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Abstract. A homomorphism φ from a guest graph G to a host graph H is locally
bijective, injective or surjective if for every u ∈ V (G), the restriction of φ to the
neighbourhood of u is bijective, injective or surjective, respectively. We prove a
number of new FPT, W[1]-hard and paraNP-complete results for the corresponding
decision problems LBHom, LIHom and LSHom by considering a hierarchy of
parameters of the guest graph G. In this way we strengthen several existing results.
For our FPT results, we develop a new algorithmic framework that involves a
general ILP model. We also use our framework to prove FPT results for the Role
Assignment problem, which originates from social network theory and is closely
related to locally surjective homomorphisms.
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1 Introduction

A homomorphism from a graph G to a graph H is a mapping φ : V (G) → V (H) such
that φ(u)φ(v) ∈ E(H) for every uv ∈ E(G). Graph homomorphisms generalise graph
colourings (using a complete graph for H) and have been intensively studied over a long
period of time, both from a structural and an algorithmic perspective. We refer to the
textbook of Hell and Nešetřil [51] for a further introduction.

We write G→ H if there exists a homomorphism from G to H; here, G is called the
guest graph and H is the host graph. We denote the corresponding decision problem by
Hom, and if H is fixed, that is, not part of the input, we write H-Hom. For graphs H
without self-loops, the renowned Hell-Nešetřil dichotomy [49] states that H-Hom is
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Fig. 1. Left: an example of a locally injective homomorphism which is not locally surjective.
Middle: an example of a locally surjective homomorphism which is not locally injective. Right: an
example of a locally bijective homomorphism.

polynomial-time solvable if H is bipartite, and NP-complete otherwise. We denote the
vertices of H by 1, . . . , |V (H)| and call them colours. The reason for doing this is that
graph homomorphisms generalise graph colourings: there exists a homomorphism from a
graph G to the complete graph on k vertices if and only if G is k-colourable.

Instead of fixing the host graph H, one can also restrict the structure of the guest
graph G by bounding some graph parameter. A classical result states that Hom is
polynomial-time solvable when the guest graph G has bounded treewidth [20,42]. The core
of a graph G is the subgraph F of G such that G→ F and there is no proper subgraph
F ′ of F with G→ F ′ (the core is unique up to isomorphism [50]). Dalmau, Kolaitis and
Vardi [23] proved that the Hom problem is polynomial-time solvable even if the core of
the guest graph G has bounded treewidth. This result was strengthened by Grohe [47],
who proved that if FPT 6= W[1], then Hom can be solved in polynomial time if and only if
this condition holds.

1.1 Locally Constrained Homomorphisms

We are interested in three well-studied variants of graph homomorphisms that occur
after placing constraints on the neighbourhoods of the vertices of the guest graph G.
Consider a homomorphism φ from a graph G to a graph H. We say that φ is locally
injective, locally bijective or locally surjective for a vertex u ∈ V (G) if the restriction
φu : NG(u) → NH(φ(u)) of φ is injective, bijective or surjective, respectively. Here,
NG(u) = {v | uv ∈ E(G)} denotes the (open) neighbourhood of a vertex u in a graph G.
We say that φ is locally injective, locally bijective or locally surjective if φ is locally injective,
locally bijective or locally surjective for every u ∈ V (G). We denote the existence of these
locally constrained homomorphisms by G B−→ H, G I−→ H and G S−→ H, respectively; see
Figure 1 for some examples.

The three locally constrained variants have been well studied in several settings over
a long period of time. For example, locally injective homomorphisms are also known as
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partial graph coverings and are used in telecommunications [34], in distance constrained
labelling [33] and as indicators of the existence of homomorphisms of derivative graphs [66].
Locally bijective homomorphisms originate from topological graph theory [5,65] and are
more commonly known as graph coverings. They are used in distributed computing [2,3,8]
and in constructing highly transitive regular graphs [6]. Locally surjective homomorphisms
are sometimes called colour dominations [60]. They have applications in distributed
computing [16,17] and in social science [31,71,74,76]. In the latter context they are known
as role assignments, as we will explain in more detail below. (see Section 1.2).

We study the following three decision problems that take two graphs G and H as input
and ask if there exists a homomorphism from G to H of one of the three local kinds.

Locally Bijective Homomorphism (LBHom)
Input: Graphs G and H.
Question: Does G B−→ H hold?

Locally Injective Homomorphism (LIHom)
Input: Graphs G and H.
Question: Does G I−→ H hold?

Locally Surjective Homomorphism (LSHom)
Input: Graphs G and H.
Question: Does G I−→ H hold?

As before, we use the notation H-LBHom, H-LIHom and H-LSHom in the case when
the host graph H is fixed.

Out of the three problems, only the complexity of H-LSHom has been completely
classified, both for general graphs and bipartite graphs [37]. We refer to a series of
papers [1,7,34,36,57,58,63] for polynomial-time solvable and NP-complete cases of H-
LBHom and H-LIHom; see also the survey by Fiala and Kratochvíl [35]. Some more
recent results include sub-exponential algorithms for H-LBHom, H-LIHom and H-
LSHom on string graphs [68], complexity results for the list version of H-LSHom[29] and
complexity results for H-LBHom for host graphs H that are multigraphs and/or have
semi-edges [10,11,12,59].

In our paper we assume that both G andH are part of the input. We note a fundamental
difference between locally injective homomorphisms on the one hand and locally bijective
and surjective homomorphisms on the other. Namely, for connected graphs G and H,
we must have |V (G)| ≥ |V (H)| if G B−→ H or G S−→ H (see Lemma 1 in Section 2.3). In
contrast, H might be arbitrarily larger than G if G I−→ H holds. For example, if we let G
be a complete graph and H be a graph without self-loops, then G I−→ H holds if and only
if H contains a clique on at least |V (G)| vertices.

The above difference is also reflected in the complexity results for the three problems
under input restrictions. In fact, LIHom is closely related to the Subgraph Isomorphism
problem and is usually the hardest problem. For example, LBHom is Graph Isomorphism-
complete on chordal guest graphs, but polynomial-time solvable on interval guest graphs and
LSHom is NP-complete on chordal guest graphs, but polynomial-time solvable on proper
interval guest graphs [48]. In contrast, LIHom is NP-complete even on complete guest
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graphs G, which follows from a reduction from the Clique problem via the aforementioned
equivalence: G I−→ H holds if and only if H contains a clique on at least |V (G)| vertices.

Finally, we emphasize that the aforementioned polynomial-time result on Hom for
guest graphs G with a core of bounded treewidth [20,42] does not carry over to any of the
three locally constrained homomorphism problems. Indeed, LBHom, LSHom and LIHom
are NP-complete for guest graphs G of path-width at most 5, 4 and 2, respectively [19] (all
three problems are polynomial-time solvable if G is a tree [19,38]). It is also known that
LBHom [56], LSHom [60] and LIHom [34] are NP-complete even if G is cubic and H is
the complete graph K4 on four vertices, but polynomial-time solvable if G has bounded
treewidth and one of the two graphs G or H has bounded maximum degree [19].

1.2 An Application: Role Assignments

Locally surjective homomorphisms from a graph G to a graph H are known as H-role
assignments in social network theory. We will include this topic in our investigation and
provide some brief context.

Suppose that we are given a social network of individuals whose properties we aim to
characterise. Can we assign each individual a role such that individuals with the same role
relate in the same way to other individuals with some role, using exactly h different roles
in total?

To formalise the above question, we model the network as a graph G, where vertices
represent individuals and edges represent the existence of a relationship between two
individuals. We now ask whether G has an h-role assignment, that is, a function f that
assigns each vertex u ∈ V (G) a role f(u) ∈ {1, . . . , h}, such that f(V (G)) = {1, . . . , h}
and for every two vertices u and v, if f(u) = f(v) then f(NG(u)) = f(NG(v)).

Role assignments were introduced by White and Reitz [76] as regular equivalences and
were called role colourings by Everett and Borgatti [31]. We observe that two adjacent
vertices u and v may have the same role, that is, f(u) = f(v) is allowed (so role assignments
are not proper colourings). Hence, a connected graph G has an h-role assignment if and
only if G S−→ H for some connected graph H with |V (H)| = h, as long as we allow H to
have self-loops (while we assume that G is a graph with no self-loops). The corresponding
decision problem is the following:

Role Assignment
Input: A graph G and an integer h.
Question: Does G have an h-role assignment?

If h is fixed, then we denote the problem h-Role Assignment. Whereas 1-Role Assign-
ment is trivial, 2-Role Assignment is NP-complete [74]. In fact, h-Role Assignment
is NP-complete even for the following classes of graphs: planar graphs (h ≥ 2) [72], cubic
graphs (h ≥ 2) [73], bipartite graphs (h ≥ 3) [70], chordal graphs (h ≥ 3) [52] and split
graphs (h ≥ 4) [25]. Very recently, Pandey, Raman and Sahlo [69] gave an nO(h)-time
algorithm for Role Assignment on general graphs and an f(h)nO(1)-time algorithm on
forests.
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1.3 Our Focus

We continue the line of study in [19] and focus on the following research question:

For which parameters of the guest graph do LBHom, LSHom and LIHom become fixed-
parameter tractable?

We will also apply our new techniques towards answering this question for the Role
Assignment problem. We first introduce some additional terminology. A graph parameter
p dominates a parameter q if there is a function f such that p(G) ≤ f(q(G)) for every
graph G. If p dominates q but q does not dominate p, then p is more powerful than q. We
denote this by pB q. If p dominates q and q dominates p, then p and q are equivalent. If
neither p dominates q nor q dominates p, then p and q are incomparable.

Given the paraNP-hardness results on LBHom, LSHom and LIHom for graph classes
of bounded path-width [19], we will naturally consider a range of graph parameters that
are less powerful than path-width. In this way we aim to increase our understanding of
the (parameterized) complexity of LBHom, LSHom and LIHom.

For an integer c ≥ 1, a c-deletion set of a graph G is a subset S ⊆ V (G) such that
every connected component of the graph G \ S has at most c vertices.6 The c-deletion
set number dsc(G) of G is the minimum size of a c-deletion set in G. If c = 1 we obtain
the vertex cover number vc(G) of G. The c-deletion set number is closely related to the
fracture number fr(G), introduced by Dvořák et al. [28], which is the minimum k such
that G has a k-deletion set of size at most k. For a graph G, it holds that fr(G) ≤ dsc(G)
if c ≤ fr(G)− 1, and dsc(G) ≤ fr(G) if c ≥ fr(G). Hence, in particular it holds for every
integer c ≥ 1 that fr(G) ≤ max{c,dsc(G)}. As we can take the graph formed as the disjoint
union of arbitrarily many complete graphs on c+ 1 vertices (which has an arbitrarily large
c-deletion set number while its fracture number is c+ 1), this inequality shows that for
fixed c, frB dsc. However, if c is not fixed, then fr and c+ dsc are equivalent, as in that
case c+ dsc(G) ≤ 2fr(G) and fr(G) ≤ c+ dsc(G) holds for every graph G.

The fracture number is equivalent to several other well-studied graph parameters, such
as the vertex integrity, introduced by Barefoot, Entringer and Swart [4] or the safe number,
introduced by Fujita, MacGillivray and Sakuma [44]. The vertex integrity of a graph G is
the minimum value |X|+ nc(G \X) over all sets X ⊆ V (G), where nc(G \X) denotes
the size of a largest connected component of G \X. Hence, the equivalence between the
fracture number and the vertex integrity follows directly from their definitions, whereas
the equivalence between the safe number and vertex integrity (and thus fracture number)
is shown by Fujita and Furuya [43].

The feedback vertex set number fv(G) of a graph G is the size of a smallest set S
such that G \ S is a forest. We write tw(G), pw(G), td(G) and n(G) for the treewidth,
path-width, tree-depth7 and number of vertices of a graph G, respectively; see [67] for
more information. It is known that

twB pwB tdB frB dsc(fixed c) B vcB n,

6 The graph G \ S is the graph obtained from G by deleting all vertices of S; see Section 2 for
any undefined terminology in this section.

7 See Section 2 for the definitions of treewidth, path-width and tree-depth.
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where the second relationship is proven in [9] and the others follow immediately from their
definitions (see also Section 2.2). It is readily seen that

twB fvB ds2

and moreover, that fv is incomparable with the parameters pw, td, fr and, for every
fixed c ≥ 3, dsc; consider, for example, a tree T of arbitrarily large path-width, whilst
fv(T ) = 0, and consider also the disjoint union G of arbitrarily many triangles, which has
an arbitrarily large feedback vertex set number, but dsc(G) = 0 for every c ≥ 3.

guest graph parameter LIHom LBHom LSHom

|V (G)| XP, W[1]-hard [26] FPT FPT
vertex cover number XP (Theorem 5), W[1]-hard FPT FPT
c-deletion set number (fixed c) paraNP-c (c ≥ 2) (Theorem 6) FPT FPT
fracture number paraNP-c FPT (Theorem 2) FPT (Theorem 2)
tree-depth paraNP-c paraNP-c (Theorem 7) paraNP-c (Theorem 7)
path-width paraNP-c [19] paraNP-c [19] paraNP-c [19]
treewidth paraNP-c paraNP-c paraNP-c
maximum degree paraNP-c [34] paraNP-c [56] paraNP-c [60]
treewidth plus maximum degree XP, W[1]-hard XP [19] XP [19]
feedback vertex set number paraNP-c paraNP-c (Theorem 8) paraNP-c (Theorem 8)

Table 1. The results in purple are our new results and are annotated with the corresponding
theorem numbers. The results in black are either known results, some of which are now also
implied by our new results, or follow immediately from other results in the table. In particular,
LIHom is W[1]-hard with parameter |V (G)|, as Clique is W[1]-hard when parameterized by the
clique number [26], so we can let G be the complete graph in this case.

