An Algorithmic Framework for Locally Constrained Homomorphisms*

Laurent Bulteau ${ }^{1}$, Konrad K. Dabrowski ${ }^{2}$, Noleen Köhler ${ }^{3}$, Sebastian Ordyniak ${ }^{4}$, and Daniël Paulusma ${ }^{5}$
${ }^{1}$ LIGM, CNRS, Université Gustave Eiffel, France laurent.bulteau@univ-eiffel.fr ${ }^{[0000-0003-1645-9345]}$
${ }^{2}$ Newcastle University, UK konrad.dabrowski@newcastle.ac.uk ${ }^{[0000-0001-9515-6945]}$
${ }^{3}$ LAMSADE, CNRS, Université Paris-Dauphine, PSL University, France noleen.kohler@dauphine.psl.eu ${ }^{[0000-0002-1023-6530]}$
${ }^{4}$ University of Leeds, UK sordyniak@gmail.com ${ }^{[0000-0002-1825-0097]}$
${ }^{5}$ University of Durham, UK daniel.paulusma@durham.ac.uk ${ }^{[0000-0001-5945-9287]}$

Abstract

A homomorphism ϕ from a guest graph G to a host graph H is locally bijective, injective or surjective if for every $u \in V(G)$, the restriction of ϕ to the neighbourhood of u is bijective, injective or surjective, respectively. We prove a number of new FPT, W[1]-hard and paraNP-complete results for the corresponding decision problems LBHom, LIHom and LSHom by considering a hierarchy of parameters of the guest graph G. In this way we strengthen several existing results. For our FPT results, we develop a new algorithmic framework that involves a general ILP model. We also use our framework to prove FPT results for the Role Assignment problem, which originates from social network theory and is closely related to locally surjective homomorphisms.

Keywords: (locally constrained) graph homomorphism • parameterized complexity - fracture number

1 Introduction

A homomorphism from a graph G to a graph H is a mapping $\phi: V(G) \rightarrow V(H)$ such that $\phi(u) \phi(v) \in E(H)$ for every $u v \in E(G)$. Graph homomorphisms generalise graph colourings (using a complete graph for H) and have been intensively studied over a long period of time, both from a structural and an algorithmic perspective. We refer to the textbook of Hell and Nešetřil [51] for a further introduction.

We write $G \rightarrow H$ if there exists a homomorphism from G to H; here, G is called the guest graph and H is the host graph. We denote the corresponding decision problem by Hom, and if H is fixed, that is, not part of the input, we write H-Hom. For graphs H without self-loops, the renowned Hell-Nešetřil dichotomy [49] states that H-Hom is

[^0]

Fig. 1. Left: an example of a locally injective homomorphism which is not locally surjective. Middle: an example of a locally surjective homomorphism which is not locally injective. Right: an example of a locally bijective homomorphism.
polynomial-time solvable if H is bipartite, and NP-complete otherwise. We denote the vertices of H by $1, \ldots,|V(H)|$ and call them colours. The reason for doing this is that graph homomorphisms generalise graph colourings: there exists a homomorphism from a graph G to the complete graph on k vertices if and only if G is k-colourable.

Instead of fixing the host graph H, one can also restrict the structure of the guest graph G by bounding some graph parameter. A classical result states that HOM is polynomial-time solvable when the guest graph G has bounded treewidth [20,42]. The core of a graph G is the subgraph F of G such that $G \rightarrow F$ and there is no proper subgraph F^{\prime} of F with $G \rightarrow F^{\prime}$ (the core is unique up to isomorphism [50]). Dalmau, Kolaitis and Vardi [23] proved that the Hom problem is polynomial-time solvable even if the core of the guest graph G has bounded treewidth. This result was strengthened by Grohe [47], who proved that if FPT $\neq \mathrm{W}[1]$, then Hom can be solved in polynomial time if and only if this condition holds.

1.1 Locally Constrained Homomorphisms

We are interested in three well-studied variants of graph homomorphisms that occur after placing constraints on the neighbourhoods of the vertices of the guest graph G. Consider a homomorphism ϕ from a graph G to a graph H. We say that ϕ is locally injective, locally bijective or locally surjective for a vertex $u \in V(G)$ if the restriction $\phi_{u}: N_{G}(u) \rightarrow N_{H}(\phi(u))$ of ϕ is injective, bijective or surjective, respectively. Here, $N_{G}(u)=\{v \mid u v \in E(G)\}$ denotes the (open) neighbourhood of a vertex u in a graph G. We say that ϕ is locally injective, locally bijective or locally surjective if ϕ is locally injective, locally bijective or locally surjective for every $u \in V(G)$. We denote the existence of these locally constrained homomorphisms by $G \xrightarrow{B} H, G \xrightarrow{I} H$ and $G \xrightarrow{S} H$, respectively; see Figure 1 for some examples.

The three locally constrained variants have been well studied in several settings over a long period of time. For example, locally injective homomorphisms are also known as
partial graph coverings and are used in telecommunications [34], in distance constrained labelling [33] and as indicators of the existence of homomorphisms of derivative graphs [66]. Locally bijective homomorphisms originate from topological graph theory [5,65] and are more commonly known as graph coverings. They are used in distributed computing $[2,3,8]$ and in constructing highly transitive regular graphs [6]. Locally surjective homomorphisms are sometimes called colour dominations [60]. They have applications in distributed computing $[16,17]$ and in social science [31,71,74,76]. In the latter context they are known as role assignments, as we will explain in more detail below. (see Section 1.2).

We study the following three decision problems that take two graphs G and H as input and ask if there exists a homomorphism from G to H of one of the three local kinds.

Locally Bijective Homomorphism (LBHom)
Input: Graphs G and H.
Question: Does $G \xrightarrow{B} H$ hold?
Locally Injective Homomorphism (LIHom)
Input: Graphs G and H.
Question: Does $G \xrightarrow{I} H$ hold?

```
Locally Surjective Homomorphism (LSHom)
Input: Graphs G and H.
Question: Does G I
```

As before, we use the notation H-LBHom, H-LIHom and H-LSHom in the case when the host graph H is fixed.

Out of the three problems, only the complexity of H-LSHom has been completely classified, both for general graphs and bipartite graphs [37]. We refer to a series of papers $[1,7,34,36,57,58,63]$ for polynomial-time solvable and NP-complete cases of H LBHom and H-LIHom; see also the survey by Fiala and Kratochvíl [35]. Some more recent results include sub-exponential algorithms for H-LBHom, H-LIHom and H LSHOM on string graphs [68], complexity results for the list version of H-LSHOM[29] and complexity results for H-LBHom for host graphs H that are multigraphs and/or have semi-edges [10,11,12,59].

In our paper we assume that both G and H are part of the input. We note a fundamental difference between locally injective homomorphisms on the one hand and locally bijective and surjective homomorphisms on the other. Namely, for connected graphs G and H, we must have $|V(G)| \geq|V(H)|$ if $G \xrightarrow{B} H$ or $G \xrightarrow{S} H$ (see Lemma 1 in Section 2.3). In contrast, H might be arbitrarily larger than G if $G \xrightarrow{I} H$ holds. For example, if we let G be a complete graph and H be a graph without self-loops, then $G \xrightarrow{I} H$ holds if and only if H contains a clique on at least $|V(G)|$ vertices.

The above difference is also reflected in the complexity results for the three problems under input restrictions. In fact, LIHom is closely related to the Subgraph Isomorphism problem and is usually the hardest problem. For example, LBHom is Graph Isomorphismcomplete on chordal guest graphs, but polynomial-time solvable on interval guest graphs and LSHOM is NP-complete on chordal guest graphs, but polynomial-time solvable on proper interval guest graphs [48]. In contrast, LIHom is NP-complete even on complete guest
graphs G, which follows from a reduction from the CLIQUE problem via the aforementioned equivalence: $G \xrightarrow{I} H$ holds if and only if H contains a clique on at least $|V(G)|$ vertices.

Finally, we emphasize that the aforementioned polynomial-time result on Hom for guest graphs G with a core of bounded treewidth $[20,42]$ does not carry over to any of the three locally constrained homomorphism problems. Indeed, LBHOM, LSHOM and LIHom are NP-complete for guest graphs G of path-width at most 5, 4 and 2, respectively [19] (all three problems are polynomial-time solvable if G is a tree [19,38]). It is also known that LBHom [56], LSHom [60] and LIHom [34] are NP-complete even if G is cubic and H is the complete graph K_{4} on four vertices, but polynomial-time solvable if G has bounded treewidth and one of the two graphs G or H has bounded maximum degree [19].

1.2 An Application: Role Assignments

Locally surjective homomorphisms from a graph G to a graph H are known as H-role assignments in social network theory. We will include this topic in our investigation and provide some brief context.

Suppose that we are given a social network of individuals whose properties we aim to characterise. Can we assign each individual a role such that individuals with the same role relate in the same way to other individuals with some role, using exactly h different roles in total?

To formalise the above question, we model the network as a graph G, where vertices represent individuals and edges represent the existence of a relationship between two individuals. We now ask whether G has an h-role assignment, that is, a function f that assigns each vertex $u \in V(G)$ a role $f(u) \in\{1, \ldots, h\}$, such that $f(V(G))=\{1, \ldots, h\}$ and for every two vertices u and v, if $f(u)=f(v)$ then $f\left(N_{G}(u)\right)=f\left(N_{G}(v)\right)$.

Role assignments were introduced by White and Reitz [76] as regular equivalences and were called role colourings by Everett and Borgatti [31]. We observe that two adjacent vertices u and v may have the same role, that is, $f(u)=f(v)$ is allowed (so role assignments are not proper colourings). Hence, a connected graph G has an h-role assignment if and only if $G \xrightarrow{S} H$ for some connected graph H with $|V(H)|=h$, as long as we allow H to have self-loops (while we assume that G is a graph with no self-loops). The corresponding decision problem is the following:

```
Role Assignment
Input: A graph G and an integer h.
Question: Does G have an h-role assignment?
```

If h is fixed, then we denote the problem h-Role Assignment. Whereas 1-Role Assignment is trivial, 2-Role Assignment is NP-complete [74]. In fact, h-Role Assignment is NP-complete even for the following classes of graphs: planar graphs $(h \geq 2)$ [72], cubic graphs $(h \geq 2)$ [73], bipartite graphs $(h \geq 3)$ [70], chordal graphs $(h \geq 3)$ [52] and split graphs $(h \geq 4)$ [25]. Very recently, Pandey, Raman and Sahlo [69] gave an $n^{\mathcal{O}(h)}$-time algorithm for Role Assignment on general graphs and an $f(h) n^{\mathcal{O}(1)}$-time algorithm on forests.

1.3 Our Focus

We continue the line of study in [19] and focus on the following research question:
For which parameters of the guest graph do LBHom, LSHOM and LIHom become fixedparameter tractable?

We will also apply our new techniques towards answering this question for the Role Assignment problem. We first introduce some additional terminology. A graph parameter p dominates a parameter q if there is a function f such that $p(G) \leq f(q(G))$ for every graph G. If p dominates q but q does not dominate p, then p is more powerful than q. We denote this by $p \triangleright q$. If p dominates q and q dominates p, then p and q are equivalent. If neither p dominates q nor q dominates p, then p and q are incomparable.

Given the paraNP-hardness results on LBHom, LSHom and LIHom for graph classes of bounded path-width [19], we will naturally consider a range of graph parameters that are less powerful than path-width. In this way we aim to increase our understanding of the (parameterized) complexity of LBHom, LSHom and LIHom.

For an integer $c \geq 1$, a c-deletion set of a graph G is a subset $S \subseteq V(G)$ such that every connected component of the graph $G \backslash S$ has at most c vertices. ${ }^{6}$ The c-deletion set number $\mathrm{ds}_{c}(G)$ of G is the minimum size of a c-deletion set in G. If $c=1$ we obtain the vertex cover number $\operatorname{vc}(G)$ of G. The c-deletion set number is closely related to the fracture number $\operatorname{fr}(G)$, introduced by Dvořák et al. [28], which is the minimum k such that G has a k-deletion set of size at most k. For a graph G, it holds that $\mathrm{fr}(G) \leq \mathrm{ds}_{c}(G)$ if $c \leq \operatorname{fr}(G)-1$, and $\mathrm{ds}_{c}(G) \leq \operatorname{fr}(G)$ if $c \geq \operatorname{fr}(G)$. Hence, in particular it holds for every integer $c \geq 1$ that $\operatorname{fr}(G) \leq \max \left\{c, \mathrm{ds}_{c}(G)\right\}$. As we can take the graph formed as the disjoint union of arbitrarily many complete graphs on $c+1$ vertices (which has an arbitrarily large c-deletion set number while its fracture number is $c+1$), this inequality shows that for fixed $c, \mathrm{fr} \triangleright \mathrm{ds}_{c}$. However, if c is not fixed, then fr and $c+\mathrm{ds}_{c}$ are equivalent, as in that case $c+\mathrm{ds}_{c}(G) \leq 2 \mathrm{fr}(G)$ and $\operatorname{fr}(G) \leq c+\mathrm{ds}_{c}(G)$ holds for every graph G.

The fracture number is equivalent to several other well-studied graph parameters, such as the vertex integrity, introduced by Barefoot, Entringer and Swart [4] or the safe number, introduced by Fujita, MacGillivray and Sakuma [44]. The vertex integrity of a graph G is the minimum value $|X|+n^{\mathrm{c}}(G \backslash X)$ over all sets $X \subseteq V(G)$, where $n^{\mathrm{c}}(G \backslash X)$ denotes the size of a largest connected component of $G \backslash X$. Hence, the equivalence between the fracture number and the vertex integrity follows directly from their definitions, whereas the equivalence between the safe number and vertex integrity (and thus fracture number) is shown by Fujita and Furuya [43].

The feedback vertex set number $\mathrm{fv}(G)$ of a graph G is the size of a smallest set S such that $G \backslash S$ is a forest. We write $\operatorname{tw}(G), \operatorname{pw}(G), \operatorname{td}(G)$ and $n(G)$ for the treewidth, path-width, tree-depth ${ }^{7}$ and number of vertices of a graph G, respectively; see [67] for more information. It is known that

$$
\mathrm{tw} \triangleright \mathrm{pw} \triangleright \mathrm{td} \triangleright \mathrm{fr} \triangleright \mathrm{ds}_{c}(\text { fixed } c) \triangleright \mathrm{vc} \triangleright n,
$$

[^1]where the second relationship is proven in [9] and the others follow immediately from their definitions (see also Section 2.2). It is readily seen that
$$
\mathrm{tw} \triangleright \mathrm{fv} \triangleright \mathrm{ds}_{2}
$$
and moreover, that fv is incomparable with the parameters pw , td , fr and, for every fixed $c \geq 3, \mathrm{ds}_{c}$; consider, for example, a tree T of arbitrarily large path-width, whilst $\mathrm{fv}(T)=0$, and consider also the disjoint union G of arbitrarily many triangles, which has an arbitrarily large feedback vertex set number, but $\mathrm{ds}_{c}(G)=0$ for every $c \geq 3$.

guest graph parameter	LIHom	LBHom	LSHom
$\|V(G)\|$	XP, W[1]-hard [26]	FPT	FPT
vertex cover number	XP (Theorem 5), W[1]-hard	FPT	FPT
c-deletion set number (fixed c)	paraNP-c $(c \geq 2)$ (Theorem 6)	FPT	FPT
fracture number	paraNP-c	FPT (Theorem 2)	FPT (Theorem 2)
tree-depth	paraNP-c	paraNP-c (Theorem 7) paraNP-c (Theorem 7)	
path-width	paraNP-c [19]	paraNP-c [19]	paraNP-c [19]
treewidth	paraNP-c	paraNP-c	paraNP-c
maximum degree	paraNP-c [34]	paraNP-c [56]	paraNP-c [60]
treewidth plus maximum degree	XP, W[1]-hard	XP [19]	XP [19]
feedback vertex set number	paraNP-c	paraNP-c (Theorem 8) paraNP-c (Theorem 8)	

Table 1. The results in purple are our new results and are annotated with the corresponding theorem numbers. The results in black are either known results, some of which are now also implied by our new results, or follow immediately from other results in the table. In particular, LIHom is $\mathrm{W}[1]$-hard with parameter $|V(G)|$, as Clique is $\mathrm{W}[1]$-hard when parameterized by the clique number [26], so we can let G be the complete graph in this case.

1.4 Our Results

We prove a number of new parameterized complexity results for LBHom, LSHom and LIHOM by considering some property of the guest graph G as the parameter. In particular, we consider the graph parameters introduced in Section 1.3.

Our two main results, proven in Section 4, show that LBHom and LSHom are fixedparameter tractable parameterized by $c+\mathrm{ds}_{c}$, or equivalently, the fracture number $\operatorname{fr}(G)$, of the guest graph G. In the same section, we also prove that Role Assignment is FPT when parameterized by the fracture number. Recall that td \triangleright fr. However, assuming $\mathrm{P} \neq \mathrm{NP}$, the FPT results for LBHom and LSHom involving the fracture number cannot be strengthened to the tree-depth of the guest graph. Namely, we prove in Section 6 that LBHom and LSHom are paraNP-complete when parameterized by the tree-depth of the guest graph. Recall also that $\mathrm{pw} \triangleright$ td. Hence, these paraNP-completeness results imply the known paraNP-completeness results for path-width of the guest graph [19].

In Section 6 we also prove that LBHom and LSHom are paraNP-complete when parameterized by the feedback vertex set number of the guest graph. In fact, this result and the paraNP-hardness for tree-depth motivated us to consider the fracture number as a natural graph parameter for obtaining an FPT-algorithm.

For a fixed integer $k \geq 1$, the k-FoldCover problem is the restriction of LBHom to input pairs (G, H) where $|V(G)|=k|V(H)|$. This problem was introduced as the k-Graph

Covering problem by Bodlaender [8]. The aforementioned paraNP-completeness result of [19] on LBHom for pairs (G, H) where G has path-width 5 holds even for 3-FoldCover. In fact, this was the first proof for showing that k-FOLDCover is NP-complete for some fixed integer $k \geq 1 .^{8}$ Similarly, we will show in Section 6 that the two paraNP-completeness results for LBHOM that we described above also hold even for the 3-FOLDCOVER problem.

In Section 5 we prove that LIHom is in XP and W[1]-hard when parameterized by the vertex cover number of the guest graph, or equivalently, the c-deletion set number for $c=1$. However, we show that the XP result for LIHom cannot be generalised to hold for $c \geq 2$. In fact, in Section 5 , we will give a full complexity dichotomy. Namely, we determine the computational complexity of LIHOM on graphs with c-deletion set number at most k for every fixed pair of integers c and k.

Table 1 summarizes the new and known results for LBHom, LSHom and LIHom.

1.5 Algorithmic Framework

Our FPT results for LBHom, LSHom and Role Assignment and our XP result for LIHom are proven via a new algorithmic framework (described in detail in Section 3). This framework involves a reduction to an integer linear program (ILP). We emphasize that in our framework the host graph H is not fixed, but part of the input. This is in contrast to other frameworks that include the locally constrained homomorphism problems (and that consequently work for more powerful graph parameters), such as the framework of locally checkable vertex partitioning problems [13,75] or the framework of Gerber and Kobler [46] based on (feasible) interval degree constraint matrices.

The main ideas behind our algorithmic ILP framework are as follows. Let G and H be the guest and host graphs, respectively. First, we observe that if G has a c-deletion of size at most k and there is a locally surjective homomorphism from G to H, then H must also have a c-deletion set of size at most k. However, it does not suffice to compute c-deletion sets D_{G} and D_{H} for G and H, guess a partial homomorphism h from D_{G} to D_{H}, and use the structural properties of c-deletion sets to decide whether h can be extended to a desired homomorphism from G to H. This is because a homomorphism from G to H does not necessarily map D_{G} to D_{H}. Moreover, even if it did, vertices in $G \backslash D_{G}$ can still be mapped to vertices in D_{H}. Consequently, components of $G \backslash D_{G}$ can still be mapped to more than one component of $H \backslash D_{H}$.

