (x, y) :=
{

(wx, wy) ∈ R
n × R

p :

〈wx, dx〉+
〈

wy, dy
〉 ≤ f ◦(x, y; dx, dy), for all (dx, dy) ∈ R

n × R
p
}

.

Remark 2.2. For any locally Lipschitz continuous function f : R
n × R

p → R, its Clarke subdifferential
is compact and convex for any (x, y) ∈ R

n × R
p. Moreover, the mapping (x, y) 7→ ∂ f (x, y) is outer-

semicontinuous over R
n × R

p [13].

Definition 2.3. We say that f is (Clarke) regular at (x, y) ∈ R
n × R

p if for every direction (dx, dy) ∈
R

n × R
p, the one-sided directional derivative

f ⋆(x, y; dx, dy) := lim
t↓0

f (x + tdx, y + tdy)− f (x, y)

t

exists and f ⋆(x, y; dx, dy) = f ◦(x, y; dx, dy).

Definition 2.4. For any given locally Lipschitz continuous function f : R
n × R

p → R and any (x, y) ∈
R

n × R
p, the δ-Goldstein subdifferential of f at (x, y) is defined as

∂δ f (x, y) = cl conv
(

∪(x̃,ỹ)∈Bδ(x,y)∂ f (x̃, ỹ)
)

.

The following proposition present some basic properties of δ-Goldstein subdifferential, which are
mainly from the upper-semicontinuity of ∂ f , as illustrated in [7, Theorem 3.1] and [57, Lemma 7].

Proposition 2.5. For any given locally Lipschitz continuous function f : R
n × R

p → R and any (x, y) ∈
R

n × R
p, it holds that

lim
δ→0

∂δ f (x, y) = ∂ f (x, y).

2.3 Conservative field

In this subsection, we introduce the concept of conservative field, which generalizes Clarke sub-
differential for a broad class of nonsmooth functions. For simplicity, we provide a self-contained
description and highlight some essential ingredients for our theoretical analysis. Interested readers
can refer to several recent papers [4, 10] for more details.

Definition 2.6. A set-valued mapping D : R
m
⇒ R

s is a mapping from R
m to a collection of subsets of R

s.
D is said to have closed graph if the graph of D, defined by

graph(D) := {(w, z) ∈ R
m × R

s : w ∈ R
m, z ∈ D(w)} ,

is a closed set.

Definition 2.7. An absolutely continuous curve is a continuous mapping γ : R → R
n ×R

p whose derivative
γ′ exists almost everywhere in R and γ(t)− γ(0) equals to the Lebesgue integral of γ′ between 0 and t for all
t ∈ R+, i.e.,

γ(t) = γ(0) +
∫ t

0
γ′(τ)dτ, for all t ∈ R+.

With the concept of absolutely continuous curve, we can present the definition of a conservative
set-valued field.

Definition 2.8. Let D be a set-valued mapping from R
n × R

p to subsets of R
n × R

p. Then we call D as a
conservative field whenever it has closed graph, nonempty compact values, and for any absolutely continuous
curve γ : [0, 1] → R

n × R
p satisfying γ(0) = γ(1), we have

∫ 1

0
max

v∈D(γ(t))

〈

γ′(t), v
〉

dt = 0, (2.1)

where the integral is understood in the Lebesgue sense.
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Remark 2.9. When the set-valued mapping D has compact values and closed graph, then the mapping t 7→
maxv∈D(γ(t)) 〈γ′(t), v〉 is Lebesgue measurable [4, Lemma 1]. Therefore, the path integral in (2.1) is well-

defined. Furthermore, the equation (2.1) can be replaced by
∫ 1

0 minv∈D(γ(t)) 〈γ′(t), v〉dt = 0.

Definition 2.10. Let D be a conservative field in R
n ×R

p. Then with any given (x0, y0) ∈ R
n ×R

p, we can
define a function through

f (x, y) = f (x0, y0) +
∫ 1

0
max

v∈D(γ(t))

〈

γ′(t), v
〉

dt = f (x0, y0) +
∫ 1

0
min

v∈D(γ(t))

〈

γ′(t), v
〉

dt (2.2)

for any absolutely continuous curve γ that satisfies γ(0) = (x0, y0) and γ(1) = (x, y). Then f is called a
potential function for D, and we also say D admits f as its potential function, or that D is a conservative field
for f .

It is worth mentioning that any conservative field defines a unique potential function up to a
constant, since the value of the integral does not depend on the selection of the path in (2.2). Moreover,
for any f that is a potential function for some conservative field D, ∂ f is a conservative field that
admits f as its potential function, and ∂ f (x, y) ⊆ conv(D(x, y)) holds for any (x, y) ∈ R

n × R
p [4,

Corollary 1].
As a result, for any (x, y) ∈ R

n × R
p that is a first-order stationary point of f , then it holds that

0 ∈ ∂ f (x, y) ⊆ conv (D(x, y)). Thus the stationarity of the potential function f can be characterized
by its corresponding conservative field D as illustrated in the following definition.

Definition 2.11. Given a fixed conservative field D : R
n × R

p
⇒ R

n × R
p that admits f as a potential

function, then we say (x, y) is a D-stationary point for f if 0 ∈ D(x, y).

Similar to the definition on conservative field, we present the definition on conservative mapping
as follows.

Definition 2.12. Let F : R
d → R

m be a locally Lipschitz function. JF : R
d
⇒ R

m×d is called a conservative
mapping for F, if for any absolutely continuous curve γ : [0, 1] → R

d, the function t 7→ F(γ(t)) satisfies

d(F ◦ γ)

dt
(t) = Vγ′(t), for all V ∈ JF(γ(t)) and a.e. t ∈ [0, 1].

When we choose m = 1 in Definition 2.12, the definition on conservative mapping is equivalent
to the definition on conservative field in Definition 2.8, as illustrated in [4, Remark 7]. The following
propositions illustrate that the chain rule and sum rule hold for conservative fields.

Proposition 2.13 (Lemma 7 in [4]). Let F1 : R
d → R

m and F2 : R
m → R

s be locally Lipschitz continuous
mappings, JF1

: R
d → R

m×d and JF2
: R

d → R
s×m be their associated conservative mappings. Then the

mapping x 7→ JF2
(F1(x))JF1

(x) is a conservative mapping for F2 ◦ F1.

Proposition 2.14 (Corollary 4 in [4]). Let f1, ..., fn be locally Lipschitz continuous functions for the conser-
vative fields D f1

, ...,D fn
, respectively. Then f = ∑

n
i=1 fi is a potential function for D f = ∑

n
i=1 D f i

.

2.4 Additional assumption and stationarity

In this subsection, we present the basic assumptions on BLO as well as the definition of its sta-
tionarity. In the rest of this paper, we assume the objective function f to be a potential function for a
certain conservative field.

Assumption 2.15. f is a potential function of a conservative set-valued field D f : R
n × R

p
⇒ R

n × R
p,

which has convex values, and satisfies

sup
x∈Rn, y∈Rp, ξ∈D f (x,y)

‖ξ‖ ≤ M f ,

for some constant M f > 0.
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The following remark illustrates that Assumption 2.15 is general enough to cover most applica-
tions of BLO.

Remark 2.16. It is worth mentioning that any Clarke regular function is a potential function for some conser-
vative fields [16]. However, the Clarke regularity is too restrictive in practice, which excludes some important
applications of BLO, in particular, training the neural network built from nonsmooth activation functions.

To this end, [16] reviews the concept of Whitney stratifiable functions, and prove that any locally Lipschitz
function f : R

n × R
p → R that is Whitney C1-stratifiable is a potential function for ∂ f in [16, Theorem 5.8].

Whitney stratifiable functions are general enough to cover several important classes of functions, including
semi-algebraic functions, and semi-analytic functions.

Additionally, several recent works [4, 10, 5] focus on the optimization of definable functions (i.e., functions
that are definable in an o-minimal structure [50, 16]), which are all Whitney Cs-stratifiable functions for any
s ≥ 1 [50]. The finite summation and composition of definable functions are also definable, hence various nons-
mooth functions can be easily recognized as definable functions. As shown in [51, 16, 4], the finite composition
among semi-algebraic functions, exp and log is definable. Therefore, most common activation functions and
loss functions, including sigmoid, hyperbolic tangent, softplus, ReLU [2], Leaky-ReLU [42], piecewise poly-
nomial activations, ℓ1-loss, MSE loss, hinge loss, logistic loss and cross-entropy loss are all definable in some
o-minimal structures. Furthermore, for any nonsmooth deep neural network built from definable loss func-
tions and activation functions, its objective function is also definable, hence is a potential function for a certain
conservative field (e.g., its Clarke subdifferential).

Remark 2.17. Assumption 2.15 implies that f is M f -Lipschitz continuous over R
n ×R

p, as illustrated in [5,
Remark 3(d)].

Based on Assumption 1.1 and Assumption 2.15, we make the following definitions on the station-
arity of BLO and CDB.

Definition 2.18 ([13]). For any given (x, y) ∈ R
n × R

p, we say (x, y) is a first-order stationary point of
BLO if there exists (dx, dy) ∈ ∂ f (x, y) such that

{

0 = dx −∇2
xyg(x, y)∇2

yyg(x, y)−1dy,

0 = ∇yg(x, y).

Similarly, the stationarity of CDB can be stated in the following definition.

Definition 2.19. For any given (x, y) ∈ R
n × R

p, we say that (x, y) is a first-order stationary point of CDB
if 0 ∈ ∂h(x, y).

On the other hand, we can characterize the stationarity of BLO from the perspective of conserva-
tive field.