1.4 Our Results

We prove a number of new parameterized complexity results for LBHom, LSHom and
LIHom by considering some property of the guest graph G as the parameter. In particular,
we consider the graph parameters introduced in Section 1.3.

Our two main results, proven in Section 4, show that LBHom and LSHom are fixed-
parameter tractable parameterized by c+ dsc, or equivalently, the fracture number fr(G),
of the guest graph G. In the same section, we also prove that Role Assignment is
FPT when parameterized by the fracture number. Recall that tdB fr. However, assuming
P 6= NP, the FPT results for LBHom and LSHom involving the fracture number cannot
be strengthened to the tree-depth of the guest graph. Namely, we prove in Section 6 that
LBHom and LSHom are paraNP-complete when parameterized by the tree-depth of the
guest graph. Recall also that pw B td. Hence, these paraNP-completeness results imply
the known paraNP-completeness results for path-width of the guest graph [19].

In Section 6 we also prove that LBHom and LSHom are paraNP-complete when
parameterized by the feedback vertex set number of the guest graph. In fact, this result
and the paraNP-hardness for tree-depth motivated us to consider the fracture number as a
natural graph parameter for obtaining an FPT-algorithm.

For a fixed integer k ≥ 1, the k-FoldCover problem is the restriction of LBHom to
input pairs (G,H) where |V (G)| = k|V (H)|. This problem was introduced as the k-Graph
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Covering problem by Bodlaender [8]. The aforementioned paraNP-completeness result
of [19] on LBHom for pairs (G,H) where G has path-width 5 holds even for 3-FoldCover.
In fact, this was the first proof for showing that k-FoldCover is NP-complete for some
fixed integer k ≥ 1.8 Similarly, we will show in Section 6 that the two paraNP-completeness
results for LBHom that we described above also hold even for the 3-FoldCover problem.

In Section 5 we prove that LIHom is in XP and W[1]-hard when parameterized by
the vertex cover number of the guest graph, or equivalently, the c-deletion set number for
c = 1. However, we show that the XP result for LIHom cannot be generalised to hold
for c ≥ 2. In fact, in Section 5, we will give a full complexity dichotomy. Namely, we
determine the computational complexity of LIHom on graphs with c-deletion set number
at most k for every fixed pair of integers c and k.

Table 1 summarizes the new and known results for LBHom, LSHom and LIHom.

1.5 Algorithmic Framework

Our FPT results for LBHom, LSHom and Role Assignment and our XP result for
LIHom are proven via a new algorithmic framework (described in detail in Section 3).
This framework involves a reduction to an integer linear program (ILP). We emphasize
that in our framework the host graph H is not fixed, but part of the input. This is in
contrast to other frameworks that include the locally constrained homomorphism problems
(and that consequently work for more powerful graph parameters), such as the framework
of locally checkable vertex partitioning problems [13,75] or the framework of Gerber and
Kobler [46] based on (feasible) interval degree constraint matrices.

The main ideas behind our algorithmic ILP framework are as follows. Let G and H be
the guest and host graphs, respectively. First, we observe that if G has a c-deletion of size
at most k and there is a locally surjective homomorphism from G to H, then H must also
have a c-deletion set of size at most k. However, it does not suffice to compute c-deletion
sets DG and DH for G and H, guess a partial homomorphism h from DG to DH , and
use the structural properties of c-deletion sets to decide whether h can be extended to a
desired homomorphism from G to H. This is because a homomorphism from G to H does
not necessarily map DG to DH . Moreover, even if it did, vertices in G \DG can still be
mapped to vertices in DH . Consequently, components of G \DG can still be mapped to
more than one component of H \DH .

The above makes it difficult to decompose the homomorphism from G to H into small
independent parts. To overcome this challenge, we prove that there are small sets DG and
DH of vertices in G and H, respectively, such that every locally surjective homomorphism
from G to H satisfies:

1. the pre-image of DH is a subset of DG,
2. DH is a c′-deletion set for H for some c′ bounded in terms of only c+ k, and
3. all but at most k components of G \DG have at most c vertices, whilst the treewidth

of the remaining (and possibly large) components is bounded in terms of c+ k.

8 The proof can easily be adapted to hold for every k ≥ 3, as observed by Klavík [55], while the
cases k = 1 (which is equivalent to Graph Isomorphism) and k = 2 are still open.
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As DG and DH are small, we can enumerate all possible homomorphisms from some subset
of DG to DH . Condition 2 allows us to show that any locally surjective homomorphism
from G to H can be decomposed into locally surjective homomorphisms from a small set
of components of G \DG (plus DG) to one component of H \DH (plus DH). This enables
us to formulate the question of whether a homomorphism from a subset of DG to DH

can be extended to a desired homomorphism from G to H in terms of an ILP. Finally,
Condition 3 allows us to efficiently compute the possible parts of the decomposition, that
is, which (small) sets of components of G \ DG can be mapped to which components
of H \DH .

2 Preliminaries

We use standard notation from graph theory, as can be found in e.g. [24]. Let G be a
graph. We denote the vertex set and edge set of G by V (G) and E(G), respectively. Let
X ⊆ V (G) be a set of vertices of G. The subgraph of G induced by X, denoted G[X], is
the graph with vertex set X and edge set {uv ∈ E(G) | u, v ∈ X}. When the underlying
graph is clear from the context, we will sometimes refer to an induced subgraph simply
by its set of vertices. We use G \X to denote the subgraph of G induced by V (G) \X.
Similarly, for Y ⊆ E(G) we let G \ Y be the subgraph of G obtained by deleting all edges
in Y from G.

For a graph G and a vertex u ∈ V (G), we let NG(u) = {v | uv ∈ E(G)} and
NG[v] = NG(v) ∪ {v} denote the open and closed neighbourhood of v in G, respectively.
We let ∆(G) be the maximum degree of G. Recall that we assume that the guest graph G
does not contain self-loops, while the host graph H is permitted to have self-loops. In this
case, by definition, u ∈ NH(u) if uu ∈ E(H).

2.1 Parameterized Complexity

In parameterized complexity [22,27,40], the complexity of a problem is studied not only
with respect to the input size, but also with respect to some problem parameter(s). A
parameterized problem Q is a subset of Ω∗×N, where Ω is a fixed alphabet. Each instance
of Q is a pair (I, κ), where κ ∈ N is called the parameter. A parameterized problem Q is
fixed-parameter tractable (FPT) if there is an algorithm, called an FPT-algorithm, that
decides whether an input (I, κ) is a member of Q in time f(κ) · |I|O(1), where f is a
computable function and |I| is the size of the input instance. The class FPT denotes the
class of all fixed-parameter tractable parameterized problems.

A parameterized problem Q is FPT-reducible to a parameterized problem Q′ if there is
an algorithm, called an FPT-reduction, that transforms each instance (I, κ) of Q into an
instance (I ′, κ′) of Q′ in time f(κ) · |I|O(1), such that κ′ ≤ g(κ) and (I, κ) ∈ Q if and only
if (I ′, κ′) ∈ Q′, where f and g are computable functions. By FPT-time, we denote time of
the form f(κ) · |I|O(1), where f is a computable function. A problem Π is in W[1] if it is
FPT-reducible to Independent Set parameterized by the solution size and W[1]-hard
if the latter problem is FPT-reducible to Π; it is easy to verify that FPT ⊆W[1]. As an
analogue to the conjecture that P 6= NP, it is widely believed that FPT 6= W[1].
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The class XP contains all parameterized problems that can be solved in O(|I|f(κ))
time, where f is a computable function. The class paraNP is the class of parameterized
problems that can be solved by non-deterministic algorithms in f(κ) · |I|O(1) time, where
f is a computable function.

2.2 Graph Parameters

A tree-decomposition T of a graph G is a pair (T, χ), where T is a tree and χ is a function
that assigns each tree node t a set χ(t) ⊆ V (G) of vertices such that the following conditions
hold:

(i) For every edge uv ∈ E(G), there is a tree node t such that u, v ∈ χ(t).
(ii) For every vertex v ∈ V (G), the set of tree nodes t with v ∈ χ(t) induces a non-empty

subtree of T .

The sets χ(t) are called bags of the decomposition T and χ(t) is the bag associated with
the tree node t. The width of a tree-decomposition (T, χ) is the size of a largest bag
minus 1. The treewidth tw(G) of G is the minimum width over all tree-decompositions
of G. If T is a path, then we obtain the notions of path-decomposition and path-width.

For a rooted forest F , the closure C(F ) is the graph with vertex set V (F ) such that
two vertices u and v are adjacent in C(F ) if and only if u is an ancestor of v in F . We say
that F is a tree-depth decomposition of a graph G if G is a subgraph of C(F ). The depth
of F is equal to the height of F plus 1. The tree-depth td(G) of G is the minimum depth
over all tree-depth decompositions of G.

We also need the following (well-known) fact on c-deletion sets.

Proposition 1 ([61]). Let G be a graph and let k and c be natural numbers. Then,
deciding whether G has a c-deletion set of size at most k is fixed-parameter tractable
parameterized by k + c.

Definition 1. A (k, c)-extended deletion set for a graph G is a set D ⊆ V (G) such that:

– every component of G \D either has at most c vertices or has a c-deletion set of size
at most k and

– at most k components of G \D have more than c vertices.

The following proposition summaries some known relationships between the parameters
we consider.

Proposition 2 ([67]). Let G be a graph and let k and c be natural numbers. Then:

– if G has a c-deletion set of size at most k, then td(G) ≤ k + c.
– if G has a (k′, c)-extended deletion set of size at most k, then td(G) ≤ k′ + k + c.
– tw(G) ≤ td(G).
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2.3 Locally Constrained Homomorphisms

Recall that we allow self-loops for the host graph H, but not for the guest graph G (see
also Section 1). Here we show some basic properties of locally constrained homomorphisms.

Lemma 1. Let G and H be non-empty connected graphs and let φ be a locally surjective
homomorphism from G to H. Then φ is surjective.

Proof. Suppose not, and let C be the set of vertices in V (H) \ φ(V (G)). Note that C 6= ∅
(because otherwise φ is surjective) and φ(V (G)) 6= ∅ (because G is non-empty). Because
H is connected, there is an edge uv ∈ E(H) such that u ∈ V (C) and v ∈ φ(V (G)). But
then, the mapping φx : NG(x)→ NH(v) is not surjective for any vertex x ∈ φ−1(v). ut

Lemma 2. Let G and H be non-empty connected graphs with a homomorphism φ from
G to H and let I ⊆ φ(V (G)). Let P = φ−1(I) and φR = φ|P . If φ is a locally injective,
surjective or bijective homomorphism, then φR is a locally injective, surjective or bijective
homomorphism, respectively, from G[P ] to H[I].

Proof. Clearly, φR is a homomorphism from G[P ] to H[I] and since φR is a restriction
of φ, it follows that if φ is locally injective, then so is φR. It remains to show that if φ is
locally surjective, then so is φR. Suppose, for contradiction, that φ is locally surjective,
but φR is not. Then there is a vertex v ∈ P such that φR(NG(v) ∩ P ) ( NH(φR(v)) ∩ I.
However, since φ does not map any vertex in V (G) \ P to a vertex of I, it follows that
φ(NG(v)) ∩ I ( NH(φ(v)) ∩ I, so φ(NG(v)) 6= NH(φ(v)). Thus φ is not surjective, a
contradiction. ut

Lemma 3. Let G and H be graphs, let D ⊆ V (G), and let φ be a homomorphism
from G to H. Then, for every component CG of G \ D such that φ(CG) ∩ φ(D) = ∅,
there is a component CH of H \ φ(D) such that φ(CG) ⊆ CH . Moreover, if φ is locally
injective/surjective/bijective, then φ|D∪CG is a homomorphism from G′ = G[D ∪ CG] to
H ′ = H[φ(D) ∪ CH ] that is locally injective/surjective/bijective for every v ∈ V (CG).

Proof. Suppose for a contradiction that this is not the case. Then, there is a component
CG of G \D and an edge uv ∈ E(CG) such that φ(u) and φ(v) are in different components
of H \ φ(D). Therefore, φ(u)φ(v) /∈ E(H), contradicting our assumption that φ is a
homomorphism.

Towards showing the second statement, first note that φR := φ|D∪CG is a homomor-
phism from G′ to H ′. Moreover, NG[v] = NG′ [v] for every vertex v ∈ V (CG), so if φ is
locally injective/surjective/bijective for a vertex v ∈ V (CG), then so is φR. ut

The following lemma is a basic but crucial observation showing that if G S−→ H and G
has a small c-deletion set, then so does H.

Lemma 4. Let G and H be non-empty connected graphs, let D ⊆ V (G) be a c-deletion
set for G, and let φ be a locally surjective homomorphism from G to H. Then φ(D) is a
c-deletion set for H.
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Proof. Suppose not, then there is a component CH of H \ φ(D) such that |CH | > c.
By Lemma 1, it follows that φ is surjective and therefore φ−1(CH) is non-empty. Let
v ∈ φ−1(CH). Then v /∈ D and therefore v is in some component CG of G \D. Lemma 3
implies that φR = φ|D∪CG is a homomorphism from G[D ∪ CG] to H[φ(D) ∪ CH ] that is
locally surjective for every v ∈ V (CG).