The above makes it difficult to decompose the homomorphism from G to H into small independent parts. To overcome this challenge, we prove that there are small sets D_{G} and D_{H} of vertices in G and H, respectively, such that every locally surjective homomorphism from G to H satisfies:

1. the pre-image of D_{H} is a subset of D_{G},
2. D_{H} is a c^{\prime}-deletion set for H for some c^{\prime} bounded in terms of only $c+k$, and
3. all but at most k components of $G \backslash D_{G}$ have at most c vertices, whilst the treewidth of the remaining (and possibly large) components is bounded in terms of $c+k$.
[^2]As D_{G} and D_{H} are small, we can enumerate all possible homomorphisms from some subset of D_{G} to D_{H}. Condition 2 allows us to show that any locally surjective homomorphism from G to H can be decomposed into locally surjective homomorphisms from a small set of components of $G \backslash D_{G}$ (plus D_{G}) to one component of $H \backslash D_{H}$ (plus D_{H}). This enables us to formulate the question of whether a homomorphism from a subset of D_{G} to D_{H} can be extended to a desired homomorphism from G to H in terms of an ILP. Finally, Condition 3 allows us to efficiently compute the possible parts of the decomposition, that is, which (small) sets of components of $G \backslash D_{G}$ can be mapped to which components of $H \backslash D_{H}$.

2 Preliminaries

We use standard notation from graph theory, as can be found in e.g. [24]. Let G be a graph. We denote the vertex set and edge set of G by $V(G)$ and $E(G)$, respectively. Let $X \subseteq V(G)$ be a set of vertices of G. The subgraph of G induced by X, denoted $G[X]$, is the graph with vertex set X and edge set $\{u v \in E(G) \mid u, v \in X\}$. When the underlying graph is clear from the context, we will sometimes refer to an induced subgraph simply by its set of vertices. We use $G \backslash X$ to denote the subgraph of G induced by $V(G) \backslash X$. Similarly, for $Y \subseteq E(G)$ we let $G \backslash Y$ be the subgraph of G obtained by deleting all edges in Y from G.

For a graph G and a vertex $u \in V(G)$, we let $N_{G}(u)=\{v \mid u v \in E(G)\}$ and $N_{G}[v]=N_{G}(v) \cup\{v\}$ denote the open and closed neighbourhood of v in G, respectively. We let $\Delta(G)$ be the maximum degree of G. Recall that we assume that the guest graph G does not contain self-loops, while the host graph H is permitted to have self-loops. In this case, by definition, $u \in N_{H}(u)$ if $u u \in E(H)$.

2.1 Parameterized Complexity

In parameterized complexity $[22,27,40]$, the complexity of a problem is studied not only with respect to the input size, but also with respect to some problem parameter(s). A parameterized problem Q is a subset of $\Omega^{*} \times \mathbb{N}$, where Ω is a fixed alphabet. Each instance of Q is a pair (I, κ), where $\kappa \in \mathbb{N}$ is called the parameter. A parameterized problem Q is fixed-parameter tractable (FPT) if there is an algorithm, called an FPT-algorithm, that decides whether an input (I, κ) is a member of Q in time $f(\kappa) \cdot|I|^{\mathcal{O}(1)}$, where f is a computable function and $|I|$ is the size of the input instance. The class FPT denotes the class of all fixed-parameter tractable parameterized problems.

A parameterized problem Q is FPT-reducible to a parameterized problem Q^{\prime} if there is an algorithm, called an FPT-reduction, that transforms each instance (I, κ) of Q into an instance $\left(I^{\prime}, \kappa^{\prime}\right)$ of Q^{\prime} in time $f(\kappa) \cdot|I|^{\mathcal{O}(1)}$, such that $\kappa^{\prime} \leq g(\kappa)$ and $(I, \kappa) \in Q$ if and only if $\left(I^{\prime}, \kappa^{\prime}\right) \in Q^{\prime}$, where f and g are computable functions. By FPT-time, we denote time of the form $f(\kappa) \cdot|I|^{\mathcal{O}(1)}$, where f is a computable function. A problem Π is in $\mathrm{W}[1]$ if it is FPT-reducible to Independent Set parameterized by the solution size and W[1]-hard if the latter problem is FPT-reducible to Π; it is easy to verify that $\mathrm{FPT} \subseteq \mathrm{W}[1]$. As an analogue to the conjecture that $\mathrm{P} \neq \mathrm{NP}$, it is widely believed that $\mathrm{FPT} \neq \mathrm{W}[1]$.

The class XP contains all parameterized problems that can be solved in $\mathcal{O}\left(|I|^{f(\kappa)}\right)$ time, where f is a computable function. The class paraNP is the class of parameterized problems that can be solved by non-deterministic algorithms in $f(\kappa) \cdot|I|^{\mathcal{O}(1)}$ time, where f is a computable function.

2.2 Graph Parameters

A tree-decomposition \mathcal{T} of a graph G is a pair (T, χ), where T is a tree and χ is a function that assigns each tree node t a set $\chi(t) \subseteq V(G)$ of vertices such that the following conditions hold:
(i) For every edge $u v \in E(G)$, there is a tree node t such that $u, v \in \chi(t)$.
(ii) For every vertex $v \in V(G)$, the set of tree nodes t with $v \in \chi(t)$ induces a non-empty subtree of T.

The sets $\chi(t)$ are called bags of the decomposition \mathcal{T} and $\chi(t)$ is the bag associated with the tree node t. The width of a tree-decomposition (T, χ) is the size of a largest bag minus 1. The treewidth $\operatorname{tw}(G)$ of G is the minimum width over all tree-decompositions of G. If T is a path, then we obtain the notions of path-decomposition and path-width.

For a rooted forest F, the closure $C(F)$ is the graph with vertex set $V(F)$ such that two vertices u and v are adjacent in $C(F)$ if and only if u is ancestor of v in F. We say that F is a tree-depth decomposition of a graph G if G is a subgraph of $C(F)$. The depth of F is equal to the height of F plus 1. The tree-depth $\operatorname{td}(G)$ of G is the minimum depth over all tree-depth decompositions of G.

We also need the following (well-known) fact on c-deletion sets.
Proposition 1 ([61]). Let G be a graph and let k and c be natural numbers. Then, deciding whether G has a c-deletion set of size at most k is fixed-parameter tractable parameterized by $k+c$.

Definition 1. $A(k, c)$-extended deletion set for a graph G is a set $D \subseteq V(G)$ such that:

- every component of $G \backslash D$ either has at most c vertices or has a c-deletion set of size at most k and
- at most k components of $G \backslash D$ have more than c vertices.

The following proposition summaries some known relationships between the parameters we consider.

Proposition 2 ([67]). Let G be a graph and let k and c be natural numbers. Then:

- if G has a c-deletion set of size at most k, then $\operatorname{td}(G) \leq k+c$.
- if G has a $\left(k^{\prime}, c\right)$-extended deletion set of size at most k, then $\operatorname{td}(G) \leq k^{\prime}+k+c$.
$-\operatorname{tw}(G) \leq \operatorname{td}(G)$.

2.3 Locally Constrained Homomorphisms

Recall that we allow self-loops for the host graph H, but not for the guest graph G (see also Section 1). Here we show some basic properties of locally constrained homomorphisms.

Lemma 1. Let G and H be non-empty connected graphs and let ϕ be a locally surjective homomorphism from G to H. Then ϕ is surjective.

Proof. Suppose not, and let C be the set of vertices in $V(H) \backslash \phi(V(G))$. Note that $C \neq \emptyset$ (because otherwise ϕ is surjective) and $\phi(V(G)) \neq \emptyset$ (because G is non-empty). Because H is connected, there is an edge $u v \in E(H)$ such that $u \in V(C)$ and $v \in \phi(V(G))$. But then, the mapping $\phi_{x}: N_{G}(x) \rightarrow N_{H}(v)$ is not surjective for any vertex $x \in \phi^{-1}(v)$.

Lemma 2. Let G and H be non-empty connected graphs with a homomorphism ϕ from G to H and let $I \subseteq \phi(V(G))$. Let $P=\phi^{-1}(I)$ and $\phi_{R}=\left.\phi\right|_{P}$. If ϕ is a locally injective, surjective or bijective homomorphism, then ϕ_{R} is a locally injective, surjective or bijective homomorphism, respectively, from $G[P]$ to $H[I]$.

Proof. Clearly, ϕ_{R} is a homomorphism from $G[P]$ to $H[I]$ and since ϕ_{R} is a restriction of ϕ, it follows that if ϕ is locally injective, then so is ϕ_{R}. It remains to show that if ϕ is locally surjective, then so is ϕ_{R}. Suppose, for contradiction, that ϕ is locally surjective, but ϕ_{R} is not. Then there is a vertex $v \in P$ such that $\phi_{R}\left(N_{G}(v) \cap P\right) \subsetneq N_{H}\left(\phi_{R}(v)\right) \cap I$. However, since ϕ does not map any vertex in $V(G) \backslash P$ to a vertex of I, it follows that $\phi\left(N_{G}(v)\right) \cap I \subsetneq N_{H}(\phi(v)) \cap I$, so $\phi\left(N_{G}(v)\right) \neq N_{H}(\phi(v))$. Thus ϕ is not surjective, a contradiction.

Lemma 3. Let G and H be graphs, let $D \subseteq V(G)$, and let ϕ be a homomorphism from G to H. Then, for every component C_{G} of $G \backslash D$ such that $\phi\left(C_{G}\right) \cap \phi(D)=\emptyset$, there is a component C_{H} of $H \backslash \phi(D)$ such that $\phi\left(C_{G}\right) \subseteq C_{H}$. Moreover, if ϕ is locally injective/surjective/bijective, then $\left.\phi\right|_{D \cup C_{G}}$ is a homomorphism from $G^{\prime}=G\left[D \cup C_{G}\right]$ to $H^{\prime}=H\left[\phi(D) \cup C_{H}\right]$ that is locally injective/surjective/bijective for every $v \in V\left(C_{G}\right)$.

Proof. Suppose for a contradiction that this is not the case. Then, there is a component C_{G} of $G \backslash D$ and an edge $u v \in E\left(C_{G}\right)$ such that $\phi(u)$ and $\phi(v)$ are in different components of $H \backslash \phi(D)$. Therefore, $\phi(u) \phi(v) \notin E(H)$, contradicting our assumption that ϕ is a homomorphism.

Towards showing the second statement, first note that $\phi_{R}:=\left.\phi\right|_{D \cup C_{G}}$ is a homomorphism from G^{\prime} to H^{\prime}. Moreover, $N_{G}[v]=N_{G^{\prime}}[v]$ for every vertex $v \in V\left(C_{G}\right)$, so if ϕ is locally injective/surjective/bijective for a vertex $v \in V\left(C_{G}\right)$, then so is ϕ_{R}.

The following lemma is a basic but crucial observation showing that if $G \xrightarrow{S} H$ and G has a small c-deletion set, then so does H.

Lemma 4. Let G and H be non-empty connected graphs, let $D \subseteq V(G)$ be a c-deletion set for G, and let ϕ be a locally surjective homomorphism from G to H. Then $\phi(D)$ is a c-deletion set for H.

Proof. Suppose not, then there is a component C_{H} of $H \backslash \phi(D)$ such that $\left|C_{H}\right|>c$. By Lemma 1, it follows that ϕ is surjective and therefore $\phi^{-1}\left(C_{H}\right)$ is non-empty. Let $v \in \phi^{-1}\left(C_{H}\right)$. Then $v \notin D$ and therefore v is in some component C_{G} of $G \backslash D$. Lemma 3 implies that $\phi_{R}=\left.\phi\right|_{D \cup C_{G}}$ is a homomorphism from $G\left[D \cup C_{G}\right]$ to $H\left[\phi(D) \cup C_{H}\right]$ that is locally surjective for every $v \in V\left(C_{G}\right)$.

Now $\left|V\left(C_{G}\right)\right|<\left|V\left(C_{H}\right)\right|$, so there must be a vertex in $V\left(C_{H}\right) \backslash \phi_{R}\left(C_{G}\right)$. Because C_{H} is connected, there is an edge $x y \in E\left(C_{H}\right)$ such that $x \in V\left(C_{H}\right) \backslash \phi_{R}\left(C_{G}\right)$ and $y \in \phi_{R}\left(V\left(C_{G}\right)\right)$. But then, the mapping $\phi_{z}: N_{G}(z) \rightarrow N_{H}(y)$ is not surjective for any vertex $z \in \phi_{R}^{-1}(y)$.

2.4 Integer Linear Programming

Given a set \mathcal{X} of variables and a set \mathcal{C} of linear constraints (i.e. inequalities) over the variables in \mathcal{X} with integer coefficients, the task in the feasibility variant of integer linear programming (ILP) is to decide whether there is an assignment $\alpha: \mathcal{X} \rightarrow \mathbb{Z}$ of the variables satisfying all constraints in \mathcal{C}. We will use the following well-known result by Lenstra [62].

Proposition 3 ([32,41,53,62]). ILP is FPT parameterized by the number of variables.

3 Our Algorithmic Framework

In this section we present our main algorithmic framework that will allow us to show that LSHom, LBHom and Role Assignment are FPT, parameterized by $k+c$ when the guest graph has c-deletion set number at most k.

To illustrate the main ideas behind our framework, let us first explain these ideas for the examples of LSHom and LBHom. In this case we are given G and H and we know that G has a c-deletion set of size at most k. Because of Lemma 4, it then follows that if (G, H) is a yes-instance of LSHOM or LBHom, then H also has a c-deletion set of size at most k. Informally, our next step, which is given in Section 3.1, is to compute a small (i.e. with size bounded by a function of $k+c$) set Φ of partial locally surjective homomorphisms such that
(1) every locally surjective homomorphism from G to H augments some $\phi_{P} \in \Phi$, and
(2) for every $\phi_{P} \in \Phi$, the domain of ϕ_{P} is a (k, c)-extended deletion set of G and the co-domain of ϕ_{P} is a c^{\prime}-deletion set of H, where c^{\prime} is bounded by a function of $k+c$.

Here and in what follows, we say that a function $\phi: V(G) \rightarrow V(H)$ augments (or is an augmentation of) a partial function $\phi_{P}: W_{G} \rightarrow W_{H}$, where $W_{G} \subseteq V(G)$ and $W_{H} \subseteq V(H)$ if $v \in W_{G} \Leftrightarrow \phi(v) \in W_{H}$ and $\left.\phi\right|_{W_{G}}=\phi_{P}$. This allows us to reduce our problems to boundedly many (in terms of some function of the parameters) subproblems of the following form: Given a (k, c)-extended deletion set D_{G} for G, a c^{\prime}-deletion set D_{H} for H, and a locally surjective (respectively, bijective) homomorphism ϕ_{P} from D_{G} to D_{H}, find a locally surjective homomorphism ϕ from G to H that augments ϕ_{P}.

In Section 3.2 we will then show how to formulate this subproblem as an integer linear program and in Section 3.3 we will show that we can efficiently construct and solve the ILP for this subproblem. Importantly, our ILP formulation will allow us to solve a much
more general problem, where the host graph H is not explicitly given, but defined in terms of a set of linear constraints. We will then exploit this in Section 4 to solve not only LSHom and LBHom, but also the Role Assignment problem.

3.1 Partial Homomorphisms for the Deletion Set

For a graph G and $m \in \mathbb{N}$ we let $\Delta_{G}^{m}:=\left\{v \in V(G) \mid \operatorname{deg}_{G}(v) \geq m\right\}$. Our aim is to show in Lemma 7 that there is a small set Φ of partial homomorphisms such that every locally surjective (respectively, bijective) homomorphism from G to H augments some $\phi_{P} \in \Phi$ and, for every $\phi_{P} \in \Phi$, the domain of ϕ_{P} is a (k, c)-extended deletion set for G of size at most k and its co-domain is a c^{\prime}-deletion set of size at most k for H. The main idea behind finding this set Φ is to consider the set of high degree vertices in G and H, that is, the sets Δ_{G}^{k+c} and Δ_{H}^{k+c}.

We start with the following lemma.
Lemma 5. Let G be a graph. If G has a c-deletion set of size at most k, then the set Δ_{G}^{k+c} is a $k c(k+c)$-deletion set of size at most k. Furthermore, every subset of Δ_{G}^{k+c} is a $(k-|D|, c)$-extended deletion set of G.

Proof. Let D be a c-deletion set of G of size at most k. Then every vertex $v \in V(G) \backslash D$ has degree at most $k+c-1$, as each of its neighbours lies either in its own component of $G \backslash D$ or in D. Hence $\Delta_{G}^{k+c} \subseteq D$ and therefore $\left|\Delta_{G}^{k+c}\right| \leq k$. Let C_{1}, \ldots, C_{m} be the components of $G \backslash D$ that contain a vertex adjacent to a vertex in $D \backslash \Delta_{G}^{k+c}$. Since $\left|D \backslash \Delta_{G}^{k+c}\right| \leq k$ and every vertex in $D \backslash \Delta_{G}^{k+c}$ has degree at most $k+c-1$, we find that $m \leq k(k+c-1)$ and $\left|C_{1} \cup \cdots \cup C_{m} \cup\left(D \backslash \Delta_{G}^{k+c}\right)\right| \leq k c(k+c-1)+k \leq k c(k+c)$. Since every component in $G \backslash \Delta_{G}^{k+c}$ is either contained in a component of $G \backslash D$ or contained in $C_{1} \cup \cdots \cup C_{m} \cup\left(D \backslash \Delta_{G}^{k+c}\right)$, we find that Δ_{G}^{k+c} is a $k c(k+c)$-deletion set.

Let $D^{\prime} \subseteq \Delta_{G}^{k+c} \subseteq D$. We will show that D^{\prime} is a $\left(k-\left|D^{\prime}\right|, c\right)$-extended deletion set of G. The components of $G \backslash D^{\prime}$ that contain no vertices from $D \backslash D^{\prime}$ are components of $G \backslash D$ and thus have size at most c. Consider a component C of $G \backslash D^{\prime}$ that contains at least one vertex from $D \backslash D^{\prime}$. Let $D_{C}=V(C) \cap\left(D \backslash D^{\prime}\right)$. Every component of $C \backslash D_{C}$ is a component of $G \backslash D$ and thus has size at most c. Moreover, D_{C} has size at most $\left|D \backslash D^{\prime}\right| \leq k-\left|D^{\prime}\right|$.

We conclude that every component of $G \backslash D^{\prime}$ either has size at most c or has a c-deletion set of size at most $k-\left|D^{\prime}\right|$. Furthermore, since there are at most $k-\left|D^{\prime}\right|$ vertices in $\Delta_{G}^{k+c} \backslash D^{\prime}$, and every component of $G \backslash D^{\prime}$ that has size larger than c must contain a vertex of Δ_{G}^{k+c}, it follows that there are at most $k-\left|D^{\prime}\right|$ components of $G \backslash D^{\prime}$ that have size larger than c. This completes the proof.

We use Lemma 5 in the proof of our next lemma, which shows that every locally surjective (respectively, bijective) homomorphism from G to H has to augment a locally surjective (respectively, bijective) homomorphism from some induced subgraph of $G\left[\Delta_{G}^{k+c}\right]$ to $H\left[\Delta_{H}^{k+c}\right]$. Intuitively, this holds because for every locally surjective homomorphism, only vertices of high degree in G can be mapped to a vertex of high degree in H and every vertex in H must have a pre-image in G.

Lemma 6. Let G and H be non-empty connected graphs such that G has a c-deletion set of size at most k. If there is a locally surjective homomorphism ϕ from G to H, then there is a set $D \subseteq \Delta_{G}^{k+c}$ and a locally surjective homomorphism ϕ_{P} from $G[D]$ to $H\left[\Delta_{H}^{k+c}\right]$ such that ϕ augments ϕ_{P}. If ϕ is locally bijective, then $D=\Delta_{G}^{k+c}$ and ϕ_{P} is a locally bijective homomorphism.

Proof. Observe that for a locally surjective homomorphism ϕ from G to H, the inequality $\operatorname{deg}_{G}(v) \geq \operatorname{deg}_{H}(\phi(v))$ holds for every $v \in V(G)$; moreover, the equality $\operatorname{deg}_{G}(v)=$ $\operatorname{deg}_{H}(\phi(v))$ holds in the locally bijective case. Since ϕ is surjective by Lemma 1, this implies that $\phi\left(\Delta_{G}^{k+c}\right) \supseteq \Delta_{H}^{k+c}$ (and if ϕ is locally bijective, then $\phi\left(\Delta_{G}^{k+c}\right)=\Delta_{H}^{k+c}$). Let $D=\phi^{-1}\left(\Delta_{H}^{k+c}\right)$, so $D \subseteq \Delta_{G}^{k+c}$ (note that $D=\Delta_{G}^{k+c}$ if ϕ is locally bijective). Now $\left.\phi\right|_{D}$ is a surjective map from D to Δ_{H}^{k+c}. Furthermore, $\phi\left(\Delta_{G}^{k+c} \backslash D\right) \cap \phi(D)=\phi\left(\Delta_{G}^{k+c} \backslash D\right) \cap \Delta_{H}^{k+c}=\emptyset$. Moreover, for every $v \in V(G) \backslash \Delta_{G}^{k+c}, \phi(v) \notin \Delta_{H}^{k+c}=\left.\phi\right|_{D}(D)$, since $\operatorname{deg}_{G}(v) \geq \operatorname{deg}_{H}(\phi(v))$. Furthermore, $\left.\phi\right|_{D}$ is a homomorphism from $G[D]$ to $H\left[\Delta_{H}^{k+c}\right]$ because ϕ is a homomorphism. Additionally, $\left.\phi\right|_{D}$ is locally surjective (respectively, bijective) by Lemma 2.