Definition 2.20. Suppose f is a potential function admitted by a convex-valued conservative field D f . Then

for any given (x, y) ∈ R
n × R

p, we say that (x, y) is a D f -stationary point of BLO if there exists (dx, dy) ∈
D f (x, y) such that

{

0 = dx −∇2
xyg(x, y)∇2

yyg(x, y)−1dy,

0 = ∇yg(x, y).

It directly follows from Definition 2.18 and Definition 2.20 that all the ∂ f -stationary points of BLO
are its first-order stationary points.

Definition 2.21. Suppose h in CDB is a potential function admitted by a convex-valued conservative field Dh,
we say that (x, y) ∈ R

n × R
p is a Dh-stationary point of CDB if 0 ∈ Dh(x, y).

Remark 2.22. D f is a generalization of the Clarke subdifferential of f , whose expression depends on how to

achieve the “subdifferential” of f (x, y) [4, 5]. As illustrated in [5], the conservative field D f is not unique
and may differs from ∂ f in a dense set, hence may lead to infinitely many spurious stationary points for BLO.
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However, we should keep in mind that the most important case for us is D f = ∂ f . In the following remark, we
discuss how to approximately evaluate ∂ f in practice.

Although in some cases, directly computing one element from ∂ f (x, y) may be intractable [5], there are
already several randomized approaches [7, 8, 19, 56, 45, 9, 39] developed for approximately evaluating one
element for ∂ f (x, y) in practice.

Some existing approaches approximate ∂ f (x, y) by random sampling of gradients [7, 8, 9]. In these ap-
proaches, with a given radius δ, we randomly sample {(x1, y1), ..., (xs, ys)} ⊂ Bδ(x, y). Since f is differen-
tiable at {(x1, y1), ..., (xs, ys)} almost surely, let Cδ = conv {∇ f (xi, yi) : 1 ≤ i ≤ s} ⊂ ∂δ f (x, y), and it
holds from Proposition 2.5 and [7, Theorem 3.1] that limδ→0 dist(∂ f (x, y), Cδ) = 0. By choosing one element
from Cδ, we get an approximated evaluation for an element in ∂ f (x, y).

Furthermore, some recent works approximate ∂ f (x, y) by the randomized smoothing approaches [19, 56,
45, 39]. In these approaches, we first uniformly sample (ζx, ζy) ∈ Bδ(0), and approximate ∂ f (x, y) by

∂̃δ f (x, y; ζx, ζy) :=
n + p

2δ
( f (x + δζx, y + δζy)− f (x − δζx, y − δζy)) ·

[

ζx
ζy

]

.

From [39, Theorem 3.1, Lemma D.1], it holds that

Eζx,ζy [∂̃δ f (x, y; ζx, ζy)] ∈ ∂δ(x, y), and Eζx,ζy [
∥

∥∂̃δ f (x, y; ζx, ζy)
∥

∥

2
] ≤ 16

√
2π(n + p)M2

f .

Then Proposition 2.5 illustrates that lim
δ→0

dist
(

∂ f (x, y), Eζx,ζy [∂̃δ f (x, y; ζx, ζy)]
)

= 0. Therefore, ∂̃δ f (x, y; ζx, ζy)

approximates ∂ f (x, y) with noises.

3 Theoretical properties

3.1 Equivalence: Clarke subdifferential

In this subsection, we study the equivalence between BLO and CDB based on the Clarke subdif-
ferential. We first define

JA,x(x, y) := −∇2
xyg(x, y)∇2

yyg(x, y)−1 +∇3
xyyg(x, y)[∇2

yyg(x, y)−1∇yg(x, y)]∇2
yyg(x, y)−1, (3.1)

JA,y(x, y) := ∇3
yyyg(x, y)[∇2

yyg(x, y)−1∇yg(x, y)]∇2
yyg(x, y)−1. (3.2)

Then the following proposition characterizes the expression of ∂h(x, y) for any (x, y) ∈ R
n × R

p.

Proposition 3.1. For any x ∈ R
n and y ∈ R

p, it holds that

∂h(x, y) ⊆
{[

dx+JA,x(x,y)dy+β∇2
xyg(x,y)∇yg(x,y)

JA,y(x,y)dy+β∇2
yyg(x,y)∇yg(x,y)

]

:
[

dx
dy

]

∈ ∂ f (x,A(x, y))

}

.

Here the equality holds when f is Clarke regular.

Proposition 3.1 can be verified through direct calculation, hence we omit its proof for simplicity.

Proposition 3.2. For any (x, y) ∈ R
n × R

p, suppose (x, y) ∈ M is a first-order stationary point of CDB,
then (x, y) is a first-order stationary point of BLO.

Furthermore, when f is Clarke regular, then for any given (x, y) ∈ M, (x, y) is a first-order stationary
point of BLO if and only if it is a first-order stationary point of CDB.

Proof. Since (x, y) ∈ M is a first-order stationary point of CDB, it follows from the optimality con-
ditions of CDB that 0 ∈ ∂h(x, y). Together with the fact that 0 = ∇yg(x, y) and Proposition 3.1,

there exists (dx, dy) ∈ ∂ f (x, y) such that 0 = dx −∇2
xyg(x, y)∇2

yyg(x, y)−1dy, which coincides with the

optimality conditions of BLO. Therefore, we obtain that (x, y) is a first-order stationary point of BLO.
Furthermore, when f is assumed to be Clarke regular, and (x, y) ∈ M is a first-order station-

ary point of BLO, Proposition 3.1 illustrates that there exists (dx, dy) ∈ ∂ f (x, y) such that 0 = dx −
∇2

xyg(x, y)∇2
yyg(x, y)−1dy ∈ ∂h(x, y). Therefore, (x, y) is a first-order stationary point of CDB. This

completes the proof.
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Proposition 3.2 illustrates that any first-order stationary point of CDB on M is also a first-order
stationary point of BLO. In the rest of this subsection, we aim to show that with a sufficiently large
penalty parameter β, any first-order stationary point of CDB lies on M.

Lemma 3.3. The Lipschitz constant for ∇2
yyg(x, y)−1 is no greater than

Qg

µ2 .

Proof. Firstly, notice that
∥

∥(A + tE)−1 −
(

A−1 − tA−1EA−1
)∥

∥ = O(t2) holds for any symmetric non-
singular matrix A and any square symmetric matrix E. Therefore, the following inequality holds for
any dx ∈ R

n

∥

∥

∥∇2
yyg(x + tdx, y)−1 −∇2

yyg(x, y)−1
∥

∥

∥

= t
∥

∥

∥∇2
yyg(x, y)−1∇3

yyxg(x, y)[dx]∇2
yyg(x, y)−1

∥

∥

∥+O(t2) ≤ Qg

µ2
t ‖dx‖+O(t2).

Similarly, for any dy ∈ R
p, it holds that

∥

∥

∥∇2
yyg(x, y + tdy)

−1 −∇2
yyg(x, y)−1

∥

∥

∥

= t
∥

∥

∥∇2
yyg(x, y)−1∇3

yyyg(x, y)[dy]∇2
yyg(x, y)−1

∥

∥

∥+O(t2) ≤ Qg

µ2
t
∥

∥dy

∥

∥+O(t2).

Therefore, we can conclude that the Lipschitz constant for ∇2
yyg(x, y)−1 is no greater than

Qg

µ2 .

Lemma 3.4. For any given (x, y) ∈ R
n × R

p, it holds that

‖y⋆(x)−A(x, y)‖ ≤ Qg

2µ3

∥

∥∇yg(x, y)
∥

∥

2
.

Proof. For any v ∈ R
p, it follows from the mean-value theorem that there exists ξ ∈ R

p such that

v⊤∇yg(x,A(x, y)) = v⊤∇yg(x, y −∇2
yyg(x, y)−1∇yg(x, y))

= v⊤∇yg(x, y)− v⊤∇2
yyg(x, y)∇2

yyg(x, y)−1∇yg(x, y)

+
1

2
v⊤∇3

yyyg(x, ξ)[∇2
yyg(x, y)−1∇yg(x, y)]∇2

yyg(x, y)−1∇yg(x, y)

≤ Qg

2
‖v‖

∥

∥

∥∇2
yyg(x, y)−1∇yg(x, y)

∥

∥

∥

2
≤ Qg

2µ2
‖v‖

∥

∥∇yg(x, y)
∥

∥

2
.

As a result, it holds that
∥

∥∇yg(x,A(x, y))
∥

∥ ≤ Qg

2µ2

∥

∥∇yg(x, y)
∥

∥

2
. Then from the fact that g(x, y) is

µ-strongly convex with respect to y, we obtain that

‖A(x, y)− y⋆(x)‖ ≤ 1

µ

∥

∥∇yg(x,A(x, y))−∇yg(x, y⋆(x))
∥

∥ ≤ Qg

2µ3

∥

∥∇yg(x, y))
∥

∥

2
.

This completes the proof.

Remark 3.5. Lemma 3.4 illustrates that for any (x, y) ∈ R
n × R

p, it holds that
∥

∥∇yg(x,A(x, y))
∥

∥ =

O(
∥

∥∇yg(x, y)
∥

∥

2
). As a result, the mapping (x, y) 7→ (x,A(x, y)) satisfies the Assumption 1.2, and hence it

is a constraint dissolving mapping for BLO.

Proposition 3.6. Suppose β ≥ M f Qg

µ3 and Φ(x) is bounded below in R
n. Then h(x, y) is bounded below.

Proof. We conclude from Lemma 3.4 that

h(x, y)− f (x, y⋆(x)) = f (x,A(x, y)) +
β

2

∥

∥∇yg(x, y)
∥

∥

2 − f (x, y⋆(x))

≥ − M f ‖A(x, y)− y⋆(x)‖+ β

2

∥

∥∇yg(x, y)
∥

∥

2 ≥ 0,
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which implies that

inf
(x,y)∈Rn×Rp

h(x, y) ≥ inf
x∈M

f (x, y⋆(x)) = inf
x∈Rn

Φ(x) > −∞,

hence completes the proof.