Now |V (CG)| < |V (CH)|, so there must be a vertex in V (CH) \ φR(CG). Because
CH is connected, there is an edge xy ∈ E(CH) such that x ∈ V (CH) \ φR(CG) and
y ∈ φR(V (CG)). But then, the mapping φz : NG(z) → NH(y) is not surjective for any
vertex z ∈ φ−1R (y). ut

2.4 Integer Linear Programming

Given a set X of variables and a set C of linear constraints (i.e. inequalities) over the
variables in X with integer coefficients, the task in the feasibility variant of integer linear
programming (ILP) is to decide whether there is an assignment α : X → Z of the variables
satisfying all constraints in C. We will use the following well-known result by Lenstra [62].

Proposition 3 ([32,41,53,62]). ILP is FPT parameterized by the number of variables.

3 Our Algorithmic Framework

In this section we present our main algorithmic framework that will allow us to show that
LSHom, LBHom and Role Assignment are FPT, parameterized by k + c when the
guest graph has c-deletion set number at most k.

To illustrate the main ideas behind our framework, let us first explain these ideas for
the examples of LSHom and LBHom. In this case we are given G and H and we know
that G has a c-deletion set of size at most k. Because of Lemma 4, it then follows that if
(G,H) is a yes-instance of LSHom or LBHom, then H also has a c-deletion set of size at
most k. Informally, our next step, which is given in Section 3.1, is to compute a small (i.e.
with size bounded by a function of k+ c) set Φ of partial locally surjective homomorphisms
such that

(1) every locally surjective homomorphism from G to H augments some φP ∈ Φ, and
(2) for every φP ∈ Φ, the domain of φP is a (k, c)-extended deletion set of G and the

co-domain of φP is a c′-deletion set of H, where c′ is bounded by a function of k + c.

Here and in what follows, we say that a function φ : V (G)→ V (H) augments (or is an
augmentation of) a partial function φP : WG →WH , where WG ⊆ V (G) and WH ⊆ V (H)
if v ∈ WG ⇔ φ(v) ∈ WH and φ|WG

= φP . This allows us to reduce our problems
to boundedly many (in terms of some function of the parameters) subproblems of the
following form: Given a (k, c)-extended deletion set DG for G, a c′-deletion set DH for H,
and a locally surjective (respectively, bijective) homomorphism φP from DG to DH , find
a locally surjective homomorphism φ from G to H that augments φP .

In Section 3.2 we will then show how to formulate this subproblem as an integer linear
program and in Section 3.3 we will show that we can efficiently construct and solve the
ILP for this subproblem. Importantly, our ILP formulation will allow us to solve a much
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more general problem, where the host graph H is not explicitly given, but defined in
terms of a set of linear constraints. We will then exploit this in Section 4 to solve not only
LSHom and LBHom, but also the Role Assignment problem.

3.1 Partial Homomorphisms for the Deletion Set

For a graph G and m ∈ N we let ∆m
G := {v ∈ V (G) | degG(v) ≥ m}. Our aim is to show

in Lemma 7 that there is a small set Φ of partial homomorphisms such that every locally
surjective (respectively, bijective) homomorphism from G to H augments some φP ∈ Φ
and, for every φP ∈ Φ, the domain of φP is a (k, c)-extended deletion set for G of size
at most k and its co-domain is a c′-deletion set of size at most k for H. The main idea
behind finding this set Φ is to consider the set of high degree vertices in G and H, that is,
the sets ∆k+c

G and ∆k+c
H .

We start with the following lemma.

Lemma 5. Let G be a graph. If G has a c-deletion set of size at most k, then the set
∆k+c
G is a kc(k + c)-deletion set of size at most k. Furthermore, every subset of ∆k+c

G is a
(k − |D|, c)-extended deletion set of G.

Proof. Let D be a c-deletion set of G of size at most k. Then every vertex v ∈ V (G) \D
has degree at most k + c− 1, as each of its neighbours lies either in its own component
of G \ D or in D. Hence ∆k+c

G ⊆ D and therefore |∆k+c
G | ≤ k. Let C1, . . . , Cm be the

components of G \ D that contain a vertex adjacent to a vertex in D \ ∆k+c
G . Since

|D \∆k+c
G | ≤ k and every vertex in D \∆k+c

G has degree at most k + c− 1, we find that
m ≤ k(k + c− 1) and |C1 ∪ · · · ∪Cm ∪ (D \∆k+c

G )| ≤ kc(k + c− 1) + k ≤ kc(k + c). Since
every component in G \∆k+c

G is either contained in a component of G \D or contained in
C1 ∪ · · · ∪ Cm ∪ (D \∆k+c

G ), we find that ∆k+c
G is a kc(k + c)-deletion set.

Let D′ ⊆ ∆k+c
G ⊆ D. We will show that D′ is a (k − |D′|, c)-extended deletion set of

G. The components of G \D′ that contain no vertices from D \D′ are components of
G \D and thus have size at most c. Consider a component C of G \D′ that contains at
least one vertex from D \D′. Let DC = V (C) ∩ (D \D′). Every component of C \DC

is a component of G \ D and thus has size at most c. Moreover, DC has size at most
|D \D′| ≤ k − |D′|.

We conclude that every component of G\D′ either has size at most c or has a c-deletion
set of size at most k − |D′|. Furthermore, since there are at most k − |D′| vertices in
∆k+c
G \ D′, and every component of G \ D′ that has size larger than c must contain a

vertex of ∆k+c
G , it follows that there are at most k − |D′| components of G \D′ that have

size larger than c. This completes the proof. ut

We use Lemma 5 in the proof of our next lemma, which shows that every locally sur-
jective (respectively, bijective) homomorphism from G to H has to augment a locally
surjective (respectively, bijective) homomorphism from some induced subgraph of G[∆k+c

G ]

to H[∆k+c
H ]. Intuitively, this holds because for every locally surjective homomorphism,

only vertices of high degree in G can be mapped to a vertex of high degree in H and every
vertex in H must have a pre-image in G.
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Lemma 6. Let G and H be non-empty connected graphs such that G has a c-deletion set
of size at most k. If there is a locally surjective homomorphism φ from G to H, then there
is a set D ⊆ ∆k+c

G and a locally surjective homomorphism φP from G[D] to H[∆k+c
H ] such

that φ augments φP . If φ is locally bijective, then D = ∆k+c
G and φP is a locally bijective

homomorphism.

Proof. Observe that for a locally surjective homomorphism φ from G to H, the inequality
degG(v) ≥ degH(φ(v)) holds for every v ∈ V (G); moreover, the equality degG(v) =
degH(φ(v)) holds in the locally bijective case. Since φ is surjective by Lemma 1, this
implies that φ(∆k+c

G ) ⊇ ∆k+c
H (and if φ is locally bijective, then φ(∆k+c

G ) = ∆k+c
H ). Let

D = φ−1(∆k+c
H ), so D ⊆ ∆k+c

G (note that D = ∆k+c
G if φ is locally bijective). Now φ|D is a

surjective map fromD to∆k+c
H . Furthermore, φ(∆k+c

G \D)∩φ(D) = φ(∆k+c
G \D)∩∆k+c

H = ∅.
Moreover, for every v ∈ V (G)\∆k+c

G , φ(v) /∈ ∆k+c
H = φ|D(D), since degG(v) ≥ degH(φ(v)).

Furthermore, φ|D is a homomorphism from G[D] toH[∆k+c
H ] because φ is a homomorphism.

Additionally, φ|D is locally surjective (respectively, bijective) by Lemma 2. ut

We are now ready to show that we can easily compute all possible pre-images of ∆k+c
H in

any locally surjective (respectively bijective) homomorphism from G to H.

Lemma 7. Let G and H be non-empty connected graphs, and let k and c be two non-
negative integers. For any D ⊆ ∆k+c

G , we can compute the set ΦD of all locally surjective
(respectively, bijective) homomorphisms φP from G[D] to H[∆k+c

H ] in O(|D||D|+2) time.
Furthermore, |ΦD| ≤ |D||D|.

Proof. Let D ⊆ ∆k+c
G and suppose there is a surjective map φP : D → ∆k+c

H . Then for
every vertex v ∈ ∆k+c

H , there must be a vertex x ∈ D such that φP (x) = v. Therefore
|∆k+c

H | ≤ |D|, so if this condition fails, then we can immediately return that ΦD = ∅.
Otherwise, for each vertex of D, there are |∆k+c

H | ≤ |D| possible choices for where a
map φP : D → ∆k+c

H could map this vertex. We can list all of the at most |D||D| resulting
maps in O(|D||D|) time, and for each such map, we can check whether it is a locally
surjective (respectively, bijective) homomorphism in O(|D|2) time. ut

3.2 ILP Formulation

In this section, we will show how to formulate the subproblem obtained in the previous
subsection in terms of an ILP instance. More specifically, we will show that the following
problem can be formulated in terms of an ILP: given a partial locally surjective (respectively,
bijective) homomorphism φP from some induced subgraph DG of G to some induced
subgraph DH of H, can this be augmented to a locally surjective (respectively, bijective)
homomorphism from G to H? See Figure 2 for an illustration of the subproblem for the
simpler case when DG is a vertex cover of G and we are looking for a locally bijective
homomorphism. Moreover, we will actually show that for this to work, the host graph H
does not need to be given explicitly, but can instead be defined by a certain system of
linear constraints.

We now sketch the main ideas behind our translation to ILP. We postpone the formal
definitions of notions introduced below until later. Suppose that there is a locally surjective
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(respectively, bijective) homomorphism φ from G to H that augments φP . Because φ
augments φP , Lemma 3 implies that φ maps every component CG of G\V (DG) entirely to
some component CH of H \ V (DH), moreover, φ|V (DG)∪V (CG) is already locally surjective
(respectively, bijective) for every vertex v ∈ V (CG).

Our aim now is to describe φ in terms of its parts consisting of locally surjective
(respectively, bijective) homomorphisms from extensions of DG in G, that is, sets of
components of G\DG plus DG, to simple extensions of DH in H, that is, single components
of H \DH plus DH .

DHA B

C

D

E

F

TH

{A,B}

DGa1 a2 a3 b1 b2 b3

T 1
G

c1

f1

{a1,b1}
T 2
G

d1

e1

{a1,b2}
T 3
G

c2

{a2,b2}
T 4
G

d2

e2

f2

{a2,b3}
T 5
G

d3

e3

{a3,b1}
T 6
G

f3

{a3,b2}
T 7
G

c3

{a3,b3}
ESH : TH

EC1
G : T 1

G + T 3
G + T 7

G
(xEC1

GESH
= 1) → C

EC2
G : T 2

G + T 4
G + T 5

G
(xEC2

GESH
= 2) → D,E

EC3
G : T 1

G + T 4
G + T 6

G
(xEC3

GESH
= 1) → F

Fig. 2. A locally bijective homomorphism from a graph G (left) to a graph H (right), augmenting
the partial homomorphism φP mapping the vertices of the vertex cover DG into DH = {A,B}.
The ith vertex of G mapped to some vertex X of H is denoted xi. Vertices in G \DG are grouped
by type (e.g. {c1} and {f1} have type T 1

G), each T i
G is characterised by the neighbours of its

vertices, recalled below each column. Vertices in H \DH all have the same type TH . Rows ECi
G

are extensions that can be minimally φP -B-mapped to TH . This, in particular, means that each
ai and bi must have a neighbour in ECi

G. This is because otherwise ai or bi is not mapped locally
bijective to its image A or B, because A and B have a neighbour in TH , but the particular ai
or bi has no neighbour in ECi

G. Note that the neighbour can then later be used as a pre-image
of any vertex in {C,D,E,F}. Using EC1

G once (for colour C), EC2
G twice (for colours D and E) and

EC3
G once (for colour F) yields the given locally bijective homomorphism, and it can be verified

that each ai and bi indeed has all four colours in its neighbourhood.

The main difficulty of doing the above comes from the fact that we need to ensure that
φ is locally surjective (respectively, bijective) for every d ∈ DG and not only for the vertices
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within the components of G \DG. This is why we need to describe the parts of φ using
sets of components of G \DG and not just single components. However, as we will show, it
will suffice to consider only minimal extensions of DG in G, where an extension is minimal
if no subset of it allows for a locally surjective (respectively bijective) homomorphism from
it to some simple extension of DH in H. The fact that we only need to consider minimal
extensions is important for showing that we can compute the set of all possible parts of φ
efficiently (see Section 3.3). Having shown this, we can create an ILP that has one variable
xECGESH for every minimal extension ECG and every simple extension ESH such that
there is a locally surjective (respectively, bijective) homomorphism from ECG to ESH that
augments φP . The value of the variable xECGESH now corresponds to the number of times
φ maps a minimal extension isomorphic to ECG to a simple extension isomorphic to ESH
that augments φP . We can then use linear constraints on these variables to ensure that:

– H contains exactly the right number of extensions isomorphic to ESH required by the
assignment for xECGESH ,

– G contains exactly the right number of minimal extensions isomorphic to ECG required
by the assignment for xECGESH (if φ is locally bijective),

– G contains at least the number of minimal extensions isomorphic to ECG required by
the assignment for xECGESH (if φ is locally surjective), and

– for every simple extension ESG of G that is not yet used in any part of φ, there is a
homomorphism from ESG to some simple extension of DH in H that augments φP
and is locally surjective for every vertex in ESG \DG (if φ is locally surjective).

Together, these constraints ensure that there is a locally surjective (respectively, bijective)
homomorphism φ from G to H that augments φP . See also Figure 3 for an illustration of
the main ideas.