We are now ready to show that we can easily compute all possible pre-images of Δ_{H}^{k+c} in any locally surjective (respectively bijective) homomorphism from G to H.

Lemma 7. Let G and H be non-empty connected graphs, and let k and c be two nonnegative integers. For any $D \subseteq \Delta_{G}^{k+c}$, we can compute the set Φ_{D} of all locally surjective (respectively, bijective) homomorphisms ϕ_{P} from $G[D]$ to $H\left[\Delta_{H}^{k+c}\right]$ in $\mathcal{O}\left(|D|^{|D|+2}\right)$ time. Furthermore, $\left|\Phi_{D}\right| \leq|D|^{|D|}$.

Proof. Let $D \subseteq \Delta_{G}^{k+c}$ and suppose there is a surjective map $\phi_{P}: D \rightarrow \Delta_{H}^{k+c}$. Then for every vertex $v \in \Delta_{H}^{k+c}$, there must be a vertex $x \in D$ such that $\phi_{P}(x)=v$. Therefore $\left|\Delta_{H}^{k+c}\right| \leq|D|$, so if this condition fails, then we can immediately return that $\Phi_{D}=\emptyset$.

Otherwise, for each vertex of D, there are $\left|\Delta_{H}^{k+c}\right| \leq|D|$ possible choices for where a $\operatorname{map} \phi_{P}: D \rightarrow \Delta_{H}^{k+c}$ could map this vertex. We can list all of the at most $|D|^{|D|}$ resulting maps in $\mathcal{O}\left(|D|^{|D|}\right)$ time, and for each such map, we can check whether it is a locally surjective (respectively, bijective) homomorphism in $\mathcal{O}\left(|D|^{2}\right)$ time.

3.2 ILP Formulation

In this section, we will show how to formulate the subproblem obtained in the previous subsection in terms of an ILP instance. More specifically, we will show that the following problem can be formulated in terms of an ILP: given a partial locally surjective (respectively, bijective) homomorphism ϕ_{P} from some induced subgraph D_{G} of G to some induced subgraph D_{H} of H, can this be augmented to a locally surjective (respectively, bijective) homomorphism from G to H ? See Figure 2 for an illustration of the subproblem for the simpler case when D_{G} is a vertex cover of G and we are looking for a locally bijective homomorphism. Moreover, we will actually show that for this to work, the host graph H does not need to be given explicitly, but can instead be defined by a certain system of linear constraints.

We now sketch the main ideas behind our translation to ILP. We postpone the formal definitions of notions introduced below until later. Suppose that there is a locally surjective
(respectively, bijective) homomorphism ϕ from G to H that augments ϕ_{P}. Because ϕ augments ϕ_{P}, Lemma 3 implies that ϕ maps every component C_{G} of $G \backslash V\left(D_{G}\right)$ entirely to some component C_{H} of $H \backslash V\left(D_{H}\right)$, moreover, $\left.\phi\right|_{V\left(D_{G}\right) \cup V\left(C_{G}\right)}$ is already locally surjective (respectively, bijective) for every vertex $v \in V\left(C_{G}\right)$.

Our aim now is to describe ϕ in terms of its parts consisting of locally surjective (respectively, bijective) homomorphisms from extensions of D_{G} in G, that is, sets of components of $G \backslash D_{G}$ plus D_{G}, to simple extensions of D_{H} in H, that is, single components of $H \backslash D_{H}$ plus D_{H}.

$\mathrm{ES}_{H}: T_{H}$

$$
\begin{aligned}
& \mathrm{EC}_{G}^{1}: T_{G}^{1}+\quad T_{G}^{3}+\quad T_{G}^{7}\left(x_{\mathrm{EC}_{G}^{1} \mathrm{ES}_{H}}=1\right) \rightarrow \mathrm{C} \\
& \mathrm{EC}_{G}^{2}: \quad T_{G}^{2}+\quad T_{G}^{4}+T_{G}^{5} \quad\left(x_{\mathrm{EC}_{G}^{2} \mathrm{ES}_{H}}=2\right) \rightarrow \mathrm{D}, \mathrm{E} \\
& \mathrm{EC}_{G}^{3}: T_{G}^{1}+\quad T_{G}^{4}+\quad T_{G}^{6} \quad\left(x_{\mathrm{EC}_{G}^{3} \mathrm{ES}_{H}}=1\right) \rightarrow \mathrm{F}
\end{aligned}
$$

Fig. 2. A locally bijective homomorphism from a graph G (left) to a graph H (right), augmenting the partial homomorphism ϕ_{P} mapping the vertices of the vertex cover D_{G} into $D_{H}=\{\mathrm{A}, \mathrm{B}\}$. The i th vertex of G mapped to some vertex X of H is denoted x_{i}. Vertices in $G \backslash D_{G}$ are grouped by type (e.g. $\left\{c_{1}\right\}$ and $\left\{f_{1}\right\}$ have type T_{G}^{1}), each T_{G}^{i} is characterised by the neighbours of its vertices, recalled below each column. Vertices in $H \backslash D_{H}$ all have the same type T_{H}. Rows EC_{G}^{i} are extensions that can be minimally ϕ_{P}-B-mapped to T_{H}. This, in particular, means that each a_{i} and b_{i} must have a neighbour in EC_{G}^{i}. This is because otherwise a_{i} or b_{i} is not mapped locally bijective to its image A or B, because A and B have a neighbour in T_{H}, but the particular a ${ }_{i}$ or b_{i} has no neighbour in EC_{G}^{i}. Note that the neighbour can then later be used as a pre-image of any vertex in $\{\mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}\}$. Using EC_{G}^{1} once (for colour C), EC_{G}^{2} twice (for colours D and E) and EC_{G}^{3} once (for colour F) yields the given locally bijective homomorphism, and it can be verified that each a_{i} and b_{i} indeed has all four colours in its neighbourhood.

The main difficulty of doing the above comes from the fact that we need to ensure that ϕ is locally surjective (respectively, bijective) for every $d \in D_{G}$ and not only for the vertices
within the components of $G \backslash D_{G}$. This is why we need to describe the parts of ϕ using sets of components of $G \backslash D_{G}$ and not just single components. However, as we will show, it will suffice to consider only minimal extensions of D_{G} in G, where an extension is minimal if no subset of it allows for a locally surjective (respectively bijective) homomorphism from it to some simple extension of D_{H} in H. The fact that we only need to consider minimal extensions is important for showing that we can compute the set of all possible parts of ϕ efficiently (see Section 3.3). Having shown this, we can create an ILP that has one variable $x_{\mathrm{EC}_{G} \mathrm{ES}_{H}}$ for every minimal extension EC_{G} and every simple extension ES_{H} such that there is a locally surjective (respectively, bijective) homomorphism from EC_{G} to ES_{H} that augments ϕ_{P}. The value of the variable $x_{\mathrm{EC}_{G} \mathrm{ES}_{H}}$ now corresponds to the number of times ϕ maps a minimal extension isomorphic to EC_{G} to a simple extension isomorphic to ES_{H} that augments ϕ_{P}. We can then use linear constraints on these variables to ensure that:

- H contains exactly the right number of extensions isomorphic to ES_{H} required by the assignment for $x_{\mathrm{EC}_{G} \mathrm{ES}_{H}}$,
- G contains exactly the right number of minimal extensions isomorphic to EC_{G} required by the assignment for $x_{\mathrm{EC}_{G} \mathrm{ES}_{H}}$ (if ϕ is locally bijective),
- G contains at least the number of minimal extensions isomorphic to EC_{G} required by the assignment for $x_{\mathrm{EC}_{G} \mathrm{ES}_{H}}$ (if ϕ is locally surjective), and
- for every simple extension ES_{G} of G that is not yet used in any part of ϕ, there is a homomorphism from ES_{G} to some simple extension of D_{H} in H that augments ϕ_{P} and is locally surjective for every vertex in $\mathrm{ES}_{G} \backslash D_{G}$ (if ϕ is locally surjective).

Together, these constraints ensure that there is a locally surjective (respectively, bijective) homomorphism ϕ from G to H that augments ϕ_{P}. See also Figure 3 for an illustration of the main ideas.

We are now ready to formalise these ideas. To do so, we need the following additional notation. Given a graph D, an extension of D is a graph EC containing D as an induced subgraph. It is simple if $\mathrm{EC} \backslash D$ is connected, and complex in general. Given two extensions $\mathrm{EC}_{1}, \mathrm{EC}_{2}$ of D, we write $\mathrm{EC}_{1} \sim_{D} \mathrm{EC}_{2}$ if there is an isomorphism τ from EC_{1} to EC_{2} with $\tau(d)=d$ for every $d \in D$. Then \sim_{D} is an equivalence relation. Let the types of D, denoted \mathcal{T}_{D}, be the set of equivalence classes of \sim_{D} of simple extensions of D. We write \mathcal{T}_{D}^{c} to denote the set of types of D of size at most $|D|+c$, so

$$
\left.\left|\mathcal{T}_{D}^{c}\right| \leq \sum_{i=0}^{c} 2^{\left(\left\lvert\, \begin{array}{c}
\mid+i \\
2
\end{array}\right.\right)-\binom{|D|}{2}} \leq c 2^{(|D|+c}\right)
$$

Given a complex extension EC of D, let C be a connected component of EC $\backslash D$. Then C has type $T \in \mathcal{T}_{D}$ if $\operatorname{EC}[D \cup C] \sim_{D} T$ (depending on the context, we also say that the extension $\mathrm{EC}[D \cup C]$ has type $T)$. The type-count of EC is the function $\operatorname{tc}_{\mathrm{EC}}: \mathcal{T}_{D} \rightarrow \mathbb{N}$ such that $\operatorname{tc}_{\mathrm{EC}}(T)$ for $T \in \mathcal{T}_{D}$ is the number of connected components of EC $\backslash D$ with type T (in particular if EC is simple, the type-count is 1 for EC and 0 for other types). Note that two extensions are equivalent under \sim_{D} if and only if they have the same type-counts; in particular, this implies that there is an isomorphism τ between the two extensions satisfying $\tau(d)=d$ for every $d \in D$. We write $\mathrm{EC} \preceq \mathrm{EC}^{\prime}$ if $\operatorname{tc}_{\mathrm{EC}}(T) \leq \mathrm{tc}_{\mathrm{EC}^{\prime}}(T)$ for all types $T \in \mathcal{T}_{D}$. If EC is an extension of D, we write $\mathcal{T}_{D}(\mathrm{EC})=\left\{T \in \mathcal{T}_{D} \mid \operatorname{tc} \mathrm{c}_{\mathrm{EC}}(T) \geq 1\right\}$ for

$$
\begin{gathered}
\mathrm{EC}_{G}^{1}: 2 \times T_{G}^{1} \\
x_{\mathrm{EC}_{G}^{1} \mathrm{ES}_{H}^{1}}=0 \quad \mathrm{EC}_{G}^{2}: T_{G}^{1}+T_{G}^{2} \\
x_{\mathrm{EC}_{G}^{2} \mathrm{ES}_{H}^{1}}=1
\end{gathered} \mathrm{EC}_{G}^{3}: 2 \times T_{G}^{2} \quad x_{\mathrm{EC}_{G}^{3} \mathrm{ES}_{H}^{1}}=0 \quad \mathrm{ES}_{H}^{1}: T_{H}^{1} \quad x_{\mathrm{EC}_{G}^{3} \mathrm{ES}_{H}^{2}}=1 .
$$

Fig. 3. A locally surjective homomorphism from a graph G (left) to a graph H (right), where D_{G} is a 6-deletion set. The extensions $\mathrm{EC}_{G}^{1}, \mathrm{EC}_{G}^{2}, \mathrm{EC}_{G}^{3}$ can be minimally ϕ_{P}-S-mapped to ES^{1}; only EC_{G}^{3} can also be minimally ϕ_{P}-S-mapped to ES^{2}. Furthermore, T_{G}^{1} and T_{G}^{2} can each be weakly ϕ_{P}-S-mapped to some type in H (respectively, T_{H}^{1} and T_{H}^{2}). Using pair ($\mathrm{EC}_{G}^{2}, \mathrm{ES}^{1}$) and $\left(\mathrm{EC}_{G}^{3}, \mathrm{ES}^{2}\right)$ once is sufficient to ensure that the mapping is locally surjective for each a_{i}.
the set of types of EC and $\mathcal{E}_{D}(\mathrm{EC})$ for the set of simple extensions of D in EC. Moreover, for $T \in \mathcal{T}_{D}$, we write $\mathcal{E}_{D}(\mathrm{EC}, T)$ for the set of simple extensions of D in EC having type T.

A target description is a tuple $\left(D_{H}, c, \mathrm{CH}\right)$ where D_{H} is a graph, c is an integer and CH is a set of linear constraints over variables x_{T} for every $T \in \mathcal{T}_{D_{H}}^{c}$. A type-count for D_{H} is an integer assignment of the variables x_{T}. A graph H satisfies the target description $\left(D_{H}, c, \mathrm{CH}\right)$ if it is an extension of $D_{H}, \operatorname{tc}_{H}(T)=0$ for $T \notin \mathcal{T}_{D_{H}}^{c}$, and setting $x_{T}=\operatorname{tc}_{H}(T)$ for all $T \in \mathcal{T}_{D_{H}}^{c}$ satisfies all constraints in CH. Note that target descriptions can be easily used to specify any graph H that has deletion set D_{H} into components of size at most c by using CH to specify the number of components of each type. However, allowing for arbitrary linear equations instead of specifying the graph H explicitly is much more flexible, and we will show how to employ this flexibility for the Role Assignment problem in Section 4.

In what follows, we assume that the following are given: the graphs D_{G}, D_{H}, an extension G of D_{G}, a target description $\mathcal{D}=\left(D_{H}, c, \mathrm{CH}\right)$, and a locally surjective (respectively, bijective) homomorphism $\phi_{P}: D_{G} \rightarrow D_{H}$. Let EC_{G} be an extension of D_{G} with $\mathrm{EC}_{G} \preceq G$ and let $T_{H} \in \mathcal{T}_{D_{H}}^{c}$; note that we only consider $T_{H} \in \mathcal{T}_{D_{H}}^{c}$, because we assume that T_{H} is a type of a simple extension of a graph H that satisfies the target description \mathcal{D}. We say that EC_{G} can be

- weakly ϕ_{P}-S-mapped to the type T_{H} if there exists an augmentation $\phi: \mathrm{EC}_{G} \rightarrow T_{H}$ of ϕ_{P} such that ϕ is locally surjective for every $v \in \mathrm{EC}_{G} \backslash D_{G}$;
- ϕ_{P}-S-mapped (respectively, ϕ_{P}-B-mapped) to the type T_{H} if there exists an augmentation $\phi: \mathrm{EC}_{G} \rightarrow T_{H}$ of ϕ_{P} such that ϕ is locally surjective (respectively, locally bijective)
- minimally ϕ_{P}-S-mapped (respectively, minimally ϕ_{P}-B-mapped) to the type T_{H} if EC_{G} can be ϕ_{P}-S-mapped (respectively, ϕ_{P}-B-mapped) to T_{H} and no other extension EC_{G}^{\prime} with $\mathrm{EC}_{G}^{\prime} \preceq \mathrm{EC}_{G}$ can be ϕ_{P}-S-mapped (respectively, ϕ_{P}-B-mapped) to T_{H}.

Note that in the case of locally bijective homomorphisms, the two notions ϕ_{P}-B-mapped and minimally ϕ_{P}-B-mapped coincide. We also define the following sets:

- the set $\mathrm{wSM}=\mathrm{wSM}\left(G, \mathcal{D}, \phi_{P}\right)$ consists of all pairs $\left(T_{G}, T_{H}\right)$ such that $T_{G} \in \mathcal{T}_{D_{G}}(G)$ can be weakly ϕ_{P}-S-mapped to $T_{H} \in \mathcal{T}_{D_{H}}^{c}$;
- the set $\mathrm{SM}=\operatorname{SM}\left(G, \mathcal{D}, \phi_{P}\right)$ consists of all pairs $\left(\mathrm{EC}_{G}, T_{H}\right)$ with $\mathrm{EC}_{G} \preceq G$ and $T_{H} \in \mathcal{T}_{D_{H}}^{c}$ such that EC_{G} can be minimally ϕ_{P}-S-mapped to T_{H}; and
- the set $\mathrm{BM}=\operatorname{BM}\left(G, \mathcal{D}, \phi_{P}\right)$ consists of all pairs $\left(\mathrm{EC}_{G}, T_{H}\right)$ with $\mathrm{EC}_{G} \preceq G$ and $T_{H} \in \mathcal{T}_{D_{H}}^{c}$ such that EC_{G} can be minimally ϕ_{P}-B-mapped to T_{H}.
See Figure 3 for an illustration of these notions.
We now build a set of linear constraints. To this end, besides variables x_{T} for $T \in T_{H}$, we introduce variables $x_{\mathrm{EC}_{G} T_{H}}$ for each $\left(\mathrm{EC}_{G}, T_{H}\right) \in \mathrm{SM}$ (respectively BM).

$$
\begin{equation*}
\sum_{\left(\mathrm{EC}_{G}, T_{H}\right) \in \mathrm{SM}} \operatorname{tc}_{\mathrm{EC}_{G}}\left(T_{G}\right) * x_{\mathrm{Ext}_{G} T_{H}} \leq \operatorname{tc}_{G}\left(T_{G}\right) \text { for every } T_{G} \in \mathcal{T}_{D_{G}}(G), \tag{S1}
\end{equation*}
$$

(B1) $\sum_{\left(\mathrm{EC}_{G}, T_{H}\right) \in \mathrm{BM}} \mathrm{tc}_{\mathrm{EC}_{G}}\left(T_{G}\right) * x_{\mathrm{EC}_{G} T_{H}}=\operatorname{tc}_{G}\left(T_{G}\right)$ for every $T_{G} \in \mathcal{T}_{D_{G}}(G)$,
(S2) $\sum_{\mathrm{EC}_{G}:\left(\mathrm{EC}_{G}, T_{H}\right) \in \mathrm{SM}} x_{\mathrm{EC}_{G} T_{H}}=x_{T_{H}}$ for every $T_{H} \in \mathcal{T}_{D_{H}}$,
(B2) $\sum_{\mathrm{EC}_{G}:\left(\mathrm{EC} C_{G}, T_{H}\right) \in \mathrm{BM}} x_{\mathrm{EC}_{G} T_{H}}=x_{T_{H}}$ for every $T_{H} \in \mathcal{T}_{D_{H}}$, and
(S3) $\sum_{\left(T_{G}, T_{H}\right) \in \mathrm{wSM}} x_{T_{H}} \geq 1$ for every $T_{G} \in \mathcal{T}_{D_{G}}(G)$.
We refer to Figure 3 for an illustration.
Lemma 8. Let D_{G} and D_{H} be graphs, let G be an extension of D_{G} and let $\mathcal{D}=$ $\left(D_{H}, c, \mathrm{CH}\right)$ be a target description. Moreover, let $\phi_{P}: V\left(D_{G}\right) \rightarrow V\left(D_{H}\right)$ be a locally surjective (respectively, bijective) homomorphism from D_{G} to D_{H}. There exists a graph H satisfying \mathcal{D} and a locally surjective (respectively, bijective) homomorphism ϕ from G to H augmenting ϕ_{P} if and only if the equation system ($\mathrm{CH}, \mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3$) (respectively, $(\mathrm{CH}$, B1, B2)) admits a solution.

Proof. Towards showing the forward direction of the claim, let H be a graph satisfying $\mathcal{D}=\left(D_{H}, c, \mathrm{CH}\right)$ and let ϕ be a locally surjective (respectively, bijective) homomorphism that augments ϕ_{P}.