Lemma 3.7. For any given (x, y) ∈ R
n × R

p, and any d ∈ R
p, it holds that

lim sup
t→0

∣

∣

∣

∣

f (x,A(x, y + td))− f (x,A(x, y))

t

∣

∣

∣

∣

≤ M f Qg

µ2

∥

∥∇yg(x, y)
∥

∥‖d‖ .

Proof. Let zt := y + td. Then it follows from the expression of A that

| f (x,A(x, zt))− f (x,A(x, y))|
=
∣

∣

∣
f (x, zt −∇2

yyg(x, zt)
−1∇yg(x, zt))− f (x, y −∇2

yyg(x, y)−1∇yg(x, y))
∣

∣

∣

≤
∣

∣

∣ f (x, zt −∇2
yyg(x, y)−1∇yg(x, zt))− f (x, y −∇2

yyg(x, y)−1∇yg(x, y))
∣

∣

∣

+
∣

∣

∣ f (x, zt −∇2
yyg(x, zt)

−1∇yg(x, zt))− f (x, zt −∇2
yyg(x, y)−1∇yg(x, zt))

∣

∣

∣ .

Notice that

∥

∥

∥td −∇2
yyg(x, y)−1∇yg(x, zt) +∇2

yyg(x, y)−1∇yg(x, y)
∥

∥

∥ ≤ t2 Qg

µ
‖d‖2 ,

hence we achieve the following inequality,

∣

∣

∣ f (x, zt −∇2
yyg(x, y)−1∇yg(x, zt))− f (x, y −∇2

yyg(x, y)−1∇yg(x, y))
∣

∣

∣

≤ M f

∥

∥

∥

(

zt −∇2
yyg(x, y)−1∇yg(x, zt)

)

−
(

y −∇2
yyg(x, y)−1∇yg(x, y)

)∥

∥

∥

≤ t2
M f Qg

µ
‖d‖2 .

On the other hand,
∣

∣

∣ f (x, zt −∇2
yyg(x, zt)

−1∇yg(x, zt))− f (x, zt −∇2
yyg(x, y)−1∇yg(x, zt))

∣

∣

∣

≤ M f

∥

∥

∥∇2
yyg(x, zt)

−1∇yg(x, zt)−∇2
yyg(x, y)−1∇yg(x, zt)

∥

∥

∥

≤ M f

∥

∥

∥∇2
yyg(x, zt)

−1 −∇2
yyg(x, y)−1

∥

∥

∥

∥

∥∇yg(x, zt)
∥

∥

≤ t
Qg M f

µ2

∥

∥∇yg(x, zt)
∥

∥ ‖d‖ ≤ t
QgM f

µ2

∥

∥∇yg(x, y)
∥

∥‖d‖+ t2
Qg M f Lg

µ2
‖d‖2 .

Therefore, we obtain that

lim sup
t→0

∣

∣

∣

∣

f (x,A(x, y + td))− f (x,A(x, y))

t

∣

∣

∣

∣

≤ Qg M f

µ2

∥

∥∇yg(x, y)
∥

∥‖d‖ ,

and the proof is completed.

Theorem 3.8. Suppose β ≥ 2Qg M f

µ3 . If (x, y) ∈ R
n × R

p is a first-order stationary point of CDB, then

(x, y) ∈ M and hence is a first-order stationary point of BLO.
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Proof. Suppose (x, y) is a stationary point of CDB, we have 0 ∈ ∂h(x, y). Therefore, it follows from
Definition 2.1 that 0 ≤ h◦(x, y; 0,−∇yg(x, y)).

Notice that ∇yg(x, y) is differentiable, then it holds that

lim
t→0

∥

∥∇yg(x, y − t∇yg(x, y))
∥

∥

2 −
∥

∥∇yg(x, y)
∥

∥

2

t

= − 2∇yg(x, y)⊤∇2
yyg(x, y)∇yg(x, y) ≤ −2µ

∥

∥∇yg(x, y)
∥

∥

2
.

Therefore, it holds from Lemma 3.7 that

0 ≤ h◦(x, y; 0,−∇yg(x, y)) = lim sup
(x̃,ỹ)→(x,y), t↓0

h(x̃, ỹ − t∇yg(x, y))− h(x̃, ỹ)

t

= lim sup
(x̃,ỹ)→(x,y), t↓0

f (x̃,A(x̃, ỹ − t∇yg(x, y)))− f (x̃,A(x̃, ỹ))

t

+
β

2
lim
t→0

∥

∥∇yg(x, y − t∇yg(x, y))
∥

∥

2 −
∥

∥∇yg(x, y)
∥

∥

2

t

≤ − µβ
∥

∥∇yg(x, y)
∥

∥

2
+ lim sup

(x̃,ỹ)→(x,y)

M f Qg

µ2

∥

∥∇yg(x̃, ỹ)
∥

∥

∥

∥∇yg(x, y)
∥

∥

≤ − µβ

2

∥

∥∇yg(x, y)
∥

∥

2 ≤ 0.

Therefore, we conclude that ∇yg(x, y) = 0 and (x, y) ∈ M. Thus (x, y) is a first-order stationary
point of BLO by Proposition 3.2.

Corollary 3.9. Suppose f is Clarke regular and β ≥ 2Qg M f

µ3 . Then BLO and CDB have the same first-order

stationary points over R
n × R

p.

The proof straightforwardly follows from Theorem 3.8 and Proposition 3.2. Hence we omit its
details for simplicity.

3.2 Equivalence: conservative field

In this subsection, we study the equivalence between BLO and CDB based on the concept of
conservative field. With the set-valued mapping Dh(x, y) defined by

Dh(x, y) :=

{[

dx+JA,x(x,y)dy+β∇2
xyg(x,y)∇yg(x,y)

JA,y(x,y)dy+β∇2
yyg(x,y)∇yg(x,y)

]

:
[

dx
dy

]

∈ D f (x,A(x, y))

}

, (3.3)

we have the following proposition characterizing the property of Dh.

Proposition 3.10. Dh(x, y) is a convex-valued conservative field that admits h(x, y) as its potential.

Proof. Since A is continuously differentiable, it holds that A is a potential mapping for its Jacobian
[JA,x(x, y), JA,y(x, y)]⊤. As a result, by the chain rule and sum rule in Proposition 2.13 and Proposition
2.14, Dh is a conservative field that admits h(x, y) as its potential function.

Proposition 3.11. For any given (x, y) ∈ M, (x, y) is a D f -stationary point of BLO if and only if (x, y) is a
Dh-stationary point of CDB.

From Definition 2.21, any (x, y) satisfying 0 ∈ Dh(x, y) is called a Dh-stationary point of CDB.
Then Proposition 3.11 directly follows from the expression of Dh, and we omit its proof for simplicity.

Theorem 3.12. Suppose β ≥ 2Qg M f

µ3 , then (x, y) ∈ R
n × R

p is a D f -stationary point of BLO if and only if

(x, y) is a Dh-stationary point of CDB.
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Proof. For any (x, y) ∈ R
n × R

p and any (dx, dy) ∈ D f (x,A(x, y)), the inclusion 0 ∈ Dh(x, y) implies

that there exists (dx, dy) ∈ D f (x,A(x, y)) such that

0 = dx + JA,x(x, y)dy + β∇2
xyg(x, y)∇yg(x, y),

0 = JA,y(x, y)dy + β∇2
yyg(x, y)∇yg(x, y).

From (3.2) and Assumption 2.15, it holds that
∥

∥JA,y(x, y)dy

∥

∥ ≤ Qg M f

µ2

∥

∥∇yg(x, y)
∥

∥. Then we obtain

that

0 =
∥

∥

∥JA,y(x, y)dy + β∇2
yyg(x, y)∇yg(x, y)

∥

∥

∥

≥
∥

∥

∥β∇2
yyg(x, y)∇yg(x, y)

∥

∥

∥−
∥

∥JA,y(x, y)dy

∥

∥

≥
(

µβ −
Qg M f

µ2

)

∥

∥∇yg(x, y)
∥

∥ ≥ µβ

2

∥

∥∇yg(x, y)
∥

∥ ,

which shows that ∇yg(x, y) = 0. Hence (x, y) ∈ M. Therefore, Proposition 3.11 illustrates that (x, y)
is a D f -stationary point of BLO.

On the other hand, when (x, y) is a D f -stationary point of BLO, Proposition 3.11 shows that 0 ∈
Dh(x, y). Hence (x, y) is a Dh-stationary point of CDB by Definition 2.21.

As illustrated in Remark 2.22, the most important example for us is D f = ∂ f , and it is usually

easy to compute an approximation for ∂ f (x, y) in practice through some randomized approaches
[7, 8, 19, 56, 45, 9, 39]. Therefore, we present the following corollary to illustrate the equivalence
between BLO and CDB when we choose D f as ∂ f in (3.3).

Corollary 3.13. Suppose β ≥ 2Qg M f

µ3 and Dh is chosen by (3.3) with D f = ∂ f . Then (x, y) ∈ R
n × R

p is a

first-order stationary point of BLO if and only if (x, y) is a Dh-stationary point of CDB.

Proof. When D f = ∂ f in (3.3), the corresponding conservative field Dh is set as

Dh(x, y) =

{[

dx+JA,x(x,y)dy+β∇2
xyg(x,y)∇yg(x,y)

JA,y(x,y)dy+β∇2
yyg(x,y)∇yg(x,y)

]

:
[

dx
dy

]

∈ ∂ f (x,A(x, y))

}

.