We are now ready to formalise these ideas. To do so, we need the following additional
notation. Given a graph D, an extension of D is a graph EC containing D as an induced
subgraph. It is simple if EC\D is connected, and complex in general. Given two extensions
EC1,EC2 of D, we write EC1 ∼D EC2 if there is an isomorphism τ from EC1 to EC2

with τ(d) = d for every d ∈ D. Then ∼D is an equivalence relation. Let the types of D,
denoted TD, be the set of equivalence classes of ∼D of simple extensions of D. We write
T cD to denote the set of types of D of size at most |D|+ c, so

|T cD| ≤
c∑
i=0

2(|D|+i2 )−(|D|2 ) ≤ c2(|D|+c2 ).

Given a complex extension EC of D, let C be a connected component of EC \D. Then
C has type T ∈ TD if EC[D ∪ C] ∼D T (depending on the context, we also say that the
extension EC[D∪C] has type T ). The type-count of EC is the function tcEC : TD → N such
that tcEC(T ) for T ∈ TD is the number of connected components of EC \D with type T
(in particular if EC is simple, the type-count is 1 for EC and 0 for other types). Note that
two extensions are equivalent under ∼D if and only if they have the same type-counts;
in particular, this implies that there is an isomorphism τ between the two extensions
satisfying τ(d) = d for every d ∈ D. We write EC � EC′ if tcEC(T ) ≤ tcEC′(T ) for all
types T ∈ TD. If EC is an extension of D, we write TD(EC) = {T ∈ TD | tcEC(T ) ≥ 1} for
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DHA

C D E F

I J K L M N

T 2
H

T 1
H

DG

T 1
G

T 2
G

a1 a2

c1 d1 e1 f1

f2 e2 d2 e3 d3 c2

i1 j1 k1 l1 m1 n1

n2 m2 l2 k2 j2 i2

c3 d4 e4 d5 e5 f3

EC1
G : 2× T 1

G EC2
G : T 1

G + T 2
G EC3

G : 2× T 2
G ES1H : T 1

H ES2H : T 2
H

xEC1

GES
1

H
= 0 xEC2

GES
1

H
= 1 xEC3

GES
1

H
= 0 xEC3

GES
2

H
= 1

Fig. 3. A locally surjective homomorphism from a graph G (left) to a graph H (right), where
DG is a 6-deletion set. The extensions EC1

G,EC2
G,EC3

G can be minimally φP -S-mapped to ES1;
only EC3

G can also be minimally φP -S-mapped to ES2. Furthermore, T 1
G and T 2

G can each be
weakly φP -S-mapped to some type in H (respectively, T 1

H and T 2
H). Using pair (EC2

G,ES1) and
(EC3

G,ES2) once is sufficient to ensure that the mapping is locally surjective for each ai.

the set of types of EC and ED(EC) for the set of simple extensions of D in EC. Moreover,
for T ∈ TD, we write ED(EC, T ) for the set of simple extensions of D in EC having type T .

A target description is a tuple (DH , c,CH) where DH is a graph, c is an integer and
CH is a set of linear constraints over variables xT for every T ∈ T cDH . A type-count for DH

is an integer assignment of the variables xT . A graph H satisfies the target description
(DH , c,CH) if it is an extension of DH , tcH(T ) = 0 for T /∈ T cDH , and setting xT = tcH(T )
for all T ∈ T cDH satisfies all constraints in CH. Note that target descriptions can be easily
used to specify any graph H that has deletion set DH into components of size at most c
by using CH to specify the number of components of each type. However, allowing for
arbitrary linear equations instead of specifying the graph H explicitly is much more flexible,
and we will show how to employ this flexibility for the Role Assignment problem in
Section 4.

In what follows, we assume that the following are given: the graphs DG, DH , an exten-
sion G of DG, a target description D = (DH , c,CH), and a locally surjective (respectively,
bijective) homomorphism φP : DG → DH . Let ECG be an extension of DG with ECG � G
and let TH ∈ T cDH ; note that we only consider TH ∈ T cDH , because we assume that TH is a
type of a simple extension of a graph H that satisfies the target description D. We say
that ECG can be
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– weakly φP -S-mapped to the type TH if there exists an augmentation φ : ECG → TH of
φP such that φ is locally surjective for every v ∈ ECG \DG;

– φP -S-mapped (respectively, φP -B-mapped) to the type TH if there exists an augmenta-
tion φ : ECG → TH of φP such that φ is locally surjective (respectively, locally bijective)

– minimally φP -S-mapped (respectively, minimally φP -B-mapped) to the type TH if
ECG can be φP -S-mapped (respectively, φP -B-mapped) to TH and no other extension
EC′G with EC′G � ECG can be φP -S-mapped (respectively, φP -B-mapped) to TH .

Note that in the case of locally bijective homomorphisms, the two notions φP -B-mapped
and minimally φP -B-mapped coincide. We also define the following sets:

– the set wSM = wSM(G,D, φP ) consists of all pairs (TG, TH) such that TG ∈ TDG(G)
can be weakly φP -S-mapped to TH ∈ T cDH ;

– the set SM = SM(G,D, φP ) consists of all pairs (ECG, TH) with ECG � G and
TH ∈ T cDH such that ECG can be minimally φP -S-mapped to TH ; and

– the set BM = BM(G,D, φP ) consists of all pairs (ECG, TH) with ECG � G and
TH ∈ T cDH such that ECG can be minimally φP -B-mapped to TH .

See Figure 3 for an illustration of these notions.
We now build a set of linear constraints. To this end, besides variables xT for T ∈ TH ,

we introduce variables xECGTH for each (ECG, TH) ∈ SM (respectively BM).

(S1)
∑

(ECG,TH)∈SM
tcECG(TG) ∗ xExtGTH ≤ tcG(TG) for every TG ∈ TDG(G),

(B1)
∑

(ECG,TH)∈BM
tcECG(TG) ∗ xECGTH = tcG(TG) for every TG ∈ TDG(G),

(S2)
∑

ECG:(ECG,TH)∈SM
xECGTH = xTH for every TH ∈ TDH ,

(B2)
∑

ECG:(ECG,TH)∈BM
xECGTH = xTH for every TH ∈ TDH , and

(S3)
∑

(TG,TH)∈wSM
xTH ≥ 1 for every TG ∈ TDG(G).

We refer to Figure 3 for an illustration.

Lemma 8. Let DG and DH be graphs, let G be an extension of DG and let D =
(DH , c,CH) be a target description. Moreover, let φP : V (DG) → V (DH) be a locally
surjective (respectively, bijective) homomorphism from DG to DH . There exists a graph H
satisfying D and a locally surjective (respectively, bijective) homomorphism φ from G to
H augmenting φP if and only if the equation system (CH, S1, S2, S3) (respectively, (CH,
B1, B2)) admits a solution.

Proof. Towards showing the forward direction of the claim, let H be a graph satisfying
D = (DH , c,CH) and let φ be a locally surjective (respectively, bijective) homomorphism
that augments φP .

Consider TH ∈ TDH (H) and let ESH ∈ EDH (H,TH). Let Wφ(ESH) = G[φ−1(ESH)];
note that DG ⊆ V (Wφ(ESH)) and therefore Wφ(ESH) is a (possibly) complex extension of
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DG. Then because of Lemma 2, we obtain that φR = φ|Wφ(ESH) is a locally surjective (re-
spectively, bijective) homomorphism from Wφ(ESH) to ESH that augments φP . Moreover,
because of Lemma 3, it follows that Wφ(ESH) \DG is the union of a set of components
of G −DG. Therefore, Wφ(ESH) can be φP -S-mapped (respectively, φP -B-mapped) to
TH . Moreover, if Wφ(ESH) can be φP -S-mapped to TH , then Wφ(ESH) also contains a
subgraph Wmin

φ (ESH) induced by DG and a subset of components of Wφ(ESH) \DG that
can be minimally φP -S-mapped to TH . Note that Wmin

φ (ESH) is not uniquely defined.
However, the concrete choice for Wmin

φ (ESH) does not matter. Informally, this is because
Wmin
φ (ESH) ensures that some extension is φ-S-mapped to ESH , while the remaining

components in Wφ(ESH) can still be weakly φ-S-mapped to ESH .
Let XT = {xTH : TH ∈ TDH (H) }, XM = {xECGTH : (ECG, TH) ∈ SM } (respectively,

XM = {xECGTH : (ECG, TH) ∈ BM }), and X = XT ∪XM . Let α : X → N be defined by
setting:

– α(xTH ) = tcH(TH) and
– α(xECGTH ) = |{ExtH ∈ EDH (H,TH) : tcECG = tcWmin

φ (ESH) }| (in the locally surjec-
tive case)

– α(xECGTH ) = |{ESH ∈ EDH (H,TH) : tcECG = tcWφ(ESH) }| (in the locally bijective
case)

We claim that the assignment α satisfies the equation system (CH, S1, S2, S3) (respectively,
the equation system (CH, B1, B2)). Because H satisfies D, it follows that α satisfies CH.

We start by showing the claim for the locally surjective case. Towards showing that
(S3) is satisfied, consider a type TG ∈ TDG(G) and let ESG ∈ EDG(G,TG). Then, because
of Lemma 3, the mapping φ|ESG maps ESG to some type TH ∈ TDH (H) and shows that
ESG can be weakly φP -S-mapped to TH .

Towards showing (S1), let TG ∈ TDG(G). Because of Lemma 3, every simple extension
ESG ∈ EDG(G,TG) satisfies φ(ESG) ⊆ ESH for some simple extension ESH of DH . In
other words ESG is contained in the pre-image of exactly one simple extension ESH ,
showing that every simple extension ESG ∈ EDG(G,TG) is counted at most once on the
left side of the inequality in (S1) and therefore the left side is at most tcG(TG).

Towards showing (S2), let TH ∈ TDH . Then, because V (Wmin
φ (ESH)) ∩

V (Wmin
φ (ES′H)) = DG, i.e. Wmin

φ (ESH) and Wmin
φ (ES′H) share no components, for every

two distinct ESH ,ES′H ∈ EDH (H,TH), we obtain:

∑
ECG:(ECG,TH)∈SM

α(xECGTH )

=
∑

ECG:(ECG,TH)∈SM

|{ESH ∈ EDH (H,TH) : tcECG = tcWmin
φ (ESH) }|

= tcH(TH)

= α(xTH ),

as required.
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Finally, if φ is locally bijective, we only have to show (B1) and (B2), which can be
shown similarly to (S1) and (S2), respectively. That is, (B1) can be shown in the same
way as (S1) by using the additional observation that due to the definition of α in terms of
Wφ(ESH) instead of Wmin

φ (ESH), every simple extension ESG also occurs in the pre-image
of at least one simple extension ESH . Moreover, (B2) can be shown in the same manner
as (S2), since V (Wmin

φ (ESH)) ∩ V (Wmin
φ (ES′H)) = DG also holds for every two distinct

ESH ,ES′H ∈ EDH (H,TH).
Towards showing the reverse direction, let α : X → N be an assignment satisfying the

equation system (CH, S1, S2, S3) (respectively, the equation system (CH,B1,B2)). Let H
be the unique graph consisting of DH and α(xTH ) extensions of DH of type TH for every
TH ∈ TDH . Then H satisfies (DH , c,CH) and tcH(TH) = α(xTH ).

We now define a function φ : V (G) → V (H), which will be a locally surjective
(respectively, locally bijective) homomorphism that augments φP as follows.

Let A be the multiset containing each pair (ECG, TH) ∈ SM (respectively, BM) exactly
α(xECGTH ) times. Because of (S2) (respectively, (B2)), there is a bijection γTH between
ATH = {ECG : (ECG, TH) ∈ A} and EDH (H,TH) for every TH ∈ TDH (H). Let γ be the
bijection between A and the extensions EDH (H) given by γ((ECG, TH)) = γTH (ECG).

Since the proof now diverges quite significantly for the locally surjective and locally
bijective cases, we start by giving the proof for the former case and then show how to
adapt the proof in latter (easier) case.

Because of (S1), there is a function β from A to the complex extensions of G such that:

– tcβ((ECG,TH)) = tcECG for every (ECG, TH) ∈ A,
– β(A) ∩ β(A′) = DG for every two distinct A and A′ in A.

Let A = (ECG, TH) ∈ A. Because A ∈ SM, there is a locally surjective homomorphism
φA from β(A) to γ(A) that augments φP . Let EA be the set of simple extensions ESG
in EDG(G) for which there is an A ∈ A such that ESG is an induced subgraph of β(A).
Moreover, let ĒA be the set of all remaining simple extensions in EDG(G), i.e. the set
of all simple extensions ESG in EDG(G) \ EA. Consider a simple extension ESG in ĒA.
Then, because of (S3), there is a TH ∈ TDH (H) and a corresponding simple extension
ESH ∈ EDH (H,TH) such that there is a homomorphism φESG from ESG to ESH that
augments φP , which is locally surjective for every v ∈ V (ESG −DG). We are now ready
to define φ : V (G)→ V (H). That is, we set φ(v) to be equal to:

– φP (v) if v ∈ DG,
– φExtG(v) if v ∈ V (ESG) for some simple extension ESG ∈ ĒA, and
– φA(v) if v ∈ V (ESG −DG) for some ESG = β(A) and A ∈ A.

It remains to show that φ is a locally surjective homomorphism from G to H that augments
φP . Clearly, φ augments φP by definition and because φESG does so too for every simple
extension ESG in ĒA, as does φA for every A ∈ A.