Consider $T_{H} \in \mathcal{T}_{D_{H}}(H)$ and let $\mathrm{ES}_{H} \in \mathcal{E}_{D_{H}}\left(H, T_{H}\right)$. Let $W_{\phi}\left(\mathrm{ES}_{H}\right)=G\left[\phi^{-1}\left(\mathrm{ES}_{H}\right)\right]$; note that $D_{G} \subseteq V\left(W_{\phi}\left(\mathrm{ES}_{H}\right)\right)$ and therefore $W_{\phi}\left(\mathrm{ES}_{H}\right)$ is a (possibly) complex extension of
D_{G}. Then because of Lemma 2, we obtain that $\phi_{R}=\left.\phi\right|_{W_{\phi}\left(\mathrm{ES}_{H}\right)}$ is a locally surjective (respectively, bijective) homomorphism from $W_{\phi}\left(\mathrm{ES}_{H}\right)$ to ES_{H} that augments ϕ_{P}. Moreover, because of Lemma 3, it follows that $W_{\phi}\left(\mathrm{ES}_{H}\right) \backslash D_{G}$ is the union of a set of components of $G-D_{G}$. Therefore, $W_{\phi}\left(\mathrm{ES}_{H}\right)$ can be ϕ_{P}-S-mapped (respectively, ϕ_{P}-B-mapped) to T_{H}. Moreover, if $W_{\phi}\left(\mathrm{ES}_{H}\right)$ can be ϕ_{P}-S-mapped to T_{H}, then $W_{\phi}\left(\mathrm{ES}_{H}\right)$ also contains a subgraph $W_{\phi}^{\min }\left(\mathrm{ES}_{H}\right)$ induced by D_{G} and a subset of components of $W_{\phi}\left(\mathrm{ES}_{H}\right) \backslash D_{G}$ that can be minimally ϕ_{P}-S-mapped to T_{H}. Note that $W_{\phi}^{\min }\left(\mathrm{ES}_{H}\right)$ is not uniquely defined. However, the concrete choice for $W_{\phi}^{\min }\left(\mathrm{ES}_{H}\right)$ does not matter. Informally, this is because $W_{\phi}^{\min }\left(\mathrm{ES}_{H}\right)$ ensures that some extension is ϕ-S-mapped to ES_{H}, while the remaining components in $W_{\phi}\left(\mathrm{ES}_{H}\right)$ can still be weakly ϕ-S-mapped to ES_{H}.

Let $X_{T}=\left\{x_{T_{H}}: T_{H} \in \mathcal{T}_{D_{H}}(H)\right\}, X_{M}=\left\{x_{\mathrm{EC}_{G} T_{H}}:\left(\mathrm{EC}_{G}, T_{H}\right) \in \mathrm{SM}\right\}$ (respectively, $\left.X_{M}=\left\{x_{\mathrm{EC}_{G} T_{H}}:\left(\mathrm{EC}_{G}, T_{H}\right) \in \mathrm{BM}\right\}\right)$, and $X=X_{T} \cup X_{M}$. Let $\alpha: X \rightarrow \mathbb{N}$ be defined by setting:
$-\alpha\left(x_{T_{H}}\right)=\operatorname{tc}_{H}\left(T_{H}\right)$ and
$-\alpha\left(x_{\mathrm{EC}_{G} T_{H}}\right)=\left|\left\{\operatorname{Ext}_{H} \in \mathcal{E}_{D_{H}}\left(H, T_{H}\right): \operatorname{tc}_{\mathrm{EC}_{G}}=\operatorname{tc}_{W_{\phi}^{\text {min }}\left(\mathrm{ES}_{H}\right)}\right\}\right|$ (in the locally surjective case)
$-\alpha\left(x_{\mathrm{EC}_{G} T_{H}}\right)=\left|\left\{\mathrm{ES}_{H} \in \mathcal{E}_{D_{H}}\left(H, T_{H}\right): \operatorname{tc}_{\mathrm{EC}_{G}}=\mathrm{tc}_{W_{\phi}\left(\mathrm{ES}_{H}\right)}\right\}\right|$ (in the locally bijective case)

We claim that the assignment α satisfies the equation system (CH, S1, S2, S3) (respectively, the equation system (CH, B1, B2)). Because H satisfies \mathcal{D}, it follows that α satisfies CH .

We start by showing the claim for the locally surjective case. Towards showing that (S3) is satisfied, consider a type $T_{G} \in T_{D_{G}}(G)$ and let $\mathrm{ES}_{G} \in \mathcal{E}_{D_{G}}\left(G, T_{G}\right)$. Then, because of Lemma 3, the mapping $\left.\phi\right|_{\mathrm{ES}_{G}}$ maps ES_{G} to some type $T_{H} \in \mathcal{T}_{D_{H}}(H)$ and shows that ES_{G} can be weakly ϕ_{P}-S-mapped to T_{H}.

Towards showing (S1), let $T_{G} \in \mathcal{T}_{D_{G}}(G)$. Because of Lemma 3, every simple extension $\mathrm{ES}_{G} \in \mathcal{E}_{D_{G}}\left(G, T_{G}\right)$ satisfies $\phi\left(\mathrm{ES}_{G}\right) \subseteq \mathrm{ES}_{H}$ for some simple extension ES_{H} of D_{H}. In other words ES_{G} is contained in the pre-image of exactly one simple extension ES_{H}, showing that every simple extension $\mathrm{ES}_{G} \in \mathcal{E}_{D_{G}}\left(G, T_{G}\right)$ is counted at most once on the left side of the inequality in (S1) and therefore the left side is at most $\mathrm{tc}_{G}\left(T_{G}\right)$.

Towards showing (S2), let $T_{H} \in \mathcal{T}_{D_{H}}$. Then, because $V\left(W_{\phi}^{\min }\left(\mathrm{ES}_{H}\right)\right) \cap$ $V\left(W_{\phi}^{\min }\left(\mathrm{ES}_{H}^{\prime}\right)\right)=D_{G}$, i.e. $W_{\phi}^{\min }\left(\mathrm{ES}_{H}\right)$ and $W_{\phi}^{\min }\left(\mathrm{ES}_{H}^{\prime}\right)$ share no components, for every two distinct $\mathrm{ES}_{H}, \mathrm{ES}_{H}^{\prime} \in \mathcal{E}_{D_{H}}\left(H, T_{H}\right)$, we obtain:

$$
\begin{aligned}
& \sum_{\mathrm{EC}_{G}:\left(\mathrm{EC}_{G}, T_{H}\right) \in \mathrm{SM}} \alpha\left(x_{\mathrm{EC}_{G} T_{H}}\right) \\
= & \sum_{\mathrm{EC}_{G}:\left(\mathrm{EC}_{G}, T_{H}\right) \in \mathrm{SM}}\left|\left\{\mathrm{ES}_{H} \in \mathcal{E}_{D_{H}}\left(H, T_{H}\right): \mathrm{tc}_{\mathrm{EC}_{G}}=\mathrm{tc}_{W_{\phi}^{\min }\left(\mathrm{ES}_{H}\right)}\right\}\right| \\
= & \mathrm{tc}_{H}\left(T_{H}\right) \\
= & \alpha\left(x_{T_{H}}\right)
\end{aligned}
$$

as required.

Finally, if ϕ is locally bijective, we only have to show (B1) and (B2), which can be shown similarly to (S1) and (S2), respectively. That is, (B1) can be shown in the same way as (S1) by using the additional observation that due to the definition of α in terms of $W_{\phi}\left(\mathrm{ES}_{H}\right)$ instead of $W_{\phi}^{\min }\left(\mathrm{ES}_{H}\right)$, every simple extension ES_{G} also occurs in the pre-image of at least one simple extension ES_{H}. Moreover, (B2) can be shown in the same manner as $(\mathrm{S} 2)$, since $V\left(W_{\phi}^{\min }\left(\mathrm{ES}_{H}\right)\right) \cap V\left(W_{\phi}^{\min }\left(\mathrm{ES}_{H}^{\prime}\right)\right)=D_{G}$ also holds for every two distinct $\mathrm{ES}_{H}, \mathrm{ES}_{H}^{\prime} \in \mathcal{E}_{D_{H}}\left(H, T_{H}\right)$.

Towards showing the reverse direction, let $\alpha: X \rightarrow \mathbb{N}$ be an assignment satisfying the equation system (CH, S1, S2, S3) (respectively, the equation system (CH,B1,B2)). Let H be the unique graph consisting of D_{H} and $\alpha\left(x_{T_{H}}\right)$ extensions of D_{H} of type T_{H} for every $T_{H} \in \mathcal{T}_{D_{H}}$. Then H satisfies $\left(D_{H}, c, \mathrm{CH}\right)$ and $\mathrm{tc}_{H}\left(T_{H}\right)=\alpha\left(x_{T_{H}}\right)$.

We now define a function $\phi: V(G) \rightarrow V(H)$, which will be a locally surjective (respectively, locally bijective) homomorphism that augments ϕ_{P} as follows.

Let \mathcal{A} be the multiset containing each pair $\left(\mathrm{EC}_{G}, T_{H}\right) \in \mathrm{SM}$ (respectively, BM) exactly $\alpha\left(x_{\mathrm{EC}_{G} T_{H}}\right)$ times. Because of (S2) (respectively, (B2)), there is a bijection $\gamma_{T_{H}}$ between $\mathcal{A}_{T_{H}}=\left\{\mathrm{EC}_{G}:\left(\mathrm{EC}_{G}, T_{H}\right) \in \mathcal{A}\right\}$ and $\mathcal{E}_{D_{H}}\left(H, T_{H}\right)$ for every $T_{H} \in \mathcal{T}_{D_{H}}(H)$. Let γ be the bijection between \mathcal{A} and the extensions $\mathcal{E}_{D_{H}}(H)$ given by $\gamma\left(\left(\mathrm{EC}_{G}, T_{H}\right)\right)=\gamma_{T_{H}}\left(\mathrm{EC}_{G}\right)$.

Since the proof now diverges quite significantly for the locally surjective and locally bijective cases, we start by giving the proof for the former case and then show how to adapt the proof in latter (easier) case.

Because of (S1), there is a function β from \mathcal{A} to the complex extensions of G such that:
$-\operatorname{tc}_{\beta\left(\left(\mathrm{EC}_{G}, T_{H}\right)\right)}=\operatorname{tc}_{\mathrm{EC}_{G}}$ for every $\left(\mathrm{EC}_{G}, T_{H}\right) \in \mathcal{A}$,
$-\beta(A) \cap \beta\left(A^{\prime}\right)=D_{G}$ for every two distinct A and A^{\prime} in \mathcal{A}.
Let $A=\left(\mathrm{EC}_{G}, T_{H}\right) \in \mathcal{A}$. Because $A \in \mathrm{SM}$, there is a locally surjective homomorphism ϕ_{A} from $\beta(A)$ to $\gamma(A)$ that augments ϕ_{P}. Let $\mathcal{E}_{\mathcal{A}}$ be the set of simple extensions ES_{G} in $\mathcal{E}_{D_{G}}(G)$ for which there is an $A \in \mathcal{A}$ such that ES_{G} is an induced subgraph of $\beta(A)$. Moreover, let $\overline{\mathcal{E}}_{\mathcal{A}}$ be the set of all remaining simple extensions in $\mathcal{E}_{D_{G}}(G)$, i.e. the set of all simple extensions ES_{G} in $\mathcal{E}_{D_{G}}(G) \backslash \mathcal{E}_{\mathcal{A}}$. Consider a simple extension ES_{G} in $\overline{\mathcal{E}}_{\mathcal{A}}$. Then, because of (S3), there is a $T_{H} \in \mathcal{T}_{D_{H}}(H)$ and a corresponding simple extension $\mathrm{ES}_{H} \in \mathcal{E}_{D_{H}}\left(H, T_{H}\right)$ such that there is a homomorphism $\phi_{\mathrm{ES}_{G}}$ from ES_{G} to ES_{H} that augments ϕ_{P}, which is locally surjective for every $v \in V\left(\mathrm{ES}_{G}-D_{G}\right)$. We are now ready to define $\phi: V(G) \rightarrow V(H)$. That is, we set $\phi(v)$ to be equal to:
$-\phi_{P}(v)$ if $v \in D_{G}$,

- $\phi_{\operatorname{Ext}_{G}}(v)$ if $v \in V\left(\mathrm{ES}_{G}\right)$ for some simple extension $\mathrm{ES}_{G} \in \overline{\mathcal{E}}_{\mathcal{A}}$, and
$-\phi_{A}(v)$ if $v \in V\left(\mathrm{ES}_{G}-D_{G}\right)$ for some $\mathrm{ES}_{G}=\beta(A)$ and $A \in \mathcal{A}$.
It remains to show that ϕ is a locally surjective homomorphism from G to H that augments ϕ_{P}. Clearly, ϕ augments ϕ_{P} by definition and because $\phi_{\mathrm{ES}_{G}}$ does so too for every simple extension ES_{G} in $\overline{\mathcal{E}}_{\mathcal{A}}$, as does ϕ_{A} for every $A \in \mathcal{A}$.

Moreover, ϕ is a homomorphism, because every edge $\{u, v\} \in E(G)$ is contained in $G\left[\mathrm{ES}_{G}\right]$ for some simple extension ES_{G} in $\mathcal{E}_{D_{G}}(G)$ and ϕ maps ES_{G} according to some homomorphism $\phi_{\operatorname{Ext}_{G}}$ (if $\mathrm{ES}_{G} \in \overline{\mathcal{E}}_{\mathcal{A}}$) or some homomorphism ϕ_{A} (otherwise). For basically the same reason, namely because every $\phi_{\mathrm{ES}_{G}}$ and every ϕ_{A} is locally surjective for every vertex in $V(G) \backslash D_{G}$, we have that ϕ is locally surjective for every vertex $v \in V(G) \backslash D_{G}$.

Towards showing that ϕ is also locally surjective for every $d \in D_{G}$, let n_{H} be any neighbour of $\phi(d)$ in H. If $n_{H} \in \phi_{P}\left(D_{G}\right)$, then there is a neighbour n_{G} of d in D_{G} with $\phi\left(n_{G}\right)=n_{H}$, because ϕ_{P} is locally surjective. If on the other hand $n_{H} \in V\left(\mathrm{ES}_{H}-D_{H}\right)$ for some $\mathrm{ES}_{H} \in \mathcal{E}_{D_{H}}\left(H, T_{H}\right)$ with $T_{H} \in \mathcal{T}_{D_{H}}(H)$, then there is a neighbour n_{G} of d in $\beta\left(\gamma^{-1}\left(T_{H}\right)\right)$ with $\phi\left(n_{G}\right)=n_{H}$, because $\phi\left(\right.$ restricted to $\left.\beta\left(\gamma^{-1}\left(T_{H}\right)\right)\right)$ is a locally surjective homomorphism from $\beta\left(\gamma^{-1}\left(T_{H}\right)\right)$ to ES_{H}.

This completes the proof for the locally surjective case. We now complete the proof for the locally bijective case. First note that because of (B1), the function β from \mathcal{A} to the complex extensions of G is bijective. Moreover, if $A=\left(\mathrm{EC}_{G}, T_{H}\right) \in \mathcal{A}$, then because $A \in \mathrm{BM}$, there is a locally bijective homomorphism ϕ_{A} from $\beta(A)$ to $\gamma(A)$ that augments ϕ_{P}. This now allows us to directly define $\phi: V(G) \rightarrow V(H)$. That is, we set $\phi(v)$ to be equal to:

$$
\begin{aligned}
& -\phi_{P}(v) \text { if } v \in D_{G} \text { and } \\
& -\phi_{A}(v) \text { if } v \in V\left(\mathrm{EC}_{G}-D_{G}\right) \text { for some } \mathrm{EC}_{G}=\beta(A) \text { and } A \in \mathcal{A}
\end{aligned}
$$

It remains to show that ϕ is a locally bijective homomorphism from G to H that augments ϕ_{P}. Note that we can assume that ϕ is already a locally surjective homomorphism that augments ϕ_{P}, using the same arguments as for the locally surjective case. Thus it only remains to show that ϕ is also locally injective for every $d \in D_{G}$. Suppose not, then there are two distinct neighbours n_{G} and n_{G}^{\prime} that are mapped to the same neighbour n_{H} of $\phi(d)$ in H. This is clearly not possible if both n_{G} and n_{G}^{\prime} are in D_{G} because ϕ_{P} is locally bijective on D_{G}. Moreover, this can also not be the case if exactly one of n_{G} and n_{G}^{\prime} is in D_{G}, because then $n_{H} \in V\left(D_{H}\right)$, but because ϕ augments ϕ_{P}, the other cannot be mapped to D_{H}. Therefore, we can assume that n_{G} and n_{G}^{\prime} are outside of D_{G}. Let $\mathrm{ES}_{H} \in \mathcal{E}_{D_{H}}(H)$ be the simple extension containing n_{H}. Then, n_{G} and n_{G}^{\prime} must by mapped by $\phi_{\gamma^{-1}\left(\mathrm{ES}_{H}\right)}$, but this is not possible because $\phi_{\gamma^{-1}\left(\mathrm{ES}_{H}\right)}$ is locally bijective.

3.3 Constructing and Solving the ILP

The main aim of this section is to show the following theorem; see Definition 1 for a formal description of a (k, c)-extended deletion set.

Theorem 1. Let G be a graph, let D_{G} be a (k, c)-extended deletion set (respectively, a c-deletion set) of size at most k for G, let $\mathcal{D}=\left(D_{H}, c^{\prime}, \mathrm{CH}\right)$ be a target description and let $\phi_{P}: D_{G} \rightarrow D_{H}$ be a locally surjective (respectively, bijective) homomorphism from D_{G} to D_{H}. Deciding whether there is a locally surjective (respectively bijective) homomorphism that augments ϕ_{P} from G to any graph satisfying CH is FPT parameterized by $k+c+c^{\prime}$.

In order to prove Theorem 1, we need to show that we can construct and solve the ILP instance given in the previous section. The main ingredient for the proof of Theorem 1 is Lemma 12, which shows that we can efficiently compute the sets wSM, SM, and BM. We start by showing that the set $\mathcal{T}_{D_{G}}(G)$ can be computed efficiently and has small size.

Lemma 9. For a graph G and $a(k, c)$-extended deletion set D_{G} of size at most k for G, it hold that $\mathcal{T}_{D_{G}}(G)$ has size at most $k+c 2\left({ }_{2}^{\left(D_{G} \mid+c\right.}\right)$. Moreover, the problem of computing $\mathcal{T}_{D_{G}}(G)$ and tc_{G} for a given graph G with (k, c)-extended deletion set D_{G} is FPT parameterized by $\left|D_{G}\right|+k+c$.

Proof. Because $\left|\mathcal{T}_{G}(G) \backslash \mathcal{T}_{G}^{c}\right| \leq k$ and $\left|\mathcal{T}_{G}^{c}\right| \leq c 2^{\left({ }^{\left|D_{G}\right|+c}\right)}$, we obtain that $\left|\mathcal{T}_{D_{G}}(G)\right| \leq$ $k+c 2\left({ }_{2}^{\left(D_{G} \mid+c\right.}\right)$. Moreover, we can compute $\mathcal{T}_{D_{G}}(G)$ starting from the empty set and adding a simple extension $G\left[D_{G} \cup C\right]$ for some component C of $G \backslash D_{G}$ if $G\left[D_{G} \cup C\right]$ is not equivalent with respect to $\sim_{D_{G}}$ to any element already added to $\mathcal{T}_{D_{G}}(G)$. Note that checking whether $G\left[D_{G} \cup C\right] \sim_{D} G\left[D_{G} \cup C^{\prime}\right]$ for two components C and C^{\prime} of $G \backslash D_{G}$ is FPT parameterized by $\left|D_{G}\right|+k+c$, because $G\left[D_{G} \cup C\right]$ has treewidth at most $\left|D_{G}\right|+k+c$ for every component C of $G \backslash D_{G}$ (because of Proposition 2) and graph isomorphism is FPT parameterized by treewidth [64]. The same procedure can now also be used to compute all the non-zero entries of the function tc_{G} (i.e. the entries where $\left.\operatorname{tc}_{G}(T) \neq 0\right)$, which provides us with a compact representation of tc_{G}.

The following lemma is crucial for computing the sets SM and BM that are required to construct the ILP instance. Informally, we will show that if $\left(\mathrm{EC}_{G}, \mathrm{ES}_{H}\right) \in \mathrm{SM}$ (or $\left(\mathrm{EC}_{G}, \mathrm{ES}_{H}\right) \in \mathrm{BM}$), then EC_{G} consists of only boundedly many (in terms of some function of the parameters) components, which will allow us to enumerate all possibilities for EC_{G} in FPT-time.