Then from Theorem 3.12 and Definition 2.18, whenever (x, y) is a Dh-stationary point of CDB with
D f = ∂ f in (3.3), (x, y) is a ∂ f -stationary point, and hence it is a first-order stationary point of BLO.

On the other hand, when (x, y) is a first-order stationary point of BLO, Proposition 3.11 directly
shows that 0 ∈ Dh(x, y), thus we complete the proof.

4 Algorithmic Design

Subgradient method and its variants play important roles in minimizing nonsmooth functions
that are not necessarily regular, particularly in training deep neural networks involving nonsmooth
activation functions. Recently, [16] shows the global convergence for applying subgradient methods
in minimizing nonsmooth functions based on their Clarke subdifferentials. Moreover, [4] introduces
the concept of conservative field, which overcomes the limitations of Clarke subdifferential, and fur-
ther explains the behavior of stochastic subgradient methods when they are applied to train nons-
mooth neural networks with automatic differentiation algorithms. Furthermore, [4, 10, 3] establish
the convergence properties for some subgradient methods that are developed from the conservative
field of the objective function, as they are implemented in practice.

In this section, we aim to design subgradient methods to solve CDB based on the formulation
of Dh. In Proposition 3.10, we show that Dh is a conservative field that admits h as the potential
function. Then various existing subgradient approaches [4, 10, 3] can be directly applied to CDB from
the explicit formulation of Dh. However, it may be expensive to calculate the ∇3

xyyg and ∇3
yyyg in

practice, hence computing Dh(x, y) exactly may be expensive and impractical.
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To this end, we first propose a general framework for applying subgradient methods to solve CDB,
which enables the inexact evaluation of Dh. Then we propose several different set-valued mappings
D̂h, D̂p and D̂s, all of which approximates Dh and avoid computing the third-order derivatives of
g. Based on these set-valued mappings, we design several subgradient methods that adopt inexact
evaluations to achieve better efficiency. Moreover, we demonstrate that the global convergence for
these subgradient-based methods directly follows from the proposed framework in Section 4.1.

4.1 A unified framework for subgradient-based methods

In this subsection, we utilize the conservative field Dh to develop a framework for applying sub-
gradient methods to solve CDB. We first consider the iteration sequence {(xk, yk)} generated by the
following updating scheme that generalizes the subgradient methods,

xk+1 = xk − ηk (ux,k + ξx,k) , and yk+1 = yk − ηk

(

uy,k + ξy,k

)

. (4.1)

Here ηk > 0 refers to the stepsize, (ux,k, uy,k) should be thought as an approximate descent direction

for h(x, y) at (xk, yk), Moreover, ξx,k and ξy,k denote the “errors” introduced by stochasticity and
inexact evaluation. Similar to [16], we stipulate the following assumptions on (4.1).

Assumption 4.1. (a) The generated iterates {(xk, yk)} are uniformly bounded: supk>0 ‖xk‖ + ‖yk‖ <

+∞.

(b) The stepsizes are nonnegative, square summable, but not summable:

ηk > 0,
+∞

∑
k=0

ηk = +∞, and
+∞

∑
k=0

ηk
2
< +∞.

(c) The series of weighted noise is convergent. That is, there exists vx ∈ R
n and vy ∈ R

p, such that

lim
N→+∞

N

∑
k=0

ηkξx,k = vx and lim
N→+∞

N

∑
k=0

ηkξy,k = vy.

(d) There exists a set-valued mapping D(x, y) that has closed graph and compact convex values. Moreover,
D has the property that for any sequence {(xk j

, yk j
)} that converges to a point (x̃, ỹ) and any unbounded

increasing sequence {kj}, it holds that lim
N→+∞

dist

(

1
N

N

∑
j=1

[

ux,k j

uy,k j

]

,D(x̃, ỹ)

)

= 0.

(e) The set {h(x, y) : 0 ∈ D(x, y)} has empty interior, i.e. its complementary is dense in R.

(f) There exists a constant δ > 0 such that for any (x, y) ∈ R
n × R

p and any w ∈ D(x, y), it holds that

supζ∈Dh(x,y) ζ⊤w ≥ δ ‖w‖2.

Assumption 4.1(a)-(b) are common assumptions in various existing works [16, 4, 10]. Assumption
4.1(c) is a mild assumption that controls the growth of the noise sequence {(ξx,k, ξy,k)} as the stepsize
decreases, which can be satisfied by the stochastic subgradient method described in [16]. Moreover,
Assumption 4.1(d) illustrates how (ux,k, uy,k) approximates D(xk, yk). Assumption 4.1(e) is the weak
Sard’s condition [16, Assumption B(1), Assumption F(1)], which holds whenever h is definable and
D = ∂h [16, Lemma 5.7]. Furthermore, Assumption 4.1(f) implies the descent condition in [16, As-
sumption B(2)], as illustrated in the following proposition.

Proposition 4.2. Suppose Assumption 4.1 holds. Let γ : R+ → R
n × R

p be any absolutely continuous path
such that the differential inclusion γ′(t) ∈ −D(γ(t)) holds for a.e. t ∈ R+. Then the following inequality
holds for any t > 0,

h(γ(t))− h(γ(0)) ≤ −δ
∫ t

0
dist (0,D(γ(τ)))2 dτ.
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Proof. Notice that h is the potential function of the conservative field Dh. Therefore, it follows from
Definition 2.10 that

h(γ(t))− h(γ(0)) =
∫ t

0
inf

ζ∈Dh(γ(t))

〈

ζ,−γ′(t)
〉

dτ ≤ −δ
∫ t

0
dist (0,D(γ(τ)))2 dτ,

and this completes the proof.

Proposition 4.3. For any set-valued mapping D : R
m
⇒ R

s, suppose D is compact and convex valued and
has closed graph, then for any w̃ ∈ R

m, any sequence {wk} that converges to w̃ and any {uk} that satisfies
lim

k→+∞
dist (uk,D(wk)) = 0, it holds that

lim
N→+∞

dist

(

1

N

N

∑
k=1

uk,D(w̃)

)

= 0.

Proof. We first assume that the argument to be proved is not true. Then there exists a constant ε0 > 0,
a sequence {wk} converging to w̃, a sequence {uk} that satisfies lim

k→+∞
dist (uk,D(wk)) = 0 and a

sequence {Nj} ⊂ N satisfying Nj → +∞, such that

dist





1

Nj

Nj

∑
k=1

uk,D(w̃)



 ≥ ε0. (4.2)

From the convexity of D(w̃), we conclude that for any j ≥ 0, there exists an index kj ≤ Nj such
that

dist
(

uk j
,D(w̃)

)

≥ ε0

2
. (4.3)

We claim that we can always choose a sequence {kj} such that kj → +∞. Otherwise, for any N >

supj≥0 kj +
(

2
ε0

)

∑
supj≥0 k j

i=1 dist (ui,D(w̃)) , it holds that

dist

(

1

N

N

∑
k=1

uk,D(w̃)

)

≤ 1

N

N

∑
k=1

dist (uk,D(w̃)) ≤ 1

N

supj≥0 k j

∑
k=1

dist (uk,D(w̃)) +
ε0

2
< ε0,

which contradicts (4.2) and further verifies our claim.
Therefore, for the selected sequence of indices {kj}, it holds that lim

j→+∞
wk j

= w̃, and

lim
j→+∞

dist
(

(wk j
, uk j

), graph(D)
)

= 0.

Since D has closed graph, any cluster point of {uk j
} lies in D(w̃), which further leads to

lim inf
j→+∞

dist
(

uk j
,D(w̃)

)

= 0.

But this contradicts (4.3). Thus the proof is completed by contradiction.

Theorem 4.4. Suppose Assumption 4.1 holds. Then for the sequence {(xk, yk)} generated from (4.1), all its
limit point lies in {(x, y) ∈ R

n × R
p : 0 ∈ D(x, y)}. Moreover, the sequence of function values {h(xk, yk)}

converges.

Proof. Assumption 4.1(a)-(d) imply the validity of Assumption A in [16]. Moreover, Assumption
4.1(e)-(f) and Proposition 4.2 show that the Assumption B in [16] holds. Then the proof directly
follows from Theorem 3.2 in [16].
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4.2 Basic subgradient methods

In this subsection, we first propose a set-valued mapping D̂h(x, y) that has compact values and
satisfies Assumption 4.1(f). Based on D̂h(x, y), we develop a subgradient method as illustrated in
Algorithm 1, where the update direction in each iteration is approximately chosen from D̂h(x, y).
Then we establish the global convergence of Algorithm 1 directly from our proposed framework.

Definition 4.5. For any given (x, y) ∈ R
n × R

p, we define the set-valued mapping D̂h : R
n × R

p
⇒

R
n × R

p as

D̂h(x, y) :=

{[

dx−∇2
xyg(x,y)(∇2

yyg(x,y)−1dy−β∇yg(x,y))
β∇yg(x,y)

]

:
[

dx
dy

]

∈ D f (x,A(x, y))

}

.

It is easy to verify that D̂h has closed graph. Moreover, compared with Dh, the formulation of D̂h

avoids the third-order derivatives of g. Therefore, computing an element from D̂h can be potentially
more efficient than directly computing one from Dh.

Proposition 4.6. Suppose β ≥ 2M f Qg

µ3 . Then for any given (x, y) ∈ R
n × R

p, it is a Dh-stationary point of

CDB if and only if 0 ∈ D̂h(x, y).