Moreover, φ is a homomorphism, because every edge {u, v} ∈ E(G) is contained in
G[ESG] for some simple extension ESG in EDG(G) and φ maps ESG according to some
homomorphism φExtG (if ESG ∈ ĒA) or some homomorphism φA (otherwise). For basically
the same reason, namely because every φESG and every φA is locally surjective for every
vertex in V (G) \DG, we have that φ is locally surjective for every vertex v ∈ V (G) \DG.
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Towards showing that φ is also locally surjective for every d ∈ DG, let nH be any
neighbour of φ(d) in H. If nH ∈ φP (DG), then there is a neighbour nG of d in DG with
φ(nG) = nH , because φP is locally surjective. If on the other hand nH ∈ V (ESH −DH)
for some ESH ∈ EDH (H,TH) with TH ∈ TDH (H), then there is a neighbour nG of d in
β(γ−1(TH)) with φ(nG) = nH , because φ (restricted to β(γ−1(TH))) is a locally surjective
homomorphism from β(γ−1(TH)) to ESH .

This completes the proof for the locally surjective case. We now complete the proof
for the locally bijective case. First note that because of (B1), the function β from A to
the complex extensions of G is bijective. Moreover, if A = (ECG, TH) ∈ A, then because
A ∈ BM, there is a locally bijective homomorphism φA from β(A) to γ(A) that augments
φP . This now allows us to directly define φ : V (G)→ V (H). That is, we set φ(v) to be
equal to:

– φP (v) if v ∈ DG and
– φA(v) if v ∈ V (ECG −DG) for some ECG = β(A) and A ∈ A.

It remains to show that φ is a locally bijective homomorphism from G to H that augments
φP . Note that we can assume that φ is already a locally surjective homomorphism that
augments φP , using the same arguments as for the locally surjective case. Thus it only
remains to show that φ is also locally injective for every d ∈ DG. Suppose not, then there
are two distinct neighbours nG and n′G that are mapped to the same neighbour nH of
φ(d) in H. This is clearly not possible if both nG and n′G are in DG because φP is locally
bijective on DG. Moreover, this can also not be the case if exactly one of nG and n′G is in
DG, because then nH ∈ V (DH), but because φ augments φP , the other cannot be mapped
to DH . Therefore, we can assume that nG and n′G are outside of DG. Let ESH ∈ EDH (H)
be the simple extension containing nH . Then, nG and n′G must by mapped by φγ−1(ESH),
but this is not possible because φγ−1(ESH) is locally bijective. ut

3.3 Constructing and Solving the ILP

The main aim of this section is to show the following theorem; see Definition 1 for a formal
description of a (k, c)-extended deletion set.

Theorem 1. Let G be a graph, let DG be a (k, c)-extended deletion set (respectively, a
c-deletion set) of size at most k for G, let D = (DH , c

′,CH) be a target description and let
φP : DG → DH be a locally surjective (respectively, bijective) homomorphism from DG to
DH . Deciding whether there is a locally surjective (respectively bijective) homomorphism
that augments φP from G to any graph satisfying CH is FPT parameterized by k + c+ c′.

In order to prove Theorem 1, we need to show that we can construct and solve the ILP
instance given in the previous section. The main ingredient for the proof of Theorem 1 is
Lemma 12, which shows that we can efficiently compute the sets wSM, SM, and BM. We
start by showing that the set TDG(G) can be computed efficiently and has small size.

Lemma 9. For a graph G and a (k, c)-extended deletion set DG of size at most k for
G, it hold that TDG(G) has size at most k + c2(|DG|+c2 ). Moreover, the problem of com-
puting TDG(G) and tcG for a given graph G with (k, c)-extended deletion set DG is FPT
parameterized by |DG|+ k + c.
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Proof. Because |TG(G) \ T cG| ≤ k and |T cG| ≤ c2(|DG|+c2 ), we obtain that |TDG(G)| ≤
k+ c2(|DG|+c2 ). Moreover, we can compute TDG(G) starting from the empty set and adding
a simple extension G[DG ∪ C] for some component C of G \ DG if G[DG ∪ C] is not
equivalent with respect to ∼DG to any element already added to TDG(G). Note that
checking whether G[DG ∪ C] ∼D G[DG ∪ C ′] for two components C and C ′ of G \DG is
FPT parameterized by |DG|+k+ c, because G[DG∪C] has treewidth at most |DG|+k+ c
for every component C of G \ DG (because of Proposition 2) and graph isomorphism
is FPT parameterized by treewidth [64]. The same procedure can now also be used to
compute all the non-zero entries of the function tcG (i.e. the entries where tcG(T ) 6= 0),
which provides us with a compact representation of tcG. ut

The following lemma is crucial for computing the sets SM and BM that are required
to construct the ILP instance. Informally, we will show that if (ECG,ESH) ∈ SM (or
(ECG,ESH) ∈ BM), then ECG consists of only boundedly many (in terms of some function
of the parameters) components, which will allow us to enumerate all possibilities for ECG
in FPT-time.

Lemma 10. Let DG and DH be graphs and let φP be a locally surjective (respectively,
locally bijective) homomorphism from DG to DH . Moreover, let ECG be an extension of
DG that can be minimally φP -S-mapped (respectively, minimally φP -B-mapped) to an
extension ESH of DH . Then, ECG \DG consists of at most |DG||ESH \DH | components.

Proof. We first show the statement of the lemma for the case when φP is locally surjective
and therefore ECG can be minimally φP -S-mapped to ESH . Let φ : V (ECG)→ V (ESH) be
a locally surjective homomorphism that augments φP and that exists because ECG can be
φP -S-mapped to ESH . Let EC′G be an extension of ECG with EC′G � ECG. Then, because
of Lemma 3, it follows that φ|EC′G is a homomorphism from EC′G to ESH that is locally
surjective for every v ∈ EC′G \DG. Therefore, φ|EC′G is a locally surjective homomorphism
from EC′G to ESH if and only if EC′G is such that φ|EC′G is locally surjective for every
d ∈ DG. That is, for every d ∈ DG and every neighbour nH of φ(d) in ES′H , there has to
exist a neighbour nG of d in EC′G such that φ(nG) = nH . Since this holds if nH ∈ DH

(because φP is a locally surjective homomorphism from DG to DH), we can assume that
the above only has to hold for every d ∈ DG and nH ∈ ESH \DH .

Because φ is a locally surjective homomorphism from ECG to ESH , it follows that for
every d ∈ DG and every neighbour nH of φ(d) in ESH , there is a component, say Cd,nH ,
containing a neighbour nG of d in ECG such that φ(nG) = φ(nH); note that because φ
augments φP , it follows that nG /∈ DG because nH /∈ DH .

Let EC′G be the extension of DG consisting of DG and all components Cd,nH for every
d ∈ D and nH ∈ ESH \DH as above. Then, φ|EC′G is a locally surjective homomorphism
from EC′G to ESH and since ECG is minimally φP -S-mapped to ESH and EC′G � ECG, it
follows that EC′G = ECG. However, EC′G \DG consists of at most one component for every
d ∈ DG and every nH ∈ ESH \DH and therefore it consists of at most |DG||ESH \DH |
components. This concludes the proof for the case when φP is locally surjective.

It remains to show the statement of the lemma for the case when φP is locally bijective
and ECG is minimally φP -B-mapped to ESH . Let φ : V (ECG) → V (ESH) be a locally
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bijective homomorphism that augments φP and that exists because ECG can be φP -B-
mapped to ESH . Because φ is locally bijective, it is also locally surjective and therefore
we can obtain the components Cd,nH of ECG \DG for d ∈ DH and nH ∈ ESH \DH using
the same arguments as in the case when φ was locally surjective. As before, let EC′G be
the extension of DG containing all components Cd,nH . Then, as we showed above, φ|EC′G
is a locally surjective homomorphism from EC′G to ESH . Moreover, φ|EC′G is also locally
injective, because so is φ. Therefore, φ|EC′G is a locally bijective homomorphism from
EC′G to ESH . The latter implies, as ECG can be minimally φP -B-mapped to ESH , that
ECG = EC′G. This concludes the proof of the lemma, because EC′G consists of at most
|DG||ESH \DH | components. ut

The following proposition is a slight generalisation of [19, Theorem 4] and will allow us
to efficiently decide whether an extension ECG can be (weakly) S-mapped (respectively,
B-mapped) to some extension ESH .

Lemma 11 ([19, Theorem 4]). Let G and H be graphs and let φP : DG → DH be
a locally surjective (respectively, bijective) homomorphism from DG to DH for some
subgraphs DG of G and DH of H. Then deciding whether there is a locally surjective
(respectively, bijective) homomorphism from G to H that augments φP can be achieved in
O(|V (G)|((|V (H)2∆(H))tw(G))2tw(G)∆(H)) time and is therefore FPT parameterized by
tw(G) + |V (H)|.

Proof. In [19, Theorem 4], the authors provided an algorithm that, given a graph G and a
graph H, decides in O(|V (G)|((|V (H)2∆(H))tw(G))2tw(G)∆(H)) time whether there is a
locally surjective homomorphism from G to H. The algorithm uses a standard dynamic
programming approach on a tree decomposition of G, and it is straightforward to verify
that the algorithm can be adapted with only minor modifications to an algorithm using
the same run-time that decides whether there is a locally bijective homomorphism from
G to H. Similarly, it is straightforward to adapt their algorithm to the case that one is
additionally given a locally surjective (respectively, bijective) homomorphism φP from
some induced subgraph DG of G to some induced subgraph DH of H and one only looks
for a locally surjective (respectively, bijective) homomorphism from G to H that augments
φP . ut

The following corollary now follows directly from Lemma 11 and the definition of (weakly)
S-mapped (respectively, B-mapped).

Corollary 1. Let DG and DH be graphs and let φP be a locally surjective (respectively,
bijective) homomorphism from DG to DH . Let ECG be an extension of DG having treewidth
at most ω and let ESH be an extension of DH . Then, testing whether ECG can be weakly
φP -S-mapped, φP -S-mapped, or φP -B-mapped to ESH is FPT parameterized by ω+ |ESH |.

We are now ready to show that we can efficiently compute the sets wSM, SM, and BM,
which is the last crucial step towards constructing the ILP instance.

Lemma 12. Let G be a graph, let DG be a (k, c)-extended deletion set (respectively, a
c-deletion set) of size at most k for G, let D = (DH , c

′,CH) be a target description and
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let φP be a locally surjective (respectively, bijective) homomorphism from DG to DH .
Then, the sets wSM = wSM(G,D, φP ) and SM = SM(G,D, φP ) (respectively, the set
BM = BM(G,D, φP )) can be computed in FPT-time parameterized by k + c+ c′ and |SM|
(respectively, |BM|) is bounded by a function depending only on k + c+ c′. Moreover, the
number of variables in the equation system (CH, S1, S2, S3) (respectively, (CH, B1, B2))
is bounded by a function depending only on k + c+ c′.

Proof. We only show the lemma for the set SM, since the proof for the set wSM can be seen
as a special case and the proof for the set BM is identical. Let (ECG, TH) ∈ SM. Then, ECG
is an extension of DG with ECG � G, TH ∈ T c

′
DH

, and ECG can be minimally φP -S-mapped
to TH . Because ECG can be minimally φP -S-mapped to ESH , Lemma 10 implies that
ECG \DG consists of at most ` = |DG||ESH \DH | components and, because ECG � G,
these are also components of G \ DG. Therefore, there are at most (|TDG(G)|)` non-
isomorphic possibilities for ECG, which together with Lemma 9 and the facts that ` ≤ kc′
and |T c′DH | ≤ c′2(k+c

′
2 ) shows that |SM| ≤ (|TDG(G)|)`|T c′DH | ≤ (k + c2(k+c2 ))`(c′2(k+c

′
2 )).

Therefore, |SM| is bounded by a function depending only on k + c+ c′. Towards showing
that we can compute SM is FPT-time parameterized by k + c+ c′, first note that the set
TDG(G) can be computed in FPT-time parameterized by k + c using Lemma 9. Similarly,
the set T c′DH can be computed in FPT-time parameterized by k + c′ using the same idea
as in Lemma 9. This now allows us to compute the set A containing all non-isomorphic
possibilities for ECG, i.e. the set of all extensions ECG of DG with ECG � G and∑
TG∈TDG (G) tcECG(TG) ≤ ` in FPT-time parameterized by k + c+ c′, i.e. in time at most

(|TDG(G)|)`. But then, SM is equal to the set of all pairs (ECG,ESH) ∈ A×T c′DH such that
ECG can be minimally φP -S-mapped to ESH . Moreover, for every such pair (ECG,ESH)
we can test in FPT-time parameterized by k + c+ c′ whether ECG can be φP -S-mapped
to ESH using Corollary 1, because the treewidth of ECG is at most k + c (Proposition 2).
Therefore, we can compute SM by enumerating all pairs (ECG,ESH) ∈ A× T c′DH , testing
for each of them whether ECG can be φP -S-mapped to ESH using Corollary 1, and keeping
only those pairs (ECG,ESH) such that ECG can be φP -S-mapped to ESH and ECG is
inclusion-wise minimal among all pairs (EC′G,ESH). ut

We are now ready to prove the main result of this subsection.

Theorem 1 (restated). Let G be a graph, let DG be a (k, c)-extended deletion set (respec-
tively, a c-deletion set) of size at most k for G, let D = (DH , c

′,CH) be a target description
and let φP : DG → DH be a locally surjective (respectively, bijective) homomorphism from
DG to DH . Then, deciding whether there is a locally surjective (respectively bijective)
homomorphism that augments φP from G to any graph satisfying CH is FPT parameterized
by k + c+ c′.