Lemma 10. Let D_{G} and D_{H} be graphs and let ϕ_{P} be a locally surjective (respectively, locally bijective) homomorphism from D_{G} to D_{H}. Moreover, let EC_{G} be an extension of D_{G} that can be minimally ϕ_{P}-S-mapped (respectively, minimally $\phi_{P}-B$-mapped) to an extension ES_{H} of D_{H}. Then, $\mathrm{EC}_{G} \backslash D_{G}$ consists of at most $\left|D_{G} \| \mathrm{ES}_{H} \backslash D_{H}\right|$ components.

Proof. We first show the statement of the lemma for the case when ϕ_{P} is locally surjective and therefore EC_{G} can be minimally ϕ_{P}-S-mapped to ES_{H}. Let $\phi: V\left(\mathrm{EC}_{G}\right) \rightarrow V\left(\mathrm{ES}_{H}\right)$ be a locally surjective homomorphism that augments ϕ_{P} and that exists because EC_{G} can be ϕ_{P}-S-mapped to ES_{H}. Let EC_{G}^{\prime} be an extension of EC_{G} with $\mathrm{EC}_{G}^{\prime} \preceq \mathrm{EC}_{G}$. Then, because of Lemma 3, it follows that $\left.\phi\right|_{\mathrm{EC}_{G}^{\prime}}$ is a homomorphism from EC_{G}^{\prime} to ES_{H} that is locally surjective for every $v \in \mathrm{EC}_{G}^{\prime} \backslash D_{G}$. Therefore, $\left.\phi\right|_{\mathrm{EC}_{G}^{\prime}}$ is a locally surjective homomorphism from EC_{G}^{\prime} to ES_{H} if and only if EC_{G}^{\prime} is such that $\left.\phi\right|_{\mathrm{EC}_{G}^{\prime}}$ is locally surjective for every $d \in D_{G}$. That is, for every $d \in D_{G}$ and every neighbour n_{H} of $\phi(d)$ in ES_{H}^{\prime}, there has to exist a neighbour n_{G} of d in EC_{G}^{\prime} such that $\phi\left(n_{G}\right)=n_{H}$. Since this holds if $n_{H} \in D_{H}$ (because ϕ_{P} is a locally surjective homomorphism from D_{G} to D_{H}), we can assume that the above only has to hold for every $d \in D_{G}$ and $n_{H} \in \mathrm{ES}_{H} \backslash D_{H}$.

Because ϕ is a locally surjective homomorphism from EC_{G} to ES_{H}, it follows that for every $d \in D_{G}$ and every neighbour n_{H} of $\phi(d)$ in ES_{H}, there is a component, say $C_{d, n_{H}}$, containing a neighbour n_{G} of d in EC_{G} such that $\phi\left(n_{G}\right)=\phi\left(n_{H}\right)$; note that because ϕ augments ϕ_{P}, it follows that $n_{G} \notin D_{G}$ because $n_{H} \notin D_{H}$.

Let EC_{G}^{\prime} be the extension of D_{G} consisting of D_{G} and all components $C_{d, n_{H}}$ for every $d \in D$ and $n_{H} \in \mathrm{ES}_{H} \backslash D_{H}$ as above. Then, $\left.\phi\right|_{\mathrm{EC}_{G}^{\prime}}$ is a locally surjective homomorphism from EC_{G}^{\prime} to ES_{H} and since EC_{G} is minimally ϕ_{P}-S-mapped to ES_{H} and $\mathrm{EC}_{G}^{\prime} \preceq \mathrm{EC}_{G}$, it follows that $\mathrm{EC}_{G}^{\prime}=\mathrm{EC}_{G}$. However, $\mathrm{EC}_{G}^{\prime} \backslash D_{G}$ consists of at most one component for every $d \in D_{G}$ and every $n_{H} \in \mathrm{ES}_{H} \backslash D_{H}$ and therefore it consists of at most $\left|D_{G}\right|\left|\mathrm{ES}_{H} \backslash D_{H}\right|$ components. This concludes the proof for the case when ϕ_{P} is locally surjective.

It remains to show the statement of the lemma for the case when ϕ_{P} is locally bijective and EC_{G} is minimally ϕ_{P}-B-mapped to ES_{H}. Let $\phi: V\left(\mathrm{EC}_{G}\right) \rightarrow V\left(\mathrm{ES}_{H}\right)$ be a locally
bijective homomorphism that augments ϕ_{P} and that exists because EC_{G} can be ϕ_{P} - B mapped to ES_{H}. Because ϕ is locally bijective, it is also locally surjective and therefore we can obtain the components $C_{d, n_{H}}$ of $\mathrm{EC}_{G} \backslash D_{G}$ for $d \in D_{H}$ and $n_{H} \in \mathrm{ES}_{H} \backslash D_{H}$ using the same arguments as in the case when ϕ was locally surjective. As before, let EC_{G}^{\prime} be the extension of D_{G} containing all components $C_{d, n_{H}}$. Then, as we showed above, $\left.\phi\right|_{\mathrm{EC}_{G}^{\prime}}$ is a locally surjective homomorphism from EC_{G}^{\prime} to ES_{H}. Moreover, $\left.\phi\right|_{\mathrm{EC}_{G}^{\prime}}$ is also locally injective, because so is ϕ. Therefore, $\left.\phi\right|_{\mathrm{EC}_{G}^{\prime}}$ is a locally bijective homomorphism from EC_{G}^{\prime} to ES_{H}. The latter implies, as EC_{G} can be minimally ϕ_{P}-B-mapped to ES_{H}, that $\mathrm{EC}_{G}=\mathrm{EC}_{G}^{\prime}$. This concludes the proof of the lemma, because EC_{G}^{\prime} consists of at most $\left|D_{G}\right|\left|\mathrm{ES}_{H} \backslash D_{H}\right|$ components.

The following proposition is a slight generalisation of [19, Theorem 4] and will allow us to efficiently decide whether an extension EC_{G} can be (weakly) S-mapped (respectively, B-mapped) to some extension ES_{H}.

Lemma 11 ([19, Theorem 4]). Let G and H be graphs and let $\phi_{P}: D_{G} \rightarrow D_{H}$ be a locally surjective (respectively, bijective) homomorphism from D_{G} to D_{H} for some subgraphs D_{G} of G and D_{H} of H. Then deciding whether there is a locally surjective (respectively, bijective) homomorphism from G to H that augments ϕ_{P} can be achieved in $\mathcal{O}\left(|V(G)|\left(\left(\mid V(H) 2^{\Delta(H)}\right)^{\operatorname{tw}(G)}\right)^{2} \operatorname{tw}(G) \Delta(H)\right)$ time and is therefore FPT parameterized by $\operatorname{tw}(G)+|V(H)|$.

Proof. In [19, Theorem 4], the authors provided an algorithm that, given a graph G and a graph H, decides in $\mathcal{O}\left(|V(G)|\left(\left(\mid V(H) 2^{\Delta(H)}\right)^{\operatorname{tw}(G)}\right)^{2} \operatorname{tw}(G) \Delta(H)\right)$ time whether there is a locally surjective homomorphism from G to H. The algorithm uses a standard dynamic programming approach on a tree decomposition of G, and it is straightforward to verify that the algorithm can be adapted with only minor modifications to an algorithm using the same run-time that decides whether there is a locally bijective homomorphism from G to H. Similarly, it is straightforward to adapt their algorithm to the case that one is additionally given a locally surjective (respectively, bijective) homomorphism ϕ_{P} from some induced subgraph D_{G} of G to some induced subgraph D_{H} of H and one only looks for a locally surjective (respectively, bijective) homomorphism from G to H that augments ϕ_{P}.

The following corollary now follows directly from Lemma 11 and the definition of (weakly) S-mapped (respectively, B-mapped).

Corollary 1. Let D_{G} and D_{H} be graphs and let ϕ_{P} be a locally surjective (respectively, bijective) homomorphism from D_{G} to D_{H}. Let EC_{G} be an extension of D_{G} having treewidth at most ω and let ES_{H} be an extension of D_{H}. Then, testing whether EC_{G} can be weakly $\phi_{P}-S$-mapped, $\phi_{P}-S$-mapped, or ϕ_{P} - B-mapped to ES_{H} is FPT parameterized by $\omega+\left|\mathrm{ES}_{H}\right|$.

We are now ready to show that we can efficiently compute the sets wSM, SM, and BM, which is the last crucial step towards constructing the ILP instance.

Lemma 12. Let G be a graph, let D_{G} be a (k, c)-extended deletion set (respectively, a c-deletion set) of size at most k for G, let $\mathcal{D}=\left(D_{H}, c^{\prime}, \mathrm{CH}\right)$ be a target description and
let ϕ_{P} be a locally surjective (respectively, bijective) homomorphism from D_{G} to D_{H}. Then, the sets $\mathrm{wSM}=\mathrm{wSM}\left(G, \mathcal{D}, \phi_{P}\right)$ and $\mathrm{SM}=\operatorname{SM}\left(G, \mathcal{D}, \phi_{P}\right)$ (respectively, the set $\left.\mathrm{BM}=\mathrm{BM}\left(G, \mathcal{D}, \phi_{P}\right)\right)$ can be computed in FPT -time parameterized by $k+c+c^{\prime}$ and $|\mathrm{SM}|$ (respectively, $|\mathrm{BM}|$) is bounded by a function depending only on $k+c+c^{\prime}$. Moreover, the number of variables in the equation system ($\mathrm{CH}, \mathrm{S1}, \mathrm{S2}, \mathrm{S3}$) (respectively, ($\mathrm{CH}, \mathrm{B1}, \mathrm{~B} 2)$) is bounded by a function depending only on $k+c+c^{\prime}$.

Proof. We only show the lemma for the set SM, since the proof for the set wSM can be seen as a special case and the proof for the set BM is identical. Let $\left(\mathrm{EC}_{G}, T_{H}\right) \in \mathrm{SM}$. Then, EC_{G} is an extension of D_{G} with $\mathrm{EC}_{G} \preceq G, T_{H} \in \mathcal{T}_{D_{H}}^{c^{\prime}}$, and EC_{G} can be minimally ϕ_{P}-S-mapped to T_{H}. Because EC_{G} can be minimally ϕ_{P}-S-mapped to ES_{H}, Lemma 10 implies that $\mathrm{EC}_{G} \backslash D_{G}$ consists of at most $\ell=\left|D_{G}\right|\left|\mathrm{ES}_{H} \backslash D_{H}\right|$ components and, because $\mathrm{EC}_{G} \preceq G$, these are also components of $G \backslash D_{G}$. Therefore, there are at most $\left(\left|\mathcal{T}_{D_{G}}(G)\right|\right)^{\ell}$ nonisomorphic possibilities for EC_{G}, which together with Lemma 9 and the facts that $\ell \leq k c^{\prime}$ and $\left|\mathcal{T}_{D_{H}}^{c^{\prime}}\right| \leq c^{\prime} 2^{\binom{k+c^{\prime}}{2}}$ shows that $|\mathrm{SM}| \leq\left(\left|\mathcal{T}_{D_{G}}(G)\right|\right)^{\ell}\left|\mathcal{T}_{D_{H}}^{c^{\prime}}\right| \leq\left(k+c 2^{\binom{k+c}{2}}\right)^{\ell}\left(c^{\prime} 2^{\binom{k+c^{\prime}}{2}}\right)$. Therefore, $|\mathrm{SM}|$ is bounded by a function depending only on $k+c+c^{\prime}$. Towards showing that we can compute SM is FPT-time parameterized by $k+c+c^{\prime}$, first note that the set $\mathcal{T}_{D_{G}}(G)$ can be computed in FPT-time parameterized by $k+c$ using Lemma 9. Similarly, the set $\mathcal{T}_{D_{H}}^{c^{\prime}}$ can be computed in FPT-time parameterized by $k+c^{\prime}$ using the same idea as in Lemma 9. This now allows us to compute the set \mathcal{A} containing all non-isomorphic possibilities for EC_{G}, i.e. the set of all extensions EC_{G} of D_{G} with $\mathrm{EC}_{G} \preceq G$ and $\sum_{T_{G} \in \mathcal{T}_{D_{G}}(G)} \operatorname{tc}_{E_{G}}\left(T_{G}\right) \leq \ell$ in FPT-time parameterized by $k+c+c^{\prime}$, i.e. in time at most $\left(\left|\mathcal{T}_{D_{G}}(G)\right|\right)^{\ell}$. But then, SM is equal to the set of all pairs $\left(\mathrm{EC}_{G}, \mathrm{ES}_{H}\right) \in \mathcal{A} \times \mathcal{T}_{D_{H}}^{c^{\prime}}$ such that EC_{G} can be minimally ϕ_{P}-S-mapped to ES_{H}. Moreover, for every such pair $\left(\mathrm{EC}_{G}, \mathrm{ES}_{H}\right)$ we can test in FPT-time parameterized by $k+c+c^{\prime}$ whether EC_{G} can be ϕ_{P}-S-mapped to ES_{H} using Corollary 1, because the treewidth of EC_{G} is at most $k+c$ (Proposition 2). Therefore, we can compute SM by enumerating all pairs $\left(\mathrm{EC}_{G}, \mathrm{ES}_{H}\right) \in \mathcal{A} \times \mathcal{T}_{D_{H}}^{c^{\prime}}$, testing for each of them whether EC_{G} can be ϕ_{P}-S-mapped to ES_{H} using Corollary 1, and keeping only those pairs $\left(\mathrm{EC}_{G}, \mathrm{ES}_{H}\right)$ such that EC_{G} can be ϕ_{P}-S-mapped to ES_{H} and EC_{G} is inclusion-wise minimal among all pairs $\left(\mathrm{EC}_{G}^{\prime}, \mathrm{ES}_{H}\right)$.

We are now ready to prove the main result of this subsection.
Theorem 1 (restated). Let G be a graph, let D_{G} be a (k, c)-extended deletion set (respectively, a c-deletion set) of size at most k for G, let $\mathcal{D}=\left(D_{H}, c^{\prime}, \mathrm{CH}\right)$ be a target description and let $\phi_{P}: D_{G} \rightarrow D_{H}$ be a locally surjective (respectively, bijective) homomorphism from D_{G} to D_{H}. Then, deciding whether there is a locally surjective (respectively bijective) homomorphism that augments ϕ_{P} from G to any graph satisfying CH is FPT parameterized by $k+c+c^{\prime}$.

Proof. We first compute the sets wSM and SM (respectively, the set BM), which because of Lemma 12 can be achieved in FPT-time parameterized by $k+c+c^{\prime}$. This now allows us to construct the ILP instance \mathcal{I} given by the equation system (CH,S1,S2,S3) (respectively, the equation system ($\mathrm{CH}, \mathrm{B} 1, \mathrm{~B} 2)$) in FPT-time parameterized by $k+c+c^{\prime}$. Moreover, because the number of variables in \mathcal{I} is bounded by a function of $k+c+c^{\prime}$ and we can employ Proposition 3 to solve \mathcal{I} in FPT-time parameterized by $k+c+c^{\prime}$. Finally, because of Lemma 8, it follows that \mathcal{I} has a solution if and only if there is a locally surjective
(respectively bijective) homomorphism that augments ϕ_{P} from G to any graph satisfying CH , which completes the proof of the theorem.

4 Applications of Our Algorithmic Framework

We are ready to show the main results of our paper, which can be obtained as an application of our framework given in the previous section. Our first result implies that LSHOM and LBHom are FPT parameterized by the fracture number of the guest graph.

Theorem 2. LSHOM and LBHOM are FPT parameterized by $k+c$, where k and c are such that the guest graph G has a c-deletion set of size at most k.

Proof. Let G and H be non-empty connected graphs such that G has a c-deletion set of size at most k. Let $D_{H}=H\left[\Delta_{H}^{k+c}\right]$. We first verify whether H has a c-deletion set of size at most k using Proposition 1. If this is not the case, then we can return that there is no locally surjective (and therefore also no bijective) homomorphism from G to H because of Lemma 4. Therefore, we can assume in what follows that H also has a c-deletion set of size at most k, which together with Lemma 5 implies that $V\left(D_{H}\right)$ is a $k c(k+c)$-deletion set of size at most k for H. Therefore, using Lemma 9 , we can compute tc_{H} in FPT-time parameterized by $k+c$. This now allows us to obtain a target description $\mathcal{D}=\left(D_{H}, c^{\prime}, \mathrm{CH}\right)$ with $c^{\prime}=k c(k+c)$ for H, i.e. \mathcal{D} is satisfied only by the graph H, by adding the constraint $x_{T}=\operatorname{tc}_{H}\left(T_{H}\right)$ to CH for every simple extension type $T_{H} \in \mathcal{T}_{D_{H}}^{c^{\prime}}$; note that $\mathcal{T}_{D_{H}}^{c^{\prime}}$ can be computed in FPT-time parameterized by $k+c$ by Lemma 9 .

Because of Lemma 6, we obtain that there is a locally surjective (respectively, bijective) homomorphism ϕ from G to H if and only if there is a set $D \subseteq \Delta_{G}^{k+c}$ and a locally surjective (respectively, bijective) homomorphism ϕ_{P} from $D_{G}=G[D]$ to D_{H} such that ϕ augments ϕ_{P}. Therefore, we can solve LSHom by checking, for every $D \subseteq \Delta_{G}^{k+c}$ and every locally surjective homomorphism ϕ_{P} from $D_{G}=G[D]$ to D_{H}, whether there is a locally surjective homomorphism from G to H that augments ϕ_{P}. Note that there are at most 2^{k} subsets D and because of Lemma 7 , we can compute the set Φ_{D} for every such subset in $\mathcal{O}\left(k^{k+2}\right)$ time. Furthermore, due to Lemma $5, D$ is a $(k-|D|, c)$-extended deletion set of size at most k for G. Therefore, for every $D \subseteq \Delta_{G}^{k+c}$ and $\phi_{p} \in \Phi_{D}$, we can use Theorem 1 to decide in FPT-time, parameterized by $k+c$ (because $c^{\prime}=k c(k+c)$), if there is a locally surjective (respectively, bijective) homomorphism from G to a graph satisfying \mathcal{D} that augments ϕ_{P}. As H is the only graph satisfying \mathcal{D}, we proved the theorem.

The proof of our next theorem is similar to the proof of Theorem 2. The major difference is that H is not given. Instead, we use Theorem 1 for a selected set of target descriptions. Each of these target descriptions enforces that graphs satisfying it have to be connected and have precisely h vertices, where h is part of the input for the Role Assignment problem. Furthermore, we ensure that every graph H satisfying the requirements of Role Assignment satisfies at least one of the selected target descriptions. The size of the set of considered target descriptions depends only on c and k, as it suffices to consider any small graph D_{H} and types of small simple extensions of D_{H}.

Theorem 3. Role Assignment is FPT parameterized by $k+c$, where k and c are such that G has a c-deletion set of size at most k.

Proof. Let G be a non-empty connected graph such that G has a c-deletion set of size at most k and let $h \geq 1$ be an integer.

In order to use Theorem 1 in this case, we need to ensure that the target descriptions used enforce that H is connected and has h vertices. Therefore, for a fixed graph D on at most k vertices, we let CON_{D} be the set of all minimal sets $S \subseteq \mathcal{T}_{D}^{k+c}$ such that any extension H of D, that contains exactly the types in S, is connected.

Since $\left|\mathcal{T}_{D}^{k+c}\right|$ is bounded by $(2 k+c) 2^{\binom{2 k+c}{2}}$, we can compute CON_{D} by considering every $S \subseteq \mathcal{T}_{D}^{k+c}$ and checking whether an extension $T \in \mathcal{T}_{D}$ of D containing precisely the types in S is connected. Since $|V(T)| \leq k+(k+c) \cdot|S|$ and checking connectivity takes linear time (using BFS or DFS) we can compute CON_{D} in time depending only on k and c. For $S \in \mathrm{CON}_{D}$, we set CH_{S} to be the set of equations containing $x_{T} \geq 1$ for every $T \in S$ and $\left|V\left(D_{H}\right)\right|+\sum_{T \in \mathcal{T}_{D_{H}}^{c}}\left(|V(T)|-\left|V\left(D_{H}\right)\right|\right) * x_{T}=h$. Note that for D and $S \in \mathrm{CON}_{D}$, any graph H satisfying the target description $\left(D, c+k, \mathrm{CH}_{S}\right)$ is connected and has h vertices.