Proof. When 0 ∈ D̂h(x, y), we first conclude that ∇yg(x, y) = 0, which results in the inclusion

(x, y) ∈ M. Moreover, 0 ∈ D̂h(x, y) implies that there exists (dx, dy) ∈ D f (x, y) such that dx −
∇2

xyg(x, y)∇2
yyg(x, y)−1dy = 0. Therefore, it follows from Definition 2.20 that (x, y) is a Dh-stationary

point of CDB.
On the other hand, when (x, y) is a Dh-stationary point of CDB, from Theorem 3.12, it holds that

(x, y) ∈ M. Therefore, from the expression of Dh(x, y) and D̂h(x, y), we obtain that 0 ∈ Dh(x, y) =
D̂h(x, y) and the proof is completed.

Proposition 4.7. Suppose β ≥ 2M f Qg

µ3 . Then for any given (x, y) ∈ R
n × R

p and w ∈ D̂h(x, y), it holds

that

sup
ζ∈Dh(x,y)

〈w, ζ〉 ≥ min

{

1,
(2 −

√
2)µ

2

}

‖w‖2 .

Proof. For any (dx, dy) ∈ D f (x,A(x, y)), let

w =

[

dx−∇2
xyg(x,y)(∇2

yyg(x,y)−1dy−β∇yg(x,y))
β∇yg(x,y)

]

∈ D̂h(x, y),

and define

z1 =

[

dx−∇2
xy g(x,y)(∇2

yyg(x,y)−1dy−β∇y g(x,y))
β∇2

yyg(x,y)∇yg(x,y)

]

, z2 =
[ ∇3

xyyg(x,y)[∇2
yyg(x,y)−1∇y g(x,y)]∇2

yyg(x,y)−1dy

∇3
yyyg(x,y)[∇2

yyg(x,y)−1∇y g(x,y)]∇2
yyg(x,y)−1dy

]

.

Then from the expression of Dh, we have z1 + z2 ∈ Dh(x, y). Moreover, the expression of w and

Lemma 3.3 implies ‖w‖ ≥ β
∥

∥∇yg(x, y)
∥

∥ and ‖z2‖ ≤
√

2Qg M f

µ2

∥

∥∇yg(x, y)
∥

∥. As a result, we obtain

〈w, z1 + z2〉 ≥
∥

∥

∥dx −∇2
xyg(x, y)

(

∇2
yyg(x, y)−1dy − β∇yg(x, y)

)∥

∥

∥

2

+ β2µ
∥

∥∇yg(x, y)
∥

∥

2 −
√

2Qg M f

µ2

∥

∥∇yg(x, y)
∥

∥‖w‖

≥
∥

∥

∥dx −∇2
xyg(x, y)

(

∇2
yyg(x, y)−1dy − β∇yg(x, y)

)∥

∥

∥

2
+

(2 −
√

2)β2µ

2

∥

∥∇yg(x, y)
∥

∥

2

≥ min

{

1,
(2 −

√
2)µ

2

}

‖w‖2 ,

and this completes the proof.
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Algorithm 1 Basic subgradient method for solving CDB.

Require: Function f , g, initial point x0, y0.
1: for k = 1,2,... do
2: Compute wk by approximately evaluating ∇2

yyg(xk, yk)
−1∇yg(xk, yk) such that

∥

∥

∥∇2
yyg(xk, yk)wk −∇yg(xk, yk)

∥

∥

∥ ≤ ε1,k.

3: Choose (dx,k, dy,k) as an approximated evaluation of D f (xk, yk − wk).

4: Compute vk such that
∥

∥

∥
∇2

yyg(xk, yk)vk − dy,k

∥

∥

∥
≤ ε2,k.

5: Update xk and yk by

xk+1 = xk − ηk

(

dx,k −∇2
xyg(xk, yk)

(

vk − β∇yg(xk, yk)
)

)

,

yk+1 = yk − ηkβ∇yg(xk, yk).

6: end for
7: Return xk and yk.

With the definition of D̂h, Proposition 4.6 and Proposition 4.7, we can now present a basic subgra-
dient method for solving CDB in Algorithm 1. We observe that in Algorithm 1, the search direction
[

dx,k −∇2
xyg(xk, yk)

(

vk − β∇yg(xk, yk)
)

∇yg(xk, yk)

]

is an element that is approximately in D̂h(xk, yk).

To establish the convergence of Algorithm 1, we need the following assumption.

Assumption 4.8. In Algorithm 1, we assume

(a) The iterates are uniformly bounded: supk>0 ‖xk‖+ ‖yk‖ < +∞.

(b) The stepsize is nonnegative, square summable, but not summable:

ηk ≥ 0,
+∞

∑
k=0

ηk = +∞, and
+∞

∑
k=0

ηk
2
< +∞. (4.4)

(c) The set { f (x, y) : (x, y) is a D f -stationary point of BLO} has empty interior.

(d) Let the filtration {Fk} be the collection of the increasing σ-fields, i.e.,

Fk := σ((xj, yj, dx,j, dy,j) : j < k).

There exists a constant Mσ such that the approximated evaluation (dx,k, dy,k) satisfies the following
inequalities,

E

[

∥

∥

∥

(

dx,k − E[dx,k|Fk], dy,k − E[dy,k|Fk]
)∥

∥

∥

2 ∣
∣

∣Fk

]

≤ Mσ, for any k ≥ 1,

lim
k→+∞

dist
(

D f (xk, yk − wk),
(

E[dx,k|Fk], E[dy,k|Fk]
))

= 0.

Assumption 4.8(a)-(b) is the same as Assumption 4.1(a)-(b). Moreover, Assumption 4.8(c) holds
whenever both f and M are definable, and D f = ∂ f [16, Corollary 6.4], hence it is mild in practice. In

addition, Assumption 4.8(d) characterizes the way in which (dx,k, dy,k) is an approximated evaluation

of D f (xk, yk − wk) in the sense of conditional expectation.

Proposition 4.9. Suppose {χk} is a series of random variables such that for each k ≥ 1, χk is Fk+1-

measurable, E[χk|Fk] = 0, E[|χk|] < +∞, and supk>1 E[‖χk‖2] < +∞. Then for any {ηk} satisfying

(4.4), ∑
k
j=1 ηjχj converges to a finite limit almost surely.
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Proof. Let τk := ∑
k
j=1 ηjχj. From the definition of τk, we can conclude that for each k ≥ 1, E[τk|Fk] =

τk−1 and E[|τk|] ≤ ∑
k
j=1 ηjE[|χj|] < +∞. Then {τk} is a martingale with respect to the filtration {Fk}

[17, Definition 5.1.4]. Moreover, since E[χk|Fk] = 0, it holds that

E[‖τk‖2] = E[E[‖τk−1 + ηkχk‖2 |Fk]] ≤ η2
k E[‖χk‖2] + E[‖τk−1‖2],

Therefore, supk>1 E[‖τk‖2] < +∞, hence {τk} is an L2-martingale. Then from [17, Theorem 5.3.33],
we can conclude that τk converges to a finite limit almost surely.

Theorem 4.10. Suppose Assumption 4.8 holds, β ≥ 2M f Qg

µ3 and the tolerances ε1,k and ε2,k satisfy lim
k→+∞

ε1,k =

0 and
+∞

∑
k=0

ε2,kηk < +∞. Then almost surely, every limit point of {(xk, yk)} in Algorithm 1 is a D f -stationary

point of BLO and {h(xk, yk)} converges.

Proof. Consider the following auxiliary set-valued mapping Dtemp : R
n × R

p × R
p
⇒ R

n × R
p,

Dtemp(x, y, z) :=

{[

dx−∇2
xyg(x,y)(∇2

yyg(x,y)−1dy−β∇yg(x,y))
β∇yg(x,y)

]

:
[

dx
dy

]

∈ D f (x, z)

}

.

It is easy to verify that Dtemp has closed graph. Moreover, D̂h(x, y) = Dtemp(x, y,A(x, y)) holds for
any (x, y) ∈ R

n × R
p.

Assumption 4.8(a) and 4.8(b) imply that Assumption 4.1(a) and 4.1(b) hold. Let d̃x,k = E[dx,k|Fk],

d̃y,k = E[dy,k|Fk], and

ux,k = d̃x,k −∇2
xyg(xk, yk)

(

∇2
yyg(xk, yk)

−1d̃y,k − β∇yg(xk, yk)
)

, uy,k = β∇yg(xk, yk),

χx,k = (dx,k − d̃x,k)−∇2
xyg(xk, yk)∇2

yyg(xk, yk)
−1(dy,k − d̃y,k),

ξx,k = ∇2
xyg(xk, yk)(∇2

yyg(xk, yk)
−1dy,k − vk) + χx,k, ξy,k = 0.

Then from Step 4 in Algorithm 1 we obtain
∥

∥ξx,k

∥

∥ ≤ µ−1Lgε2,k. As a result, Assumption 4.8(b)

shows that
Lg

µ ∑
+∞
k=0 ε2,kηk < +∞. Moreover, Proposition 4.9 illustrates that ∑

+∞
k=1 ηkχx,k < +∞. Thus

∑
+∞
k=0

∥

∥ηkξx,k

∥

∥ < +∞ and Assumption 4.1(c) holds.