Proof. We first compute the sets wSM and SM (respectively, the set BM), which because
of Lemma 12 can be achieved in FPT-time parameterized by k+ c+ c′. This now allows us
to construct the ILP instance I given by the equation system (CH,S1,S2,S3) (respectively,
the equation system (CH,B1,B2)) in FPT-time parameterized by k + c + c′. Moreover,
because the number of variables in I is bounded by a function of k + c+ c′ and we can
employ Proposition 3 to solve I in FPT-time parameterized by k + c+ c′. Finally, because
of Lemma 8, it follows that I has a solution if and only if there is a locally surjective
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(respectively bijective) homomorphism that augments φP from G to any graph satisfying
CH, which completes the proof of the theorem. ut

4 Applications of Our Algorithmic Framework

We are ready to show the main results of our paper, which can be obtained as an application
of our framework given in the previous section. Our first result implies that LSHom and
LBHom are FPT parameterized by the fracture number of the guest graph.

Theorem 2. LSHom and LBHom are FPT parameterized by k + c, where k and c are
such that the guest graph G has a c-deletion set of size at most k.

Proof. Let G and H be non-empty connected graphs such that G has a c-deletion set of
size at most k. Let DH = H[∆k+c

H ]. We first verify whether H has a c-deletion set of size
at most k using Proposition 1. If this is not the case, then we can return that there is no
locally surjective (and therefore also no bijective) homomorphism from G to H because of
Lemma 4. Therefore, we can assume in what follows that H also has a c-deletion set of
size at most k, which together with Lemma 5 implies that V (DH) is a kc(k + c)-deletion
set of size at most k for H. Therefore, using Lemma 9, we can compute tcH in FPT-time
parameterized by k+ c. This now allows us to obtain a target description D = (DH , c

′,CH)
with c′ = kc(k+ c) for H, i.e. D is satisfied only by the graph H, by adding the constraint
xT = tcH(TH) to CH for every simple extension type TH ∈ T c

′
DH

; note that T c′DH can be
computed in FPT-time parameterized by k + c by Lemma 9.

Because of Lemma 6, we obtain that there is a locally surjective (respectively, bijective)
homomorphism φ from G to H if and only if there is a set D ⊆ ∆k+c

G and a locally
surjective (respectively, bijective) homomorphism φP from DG = G[D] to DH such that φ
augments φP . Therefore, we can solve LSHom by checking, for every D ⊆ ∆k+c

G and every
locally surjective homomorphism φP from DG = G[D] to DH , whether there is a locally
surjective homomorphism from G to H that augments φP . Note that there are at most 2k

subsets D and because of Lemma 7, we can compute the set ΦD for every such subset in
O(kk+2) time. Furthermore, due to Lemma 5, D is a (k − |D|, c)-extended deletion set of
size at most k for G. Therefore, for every D ⊆ ∆k+c

G and φp ∈ ΦD, we can use Theorem 1
to decide in FPT-time, parameterized by k+ c (because c′ = kc(k+ c)), if there is a locally
surjective (respectively, bijective) homomorphism from G to a graph satisfying D that
augments φP . As H is the only graph satisfying D, we proved the theorem. ut

The proof of our next theorem is similar to the proof of Theorem 2. The major difference
is that H is not given. Instead, we use Theorem 1 for a selected set of target descriptions.
Each of these target descriptions enforces that graphs satisfying it have to be connected
and have precisely h vertices, where h is part of the input for the Role Assignment
problem. Furthermore, we ensure that every graph H satisfying the requirements of Role
Assignment satisfies at least one of the selected target descriptions. The size of the set of
considered target descriptions depends only on c and k, as it suffices to consider any small
graph DH and types of small simple extensions of DH .

Theorem 3. Role Assignment is FPT parameterized by k + c, where k and c are such
that G has a c-deletion set of size at most k.
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Proof. Let G be a non-empty connected graph such that G has a c-deletion set of size at
most k and let h ≥ 1 be an integer.

In order to use Theorem 1 in this case, we need to ensure that the target descriptions
used enforce that H is connected and has h vertices. Therefore, for a fixed graph D on
at most k vertices, we let COND be the set of all minimal sets S ⊆ T k+cD such that any
extension H of D, that contains exactly the types in S, is connected.

Since |T k+cD | is bounded by (2k + c)2(2k+c
2 ), we can compute COND by considering

every S ⊆ T k+cD and checking whether an extension T ∈ TD of D containing precisely
the types in S is connected. Since |V (T )| ≤ k + (k + c) · |S| and checking connectivity
takes linear time (using BFS or DFS) we can compute COND in time depending only on
k and c. For S ∈ COND, we set CHS to be the set of equations containing xT ≥ 1 for
every T ∈ S and |V (DH)|+ ∑

T∈T cDH
(|V (T )| − |V (DH)|) ∗ xT = h. Note that for D and

S ∈ COND, any graph H satisfying the target description (D, c+ k,CHS) is connected
and has h vertices.

If there is a connected graph H on h vertices and a locally surjective homomorphism
φ from G to H, then by Lemma 6 there is a set D ⊆ ∆k+c

G and a locally surjective
homomorphism φP from DG = G[D] to DH = H[∆k+c

H ] such that φ augments φP . Note
that by Lemmas 4 and 5, DH is a (k+ c)-deletion set of size at most k. This implies firstly
that DH is a graph on at most k vertices. Secondly, H is an extension of DH such that
tcH(T ) = 0 for T /∈ T c+kDH

and, since H is also connected and has h vertices, H satisfies
the target description (DH , c+ k,CHS) for at least one S ∈ CONDH .

Therefore, we can solve the Role Assignment problem by checking for every D ⊆
∆k+c
G , every graph DH on no more than k vertices, every S ∈ CONDH and every locally

surjective homomorphism φP from DG = G[D] to DH , whether there is a graph H
satisfying the target description (DH , k + c,CHS) and a locally surjective homomorphism
from G to H that augments φP . Note that there are at most 2k subsets D. Furthermore,
there are at most k2(k2) graphs on at most k vertices and for each we can compute
COND in time depending only on k and c. For each such graph DH , there are at most

|COND| ≤ 2(2k+c)2(
2k+c

2 )
subsets S to consider. Lastly, because of Lemma 7, for every

D ⊆ ∆k+c
G and any graph DH on no more than k vertices, we can compute the set of

locally surjective homomorphisms φP from G[D] to DH in time O(kk+2) time and there
are at most |D||D| partial homomorphisms φP to consider.

By Lemma 5, D is a (k−|D|, c)-extended deletion set of size at most k for G. Therefore,
for every D ⊆ ∆k+c

G , every graph DH on no more than k vertices, every S ∈ CONDH
and every locally surjective homomorphism φP from DG = G[D] to DH , we can employ
Theorem 1 to decide in FPT-time parameterized by k + c, whether there is a graph H
satisfying (DH , c + k,CHS) and a locally surjective homomorphism from G to H that
augments φP . This completes the proof. ut

5 Locally Injective Homomorphisms

The following result is well known. We include a proof for completeness.

Theorem 4 (Folklore). LIHom is W[1]-hard parameterized by |V (G)|. In particular, it
is W[1]-hard for all structural parameters of G.
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Proof. Let G be a complete graph on k vertices, and let H be an arbitrary graph. There
exists a locally injective homomorphism φ from G to H if and only if H contains a clique
K on k vertices. Indeed, for the forward direction, pick K to be the image of V (G) under
φ. Then |K| = |V (G)| = k by the local injectivity of φ, and K is a clique. For the reverse
direction, let φ be any bijection between V (G) and K. The result follows from the fact
that Clique is W[1]-hard. ut

The locally injective case is more difficult in our setting since, in general, surjectivity helps
to transfer structural parameters on G to similar structures on H (for example, in LSHom
and LBHom the image of a deletion set is also a deletion set by Lemma 4). In LIHom
however, and even in the restricted case of graphs with bounded vertex cover number, no
such property can be used to help find the image of a vertex cover, and exponential-time
enumerations appear to be necessary. On the positive side, once a partial homomorphism
from a vertex cover of G to H has been found, our ILP framework can still be applied to
map the remaining vertices in FPT-time. This leads to an XP-algorithm for vertex cover
number (Theorem 5). Interestingly, this result does not extend to c-deletion set number for
c > 1: even if the mapping of the deletion set can be guessed, the fact that the non-trivial
remaining components must be mapped to distinct subgraphs of H makes the problem
difficult (see Theorem 6).

Theorem 5. LIHom is in XP parameterized by the vertex cover number of G.

Proof. As for the surjective and bijective cases, we employ a two-step algorithm that first
computes a suitable vertex cover, which can be done in time 1.2738vc(G) [21], and guesses
the image of the vertex cover and a partial homomorphism. Second, the algorithm finds a
solution of an ILP which defines how to map the remaining vertices. The ILP only requires
FPT-time, however the first step needs an exhaustive enumeration of subsets of H (in the
injective case, the image of a vertex cover does not have to be a vertex cover), hence the
XP running time.

We use the definitions of types and extensions from Section 3.2. Note that for any
connected graph G with vertex cover DG, the connected components of G \DG are single
vertices. We can thus define the type of a vertex v of G \DG to be the type of the simple
extension G[{v} ∪DG]. Note that two vertices u, v from G \DG have the same type if
they have the same neighbours in DG. Hence, there are at most 2|DG| types in G.

In what follows, let G be the given connected guest graph, and let H be the host graph.
The main property of locally injective homomorphisms we use in this proof is that the
size of the pre-image of any vertex of H can be bounded by twice the vertex cover number
of G. This follows from the following claims.

Claim 1. For any locally injective homomorphism φ : G→ H and every h ∈ V (H), no
two vertices in the pre-image φ−1(h) share a neighbour.

Proof of Claim. Suppose that φ : G→ H is a locally injective homomorphism and there
are vertices h ∈ V (H), v, v′ ∈ φ−1(h) and u ∈ V (G) such that u is adjacent to both v and
v′. But then the restriction of φ to NG(u) is not injective, contradicting the assumption. �
Since, for every vertex cover DG and every vertex u ∈ V (G), either u ∈ DG or every
neighbour of u is in DG, we observe the following.
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Claim 2. If R ⊆ V (G) is a subset with the property that no two vertices u, v ∈ R share
a neighbour, then |R| ≤ 2 · vc(G).

We use the property that pre-images have bounded size for locally injective homomor-
phisms to guess a partial homomorphism we aim to augment, as well as determining which
types of complex extensions our ILP needs to consider. In what follows, we show that
picking suitable pre-images for the vertices of the host graph H yields a locally injective
homomorphism.

Suppose thatDG is a vertex cover of G andDH ⊆ V (H). We further fix φP : DG → DH

to be a partial homomorphism such that, for every h ∈ DH , no two vertices u, v ∈ φ−1P (h)
share a neighbour in G. We say that a (possibly empty) subset R of V (G) \ DG is a
candidate pre-image of a vertex h ∈ V (H \DH) if the following two conditions hold:

1. φP (NG(R)) ⊆ NH(h) ∩DH and
2. no two vertices in R share a neighbour.

With respect to the first condition, we note that φP : DG → DH is indeed defined on
NG(R). This is because R ⊆ V (G) \DG and DG is a vertex cover of G. Hence, it holds
that NG(R) ⊆ DG.

Claim 3. There is a locally injective homomorphism from G to H augmenting φP if and
only if there is a partition {Rh | h ∈ V (H)} of V (G) such that Rh = φ−1P (h) for every
h ∈ DH , and Rh is a candidate pre-image for every h ∈ V (H) \DH .

Proof of Claim. First suppose that φ : V (G)→ V (H) is a locally injective homomorphism
from G to H augmenting φP . Define Rh = φ−1(h) for every h ∈ V (H). Since φ is a
mapping, we obtain that {Rh | h ∈ V (H)} is a partition of V (G). Since φ augments φP ,
we know that φ−1P (h) = φ−1(h). The latter implies that φ−1P (h) = Rh for every h ∈ Dh.
Finally, let h ∈ V (H) \ DH . As φ augments φP , the set Rh must be disjoint from DG.
Hence, NG(Rh) ⊆ DG and φP (NG(Rh)) ⊆ DH . Additionally, since φ is a homomorphism,
φ(NG(Rh)) = φP (NG(Rh)) ⊆ NH(h) implying Condition 1. Hence, by Claim 1, we find
that Rh is a candidate pre-image.

On the other hand, suppose that {Rh | h ∈ V (H)} is a partition of V (G) such that
Rh = φ−1P (h) for every h ∈ DH and Rh is a candidate pre-image for every h ∈ V (H) \DH .
Define a mapping φ : V (G)→ V (H) where φ(v) = h if v ∈ Rh. Note that φ is well defined,
as {Rh | h ∈ V (H)} is a partition of V (G). We now argue that φ is a homomorphism, i.e.
we argue that for every pair of vertices u, v ∈ V (G), if uv ∈ E(G), then φ(u)φ(v) ∈ E(H).
For u, v ∈ DG this follows directly from φP being a homomorphism. For u ∈ DG and
v /∈ DG, it follows from Condition 1, while uv /∈ E(G) for all u, v /∈ DG. We are left to
prove that φ is locally injective.

Let v ∈ V (G) and u, u′ ∈ NG(v) be any vertices. We prove that φ(u) 6= φ(u′). If
u, u′ ∈ DG, then u, u′ share a neighbour, which implies φP (u) 6= φP (u′) by choice of φP .
If u ∈ DG and u′ /∈ DG, then φ(u) ∈ DH and φ(u′) /∈ DH , as φ is an augmentation of φP .
If u, u′ /∈ DG, then u, u′ share a neighbour, and they cannot be in the same candidate
pre-image by Condition 2. �

Let HDH be the graph obtained from H by deleting all edges that are not incident with DH .
In particular, DH is a vertex cover of HDH .
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Claim 4. There is a locally injective homomorphism from G to H augmenting φP if and
only if there is a locally injective homomorphism from G to HDH augmenting φP .