If there is a connected graph H on h vertices and a locally surjective homomorphism ϕ from G to H, then by Lemma 6 there is a set $D \subseteq \Delta_{G}^{k+c}$ and a locally surjective homomorphism ϕ_{P} from $D_{G}=G[D]$ to $D_{H}=H\left[\Delta_{H}^{k+c}\right]$ such that ϕ augments ϕ_{P}. Note that by Lemmas 4 and $5, D_{H}$ is a $(k+c)$-deletion set of size at most k. This implies firstly that D_{H} is a graph on at most k vertices. Secondly, H is an extension of D_{H} such that $\operatorname{tc}_{H}(T)=0$ for $T \notin T_{D_{H}}^{c+k}$ and, since H is also connected and has h vertices, H satisfies the target description $\left(D_{H}, c+k, \mathrm{CH}_{S}\right)$ for at least one $S \in \mathrm{CON}_{D_{H}}$.

Therefore, we can solve the Role Assignment problem by checking for every $D \subseteq$ Δ_{G}^{k+c}, every graph D_{H} on no more than k vertices, every $S \in \operatorname{CON}_{D_{H}}$ and every locally surjective homomorphism ϕ_{P} from $D_{G}=G[D]$ to D_{H}, whether there is a graph H satisfying the target description $\left(D_{H}, k+c, \mathrm{CH}_{S}\right)$ and a locally surjective homomorphism from G to H that augments ϕ_{P}. Note that there are at most 2^{k} subsets D. Furthermore, there are at most $k 2^{\binom{k}{2}}$ graphs on at most k vertices and for each we can compute CON_{D} in time depending only on k and c. For each such graph D_{H}, there are at most $\left|\mathrm{CON}_{D}\right| \leq 2^{(2 k+c) 2}\left({ }_{2}^{2 k+c}\right)$ subsets S to consider. Lastly, because of Lemma 7, for every $D \subseteq \Delta_{G}^{k+c}$ and any graph D_{H} on no more than k vertices, we can compute the set of locally surjective homomorphisms ϕ_{P} from $G[D]$ to D_{H} in time $\mathcal{O}\left(k^{k+2}\right)$ time and there are at most $|D|^{|D|}$ partial homomorphisms ϕ_{P} to consider.

By Lemma $5, D$ is a $(k-|D|, c)$-extended deletion set of size at most k for G. Therefore, for every $D \subseteq \Delta_{G}^{k+c}$, every graph D_{H} on no more than k vertices, every $S \in \mathrm{CON}_{D_{H}}$ and every locally surjective homomorphism ϕ_{P} from $D_{G}=G[D]$ to D_{H}, we can employ Theorem 1 to decide in FPT-time parameterized by $k+c$, whether there is a graph H satisfying $\left(D_{H}, c+k, \mathrm{CH}_{S}\right)$ and a locally surjective homomorphism from G to H that augments ϕ_{P}. This completes the proof.

5 Locally Injective Homomorphisms

The following result is well known. We include a proof for completeness.
Theorem 4 (Folklore). LIHom is $\mathrm{W}[1]$-hard parameterized by $|V(G)|$. In particular, it is $\mathrm{W}[1]$-hard for all structural parameters of G.

Proof. Let G be a complete graph on k vertices, and let H be an arbitrary graph. There exists a locally injective homomorphism ϕ from G to H if and only if H contains a clique K on k vertices. Indeed, for the forward direction, pick K to be the image of $V(G)$ under ϕ. Then $|K|=|V(G)|=k$ by the local injectivity of ϕ, and K is a clique. For the reverse direction, let ϕ be any bijection between $V(G)$ and K. The result follows from the fact that Clique is W[1]-hard.

The locally injective case is more difficult in our setting since, in general, surjectivity helps to transfer structural parameters on G to similar structures on H (for example, in LSHOM and LBHom the image of a deletion set is also a deletion set by Lemma 4). In LIHom however, and even in the restricted case of graphs with bounded vertex cover number, no such property can be used to help find the image of a vertex cover, and exponential-time enumerations appear to be necessary. On the positive side, once a partial homomorphism from a vertex cover of G to H has been found, our ILP framework can still be applied to map the remaining vertices in FPT-time. This leads to an XP-algorithm for vertex cover number (Theorem 5). Interestingly, this result does not extend to c-deletion set number for $c>1$: even if the mapping of the deletion set can be guessed, the fact that the non-trivial remaining components must be mapped to distinct subgraphs of H makes the problem difficult (see Theorem 6).

Theorem 5. LIHom is in XP parameterized by the vertex cover number of G.
Proof. As for the surjective and bijective cases, we employ a two-step algorithm that first computes a suitable vertex cover, which can be done in time $1.2738^{\mathrm{vc}(G)}$ [21], and guesses the image of the vertex cover and a partial homomorphism. Second, the algorithm finds a solution of an ILP which defines how to map the remaining vertices. The ILP only requires FPT-time, however the first step needs an exhaustive enumeration of subsets of H (in the injective case, the image of a vertex cover does not have to be a vertex cover), hence the XP running time.

We use the definitions of types and extensions from Section 3.2. Note that for any connected graph G with vertex cover D_{G}, the connected components of $G \backslash D_{G}$ are single vertices. We can thus define the type of a vertex v of $G \backslash D_{G}$ to be the type of the simple extension $G\left[\{v\} \cup D_{G}\right]$. Note that two vertices u, v from $G \backslash D_{G}$ have the same type if they have the same neighbours in D_{G}. Hence, there are at most $2^{\left|D_{G}\right|}$ types in G.

In what follows, let G be the given connected guest graph, and let H be the host graph. The main property of locally injective homomorphisms we use in this proof is that the size of the pre-image of any vertex of H can be bounded by twice the vertex cover number of G. This follows from the following claims.

Claim 1. For any locally injective homomorphism $\phi: G \rightarrow H$ and every $h \in V(H)$, no two vertices in the pre-image $\phi^{-1}(h)$ share a neighbour.

Proof of Claim. Suppose that $\phi: G \rightarrow H$ is a locally injective homomorphism and there are vertices $h \in V(H), v, v^{\prime} \in \phi^{-1}(h)$ and $u \in V(G)$ such that u is adjacent to both v and v^{\prime}. But then the restriction of ϕ to $N_{G}(u)$ is not injective, contradicting the assumption. \diamond

Since, for every vertex cover D_{G} and every vertex $u \in V(G)$, either $u \in D_{G}$ or every neighbour of u is in D_{G}, we observe the following.

Claim 2. If $R \subseteq V(G)$ is a subset with the property that no two vertices $u, v \in R$ share a neighbour, then $|R| \leq 2 \cdot \mathrm{vc}(G)$.

We use the property that pre-images have bounded size for locally injective homomorphisms to guess a partial homomorphism we aim to augment, as well as determining which types of complex extensions our ILP needs to consider. In what follows, we show that picking suitable pre-images for the vertices of the host graph H yields a locally injective homomorphism.

Suppose that D_{G} is a vertex cover of G and $D_{H} \subseteq V(H)$. We further fix $\phi_{P}: D_{G} \rightarrow D_{H}$ to be a partial homomorphism such that, for every $h \in D_{H}$, no two vertices $u, v \in \phi_{P}^{-1}(h)$ share a neighbour in G. We say that a (possibly empty) subset R of $V(G) \backslash D_{G}$ is a candidate pre-image of a vertex $h \in V\left(H \backslash D_{H}\right)$ if the following two conditions hold:

1. $\phi_{P}\left(N_{G}(R)\right) \subseteq N_{H}(h) \cap D_{H}$ and
2. no two vertices in R share a neighbour.

With respect to the first condition, we note that $\phi_{P}: D_{G} \rightarrow D_{H}$ is indeed defined on $N_{G}(R)$. This is because $R \subseteq V(G) \backslash D_{G}$ and D_{G} is a vertex cover of G. Hence, it holds that $N_{G}(R) \subseteq D_{G}$.
Claim 3. There is a locally injective homomorphism from G to H augmenting ϕ_{P} if and only if there is a partition $\left\{R_{h} \mid h \in V(H)\right\}$ of $V(G)$ such that $R_{h}=\phi_{P}^{-1}(h)$ for every $h \in D_{H}$, and R_{h} is a candidate pre-image for every $h \in V(H) \backslash D_{H}$.

Proof of Claim. First suppose that $\phi: V(G) \rightarrow V(H)$ is a locally injective homomorphism from G to H augmenting ϕ_{P}. Define $R_{h}=\phi^{-1}(h)$ for every $h \in V(H)$. Since ϕ is a mapping, we obtain that $\left\{R_{h} \mid h \in V(H)\right\}$ is a partition of $V(G)$. Since ϕ augments ϕ_{P}, we know that $\phi_{P}^{-1}(h)=\phi^{-1}(h)$. The latter implies that $\phi_{P}^{-1}(h)=R_{h}$ for every $h \in D_{h}$. Finally, let $h \in V(H) \backslash D_{H}$. As ϕ augments ϕ_{P}, the set R_{h} must be disjoint from D_{G}. Hence, $N_{G}\left(R_{h}\right) \subseteq D_{G}$ and $\phi_{P}\left(N_{G}\left(R_{h}\right)\right) \subseteq D_{H}$. Additionally, since ϕ is a homomorphism, $\phi\left(N_{G}\left(R_{h}\right)\right)=\phi_{P}\left(N_{G}\left(R_{h}\right)\right) \subseteq N_{H}(h)$ implying Condition 1. Hence, by Claim 1, we find that R_{h} is a candidate pre-image.

On the other hand, suppose that $\left\{R_{h} \mid h \in V(H)\right\}$ is a partition of $V(G)$ such that $R_{h}=\phi_{P}^{-1}(h)$ for every $h \in D_{H}$ and R_{h} is a candidate pre-image for every $h \in V(H) \backslash D_{H}$. Define a mapping $\phi: V(G) \rightarrow V(H)$ where $\phi(v)=h$ if $v \in R_{h}$. Note that ϕ is well defined, as $\left\{R_{h} \mid h \in V(H)\right\}$ is a partition of $V(G)$. We now argue that ϕ is a homomorphism, i.e. we argue that for every pair of vertices $u, v \in V(G)$, if $u v \in E(G)$, then $\phi(u) \phi(v) \in E(H)$. For $u, v \in D_{G}$ this follows directly from ϕ_{P} being a homomorphism. For $u \in D_{G}$ and $v \notin D_{G}$, it follows from Condition 1 , while $u v \notin E(G)$ for all $u, v \notin D_{G}$. We are left to prove that ϕ is locally injective.

Let $v \in V(G)$ and $u, u^{\prime} \in N_{G}(v)$ be any vertices. We prove that $\phi(u) \neq \phi\left(u^{\prime}\right)$. If $u, u^{\prime} \in D_{G}$, then u, u^{\prime} share a neighbour, which implies $\phi_{P}(u) \neq \phi_{P}\left(u^{\prime}\right)$ by choice of ϕ_{P}. If $u \in D_{G}$ and $u^{\prime} \notin D_{G}$, then $\phi(u) \in D_{H}$ and $\phi\left(u^{\prime}\right) \notin D_{H}$, as ϕ is an augmentation of ϕ_{P}. If $u, u^{\prime} \notin D_{G}$, then u, u^{\prime} share a neighbour, and they cannot be in the same candidate pre-image by Condition 2 .

Let $H^{D_{H}}$ be the graph obtained from H by deleting all edges that are not incident with D_{H}. In particular, D_{H} is a vertex cover of $H^{D_{H}}$.

Claim 4. There is a locally injective homomorphism from G to H augmenting ϕ_{P} if and only if there is a locally injective homomorphism from G to $H^{D_{H}}$ augmenting ϕ_{P}.

Proof of Claim. By Claim 3, there is a locally injective homomorphism from G to H augmenting ϕ_{P} if and only if there is a partition $\left\{R_{h} \mid h \in V(H)\right\}$ of $V(G)$ such that $R_{h}=\phi_{P}^{-1}(h)$ for every $h \in D_{H}$ and R_{h} is a candidate pre-image for every $h \in V(H) \backslash D_{H}$. Observe that R_{h} being a candidate pre-image is independent of whether we consider the graph H or the graph $H^{D_{H}}$. This directly yields the claim using Claim 3.

We are now ready to describe our algorithm. Since in the first step we want to guess all possible partial homomorphisms, we first observe the following. Suppose that $\phi: V(G) \rightarrow$ $V(H)$ is a locally injective homomorphism from G to H, that D_{G}^{\prime} is a vertex cover of G of size $\operatorname{vc}(G)$, and that D_{H} is the image $\phi\left(D_{G}^{\prime}\right)$ of D_{G}^{\prime}. It is not necessarily true that the pre-image $\phi^{-1}\left(D_{H}\right)$ is D_{G}^{\prime}. Hence our goal is to guess the image D_{H} of D_{G}^{\prime} as well as the pre-image D_{G} of D_{H}. Note that guessing D_{G} could be done in FPT time by essentially only considering the type of pre-image of every vertex $h \in D_{H}$. However, we simplify the analysis here and guess D_{G} with XP many guesses.

Given two graphs G and H as input, the algorithm proceeds as follows. Since we can consider any connected component of G individually, we assume that G is connected. First, we compute any vertex cover D_{G}^{\prime} of G of size $\operatorname{vc}(G)$. We proceed by considering every set $D_{H} \subseteq V(H)$ of size at $\operatorname{most} \operatorname{vc}(G)$ and any set $\left\{R_{h} \mid h \in D_{H}\right\}$ of pairwise disjoint subsets of $V(G)$, for which the following conditions hold:

- $D_{G}^{\prime} \subseteq D_{G}$ where we define D_{G} to be $\bigcup_{h \in D_{H}} R_{h}$,
- the partial homomorphism $\phi_{P}: D_{G} \rightarrow D_{H}$, defined by setting $\phi_{P}(v)=h$ whenever $v \in R_{h}$, is a homomorphism from D_{G} to D_{H} and
- for every $h \in D_{H}$ no two vertices $u, v \in R_{h}$ share a neighbour in G.

In total we consider $(|V(H)|+1)^{\mathrm{vc}(G)}$ subsets D_{H} of $V(H)$. Furthermore, we only need to consider sets $\left\{R_{h} \mid h \in D_{H}\right\}$ for which $\left|R_{h}\right|$ is at most $2 \times \operatorname{vc}(G)$ by the condition that no two vertices $u, v \in R_{h}$ share a neighbour and Claim 2. Hence, we consider $(|V(G)|+1)^{2 \cdot \mathrm{vc}(G)^{2}}$ such sets and check for each whether the conditions are met. In the next step of the algorithm, we decide, for every partial homomorphism ϕ_{P} considered in the first step, whether there is a locally injective homomorphism $\phi: V(G) \rightarrow V(H)$ from G to H augmenting ϕ_{P}. Note that by Claim 4 there is such a homomorphism if and only if there is a locally injective homomorphism $\phi: V(G) \rightarrow V\left(H^{D_{H}}\right)$ from G to $H^{D_{H}}$ augmenting ϕ_{P}. We encode the existence of such a homomorphism into an ILP.

Observe that D_{G} is a vertex cover of G of size at most $2 \cdot \mathrm{vc}(G)^{2}$ (the set D_{G} consists of a set R_{h} of size at $\operatorname{most} 2 \cdot \operatorname{vc}(G)$ for each of the at most $\operatorname{vc}(G)$ vertices $\left.h \in D_{H}\right)$ and D_{H} is a vertex cover of $H^{D_{H}}$. Types considered in what follows are the types of G and $H^{D_{H}}$ with regards to vertex covers D_{G} and D_{H}. To construct the ILP, we first compute tc ${ }_{G}$ and $\mathrm{tc}_{H^{D_{H}}}$ in polynomial time. Let IM be the set of pairs $\left(\mathrm{EC}_{G}, T_{H}\right)$, where $\mathrm{EC}_{G} \in \mathcal{E}_{D_{G}}(G)$ is a complex extension of D_{G} and $T_{H} \in \mathcal{T}_{D_{H}}\left(H^{D_{H}}\right)$ is a simple extension of D_{H}, such that $V\left(\mathrm{EC}_{G} \backslash D_{G}\right)$ is a candidate pre-image of $T_{H} \backslash D_{H}$.

Observe that the size of every candidate pre-image is at most $2 \cdot \mathrm{vc}(G)$ by Condition 2 and Claim 2. Therefore, we obtain that the size of IM is at most $\left|\mathcal{T}_{D_{G}}(G)\right|^{2 \cdot v c(G)} \cdot\left|\mathcal{T}_{D_{H}}\left(H^{D_{H}}\right)\right|=$
$2^{4 \cdot \mathrm{vc}(G)^{3}} \cdot 2^{\mathrm{vc}(G)}$. We introduce a variable $x_{\mathrm{EC}_{G} T_{H}}$ for each pair $\left(\mathrm{EC}_{G}, T_{H}\right) \in \mathrm{IM}$ and let

$$
X=\left\{x_{\mathrm{EC}_{G} T_{H}}:\left(\mathrm{EC}_{G}, T_{H}\right) \in \mathrm{IM}\right\}
$$

The variable $x_{\mathrm{EC}_{G} T_{H}}$ represents the number of vertices h in $V(H) \backslash D_{H}$ with type T_{H} whose pre-image is $V\left(\mathrm{EC}_{G}\right) \backslash D_{G}$. We introduce two types of constraints (see below). The first constraint enforces that the pre-images R_{h} form a partition of $V\left(G \backslash D_{G}\right)$ by counting vertices of each type in each EC_{G} and checking that the sum corresponds to the count in G. The second constraint corresponds to the fact that each vertex in H needs to be assigned a (possibly empty) pre-image (the number of pairs involving a type T_{H} must correspond to the type-count of T_{H} in $\left.H\right)$.

$$
\begin{aligned}
& -\sum_{\left(\mathrm{EC}_{G}, T_{H}\right) \in \mathrm{IM}} \operatorname{tc}_{\mathrm{EC}_{G}}\left(T_{G}\right) * x_{\mathrm{EC}_{G} T_{H}}=\operatorname{tc}_{G}\left(T_{G}\right) \text { for every } T_{G} \in \mathcal{T}_{D_{G}}(G), \\
& -\sum_{\mathrm{EC}_{G}:\left(\mathrm{EC}_{G}, T_{H}\right) \in \mathrm{IM}} x_{\mathrm{EC}_{G} T_{H}}=\operatorname{tc}_{H}\left(T_{H}\right) \text { for every } T_{H} \in \mathcal{T}_{D_{H}}\left(H^{D_{H}}\right) .
\end{aligned}
$$

We accept the input if any of the considered ILPs admits a solution, which can be checked in FPT time.

It remains to show that the algorithm is correct. If there is a locally injective homomorphism from G to H, then it must augment one of the partial homomorphisms $\phi_{P}: D_{G} \rightarrow D_{H}$ considered in the first step. By Claim 3, there is a partition $\left\{R_{h} \mid h \in\right.$ $V(H)\}$, such that R_{h} is a candidate pre-image for every $h \in V(H) \backslash D_{H}$, and hence $\left(R_{h} \cup D_{G}, D_{H} \cup\{h\}\right) \in$ IM. Hence, we obtain a feasible solution of the two constraints above considering the following assignment α. The assignment $\alpha: X \rightarrow \mathbb{N}$ sets the variable $x_{\mathrm{EC}_{G} T_{H}}$ to the number of vertices $h \in V(H) \backslash D_{H}$ of type T_{H} for which the extension $R_{h} \cup D_{G}$ has type EC_{G}.

Conversely, let $\alpha: X \rightarrow \mathbb{N}$ be an assignment which is a solution to the two constraints above for some partial homomorphism $\phi_{P}: D_{G} \rightarrow D_{H}$. For each $T_{H} \in \mathcal{T}_{D_{H}}\left(H^{D_{H}}\right)$, we first partition the vertices of $V\left(H^{D_{H}}\right) \backslash D_{H}$ into sets $S_{\mathrm{EC}_{G} T_{H}}$ for every $\left(\mathrm{EC}_{G}, T_{H}\right) \in \mathrm{IM}$ such that $\left|S_{\mathrm{EC}_{G} T_{H}}\right|=\alpha\left(x_{\mathrm{EC}_{G} T_{H}}\right)$. This is possible due to the second constraint. We then choose a partition $\left\{R_{h} \mid h \in V\left(H^{D_{H}}\right)\right\}$ of $V(G)$ as follows. For each $h \in D_{H}$, we set R_{h} to be $\phi_{P}^{-1}(h)$. For $h \in S_{\mathrm{EC}_{G} T_{H}}$, we choose $R_{h} \subseteq V(G) \backslash D_{G}$ such that $R_{h} \cup D_{H}$ has type EC_{G}. This is possible because of the first constraint. Since $\left\{R_{h} \mid h \in V\left(H^{D_{H}}\right)\right\}$ is a partition satisfying that $R_{h}=\phi_{P}^{-1}(h)$ for every $h \in D_{H}$ and R_{h} is a candidate pre-image for every $h \in V(H) \backslash D_{H}$, we conclude that there is a locally injective homomorphism augmenting ϕ_{P} by Claim 3.