Assumption 4.8(d) illustrates that lim
k→+∞

dist
(

(ux,k, uy,k),Dtemp(xk, yk, yk − wk)
)

= 0, and Step 2 in

Algorithm 1 shows that lim
k→+∞

∥

∥

∥wk − (∇2
yyg(xk, yk))

−1∇yg(xk, yk)
∥

∥

∥ = 0. For any sequence {kj} ⊂ N

such that limj→+∞(xk j
, yk j

) = (x̃, ỹ), it holds from Step 2 in Algorithm 1 that limj→+∞(yk j
− wk j

) =

A(x̃, ỹ). Then Proposition 4.3 illustrates that

lim
N→+∞

dist

(

1

N

N

∑
j=1

[

ux,k j

uy,k j

]

, D̂h(x̃, ỹ)

)

= lim
N→+∞

dist

(

1

N

N

∑
j=1

[

ux,k j

uy,k j

]

,Dtemp(x̃, ỹ,A(x̃, ỹ))

)

= 0,

which guarantees Assumption 4.1(d).
Furthermore, Assumption 4.1(e) directly follows from Assumption 4.8(c) and Proposition 4.6, and

Assumption 4.1(f) is implied by Proposition 4.7. Therefore, Assumption 4.1 holds for Algorithm 1.
As a result, based on Theorem 4.4 and Theorem 3.12, we obtain that any cluster point of the

sequence {(xk, yk)} generated by Algorithm 1 is a D f -stationary point of BLO, and the sequence

{h(xk, yk)} converges.

As illustrated in Remark 2.22, when we choose the (dx,k, dy,k) in Algorithm 1 by random sam-

pling of gradient approaches, i.e., (dx,k, dy,k) ∈ ∂ηk
f (xk, yk − wk). It holds from Proposition 2.5 that

dist
(

(dx,k, dy,k), ∂ f (xk, yk − wk)
)

→ 0. Hence (dx,k, dy,k) satisfies Assumption 4.8(d) with D f = ∂ f .

Similarly, if we choose (dx,k, dy,k) by randomized smoothing approaches, [39, Theorem 3.1, Lemma
D.1] illustrates that Assumption 4.8(d) is satisfied with D f = ∂ f . Then we immediately have the
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following corollary illustrating that {(xk, yk)} in Algorithm 1 converges to a first-order stationary
point of BLO.

Corollary 4.11. Suppose Assumption 4.8 holds with D f = ∂ f , the tolerances ε1,k and ε2,k satisfy lim
k→+∞

ε1,k =

0 and
+∞

∑
k=0

ε2,kηk < +∞. Moreover, suppose (dx,k, dy,k) in Algorithm 1 is generated by one of the following

schemes in each iteration k,

• (dx,k, dy,k) ∈ ∂ηk
f (xk, yk − wk);

• (dx,k, dy,k) = ∂̃ηk
f (xk, yk − wk; ζx,k, ζy,k), where (ζx,k, ζy,k) is uniformly sampled over Bδ(0) and inde-

pendent of Fk.

Then every limit point of {(xk, yk)} in Algorithm 1 is a first-order stationary point of BLO and {h(xk, yk)}
converges.

4.3 A modified subgradient method

Recently, an efficient single-loop algorithm, named TTSA, is proposed by [27] for BLO with smooth
f . The deterministic version of TTSA follows the following updating schemes,

xk+1 = xk − ηk

(

∇x f (xk, yk)−∇2
xyg(xk, yk)∇2

yyg(xk, yk)
−1∇y f (xk, yk)

)

,

yk+1 = yk − τk∇yg(xk, yk).
(4.5)

The x-variable in TTSA is updated along an approximate gradient direction of Φ(x), while the y-
variable is updated by taking a gradient descent step for the lower-level problem of BLO. [27] proves
the global convergence of TTSA under a two-timescale condition, i.e., the ratio of stepsizes ηk/τk

tends to zero as the maximum number of iterations goes to infinity. Very recently, [35] proposes
another single-loop algorithm named SUSTAIN, which can be regarded as a momentum-accelerated
version of TTSA and waives the two-timescale condition in TTSA. However, the analysis for TTSA
and SUSTAIN is based on the Lipschitz smoothness of f . To our best knowledge, the methodologies
employed in [27, 35] cannot be applied to the nonsmooth bilevel problem (BLO).

In this subsection, we first consider the following set-valued mapping with a prefixed constant
β̂ > 0,

D̂s(x, y) :=

{[

dx−∇2
xyg(x,y)∇2

yyg(x,y)−1dy

β̂∇yg(x,y)

]

:
[

dx
dy

]

∈ D f (x,A(x, y))

}

,

which yields a subgradient method as presented in Algorithm 2. Moreover, based on our proposed
framework in Section 4.1, we prove the convergence properties of Algorithm 2 and discuss its rela-
tionship with the TTSA algorithm in Remark 4.16.

In the next two propositions, we establish some properties of D̂s.

Proposition 4.12. Suppose β ≥ 2Qg M f

µ3 . Then for any given (x, y) ∈ R
n × R

p, 0 ∈ Dh(x, y) if and only if

0 ∈ D̂s(x, y).

The proof is similar to Proposition 4.6, hence we omit its proof for simplicity.

Proposition 4.13. Suppose β ≥ 4Qg M f

µ3 , and β̂ ≥ β max
{ 8L2

g

µ , 1
4µ ,

µ
4

}

. Then for any given (x, y) ∈ R
n ×R

p ,

and for any w ∈ D̂s(x, y), it holds that

sup
z∈Dh(x,y)

〈ξ, z〉 ≥ min

{

1

4
,

β2

16β̂2

}

‖w‖2 .
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Proof. For any (dx, dy) ∈ D f (x,A(x, y)), let

z1 =

[

dx−∇2
xyg(x,y)∇2

yyg(x,y)−1dy

β∇2
yyg(x,y)∇yg(x,y)

]

, z2 =
[

β∇2
xyg(x,y)∇yg(x,y)

0

]

,

z3 =

[

∇3
xyyg(x,y)[∇2

yyg(x,y)−1∇yg(x,y)]∇2
yyg(x,y)−1dy

∇3
yyyg(x,y)[∇2

yyg(x,y)−1∇yg(x,y)]∇2
yyg(x,y)−1dy

]

, w =

[

dx−∇2
xyg(x,y)∇2

yyg(x,y)−1dy

β̂∇yg(x,y)

]

.

(4.6)

Then it holds that z1 + z2 + z3 ∈ Dh(x, y) and w ∈ D̂s(x, y). From the expression of w and the
Lipschitz continuity of ∇2

yyg(x, y), we have

‖w‖ ≤ β̂
∥

∥∇yg(x, y)
∥

∥+
∥

∥

∥dx −∇2
xyg(x, y)∇2

yyg(x, y)−1dy

∥

∥

∥ , ‖z3‖ ≤ Qg M f

µ2

∥

∥∇yg(x, y)
∥

∥ ,

which further implies that

〈z3, w〉

≥ − Qg M f

µ2

∥

∥∇yg(x, y)
∥

∥

∥

∥

∥dx −∇2
xyg(x, y)∇2

yyg(x, y)−1dy

∥

∥

∥−
β̂Qg M f

µ2

∥

∥∇yg(x, y)
∥

∥

2

≥ − 1

4

∥

∥

∥dx −∇2
xyg(x, y)∇2

yyg(x, y)−1dy

∥

∥

∥

2
−
(

β̂Qg M f

µ2
+

Q2
g M2

f

µ4

)

∥

∥∇yg(x, y)
∥

∥

2
.

As a result, we obtain

〈w, z1 + z2 + z3〉 ≥
∥

∥

∥dx −∇2
xyg(x, y)∇2

yyg(x, y)−1dy

∥

∥

∥

2
+ ββ̂µ

∥

∥∇yg(x, y)
∥

∥

2

− 2Lgβ
∥

∥

∥dx −∇2
xyg(x, y)∇2

yyg(x, y)−1dy

∥

∥

∥

∥

∥∇yg(x, y)
∥

∥+ 〈z3, w〉

≥ 1

2

∥

∥

∥dx −∇2
xyg(x, y)∇2

yyg(x, y)−1dy

∥

∥

∥

2
+
(

ββ̂µ − 2L2
gβ2
)

∥

∥∇yg(x, y)
∥

∥

2
+ 〈z3, w〉

≥ 1

4

∥

∥

∥
dx −∇2

xyg(x, y)∇2
yyg(x, y)−1dy

∥

∥

∥

2
+

(

ββ̂µ − 2L2
gβ2 − β̂Qg M f

µ2
−

Q2
g M2

f

µ4

)

∥

∥∇yg(x, y)
∥

∥

2

≥ 1

4

∥

∥

∥dx −∇2
xyg(x, y)∇2

yyg(x, y)−1dy

∥

∥

∥

2
+

β2

16

∥

∥∇yg(x, y)
∥

∥

2 ≥ min
{1

4
,

β2

16β̂2

}

‖w‖2 ,

and the proof is completed.

With Propositions 4.13 and (4.6), we are now ready to present our modified subgradient method
for solving CDB in Algorithm 2, and establish its convergence.

Theorem 4.14. Suppose Assumption 4.8 holds, β ≥ 4Qg M f

µ3 , β̂ ≥ β · max
{ 8L2

g

µ , 1
4µ ,

µ
4

}

and the tolerance ε1,k

and ε2,k satisfy lim
k→+∞

ε1,k = 0,
+∞

∑
k=0

ε2,kηk < +∞. Then every limit point of {(xk, yk)} generated by Algorithm

2 is a D f -stationary point of BLO and {h(xk, yk)} converges.

Proof. Consider the auxiliary set-valued mapping Dtemp : R
n × R

p × R
p
⇒ R

n × R
p that is defined

as

Dtemp(x, y, z) :=

{[

dx−∇2
xyg(x,y)∇2

yyg(x,y)−1dy

β̂∇yg(x,y)

]

:
[

dx
dy

]

∈ D f (x, z)

}

.

Then it is easy to verify that Dtemp has closed graph.