Proof of Claim. By Claim 3, there is a locally injective homomorphism from G to H
augmenting φP if and only if there is a partition {Rh | h ∈ V (H)} of V (G) such that
Rh = φ−1P (h) for every h ∈ DH and Rh is a candidate pre-image for every h ∈ V (H) \DH .
Observe that Rh being a candidate pre-image is independent of whether we consider the
graph H or the graph HDH . This directly yields the claim using Claim 3. �

We are now ready to describe our algorithm. Since in the first step we want to guess all
possible partial homomorphisms, we first observe the following. Suppose that φ : V (G)→
V (H) is a locally injective homomorphism from G to H, that D′G is a vertex cover of G
of size vc(G), and that DH is the image φ(D′G) of D′G. It is not necessarily true that the
pre-image φ−1(DH) is D′G. Hence our goal is to guess the image DH of D′G as well as the
pre-image DG of DH . Note that guessing DG could be done in FPT time by essentially
only considering the type of pre-image of every vertex h ∈ DH . However, we simplify the
analysis here and guess DG with XP many guesses.

Given two graphs G and H as input, the algorithm proceeds as follows. Since we can
consider any connected component of G individually, we assume that G is connected. First,
we compute any vertex cover D′G of G of size vc(G). We proceed by considering every set
DH ⊆ V (H) of size at most vc(G) and any set {Rh | h ∈ DH} of pairwise disjoint subsets
of V (G), for which the following conditions hold:

– D′G ⊆ DG where we define DG to be
⋃
h∈DH Rh,

– the partial homomorphism φP : DG → DH , defined by setting φP (v) = h whenever
v ∈ Rh, is a homomorphism from DG to DH and

– for every h ∈ DH no two vertices u, v ∈ Rh share a neighbour in G.

In total we consider (|V (H)|+ 1)vc(G) subsets DH of V (H). Furthermore, we only need
to consider sets {Rh | h ∈ DH} for which |Rh| is at most 2 × vc(G) by the condition
that no two vertices u, v ∈ Rh share a neighbour and Claim 2. Hence, we consider
(|V (G)|+ 1)2·vc(G)2 such sets and check for each whether the conditions are met. In the
next step of the algorithm, we decide, for every partial homomorphism φP considered
in the first step, whether there is a locally injective homomorphism φ : V (G) → V (H)
from G to H augmenting φP . Note that by Claim 4 there is such a homomorphism if and
only if there is a locally injective homomorphism φ : V (G)→ V (HDH ) from G to HDH

augmenting φP . We encode the existence of such a homomorphism into an ILP.
Observe that DG is a vertex cover of G of size at most 2 ·vc(G)2 (the set DG consists of

a set Rh of size at most 2 · vc(G) for each of the at most vc(G) vertices h ∈ DH) and DH

is a vertex cover of HDH . Types considered in what follows are the types of G and HDH

with regards to vertex covers DG and DH . To construct the ILP, we first compute tcG and
tcHDH in polynomial time. Let IM be the set of pairs (ECG, TH), where ECG ∈ EDG(G) is
a complex extension of DG and TH ∈ TDH (HDH ) is a simple extension of DH , such that
V (ECG \DG) is a candidate pre-image of TH \DH .

Observe that the size of every candidate pre-image is at most 2·vc(G) by Condition 2 and
Claim 2. Therefore, we obtain that the size of IM is at most |TDG(G)|2·vc(G) ·|TDH (HDH )| =
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24·vc(G)3 · 2vc(G). We introduce a variable xECGTH for each pair (ECG, TH) ∈ IM and let

X = {xECGTH : (ECG, TH) ∈ IM}.

The variable xECGTH represents the number of vertices h in V (H) \ DH with type TH
whose pre-image is V (ECG) \DG. We introduce two types of constraints (see below). The
first constraint enforces that the pre-images Rh form a partition of V (G \DG) by counting
vertices of each type in each ECG and checking that the sum corresponds to the count
in G. The second constraint corresponds to the fact that each vertex in H needs to be
assigned a (possibly empty) pre-image (the number of pairs involving a type TH must
correspond to the type-count of TH in H).

–
∑

(ECG,TH)∈IM
tcECG(TG) ∗ xECGTH = tcG(TG) for every TG ∈ TDG(G),

–
∑

ECG:(ECG,TH)∈IM
xECGTH = tcH(TH) for every TH ∈ TDH (HDH ).

We accept the input if any of the considered ILPs admits a solution, which can be checked
in FPT time.

It remains to show that the algorithm is correct. If there is a locally injective ho-
momorphism from G to H, then it must augment one of the partial homomorphisms
φP : DG → DH considered in the first step. By Claim 3, there is a partition {Rh | h ∈
V (H)}, such that Rh is a candidate pre-image for every h ∈ V (H) \ DH , and hence
(Rh ∪DG, DH ∪ {h}) ∈ IM. Hence, we obtain a feasible solution of the two constraints
above considering the following assignment α. The assignment α : X → N sets the variable
xECGTH to the number of vertices h ∈ V (H) \ DH of type TH for which the extension
Rh ∪DG has type ECG.

Conversely, let α : X → N be an assignment which is a solution to the two constraints
above for some partial homomorphism φP : DG → DH . For each TH ∈ TDH (HDH ), we
first partition the vertices of V (HDH ) \DH into sets SECGTH for every (ECG, TH) ∈ IM
such that |SECGTH | = α(xECGTH ). This is possible due to the second constraint. We then
choose a partition {Rh | h ∈ V (HDH )} of V (G) as follows. For each h ∈ DH , we set
Rh to be φ−1P (h). For h ∈ SECGTH , we choose Rh ⊆ V (G) \DG such that Rh ∪DH has
type ECG. This is possible because of the first constraint. Since {Rh | h ∈ V (HDH )} is a
partition satisfying that Rh = φ−1P (h) for every h ∈ DH and Rh is a candidate pre-image
for every h ∈ V (H) \DH , we conclude that there is a locally injective homomorphism
augmenting φP by Claim 3. ut

Corollary 2. For any constant k, LIHom is polynomial-time solvable for graphs G where
ds1(G) is at most k.

We actually obtain the following dichotomy for the complexity of LIHom, where the c = 1,
k ≥ 1 case is already given by Corollary 2.

Theorem 6. Let c, k ≥ 1. Then LIHom is polynomial-time solvable on guest graphs G
where dsc(G) is at most k if either c = 1 and k ≥ 1 or c = 2 and k = 1; otherwise, it is
NP-complete.

Theorem 6 follows from Corollary 2 and the following three lemmas.

29



Lemma 13. LIHom is polynomial-time solvable for graphs G where ds2(G) is at most 1.

Proof. Let G and H be connected graphs such that G has 2-deletion set number at
most 1. If G has a 2-deletion set containing no vertices, then G contains at most two
vertices, in which case we can solve LIHom in polynomial time. Otherwise, we can find a
2-deletion set {v} in polynomial time by trying all possibilities for v. Let p be the number
of edges in G[NG(v)] and let w be a vertex of H. We claim that there is a locally injective
homomorphism φ from G to H such that φ(v) = w if and only if H[NH(w)] has a matching
on at least p edges and dG(v) ≤ dH(w).

Indeed, if such a locally injective homomorphism φ exists, then dG(v) ≤ dH(w)
because φ is locally injective. Furthermore, for every edge xy in G[NG(v)], the homo-
morphism φ maps the vertices x and y to adjacent vertices of H[NH(w)], and since φ
is locally injective, it cannot map two vertices of NG(v) to the same vertex in NH(w).
Therefore H[NH(w)] must have a matching on at least p edges.

Now suppose that H[NH(w)] has a matchingM on at least p edges and dG(v) ≤ dH(w).
For each edge xy in G[NG(v)], let φ(x) and φ(y) be the endpoints of an edge inM (choosing
a different edge of M for each edge xy). For the remaining vertices x ∈ NG(v), assign the
remaining vertices of NH(w) arbitrarily, such that no two vertices of NG(v) are assigned
the same value (this can be done since dG(v) ≤ dH(w)). Let φ(x) = w for all remaining
vertices of G (i.e. the vertex v and all vertices non-adjacent to v that have a common
neighbour with v). By construction, φ is a locally injective homomorphism from G to H.

The size of a maximum matching in a graph can be found in polynomial time [30].
Thus, by branching over the possible vertices w ∈ V (H), we obtain a polynomial-time
algorithm for LIHom. ut

For a fixed graph H ′ on h vertices, the H ′-Partition problem takes as input a graph G′ on
hn vertices. The task is to decide whether the vertex set of G′ can be partitioned into sets
V1, . . . , Vn, each of size h, such that G′[Vi] contains H ′ as a subgraph for all i ∈ {1, . . . , n}.
The H ′-Partition problem is known to be NP-complete if H ′ ∈ {K3, P3} [45,54]. For the
NP-hardness part of Theorem 6, we use a reduction from H ′-Partition, with H ′ = P3 in
Lemma 14 and H ′ = K3 in Lemma 15.

Lemma 14. For c ≥ 2 and k ≥ 2, LIHom is NP-hard on graphs G where dsc(G) is k.

Proof. We first consider the case when k = 2. Consider an instance G′ of the P3-Partition
problem on 3n vertices, where n ≥ c. We construct a graph G as follows. For i ∈ {1, . . . , n},
add vertices ai, bi, ci and di and edges aibi and cidi. Then add vertices u and v and
make u adjacent to ai, bi and di and v adjacent to ai, ci and di for all i ∈ {1, . . . , n}.
Finally, add the edge uv. Note that {u, v} is a minimum-size c-deletion set for G since
degG(u) = degG(v) > c. Now let H be the graph obtained from G′ by adding two
vertices u′ and v′ that are adjacent to all the vertices in V (G′) and to each other. For
an illustration of the construction see Figure 4. We claim that there is a locally injective
homomorphism φ from G to H if and only if G′ is a yes-instance of the P3-Partition
problem.

Suppose that G′ is a yes-instance of the P3-Partition problem and, for i ∈ {1, . . . , n},
let v1i , v2i , v3i be the three vertices in Vi, such that v2i is adjacent to v1i and v3i (v1i may or
may not be adjacent to v3i ). Let φ : V (G)→ V (H) be the function such that φ(u) = u′,
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u v

a1 b1 c1 d1

a2 b2 c2 d2

V1 V2

u′ v′

Fig. 4. An instance of LIHom consisting of the graph G (left) and the graph H (right) correspond-
ing to the instance G′ = (V,E) of P3-Partition, where V = [6] and E = {12, 13, 23, 34, 45, 56}.
As G′ is a yes-instance of the P3-Partition problem (partition is indicated by grey boxes), there
is a locally injective homomorphism from G to H which is indicated by colours.

φ(v) = v′, and for i ∈ {1, . . . , n}, φ(ai) = v1i , φ(bi) = φ(ci) = v2i and φ(di) = v3i . Note that
φ is injective on NG(ai) for every i ∈ [n], as φ(u), φ(v) and φ(bi) are pairwise distinct. For
the same reason, φ is injective on NG(bi), NG(ci) and NG(di) for every i ∈ [n]. To see that
φ is injective on NG(u), observe that φ restricted to V (G) \ {ci : i ∈ [n]} is a bijection.
Since u is not adjacent to any vertex in {ci : i ∈ [n]}, this proves that φ is injective on
NG(u). For v we conclude with a symmetric argument. Hence, φ is a locally injective
homomorphism from G to H.

Now suppose that φ is a locally injective homomorphism from G to H. Now degG(u) =
degG(v) = 3n+ 1. Since H has 3n+ 2 vertices and φ is a locally injective homomorphism,
it follows that φ(u) and φ(v) must be universal vertices in H. By symmetry, we may
therefore assume that φ(u) = u′ and φ(v) = v′. Now u is adjacent to v and the vertices
ai, bi and di for all i ∈ {1, . . . , n}. Similarly, v is adjacent to u and the vertices ai,
ci and di for all i ∈ {1, . . . , n}. Since degG(u) = 3n + 1, and φ is locally injective, it
follows that φ({ai, bi, di | i ∈ {1, . . . , n}}) = V (G′). Similarly, since degG(v) = 3n+ 1, it
follows that φ({ai, ci, di | i ∈ {1, . . . , n}}) = V (G′). Therefore φ({bi | i ∈ {1, . . . , n}}) =
φ({ci | i ∈ {1, . . . , n}}). Renumbering the indices of the ci and di vertices if necessary,
we may therefore assume by symmetry that φ(bi) = φ(ci) for all i ∈ {1, . . . , n}. Now,
for all i ∈ {1, . . . , n}, the vertices ai and bi are adjacent in G, so φ(ai) and φ(bi) are
adjacent in H. Furthermore the vertices ci and di are adjacent in G, so φ(ci) = φ(bi)
and φ(di) are adjacent in H. We now set Vi = {φ(ai), φ(bi), φ(di)} and note that the Vi
sets partition V (G′), and that G′[Vi] contains a P3 subgraph for all i ∈ {1, . . . , n}. This
completes the proof of the case when k = 2.