Corollary 2. For any constant k, LIHOM is polynomial-time solvable for graphs G where $\mathrm{ds}_{1}(G)$ is at most k.

We actually obtain the following dichotomy for the complexity of LIHOM, where the $c=1$, $k \geq 1$ case is already given by Corollary 2 .

Theorem 6. Let $c, k \geq 1$. Then LIHom is polynomial-time solvable on guest graphs G where $\operatorname{ds}_{c}(G)$ is at most k if either $c=1$ and $k \geq 1$ or $c=2$ and $k=1$; otherwise, it is NP-complete.

Theorem 6 follows from Corollary 2 and the following three lemmas.

Lemma 13. LIHOM is polynomial-time solvable for graphs G where $\mathrm{ds}_{2}(G)$ is at most 1 .
Proof. Let G and H be connected graphs such that G has 2-deletion set number at most 1. If G has a 2-deletion set containing no vertices, then G contains at most two vertices, in which case we can solve LIHom in polynomial time. Otherwise, we can find a 2-deletion set $\{v\}$ in polynomial time by trying all possibilities for v. Let p be the number of edges in $G\left[N_{G}(v)\right]$ and let w be a vertex of H. We claim that there is a locally injective homomorphism ϕ from G to H such that $\phi(v)=w$ if and only if $H\left[N_{H}(w)\right]$ has a matching on at least p edges and $d_{G}(v) \leq d_{H}(w)$.

Indeed, if such a locally injective homomorphism ϕ exists, then $d_{G}(v) \leq d_{H}(w)$ because ϕ is locally injective. Furthermore, for every edge $x y$ in $G\left[N_{G}(v)\right]$, the homomorphism ϕ maps the vertices x and y to adjacent vertices of $H\left[N_{H}(w)\right]$, and since ϕ is locally injective, it cannot map two vertices of $N_{G}(v)$ to the same vertex in $N_{H}(w)$. Therefore $H\left[N_{H}(w)\right]$ must have a matching on at least p edges.

Now suppose that $H\left[N_{H}(w)\right]$ has a matching M on at least p edges and $d_{G}(v) \leq d_{H}(w)$. For each edge $x y$ in $G\left[N_{G}(v)\right]$, let $\phi(x)$ and $\phi(y)$ be the endpoints of an edge in M (choosing a different edge of M for each edge $x y$). For the remaining vertices $x \in N_{G}(v)$, assign the remaining vertices of $N_{H}(w)$ arbitrarily, such that no two vertices of $N_{G}(v)$ are assigned the same value (this can be done since $d_{G}(v) \leq d_{H}(w)$). Let $\phi(x)=w$ for all remaining vertices of G (i.e. the vertex v and all vertices non-adjacent to v that have a common neighbour with v). By construction, ϕ is a locally injective homomorphism from G to H.

The size of a maximum matching in a graph can be found in polynomial time [30]. Thus, by branching over the possible vertices $w \in V(H)$, we obtain a polynomial-time algorithm for LIHom.

For a fixed graph H^{\prime} on h vertices, the H^{\prime}-Partition problem takes as input a graph G^{\prime} on $h n$ vertices. The task is to decide whether the vertex set of G^{\prime} can be partitioned into sets V_{1}, \ldots, V_{n}, each of size h, such that $G^{\prime}\left[V_{i}\right]$ contains H^{\prime} as a subgraph for all $i \in\{1, \ldots, n\}$. The H^{\prime}-Partition problem is known to be NP-complete if $H^{\prime} \in\left\{K_{3}, P_{3}\right\}[45,54]$. For the NP-hardness part of Theorem 6, we use a reduction from H^{\prime}-Partition, with $H^{\prime}=P_{3}$ in Lemma 14 and $H^{\prime}=K_{3}$ in Lemma 15.

Lemma 14. For $c \geq 2$ and $k \geq 2$, LIHom is NP-hard on graphs G where $\operatorname{ds}_{c}(G)$ is k.
Proof. We first consider the case when $k=2$. Consider an instance G^{\prime} of the P_{3}-Partition problem on $3 n$ vertices, where $n \geq c$. We construct a graph G as follows. For $i \in\{1, \ldots, n\}$, add vertices a_{i}, b_{i}, c_{i} and d_{i} and edges $a_{i} b_{i}$ and $c_{i} d_{i}$. Then add vertices u and v and make u adjacent to a_{i}, b_{i} and d_{i} and v adjacent to a_{i}, c_{i} and d_{i} for all $i \in\{1, \ldots, n\}$. Finally, add the edge $u v$. Note that $\{u, v\}$ is a minimum-size c-deletion set for G since $\operatorname{deg}_{G}(u)=\operatorname{deg}_{G}(v)>c$. Now let H be the graph obtained from G^{\prime} by adding two vertices u^{\prime} and v^{\prime} that are adjacent to all the vertices in $V\left(G^{\prime}\right)$ and to each other. For an illustration of the construction see Figure 4 . We claim that there is a locally injective homomorphism ϕ from G to H if and only if G^{\prime} is a yes-instance of the P_{3}-Partition problem.

Suppose that G^{\prime} is a yes-instance of the P_{3}-Partition problem and, for $i \in\{1, \ldots, n\}$, let $v_{i}^{1}, v_{i}^{2}, v_{i}^{3}$ be the three vertices in V_{i}, such that v_{i}^{2} is adjacent to v_{i}^{1} and $v_{i}^{3}\left(v_{i}^{1}\right.$ may or may not be adjacent to $\left.v_{i}^{3}\right)$. Let $\phi: V(G) \rightarrow V(H)$ be the function such that $\phi(u)=u^{\prime}$,

Fig. 4. An instance of LIHOM consisting of the graph G (left) and the graph H (right) corresponding to the instance $G^{\prime}=(V, E)$ of P_{3}-Partition, where $V=[6]$ and $E=\{12,13,23,34,45,56\}$. As G^{\prime} is a yes-instance of the P_{3}-Partition problem (partition is indicated by grey boxes), there is a locally injective homomorphism from G to H which is indicated by colours.
$\phi(v)=v^{\prime}$, and for $i \in\{1, \ldots, n\}, \phi\left(a_{i}\right)=v_{i}^{1}, \phi\left(b_{i}\right)=\phi\left(c_{i}\right)=v_{i}^{2}$ and $\phi\left(d_{i}\right)=v_{i}^{3}$. Note that ϕ is injective on $N_{G}\left(a_{i}\right)$ for every $i \in[n]$, as $\phi(u), \phi(v)$ and $\phi\left(b_{i}\right)$ are pairwise distinct. For the same reason, ϕ is injective on $N_{G}\left(b_{i}\right), N_{G}\left(c_{i}\right)$ and $N_{G}\left(d_{i}\right)$ for every $i \in[n]$. To see that ϕ is injective on $N_{G}(u)$, observe that ϕ restricted to $V(G) \backslash\left\{c_{i}: i \in[n]\right\}$ is a bijection. Since u is not adjacent to any vertex in $\left\{c_{i}: i \in[n]\right\}$, this proves that ϕ is injective on $N_{G}(u)$. For v we conclude with a symmetric argument. Hence, ϕ is a locally injective homomorphism from G to H.

Now suppose that ϕ is a locally injective homomorphism from G to H. Now $\operatorname{deg}_{G}(u)=$ $\operatorname{deg}_{G}(v)=3 n+1$. Since H has $3 n+2$ vertices and ϕ is a locally injective homomorphism, it follows that $\phi(u)$ and $\phi(v)$ must be universal vertices in H. By symmetry, we may therefore assume that $\phi(u)=u^{\prime}$ and $\phi(v)=v^{\prime}$. Now u is adjacent to v and the vertices a_{i}, b_{i} and d_{i} for all $i \in\{1, \ldots, n\}$. Similarly, v is adjacent to u and the vertices a_{i}, c_{i} and d_{i} for all $i \in\{1, \ldots, n\}$. Since $\operatorname{deg}_{G}(u)=3 n+1$, and ϕ is locally injective, it follows that $\phi\left(\left\{a_{i}, b_{i}, d_{i} \mid i \in\{1, \ldots, n\}\right\}\right)=V\left(G^{\prime}\right)$. Similarly, since $\operatorname{deg}_{G}(v)=3 n+1$, it follows that $\phi\left(\left\{a_{i}, c_{i}, d_{i} \mid i \in\{1, \ldots, n\}\right\}\right)=V\left(G^{\prime}\right)$. Therefore $\phi\left(\left\{b_{i} \mid i \in\{1, \ldots, n\}\right\}\right)=$ $\phi\left(\left\{c_{i} \mid i \in\{1, \ldots, n\}\right\}\right)$. Renumbering the indices of the c_{i} and d_{i} vertices if necessary, we may therefore assume by symmetry that $\phi\left(b_{i}\right)=\phi\left(c_{i}\right)$ for all $i \in\{1, \ldots, n\}$. Now, for all $i \in\{1, \ldots, n\}$, the vertices a_{i} and b_{i} are adjacent in G, so $\phi\left(a_{i}\right)$ and $\phi\left(b_{i}\right)$ are adjacent in H. Furthermore the vertices c_{i} and d_{i} are adjacent in G, so $\phi\left(c_{i}\right)=\phi\left(b_{i}\right)$ and $\phi\left(d_{i}\right)$ are adjacent in H. We now set $V_{i}=\left\{\phi\left(a_{i}\right), \phi\left(b_{i}\right), \phi\left(d_{i}\right)\right\}$ and note that the V_{i} sets partition $V\left(G^{\prime}\right)$, and that $G^{\prime}\left[V_{i}\right]$ contains a P_{3} subgraph for all $i \in\{1, \ldots, n\}$. This completes the proof of the case when $k=2$.

To extend the proof to graphs with c-deletion number $k>2$, we add $(k-1)$ universal vertices to H and replace u with a k-clique K each of whose vertices is adjacent to v and a_{i}, b_{i} and d_{i} for all $i \in\{1, \ldots, n\}$.

Lemma 15. For $c \geq 3$ and $k \geq 1$, LIHOM is NP-hard on graphs G where $\operatorname{ds}_{c}(G)$ is k.

Proof. We first consider the case when $k=1$. Consider an instance G^{\prime} of the K_{3}-Partition problem on $3 n$ vertices, where $n \geq c$. Let H be the graph obtained from G^{\prime} by adding a universal vertex w. Let G be the graph obtained by taking the disjoint union of n copies of K_{3} and adding a universal vertex v. Note that $\{v\}$ forms a minimum-size c-deletion set for G since $\operatorname{deg}_{G}(v)>c$. We claim that there is a locally injective homomorphism ϕ from G to H if and only if G^{\prime} is a yes-instance of the K_{3}-Partition problem.

Indeed, suppose there is such a ϕ. Since ϕ is locally injective and the graphs G and H each have $3 n$ vertices, the universal vertex v must be mapped to a universal vertex of H; without loss of generality, we may therefore assume that $\phi(v)=w$. Since v and w are universal vertices of the same degree, it follows that ϕ is a bijection from $V(G)$ to $V(H)$. Every K_{3} in the disjoint union part of G must therefore be mapped to a K_{3} in $H \backslash\{w\}=G^{\prime}$. Therefore G^{\prime} is a yes-instance of the K_{3}-Partition problem.

Now suppose that G^{\prime} is a yes-instance of the K_{3}-Partition problem. We let $\phi(v)=w$, and map the vertices of each K_{3} in the disjoint union part of G to some V_{i} from the K_{3}-partition of H, mapping each K_{3} to a different set V_{i}. Clearly this is a locally injective homomorphism. This completes the proof of the case when $k=1$. To extend the proof to graphs with c-deletion number $k>1$, we add $(k-1)$ universal vertices to G and H.

6 Bounded Tree-depth and Feedback Vertex Set Number

By Theorem 6, we already obtained paraNP-hardness for LIHom parameterized by treedepth or feedback vertex set number. In this section we show that our tractability results for LSHom and LBHom cannot be significantly extended, since both problems become paraNP-hard parameterized by tree-depth. Furthermore, the reduction we give here also provides paraNP-hardness for both LSHom and LBHom parameterized by the feedback vertex set number. We show this by replacing cycles with stars in the reduction provided in [19] for path-width. This strengthens their result from path-width to tree-depth and feedback vertex set number.
Theorem 7. LBHom, or more specifically, 3-FoldCover, and LSHom are NP-complete on input pairs (G, H) where G has tree-depth at most 6 and H has tree-depth at most 4.

Proof. First note that LBHom, 3-FoldCover and LSHom are in NP. To prove NPhardness for 3-FoldCover and LSHom we use a reduction from the 3-PARTITION problem. This problem takes as input a multiset A of $3 m$ integers, denoted in what follows by $\left\{a_{1}, a_{2}, \ldots, a_{3 m}\right\}$, and a positive integer $b>2$, such that $\frac{b}{4}<a_{i}<\frac{b}{2}$ for all $i \in\{1, \ldots, 3 m\}$ and $\sum_{1 \leq i \leq 3 m} a_{i}=m b$. The task is to determine whether A can be partitioned into m disjoint sets A_{1}, \ldots, A_{m} such that $\sum_{a \in A_{i}} a=b$ for all $i \in\{1, \ldots, m\}$. Note that the restrictions on the size of each element in A implies that each set A_{i} in the desired partition must contain exactly three elements, which is why such a partition A_{1}, \ldots, A_{m} is called a 3 -partition of A. The 3-Partition problem is strongly NP-complete [45], that is, it remains NP-complete even if the problem is encoded in unary. If $b=3$, then 3 -Partition can be solved in polynomial time (since all a_{i} 's are 1). Hence, we assume that $b>3$.

We first prove NP-hardness for 3-FoldCover, which implies NP-hardness for LBHom. Given an instance (A, b) of 3-Partition, we construct an instance of 3-FoldCover consisting of connected graphs G and H with $|V(G)|=3|V(H)|$ as follows. To construct G we do as follows:

- Take $3 m$ disjoint copies $S_{1}, \ldots, S_{3 m}$ of $K_{1, b}$ (stars), one for each element of A. For each $i \in\{1, \ldots, 3 m\}$, the vertices of S_{i} are labelled $c^{i}, u_{1}^{i}, \ldots, u_{b}^{i}$, where c_{i} is the vertex of degree b in S_{i} (the centre of the star).
- Add two new vertices p_{j}^{i} and q_{j}^{i} for each $i \in\{1, \ldots, 3 m\}, j \in\{1, \ldots, b\}$, as well as two new edges $u_{j}^{i} p_{j}^{i}$ and $u_{j}^{i} q_{j}^{i}$.
- Add three new vertices x, y and z.
- Make x adjacent to the vertices $p_{1}^{i}, p_{2}^{i} \ldots, p_{a_{i}}^{i}$ and $q_{1}^{i}, q_{2}^{i} \ldots, q_{a_{i}}^{i}$ for every $i \in\{1, \ldots, 3 m\}$.
- Make y adjacent to every vertex p_{j}^{i} that is not adjacent to x.
- Make z adjacent to every vertex q_{j}^{i} that is not adjacent to x.

See Figure 5 for an example.
To construct H, we take m disjoint copies $\tilde{S}_{1}, \ldots, \tilde{S}_{m}$ of $K_{1, b}$, where the vertices of each star \tilde{S}_{i} are labelled $\tilde{c}^{i}, \tilde{u}_{1}^{i}, \ldots, \tilde{u}_{b}^{i}$. For each $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, b\}$, we add two vertices \tilde{p}_{j}^{i} and \tilde{q}_{j}^{i} and make both of them adjacent to \tilde{u}_{j}^{i}. Finally, we add a vertex \tilde{x} and make it adjacent to each of the vertices \tilde{p}_{j}^{i} and \tilde{q}_{j}^{i}. This finishes the construction of H. Note that $|V(G)|=3|V(H)|$. See again Figure 5 for an illustration.

We now show that there exists a locally bijective homomorphism from G to H if and only if (A, b) is a yes-instance of 3-Partition.

Let us first assume that there exists a locally bijective homomorphism ϕ from G to H. Since ϕ is a degree-preserving mapping, we must have $\phi(x)=\tilde{x}$. Moreover, since ϕ is locally bijective, the restriction of ϕ to $N_{G}(x)$ is a bijection from $N_{G}(x)$ to $N_{H}(\tilde{x})$. Again using the definition of a locally bijective homomorphism, this time considering the neighbourhoods of the vertices in $N_{H}(\tilde{x})$, we deduce that there is a bijection from the set $N_{G}^{2}(x):=\left\{u_{j}^{i} \mid 1 \leq i \leq 3 m, 1 \leq j \leq a_{i}\right\}$, i.e. from the set of vertices in G at distance 2 from x, to the set $N_{H}^{2}(\tilde{x}):=\left\{\tilde{u}_{j}^{k} \mid 1 \leq k \leq m, 1 \leq j \leq b\right\}$ of vertices that are at distance 2 from \tilde{x} in H.

For every $k \in\{1, \ldots, m\}$, we define a set $A_{k} \subseteq A$ such that A_{k} contains element $a_{i} \in A$ if and only if $\phi\left(u_{1}^{i}\right) \in\left\{\tilde{u}_{1}^{k}, \ldots, \tilde{u}_{b}^{k}\right\}$. Since ϕ is a bijection from $N_{G}^{2}(x)$ to $N_{H}^{2}(\tilde{x})$, the sets A_{1}, \ldots, A_{m} are disjoint; moreover each element $a_{i} \in A$ is contained in exactly one of them. Since ϕ is degree preserving, each c^{i} has to be mapped onto a \tilde{c}^{j} (note that we use the assumption $b>3$ here). Additionally, since ϕ is locally bijective, for every $i \in\{1, \ldots, 3 m\}$ there is a bijection from $N_{G}\left(c^{i}\right)=\left\{u_{1}^{i}, \ldots, u_{b}^{i}\right\}$ to $N_{H}\left(\tilde{c}^{j}\right)=\left\{\tilde{u}_{1}^{j}, \ldots, \tilde{u}_{b}^{j}\right\}$ for the $j \in\{1, \ldots, m\}$ for which $\phi\left(c^{i}\right)=\tilde{c}^{j}$. Combining this and the previous argument implies that $\sum_{a \in A_{i}} a=b$ for all $i \in\{1, \ldots, m\}$. Hence A_{1}, \ldots, A_{m} is a 3-partition of A.

For the reverse direction, suppose that there exists a 3 -partition A_{1}, \ldots, A_{m} of A. We define a mapping ϕ as follows. We first set $\phi(x)=\phi(y)=\phi(z)=\tilde{x}$. Let $A_{i}=\left\{a_{r}, a_{s}, a_{t}\right\}$ be any set of the 3-partition. We map the vertices of S_{r}, S_{s}, S_{t} to the vertices of \tilde{S}_{i} in the following way:
$-\phi\left(c_{r}\right)=\phi\left(c_{s}\right)=\phi\left(c_{t}\right)=\tilde{c}_{i} ;$
$-\phi\left(u_{j}^{r}\right)=\tilde{u}_{j}^{i}$ for each $j \in\{1, \ldots, b\}$;
$-\phi\left(u_{j}^{s}\right)=\tilde{u}_{a_{r}+j}^{i}$ for each $j \in\left\{1, \ldots, a_{s}+a_{t}\right\}$;
$-\phi\left(u_{j}^{s}\right)=\tilde{u}_{a_{r}+j-b}^{i}$ for $j \in\left\{a_{s}+a_{t}+1, \ldots, b\right\}$;
$-\phi\left(u_{j}^{t}\right)=\tilde{u}_{a_{r}+a_{s}+j}^{i}$ for each $j \in\left\{1, \ldots, a_{t}\right\}$; and

Fig. 5. An instance of LBHom consisting of the graph G (left) and the graph H (right) corresponding to the instance (A, b) of 3-Partition, where $A=\{2,3,2\}$ and $b=7$. As (A, b) is a yes-instance of the 3-Partition problem, there is a locally bijective homomorphism from G to H which is indicated by colours.

$$
-\phi\left(u_{j}^{s}\right)=\tilde{u}_{a_{r}+j-b}^{i} \text { for } j \in\left\{a_{t}+1, \ldots, b\right\}
$$

It remains to map the vertices p_{j}^{i} and q_{j}^{i} for each $i \in\{1, \ldots, 3 m\}$ and $j \in\{1, \ldots, b\}$. Let p_{j}^{i}, q_{j}^{i} be a pair of vertices in G that are adjacent to x, and let u_{j}^{i} be the second common neighbour of p_{j}^{i} and q_{j}^{i}. Suppose that \tilde{u}_{ℓ}^{k} is the image of u_{j}^{i}, i.e. suppose that $\phi\left(u_{j}^{i}\right)=\tilde{u}_{\ell}^{k}$. Then we map p_{j}^{i} and q_{j}^{i} to \tilde{p}_{ℓ}^{k} and \tilde{q}_{ℓ}^{k}, respectively. We now consider the neighbours of y and z in G. By construction, the neighbourhood of y consists of the $2 m b$ vertices in the set $\left\{p_{j}^{i} \mid a_{i+1} \leq j \leq b\right\}$, while $N_{G}(z)=\left\{q_{j}^{i} \mid a_{i+1} \leq j \leq b\right\}$.