Assumption 4.8(a) and 4.8(b) implies that Assumption 4.1(a) and 4.1(b) hold. Let d̃x,k = E[dx,k|Fk],

d̃y,k = E[dy,k|Fk], and

ux,k = d̃x,k −∇2
xyg(xk, yk)∇2

yyg(xk, yk)
−1d̃y,k, uy,k = β̂∇yg(xk, yk),

χx,k = (dx,k − d̃x,k)−∇2
xyg(xk, yk)∇2

yyg(xk, yk)
−1(dy,k − d̃y,k),

ξx,k = ∇2
xyg(xk, yk)(∇2

yyg(xk, yk)
−1dy,k − vk) + χx,k, ξy,k = 0.
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Algorithm 2 A modified subgradient method for solving CDB.

Require: Function f , g, initial point x0, y0.
1: for k = 1,2,... do
2: Set the tolerance ε1,k and ε2,k.
3: Compute ∇yg(xk, yk).

4: Compute an approximated evaluation wk for ∇2
yyg(xk, yk)

−1∇yg(xk, yk) that satisfies
∥

∥

∥∇2
yyg(xk, yk)wk −∇yg(xk, yk)

∥

∥

∥ ≤ ε1,k.

5: Choose (dx,k, dy,k) as an approximated evaluation of D f (xk, yk − wk).

6: Compute vk such that
∥

∥

∥
∇2

yyg(xk, yk)vk − dy,k

∥

∥

∥
≤ ε2,k.

7: Update xk and yk by

xk+1 = xk − ηk

(

dx,k −∇2
xyg(xk, yk)vk

)

,

yk+1 = yk − ηk β̂∇yg(xk, yk).

8: end for
9: Return xk and yk.

Then from Step 6 in Algorithm 2 we obtain
∥

∥ξx,k

∥

∥ ≤ µ−1Lgε2,k. As a result, Assumption 4.1(b) shows

that µ−1Lg ∑
+∞
k=1 ε2,kηk < +∞. Furthermore, from Proposition 4.9 it holds that ∑

+∞
k=1 χx,k converges to

a finite limit almost surely. Therefore, ∑
+∞
k=0 ηkξx,k converges to a finite limit almost surely, and hence

Assumption 4.1(c) holds.
Notice that dist

(

(ux,k, uy,k),Dtemp(xk, yk, yk − wk)
)

→ 0. Moreover, Step 4 in Algorithm 1 shows

that lim
k→+∞

∥

∥

∥wk −∇2
yyg(xk, yk)∇yg(xk, yk)

∥

∥

∥ = 0. For any sequence {kj} ⊂ N such that lim
j→+∞

(xk j
, yk j

) =

(x̃, ỹ), yk j
− wk j

→ A(xk j
, yk j

). Then Proposition 4.3 illustrates that

lim
N→+∞

dist

(

1

N

N

∑
j=1

[

ux,k j

uy,k j

]

, D̂s(x̃, ỹ)

)

= lim
N→+∞

dist

(

1

N

N

∑
j=1

[

ux,k j

uy,k j

]

,Dtemp(x̃, ỹ,A(x̃, ỹ))

)

= 0,

which guarantees Assumption 4.1(d).
Furthermore, Assumption 4.1(e) directly follows from Assumption 4.8(c) and Proposition 4.12,

and Assumption 4.1(f) is implied by Proposition 4.13. From Theorem 4.4 and Theorem 3.12, we can
conclude that for the sequence {(xk, yk)} generated by Algorithm 2, any cluster point of {(xk, yk)} is
a D f -stationary point of BLO, and the sequence {h(xk, yk)} converges.

Similar to Corollary 4.11, the following corollary illustrates that when (dx,k, dy,k) in Step 5 of Algo-
rithm 2 is generated by the randomized approaches mentioned in Remark 2.22, the yielded sequence
{(xk, yk)} converges to a first-order stationary point of BLO.

Corollary 4.15. Suppose Assumption 4.8 holds with D f = ∂ f , β ≥ 4Qg M f

µ3 , β̂ ≥ β · max
{ 8L2

g

µ , 1
4µ ,

µ
4

}

,

and the tolerance ε1,k and ε2,k satisfy lim
k→+∞

ε1,k = 0,
+∞

∑
k=0

ε2,kηk < +∞. Moreover, suppose (dx,k, dy,k) in

Algorithm 2 is generated by one of the following schemes in each iteration k,

• (dx,k, dy,k) ∈ ∂ηk
f (xk, yk − wk);

• (dx,k, dy,k) = ∂̃ηk
f (xk, yk − wk; ζx,k, ζy,k), where (ζx,k, ζy,k) is uniformly sampled over Bδ(0) and inde-

pendent of Fk.

Then almost surely, every limit point of {(xk, yk)} generated by Algorithm 2 is a first-order stationary point of
BLO and {h(xk, yk)} converges.

20



Remark 4.16. When f is assumed to be Lipschitz smooth over R
n × R

p, Algorithm 2 coincides with (4.5),
which can be regarded as the deterministic version of the TTSA algorithm in [27], and the SUSTAIN algorithm

with η
g
t = η

f
t = 1 in [35, Equation (13)-(14)] (i.e. SUSTAIN algorithm without momentum accelerations).

Therefore, the deterministic version of TTSA can be interpreted as an approximated gradient descent algorithm
that minimizes CDB over R

n × R
p, while SUSTAIN can be regarded as a momentum-accelerated (stochastic)

gradient method for solving (CDB). Moreover, as illustrated in Algorithm 2, we can extend the deterministic
version of these algorithms to handle nonsmooth bilevel optimization problems based on our proposed frame-
work.

4.4 An inexact subgradient method

Recently, another efficient single-loop approach named STABLE [11], is proposed for nonconvex-
strongly-convex bilevel optimization problems where the objective functions are assumed to be Lip-
schitz smooth over R

n × R
p. The deterministic version of STABLE algorithm employs the following

updating schemes,

xk+1 = xk − ηk

(

∇x f (xk, yk)−∇2
xyg(xk, yk)∇2

yyg(xk, yk)
−1∇y f (xk, yk)

)

,

yk+1 = yk − τk∇yg(xk, yk) + ηk∇2
yxg(xk, yk)∇2

yyg(xk, yk)
−1
(

∇x f (xk, yk)

−∇2
xyg(xk, yk)∇2

yyg(xk, yk)
−1∇y f (xk, yk)

)

.

(4.7)

Here the x-variable takes an approximated gradient descent step for Φ(x). However, the updating
schemes of y-variable can be hard to understand by regarding STABLE algorithm as an approximated
gradient descent algorithm for minimizing Φ(x).

In this subsection, we propose an inexact subgradient method based on our proposed framework
with the following set-valued mapping D̂p(x, y),

D̂p(x, y) = W(x, y)⊤W(x, y)D f (x,A(x, y)) +
[

0
β∇yg(x,y)

]

, (4.8)

where W(x, y) ∈ R
n×(n+p) is defined by W(x, y) =

[

In,−∇2
xyg(x, y)∇2

yyg(x, y)−1
]

.

We first prove that D̂p(x, y) has compact and convex values, and satisfies the Assumption 4.1(f).

Moreover, based on D̂p(x, y), we propose a subgradient method as presented in Algorithm 3 and
show its global convergence properties directly from our proposed framework. A discussion on how
to understand STABLE algorithm based on CDB is presented at the end of this subsection.

In the next two propositions, we establish some properties of D̂p(x, y).

Proposition 4.17. Suppose β ≥ 2M f Qg

µ3 . Then for any (x, y) ∈ R
n × R

p, 0 ∈ Dh(x, y) if and only if

0 ∈ D̂p(x, y).

Proof. When 0 ∈ Dh(x, y), it holds from Theorem 3.12 that (x, y) ∈ M and there exists (dx, dy) ∈
D f (x, y) such that 0 = dx − ∇2

xyg(x, y)∇2
yyg(x, y)−1dy ∈ W(x, y)D f (x, y). Therefore, we conclude

that
0 ∈ W(x, y)⊤W(x, y)D f (x, y) +

[

0
β∇yg(x,y)

]

= D̂p(x, y).

On the other hand, suppose 0 ∈ D̂p(x, y), then there exists (dx, dy) ∈ D f (x,A(x, y)) such that

dx −∇2
xyg(x, y)∇2

yyg(x, y)−1dy = 0

−∇2
yyg(x, y)−1∇yxg(x, y)

(

dx −∇2
xyg(x, y)∇2

yyg(x, y)−1dy

)

+ β∇yg(x, y) = 0.

As a result, it holds that ∇yg(x, y) = 0 and hence (x, y) ∈ M. Together with (4.7) and Definition 2.20,
we obtain that (x, y) is a Dh-stationary point of BLO.
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Proposition 4.18. Suppose β ≥ max
{

8M f Qg

µ3 ,
4M f QgLg

µ3.5

}

. Then for any (x, y) ∈ R
n × R

p and any w ∈
D̂p(x, y), it holds that

sup
z∈Dh(x,y)

〈z, w〉 ≥ min

{

µ2

4L2
g

,
µ

4

}

‖w1 + w2‖2 .

Proof. For any (dx, dy) ∈ D f (x,A(x, y)), let z1, z2 and z3 be defined as

z1 =
[

dx−∇2
xyg(x,y)∇2

yyg(x,y)−1dy

0

]

, z2 =

[

∇3
xyyg(x,y)[∇2

yyg(x,y)−1∇yg(x,y)]∇2
yyg(x,y)−1dy

∇3
yyyg(x,y)[∇2

yyg(x,y)−1∇yg(x,y)]∇2
yyg(x,y)−1dy

]

,

z3 =

[

β∇2
xyg(x,y)∇yg(x,y)

β∇2
yyg(x,y)∇yg(x,y)

]

, w1 = W(x, y)⊤W(x, y)
[

dx
dy

]

, w2 =
[

0
β∇yg(x,y)

]

.