To extend the proof to graphs with c-deletion number k > 2, we add (k − 1) universal
vertices to H and replace u with a k-clique K each of whose vertices is adjacent to v and
ai, bi and di for all i ∈ {1, . . . , n}. ut
Lemma 15. For c ≥ 3 and k ≥ 1, LIHom is NP-hard on graphs G where dsc(G) is k.
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Proof. We first consider the case when k = 1. Consider an instance G′ of theK3-Partition
problem on 3n vertices, where n ≥ c. Let H be the graph obtained from G′ by adding a
universal vertex w. Let G be the graph obtained by taking the disjoint union of n copies
of K3 and adding a universal vertex v. Note that {v} forms a minimum-size c-deletion
set for G since degG(v) > c. We claim that there is a locally injective homomorphism φ
from G to H if and only if G′ is a yes-instance of the K3-Partition problem.

Indeed, suppose there is such a φ. Since φ is locally injective and the graphs G and H
each have 3n vertices, the universal vertex v must be mapped to a universal vertex of H;
without loss of generality, we may therefore assume that φ(v) = w. Since v and w are
universal vertices of the same degree, it follows that φ is a bijection from V (G) to V (H).
EveryK3 in the disjoint union part of G must therefore be mapped to aK3 in H\{w} = G′.
Therefore G′ is a yes-instance of the K3-Partition problem.

Now suppose that G′ is a yes-instance of the K3-Partition problem. We let φ(v) = w,
and map the vertices of each K3 in the disjoint union part of G to some Vi from the
K3-partition of H, mapping each K3 to a different set Vi. Clearly this is a locally injective
homomorphism. This completes the proof of the case when k = 1. To extend the proof to
graphs with c-deletion number k > 1, we add (k − 1) universal vertices to G and H. ut

6 Bounded Tree-depth and Feedback Vertex Set Number

By Theorem 6, we already obtained paraNP-hardness for LIHom parameterized by tree-
depth or feedback vertex set number. In this section we show that our tractability results
for LSHom and LBHom cannot be significantly extended, since both problems become
paraNP-hard parameterized by tree-depth. Furthermore, the reduction we give here also
provides paraNP-hardness for both LSHom and LBHom parameterized by the feedback
vertex set number. We show this by replacing cycles with stars in the reduction provided
in [19] for path-width. This strengthens their result from path-width to tree-depth and
feedback vertex set number.

Theorem 7. LBHom, or more specifically, 3-FoldCover, and LSHom are NP-complete
on input pairs (G,H) where G has tree-depth at most 6 and H has tree-depth at most 4.

Proof. First note that LBHom, 3-FoldCover and LSHom are in NP. To prove NP-
hardness for 3-FoldCover and LSHom we use a reduction from the 3-Partition problem.
This problem takes as input a multiset A of 3m integers, denoted in what follows by
{a1, a2, . . . , a3m}, and a positive integer b > 2, such that b

4 < ai <
b
2 for all i ∈ {1, . . . , 3m}

and
∑

1≤i≤3m ai = mb. The task is to determine whether A can be partitioned into m
disjoint sets A1, . . . , Am such that

∑
a∈Ai a = b for all i ∈ {1, . . . ,m}. Note that the

restrictions on the size of each element in A implies that each set Ai in the desired
partition must contain exactly three elements, which is why such a partition A1, . . . , Am is
called a 3-partition of A. The 3-Partition problem is strongly NP-complete [45], that is, it
remains NP-complete even if the problem is encoded in unary. If b = 3, then 3-Partition
can be solved in polynomial time (since all ai’s are 1). Hence, we assume that b > 3.

We first prove NP-hardness for 3-FoldCover, which implies NP-hardness for LBHom.
Given an instance (A, b) of 3-Partition, we construct an instance of 3-FoldCover
consisting of connected graphs G and H with |V (G)| = 3|V (H)| as follows. To construct
G we do as follows:
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– Take 3m disjoint copies S1, . . . , S3m of K1,b (stars), one for each element of A. For
each i ∈ {1, . . . , 3m}, the vertices of Si are labelled ci, ui1, . . . , uib, where ci is the vertex
of degree b in Si (the centre of the star).

– Add two new vertices pij and qij for each i ∈ {1, . . . , 3m}, j ∈ {1, . . . , b}, as well as two
new edges uijpij and uijqij .

– Add three new vertices x, y and z.
– Make x adjacent to the vertices pi1, pi2 . . . , piai and q

i
1, q

i
2 . . . , q

i
ai for every i ∈ {1, . . . , 3m}.

– Make y adjacent to every vertex pij that is not adjacent to x.
– Make z adjacent to every vertex qij that is not adjacent to x.

See Figure 5 for an example.
To construct H, we take m disjoint copies S̃1, . . . , S̃m of K1,b, where the vertices of

each star S̃i are labelled c̃i, ũi1, . . . , ũib. For each i ∈ {1, . . . ,m} and j ∈ {1, . . . , b}, we add
two vertices p̃ij and q̃ij and make both of them adjacent to ũij . Finally, we add a vertex x̃
and make it adjacent to each of the vertices p̃ij and q̃ij . This finishes the construction of H.
Note that |V (G)| = 3|V (H)|. See again Figure 5 for an illustration.

We now show that there exists a locally bijective homomorphism from G to H if and
only if (A, b) is a yes-instance of 3-Partition.

Let us first assume that there exists a locally bijective homomorphism φ from G to
H. Since φ is a degree-preserving mapping, we must have φ(x) = x̃. Moreover, since φ
is locally bijective, the restriction of φ to NG(x) is a bijection from NG(x) to NH(x̃).
Again using the definition of a locally bijective homomorphism, this time considering the
neighbourhoods of the vertices in NH(x̃), we deduce that there is a bijection from the set
N2
G(x) := {uij | 1 ≤ i ≤ 3m, 1 ≤ j ≤ ai}, i.e. from the set of vertices in G at distance 2

from x, to the set N2
H(x̃) := {ũkj | 1 ≤ k ≤ m, 1 ≤ j ≤ b} of vertices that are at distance 2

from x̃ in H.
For every k ∈ {1, . . . ,m}, we define a set Ak ⊆ A such that Ak contains element

ai ∈ A if and only if φ(ui1) ∈ {ũk1 , . . . , ũkb}. Since φ is a bijection from N2
G(x) to N2

H(x̃),
the sets A1, . . . , Am are disjoint; moreover each element ai ∈ A is contained in exactly
one of them. Since φ is degree preserving, each ci has to be mapped onto a c̃j (note that
we use the assumption b > 3 here). Additionally, since φ is locally bijective, for every
i ∈ {1, . . . , 3m} there is a bijection from NG(ci) = {ui1, . . . , uib} to NH(c̃j) = {ũj1, . . . , ũjb}
for the j ∈ {1, . . . ,m} for which φ(ci) = c̃j . Combining this and the previous argument
implies that

∑
a∈Ai a = b for all i ∈ {1, . . . ,m}. Hence A1, . . . , Am is a 3-partition of A.

For the reverse direction, suppose that there exists a 3-partition A1, . . . , Am of A. We
define a mapping φ as follows. We first set φ(x) = φ(y) = φ(z) = x̃. Let Ai = {ar, as, at}
be any set of the 3-partition. We map the vertices of Sr, Ss, St to the vertices of S̃i in the
following way:

– φ(cr) = φ(cs) = φ(ct) = c̃i;
– φ(urj) = ũij for each j ∈ {1, . . . , b};
– φ(usj) = ũiar+j for each j ∈ {1, . . . , as + at};
– φ(usj) = ũiar+j−b for j ∈ {as + at + 1, . . . , b};
– φ(utj) = ũiar+as+j for each j ∈ {1, . . . , at}; and
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x

y z

S1
S2

S3

x̃

S̃1

Fig. 5. An instance of LBHom consisting of the graph G (left) and the graph H (right) corre-
sponding to the instance (A, b) of 3-Partition, where A = {2, 3, 2} and b = 7. As (A, b) is a
yes-instance of the 3-Partition problem, there is a locally bijective homomorphism from G to H
which is indicated by colours.

– φ(usj) = ũiar+j−b for j ∈ {at + 1, . . . , b}.

It remains to map the vertices pij and qij for each i ∈ {1, . . . , 3m} and j ∈ {1, . . . , b}. Let
pij , q

i
j be a pair of vertices in G that are adjacent to x, and let uij be the second common

neighbour of pij and qij . Suppose that ũk` is the image of uij , i.e. suppose that φ(uij) = ũk` .
Then we map pij and qij to p̃k` and q̃k` , respectively. We now consider the neighbours of y
and z in G. By construction, the neighbourhood of y consists of the 2mb vertices in the
set {pij | ai+1 ≤ j ≤ b}, while NG(z) = {qij | ai+1 ≤ j ≤ b}.

Observe that x̃, the image of y and z, is adjacent to two sets of mb vertices: one of
the form p̃k` , the other of the form q̃k` . Hence, we need to map half the neighbours of y to
vertices of the form p̃k` and half the neighbours of y to vertices of the form q̃k` in order to
make φ a locally bijective homomorphism. The same must be done with the neighbours
of z. For every vertex ũk` in H, we do as follows. By construction, exactly three vertices of
G are mapped to ũk` , and exactly two of these vertices, say uij and u

g
h, are at distance 2

from y in G. We set φ(pij) = p̃k` and φ(pgh) = q̃k` . We also set φ(qij) = q̃k` and φ(qgh) = p̃k` .
This completes the definition of the mapping φ. For an illustration of the map φ, see
Figure 5.

Since the mapping φ preserves adjacencies, it is a homomorphism. In order to show
that φ is locally bijective, we first observe that the degree of every vertex in G is equal to
the degree of its image in H, in particular,

dG(x) = dG(y) = dG(z) = dH(x̃) = 2mb.
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From the above description of φ we get a bijection between the vertices of NH(x̃) and
the vertices of NG(v) for each v ∈ {x, y, z}. For every vertex pij that is adjacent to x and
uij in G, its image p̃k` is adjacent to the images x̃ of x and ũk` of uij . For every vertex pij
that is adjacent to y (respectively, z) and uij in G, its image p̃k` or q̃k` is adjacent to x̃ of y
(respectively, z) and ũk` of uij . Hence the restriction of φ to NG(pij) is bijective for every
i ∈ {1, . . . , 3m} and j ∈ {1, . . . , b}, and the same clearly holds for the restriction of φ to
NG(qij).

The vertices of each star Si are mapped to the vertices of some star S̃k in such a way
that the centres are mapped to centres. This, together with the fact that the image ũk`
of every vertex uij is adjacent to the images p̃k` and q̃k` of the neighbours pij and qij of
uij , shows that the restriction of φ to NG(uij) is bijective for every i ∈ {1, . . . , 3m} and
j ∈ {1, . . . , b}. Finally, the neighbourhood of ci is clearly mapped to the neighbourhood of
φ(ci) for every i ∈ {1, . . . , 3m}. We conclude that φ is a locally bijective homomorphism
from G to H.

In order to show that the tree-depth of G is at most 6, we observe that removing x, y
and z yields a forest of depth 2. Similarly, H has tree-depth 4 since removing x̃ leaves a
tree of depth 2. This completes the proof for 3-FoldCover and therefore LBHom.

In order to prove NP-hardness for LSHom we can use the same reduction as for
LBHom. For this we can argue that there is a locally bijective homomorphism from G to
H, for the graphs G and H constructed above, if and only if there is a locally surjective
homomorphism from G to H. While the one direction is clear, if G B−→ H then G S−→ H,
for the converse direction we can make use of the following statement due to Kristiansen
and Telle [60]:

(*) If G S−→ H and drm(G) = drm(H), then G B−→ H.

Here drm(G), drm(H) refers to the degree refinement matrix of G or H respectively, which
is defined as follows. An equitable partition of a connected graph G is a partition of its
vertex set into blocks B1, . . . , Bk such that every vertex in Bi has the same number mi,j of
neighbours in Bj . Then drm(G) = (mi,j) for mi,j corresponding to the coarsest equitable
partition of G. We can easily observe that

drm(G) = drm(H) =


0 0 2mb 0
0 0 2 1
1 1 0 0
0 b 0 0

 ,

corresponding to the equitable partitions B1 = {x, y, z}, B2 = {uij | i ∈ {1, . . . , 3m}, j ∈
{1, . . . , b}}, B3 = {pij , qij | i ∈ {1, . . . , 3m}, j ∈ {1, . . . , b}} and B4 = {ci | i ∈ {1, . . . , 3m}}
in G and a similar equitable partition in H. Hence by (*) we find that G B−→ H if and only
if G S−→ H, completing the proof for LSHom. ut

Theorem 8. LBHom, or more specifically, 3-FoldCover, and LSHom are NP-complete
on input pairs (G,H) where G and H have feedback vertex set number at most 3 and 1,
respectively.
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Proof. To prove the statement we use the same reductions as in the proof of Theorem 7.
This is sufficient, as the set {x, y, z} is a feedback vertex set of G and the set {x̃} is a
feedback vertex set of H for graphs G and H defined in the proof of Theorem 7. ut

7 Conclusions

We presented a fairly comprehensive picture concerning the parameterized complexity
of three locally constrained graph homomorphism problems, namely LSHom, LBHom,
and LIHom, when parameterized by some property of the guest graph. Our hardness
results showed that the fracture number is the most suitable graph parameter of the guest
graph for obtaining (parameterized) algorithms for these problems. We developed our
algorithms through a general ILP-based framework. Besides the three locally constrained
graph homomorphism problems, we also illustrated the applicability of our framework
for the Role Assignment problem. This yielded three FPT results and one XP result in
total.

As future research, we aim to extend our ILP-based framework. If successful, this will
then also enable us to address the parameterized complexity of other graph homomorphism
variants such as quasi-covers [39] and pseudo-covers [15,17,18]. We also recall the open
problem from [19]: are LBHom and LSHom in FPT when parameterized by the treewidth
of the guest graph plus the maximum degree of the guest graph?
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