Observe that \tilde{x}, the image of y and z, is adjacent to two sets of $m b$ vertices: one of the form \tilde{p}_{ℓ}^{k}, the other of the form \tilde{q}_{ℓ}^{k}. Hence, we need to map half the neighbours of y to vertices of the form \tilde{p}_{ℓ}^{k} and half the neighbours of y to vertices of the form \tilde{q}_{ℓ}^{k} in order to make ϕ a locally bijective homomorphism. The same must be done with the neighbours of z. For every vertex \tilde{u}_{ℓ}^{k} in H, we do as follows. By construction, exactly three vertices of G are mapped to \tilde{u}_{ℓ}^{k}, and exactly two of these vertices, say u_{j}^{i} and u_{h}^{g}, are at distance 2 from y in G. We set $\phi\left(p_{j}^{i}\right)=\tilde{p}_{\ell}^{k}$ and $\phi\left(p_{h}^{g}\right)=\tilde{q}_{\ell}^{k}$. We also set $\phi\left(q_{j}^{i}\right)=\tilde{q}_{\ell}^{k}$ and $\phi\left(q_{h}^{g}\right)=\tilde{p}_{\ell}^{k}$. This completes the definition of the mapping ϕ. For an illustration of the map ϕ, see Figure 5.

Since the mapping ϕ preserves adjacencies, it is a homomorphism. In order to show that ϕ is locally bijective, we first observe that the degree of every vertex in G is equal to the degree of its image in H, in particular,

$$
d_{G}(x)=d_{G}(y)=d_{G}(z)=d_{H}(\tilde{x})=2 m b
$$

From the above description of ϕ we get a bijection between the vertices of $N_{H}(\tilde{x})$ and the vertices of $N_{G}(v)$ for each $v \in\{x, y, z\}$. For every vertex p_{j}^{i} that is adjacent to x and u_{j}^{i} in G, its image \tilde{p}_{ℓ}^{k} is adjacent to the images \tilde{x} of x and \tilde{u}_{ℓ}^{k} of u_{j}^{i}. For every vertex p_{j}^{i} that is adjacent to y (respectively, z) and u_{j}^{i} in G, its image \tilde{p}_{ℓ}^{k} or \tilde{q}_{ℓ}^{k} is adjacent to \tilde{x} of y (respectively, z) and \tilde{u}_{ℓ}^{k} of u_{j}^{i}. Hence the restriction of ϕ to $N_{G}\left(p_{j}^{i}\right)$ is bijective for every $i \in\{1, \ldots, 3 m\}$ and $j \in\{1, \ldots, b\}$, and the same clearly holds for the restriction of ϕ to $N_{G}\left(q_{j}^{i}\right)$.

The vertices of each star S_{i} are mapped to the vertices of some star \tilde{S}_{k} in such a way that the centres are mapped to centres. This, together with the fact that the image \tilde{u}_{ℓ}^{k} of every vertex u_{j}^{i} is adjacent to the images \tilde{p}_{ℓ}^{k} and \tilde{q}_{ℓ}^{k} of the neighbours p_{j}^{i} and q_{j}^{i} of u_{j}^{i}, shows that the restriction of ϕ to $N_{G}\left(u_{j}^{i}\right)$ is bijective for every $i \in\{1, \ldots, 3 m\}$ and $j \in\{1, \ldots, b\}$. Finally, the neighbourhood of c^{i} is clearly mapped to the neighbourhood of $\phi\left(c^{i}\right)$ for every $i \in\{1, \ldots, 3 m\}$. We conclude that ϕ is a locally bijective homomorphism from G to H.

In order to show that the tree-depth of G is at most 6 , we observe that removing x, y and z yields a forest of depth 2 . Similarly, H has tree-depth 4 since removing \tilde{x} leaves a tree of depth 2. This completes the proof for 3-FoldCover and therefore LBHOM.

In order to prove NP-hardness for LSHom we can use the same reduction as for LBHom. For this we can argue that there is a locally bijective homomorphism from G to H, for the graphs G and H constructed above, if and only if there is a locally surjective homomorphism from G to H. While the one direction is clear, if $G \xrightarrow{B} H$ then $G \xrightarrow{S} H$, for the converse direction we can make use of the following statement due to Kristiansen and Telle [60]:
$(*)$ If $G \xrightarrow{S} H$ and $\operatorname{drm}(G)=\operatorname{drm}(H)$, then $G \xrightarrow{B} H$.
Here $\operatorname{drm}(G), \operatorname{drm}(H)$ refers to the degree refinement matrix of G or H respectively, which is defined as follows. An equitable partition of a connected graph G is a partition of its vertex set into blocks B_{1}, \ldots, B_{k} such that every vertex in B_{i} has the same number $m_{i, j}$ of neighbours in B_{j}. Then $\operatorname{drm}(G)=\left(m_{i, j}\right)$ for $m_{i, j}$ corresponding to the coarsest equitable partition of G. We can easily observe that

$$
\operatorname{drm}(G)=\operatorname{drm}(H)=\left(\begin{array}{cccc}
0 & 0 & 2 m b & 0 \\
0 & 0 & 2 & 1 \\
1 & 1 & 0 & 0 \\
0 & b & 0 & 0
\end{array}\right)
$$

corresponding to the equitable partitions $B_{1}=\{x, y, z\}, B_{2}=\left\{u_{j}^{i} \mid i \in\{1, \ldots, 3 m\}, j \in\right.$ $\{1, \ldots, b\}\}, B_{3}=\left\{p_{j}^{i}, q_{j}^{i} \mid i \in\{1, \ldots, 3 m\}, j \in\{1, \ldots, b\}\right\}$ and $B_{4}=\left\{c^{i} \mid i \in\{1, \ldots, 3 m\}\right\}$ in G and a similar equitable partition in H. Hence by $\left({ }^{*}\right)$ we find that $G \xrightarrow{B} H$ if and only if $G \xrightarrow{S} H$, completing the proof for LSHom.

Theorem 8. LBHom, or more specifically, 3-FoldCover, and LSHom are NP-complete on input pairs (G, H) where G and H have feedback vertex set number at most 3 and 1 , respectively.

Proof. To prove the statement we use the same reductions as in the proof of Theorem 7. This is sufficient, as the set $\{x, y, z\}$ is a feedback vertex set of G and the set $\{\tilde{x}\}$ is a feedback vertex set of H for graphs G and H defined in the proof of Theorem 7.

7 Conclusions

We presented a fairly comprehensive picture concerning the parameterized complexity of three locally constrained graph homomorphism problems, namely LSHOM, LBHOM, and LIHOM, when parameterized by some property of the guest graph. Our hardness results showed that the fracture number is the most suitable graph parameter of the guest graph for obtaining (parameterized) algorithms for these problems. We developed our algorithms through a general ILP-based framework. Besides the three locally constrained graph homomorphism problems, we also illustrated the applicability of our framework for the Role Assignment problem. This yielded three FPT results and one XP result in total.

As future research, we aim to extend our ILP-based framework. If successful, this will then also enable us to address the parameterized complexity of other graph homomorphism variants such as quasi-covers [39] and pseudo-covers [15,17,18]. We also recall the open problem from [19]: are LBHOM and LSHom in FPT when parameterized by the treewidth of the guest graph plus the maximum degree of the guest graph?

References

1. Abello, J., Fellows, M.R., Stillwell, J.: On the complexity and combinatorics of covering finite complexes. Australasian Journal of Combinatorics 4, 103-112 (1991)
2. Angluin, D.: Local and global properties in networks of processors. Proc. STOC 1980 pp . 82-93 (1980)
3. Angluin, D., Gardiner, A.: Finite common coverings of pairs of regular graphs. Journal of Combinatorial Theory, Series B 30, 184-187 (1981)
4. Barefoot, C.A., Entringer, R., Swart, H.: Vulnerability in graphs - a comparative survey. Journal of Combinatorial Mathematics and Combinatorial Computing 1, 13-22 (1987)
5. Biggs, N.J.: Algebraic Graph Theory. Cambridge University Press (1974)
6. Biggs, N.J.: Constructing 5 -arc transitive cubic graphs. Journal of the London Mathematical Society II 26, 193-200 (1982)
7. Bílka, O., Lidický, B., Tesař, M.: Locally injective homomorphism to the simple weight graphs. Proc. TAMC 2011, LNCS 6648, 471-482 (2011)
8. Bodlaender, H.L.: The classification of coverings of processor networks. Journal of Parallel and Distributed Computing 6, 166-182 (1989)
9. Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating treewidth, pathwidth, frontsize, and shortest elimination tree. Journal of Algorithms 18, 238-255 (1995)
10. Bok, J., Fiala, J., Hliněný, P., Jedličková, N., Kratochvíl, J.: Computational complexity of covering multigraphs with semi-edges: Small cases. Proc. MFCS 2021, LIPIcs 202, 21:1-21:15 (2021)
11. Bok, J., Fiala, J., Jedličková, N., Kratochvíl, J., Rzążewski, P.: List covering of regular multigraphs. Proc. IWOCA 2022, LNCS 13270, 228-242 (2022)
12. Bok, J., Fiala, J., Jedličková, N., Kratochvíl, J., Seifrtová, M.: Computational complexity of covering disconnected multigraphs. Proc. FCT 2021, LNCS 12867, 85-99 (2021)
13. Bui-Xuan, B., Telle, J.A., Vatshelle, M.: Fast dynamic programming for locally checkable vertex subset and vertex partitioning problems. Theoretical Computer Science 511, 66-76 (2013)
14. Bulteau, L., Dabrowski, K.K., Köhler, N., Ordyniak, S., Paulusma, D.: An algorithmic framework for locally constrained homomorphisms. Proc. WG 2022, LNCS 13453, 114-128 (2022)
15. Chalopin, J.: Local computations on closed unlabelled edges: The election problem and the naming problem. Proc. SOFSEM 2005, LNCS 3381, 82-91 (2005)
16. Chalopin, J., Métivier, Y., Zielonka, W.: Local computations in graphs: The case of cellular edge local computations. Fundamenta Informaticae 74, 85-114 (2006)
17. Chalopin, J., Paulusma, D.: Graph labelings derived from models in distributed computing: A complete complexity classification. Networks 58, 207-231 (2011)
18. Chalopin, J., Paulusma, D.: Packing bipartite graphs with covers of complete bipartite graphs. Discrete Applied Mathematics 168, 40-50 (2014)
19. Chaplick, S., Fiala, J., van 't Hof, P., Paulusma, D., Tesař, M.: Locally constrained homomorphisms on graphs of bounded treewidth and bounded degree. Theoretical Computer Science 590, 86-95 (2015)
20. Chekuri, C., Rajaraman, A.: Conjunctive query containment revisited. Theoretical Computer Science 239, 211-229 (2000)
21. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoretical Computer Science 411, 3736-3756 (2010)
22. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer (2015)
23. Dalmau, V., Kolaitis, P.G., Vardi, M.Y.: Constraint satisfaction, bounded treewidth, and finite-variable logics. Proc. CP 2002, LNCS 2470, 310-326 (2002)
24. Diestel, R.: Graph Theory, Graduate Texts in Mathematics, vol. 173. Springer Verlag, New York, 2nd edn. (2000)
25. Dourado, M.C.: Computing role assignments of split graphs. Theoretical Computer Science 635, 74-84 (2016)
26. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: on completeness for W[1]. Theoretical Computer Science 141, 109-131 (1995)
27. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science, Springer (2013)
28. Dvořák, P., Eiben, E., Ganian, R., Knop, D., Ordyniak, S.: Solving integer linear programs with a small number of global variables and constraints. Proc. IJCAI 2017 pp. 607-613 (2017)
29. Dvořák, P., Krawczyk, M., Masařík, T., Novotná, J., Rzążewski, P., Zuk, A.: List locally surjective homomorphisms in hereditary graph classes. Proc. ISAAC 2022, LIPIcs 248, 30:1-30:15 (2022)
30. Edmonds, J.: Paths, trees, and flowers. Canadian Journal of Mathematics 17, 449-467 (1965)
31. Everett, M.G., Borgatti, S.P.: Role colouring a graph. Mathematical Social Sciences 21, 183-188 (1991)
32. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph layout problems parameterized by vertex cover. Proc. ISAAC 2008, LNCS 5369, 294-305 (2008)
33. Fiala, J., Kloks, T., Kratochvíl, J.: Fixed-parameter complexity of lambda-labelings. Discrete Applied Mathematics 113, 59-72 (2001)
34. Fiala, J., Kratochvíl, J.: Partial covers of graphs. Discussiones Mathematicae Graph Theory 22, 89-99 (2002)
35. Fiala, J., Kratochvíl, J.: Locally constrained graph homomorphisms - structure, complexity, and applications. Computer Science Review 2, 97-111 (2008)
36. Fiala, J., Kratochvíl, J., Pór, A.: On the computational complexity of partial covers of theta graphs. Discrete Applied Mathematics 156, 1143-1149 (2008)
37. Fiala, J., Paulusma, D.: A complete complexity classification of the role assignment problem. Theoretical Computer Science 349, 67-81 (2005)
38. Fiala, J., Paulusma, D.: Comparing universal covers in polynomial time. Theory of Computing Systems 46, 620-635 (2010)
39. Fiala, J., Tesař, M.: Dichotomy of the H-Quasi-Cover problem. Proc. CSR 2013, LNCS 7913, 310-321 (2013)
40. Flum, J., Grohe, M.: Parameterized Complexity Theory, Texts in Theoretical Computer Science. An EATCS Series, vol. XIV. Springer Verlag, Berlin (2006)
41. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation in combinatorial optimization. Combinatorica 7, 49-65 (1987)
42. Freuder, E.C.: Complexity of k-tree structured constraint satisfaction problems. Proc. AAAI 1990 pp. 4-9 (1990)
43. Fujita, S., Furuya, M.: Safe number and integrity of graphs. Discrete Applied Mathematics 247, 398-406 (2018)
44. Fujita, S., MacGillivray, G., Sakuma, T.: Safe set problem on graphs. Discrete Applied Mathematics 215, 106-111 (2016)
45. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NPCompleteness. W. H. Freeman \& Co., New York, NY, USA (1979)
46. Gerber, M.U., Kobler, D.: Algorithms for vertex-partitioning problems on graphs with fixed clique-width. Theoretical Computer Science 299, 719-734 (2003)
47. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen from the other side. Journal of the ACM 54, 1:1-1:24 (2007)
48. Heggernes, P., van 't Hof, P., Paulusma, D.: Computing role assignments of proper interval graphs in polynomial time. Journal of Discrete Algorithms 14, 173-188 (2012)
49. Hell, P., Nešetřil, J.: On the complexity of H-coloring. Journal of Combinatorial Theory, Series B 48, 92-110 (1990)
50. Hell, P., Nešetřil, J.: The core of a graph. Discrete Mathematics 109, 117-126 (1992)
51. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press (2004)
52. van 't Hof, P., Paulusma, D., van Rooij, J.M.M.: Computing role assignments of chordal graphs. Theoretical Computer Science 411, 3601-3613 (2010)
53. Kannan, R.: Minkowski's convex body theorem and integer programming. Mathematics of Operations Research 12, 415-440 (1987)
54. Kirkpatrick, D.G., Hell, P.: On the completeness of a generalized matching problem. Proc. STOC 1978 p. 240-245 (1978)
55. Klavík, P.: Extension Properties of Graphs and Structures. Ph.D. thesis, Charles University, Prague (2017)
56. Kratochvíl, J.: Regular codes in regular graphs are difficult. Discrete Mathematics 133, 191-205 (1994)
57. Kratochvíl, J., Proskurowski, A., Telle, J.A.: Covering regular graphs. Journal of Combinatorial Theory, Series B 71, 1-16 (1997)
58. Kratochvíl, J., Proskurowski, A., Telle, J.A.: On the complexity of graph covering problems. Nordic Journal of Computing 5, 173-195 (1998)
59. Kratochvíl, J., Telle, J.A., Tesař, M.: Computational complexity of covering three-vertex multigraphs. Theoretical Computer Science 609, 104-117 (2016)
60. Kristiansen, P., Telle, J.A.: Generalized H-coloring of graphs. Proc. ISAAC 2000, LNCS 1969, 456-466 (2000)
61. Kronegger, M., Ordyniak, S., Pfandler, A.: Backdoors to planning. Artificial Intelligence 269, 49-75 (2019)
62. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Mathematics of Operations Research 8, 538-548 (1983)
63. Lidický, B., Tesař, M.: Complexity of locally injective homomorphism to the theta graphs. Proc. IWOCA 2010, LNCS 6460, 326-336 (2010)
64. Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Fixed-parameter tractable canonization and isomorphism test for graphs of bounded treewidth. SIAM Journal on Computing 46, 161-189 (2017)
65. Massey, W.S.: Algebraic Topology: An Introduction. Harcourt, Brace and World (1967)
66. Nešetřil, J.: Homomorphisms of derivative graphs. Discrete Mathematics 1, 257-268 (1971)
67. Nešetřil, J., Ossona de Mendez, P.: Sparsity: Graphs, Structures, and Algorithms, Algorithms and Combinatorics, vol. 28. Springer (2012)
68. Okrasa, K., Rzążewski, P.: Subexponential algorithms for variants of the homomorphism problem in string graphs. Journal of Computer and System Sciences 109, 126-144 (2020)
69. Pandey, S., Raman, V., Sahlot, V.: Parameterizing role coloring on forests. Proc. SOFSEM 2021, LNCS 12607, 308-321 (2021)
70. Pandey, S., Sahlot, V.: Role coloring bipartite graphs. Discrete Applied Mathematics 322, 276-285 (2022)
71. Pekeč, A., Roberts, F.S.: The role assignment model nearly fits most social networks. Mathematical Social Sciences 41, 275-293 (2001)
72. Purcell, C., Rombach, M.P.: On the complexity of role colouring planar graphs, trees and cographs. Journal of Discrete Algorithms 35, 1-8 (2015)
73. Purcell, C., Rombach, M.P.: Role colouring graphs in hereditary classes. Theoretical Computer Science 876, 12-24 (2021)
74. Roberts, F.S., Sheng, L.: How hard is it to determine if a graph has a 2-role assignment? Networks 37, 67-73 (2001)
75. Telle, J.A., Proskurowski, A.: Algorithms for vertex partitioning problems on partial k-trees. SIAM Journal on Discrete Mathematics 10, 529-550 (1997)
76. White, D.R., Reitz, K.P.: Graph and semigroup homomorphisms on networks of relations. Social Networks 5, 193-235 (1983)

Citation on deposit: Bulteau, L., Dabrowski, K., Köhler, N., Ordyniak, S., \& Paulusma, D. (in press). An algorithmic framework for locally constrained homomorphisms. SIAM Journal on Discrete Mathematics

For final citation and metadata, visit Durham Research Online URL:

https://durham-repository.worktribe.com/output/2076668
Copyright statement: For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising.

[^0]: * An extended abstract of this paper appeared in the proceedings of WG2022 [14]. The second and fourth authors acknowledge support from the Engineering and Physical Sciences Research Council (EPSRC, project EP/V00252X/1). For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising.

[^1]: ${ }^{6}$ The graph $G \backslash S$ is the graph obtained from G by deleting all vertices of S; see Section 2 for any undefined terminology in this section.
 ${ }^{7}$ See Section 2 for the definitions of treewidth, path-width and tree-depth.

[^2]: ${ }^{8}$ The proof can easily be adapted to hold for every $k \geq 3$, as observed by Klavík [55], while the cases $k=1$ (which is equivalent to Graph Isomorphism) and $k=2$ are still open.