Then it holds that z1 + z2 + z3 ∈ Dh(x, y), and w1 +w2 ∈ D̂p(x, y). Moreover, as ‖z2‖ ≤ 2M f Qg

µ2

∥

∥∇yg(x, y)
∥

∥,

we obtain the following inequalities through simple calculations,

〈z1, w1〉 = ‖z1‖2 , 〈z2, w1〉 ≥ −
(

2M f Qg

µ2

)

∥

∥∇yg(x, y)
∥

∥‖w1‖ , 〈z3, w1〉 = 0,

〈z1, w2〉 = 0, 〈z2, w2〉 ≥ −2M f Qgβ

µ2

∥

∥∇yg(x, y)
∥

∥

2
, 〈z3, w2〉 ≥ µβ2

∥

∥∇yg(x, y)
∥

∥

2
.

By Cauchy’s inequality, it holds from β ≥ 4M f QgLg

µ3.5 that

µ2

4L2
g
‖w1‖2 +

µβ2

4

∥

∥∇yg(x, y)
∥

∥

2 ≥ 2M f Qg

µ2

∥

∥∇yg(x, y)
∥

∥‖w1‖ .

Therefore, we get

〈z1 + z2 + z3, w1 + w2〉

≥ ‖z1‖2 + µβ2
∥

∥∇yg(x, y)
∥

∥

2 −
(

2M f Qg

µ2

)

∥

∥∇yg(x, y)
∥

∥ ‖w1‖ −
2M f Qgβ

µ2

∥

∥∇yg(x, y)
∥

∥

2

≥ µ2

2L2
g
‖w1‖2 + µβ2

∥

∥∇yg(x, y)
∥

∥

2 −
(

2M f Qg

µ2

)

∥

∥∇yg(x, y)
∥

∥‖w1‖ −
µβ2

4

∥

∥∇yg(x, y)
∥

∥

2

≥ µ2

4L2
g
‖w1‖2 +

µβ2

4

∥

∥∇yg(x, y)
∥

∥

2 ≥ min

{

µ2

4L2
g

,
µ

4

}

‖w1 + w2‖2 ,

and this completes the proof.

With Propositions 4.17 and 4.18, we can now present our inexact subgradient method for solving
CDB in Algorithm 3 and establish its convergence.

Theorem 4.19. Suppose Assumption 4.8 holds, β ≥ max
{

8M f Qg

µ3 ,
4M f Qg Lg

µ3.5

}

and limk→+∞ ε1,k = 0. Then

every limit point of {(xk, yk)} generated by Algorithm 3 is a D f -stationary points of BLO and {h(xk, yk)}
converges.

Proof. Assumption 4.8(a) and 4.8(b) imply that Assumption 4.1(a) and 4.1(b) hold. Let D̂temp(x, y, z) :=

W(x, y)⊤W(x, y)D f (x, z) +
[

0
β∇yg(x,y)

]

, d̃x,k = E[dx,k|Fk], d̃y,k = E[dy,k|Fk], and

ux,k = d̃x,k −∇2
xyg(xk, yk)∇2

yyg(xk, yk)
−1d̃y,k,

χ̂x,k = (dx,k − d̃x,k)−∇2
xyg(xk, yk)∇2

yyg(xk, yk)
−1(dy,k − d̃y,k),

uy,k = β∇yg(xk, yk)−∇2
yxg(xk, yk)∇2

yyg(xk, yk)
−1ux,k,

ξx,k = −∇2
yxg(xk, yk)∇2

yyg(xk, yk)
−1χ̂x,k, ξy,k = 0.
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Algorithm 3 Inexact subgradient method for solving CDB.

Require: Function f , g, initial point x0, y0.
1: for k = 1,2,... do
2: Compute wk by approximately evaluating ∇2

yyg(xk, yk)
−1∇yg(xk, yk) such that

∥

∥

∥∇2
yyg(xk, yk)wk −∇yg(xk, yk)

∥

∥

∥ ≤ ε1,k.

3: Choose (dx,k, dy,k) as an approximated evaluation of D f (xk, yk − wk).

4: Compute px,k = dx,k −∇2
xyg(xk, yk)∇2

yyg(xk, yk)
−1dy,k.

5: Update xk and yk by

xk+1 = xk − ηk px,k,

yk+1 = yk − ηk

(

β∇yg(xk, yk)−∇2
yxg(xk, yk)∇2

yyg(xk, yk)
−1 px,k

)

.

6: end for
7: Return xk and yk.

It is easy to verify the validity of Assumption 4.1(c) from Proposition 4.9. Moreover, D̂temp(x, y,A(x, y)) =

D̂p(x, y) holds for any (x, y) ∈ R
n × R

p, and

lim
k→+∞

dist
(

(ux,k, uy,k), D̂temp(xk, yk, yk − wk)
)

= 0.

Furthermore, notice that limk→+∞ ε1,k = 0. Then for any subsequence {(xk j
, yk j

)} that converges to

{(x̃, ỹ)}, it holds that (xk, yk, yk − wk) converges to (x̃, ỹ,A(x̃, ỹ)). Then Proposition 4.3 illustrates that

lim
N→+∞

dist

(

1
N ∑

N
j=1

[

ux,k j

uy,k j

]

, D̂p(x̃, ỹ)

)

= 0, which verifies the validity of Assumption 4.1(d). Addi-

tionally, Assumption 4.8(c) implies Assumption 4.1(e), and Proposition 4.18 guarantees the validity
of Assumption 4.1(f). Then from Theorem 4.4, we can conclude that {h(xk, yk)} converges and any
cluster point of {(xk, yk)} yielded by Algorithm 3 is a D f -stationary point of BLO.

Similar to Corollary 4.11 and Corollary 4.15, we have the following corollary illustrating that
{(xk, yk)} weakly converges to first-order stationary points of BLO when (dx,k, dy,k) is generated by
some randomized approaches mentioned in Remark 2.22.

Corollary 4.20. Suppose Assumption 4.8 holds with D f = ∂ f , limk→+∞ ε1,k = 0, and β ≥ max
{

8M f Qg

µ3 ,
4M f Qg Lg

µ3.5

}

.

Moreover, suppose (dx,k, dy,k) in Algorithm 2 is generated by one of the following schemes in each iteration k,

• (dx,k, dy,k) ∈ ∂ηk
f (xk, yk − wk);

• (dx,k, dy,k) = ∂̃ηk
f (xk, yk − wk; ζx,k, ζy,k), where (ζx,k, ζy,k) is uniformly sampled over Bδ(0) and inde-

pendent of Fk.

Then every limit point of {(xk, yk)} generated by Algorithm 3 is a first-order stationary point of BLO and
{h(xk, yk)} converges.

Remark 4.21. When f is assumed to be Lipschitz smooth over R
n × R

p, Algorithm 3 coincides with the
updating schemes (4.7) of the deterministic version of the STABLE algorithm. As illustrated in Proposition
4.18, the deterministic version of STABLE can be regarded as a descent algorithm for h in CDB in each iteration.
This provides a clear understanding of the convergence properties of the STABLE algorithm, and demonstrates
the efficiency of Algorithm 3. Moreover, according to Step 4 in Algorithm 3, the stepsizes ηk and τk in (4.7)
should satisfy τk = βηk, which further explains the different theoretical bounds for ηk and τk suggested in [11,
Theorem 2]. Therefore, we can conclude that CDB exhibits its ability in interpreting the STABLE algorithm and
allows great flexibility in employing advanced theoretical analysis developed for unconstrained optimization.
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5 Conclusion

In this paper, we propose an unconstrained optimization problem CDB for the bilevel optimiza-
tion problem BLO. We prove that under mild conditions, BLO and CDB have the same stationary
points over R

n × R
p in the sense of both Clarke subdifferential and conservative field. Moreover,

CDB has explicit formulation, and its function value and corresponding conservative field can be eas-
ily calculated in the presence of D f and the derivatives of g. Therefore, various prior arts for uncon-
strained nonsmooth optimization can be directly employed to solve BLO through the unconstrained
optimization problem CDB.

We propose a unified framework for developing subgradient methods, which further inspires
several subgradient-based methods for solving BLO through CDB. In addition, we show that the pro-
posed framework provides simple interpretations for some existing single-loop algorithms. Specif-
ically, we show that the TTSA, SUSTAIN and STABLE algorithm can be regarded as approximated
first-order methods for minimizing CDB when f is assumed to be Lipschitz smooth. Based on our
proposed framework, we can straightforwardly extend these algorithms to nonsmooth cases and es-
tablish their global convergence properties.

Furthermore, suppose the objective functions f and g in BLO are expressed as the expectation of
some random variables, i.e.

f (x, y) = Eξ [ fξ(x, y)], g(x, y) = Eθ [gθ(x, y)],

where fξ : R
n ×R

p → R and gθ : R
n ×R

p → R are continuous functions that depend on the random
variables ξ and θ, respectively. Then the corresponding CDB can be formulated as

min
x∈Rn,y∈Rp

h̃(x, y) :=Eξ

[

fξ

(

x, y − Eθ

[

∇2
yygθ(x, y)

]−1
Eθ

[

∇ygθ(x, y)
]

)]

+
β

2

∥

∥Eθ [∇ygθ(x, y)]
∥

∥

2
,

which can be categorized as a special case of unconstrained conditional stochastic optimization [30].
Therefore, we can directly apply some existing advanced approaches [37, 31, 12, 23] to solve CDB
when f is Lipschitz smooth. Moreover, their theoretical properties, including global convergence,
iteration complexity and sample complexity, directly follow the results from these existing works.
We leave the discussion on how to design efficient algorithms to minimize h̃ over R

n × R
p for future

investigation.
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