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Abstract

We study the Fredholm determinant of an integral operator associated to the hard edge
Pearcey kernel. This determinant appears in a variety of random matrix and non-intersecting
paths models. By relating the logarithmic derivatives of the Fredholm determinant to a 3×3
Riemann-Hilbert problem, we obtain asymptotics of the determinant, which is also known
as the large gap asymptotics for the corresponding point process.
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1 Introduction and statement of the result

In a classical work [24], Dyson observed that eigenvalues of the process version of Gaussian
unitary ensemble share the same statistics with non-intersecting Brownian motions. Since then,
one dimensional Markov processes conditioned not to intersect have played an important role
in the studies of random matrix theory and a variety of problems arising from probability
and mathematical physics. An important motivation behind is that these models give rise to

∗School of Mathematical Sciences, Fudan University, Shanghai 200433, China. E-mail:
lumingyao@fudan.edu.cn

†School of Mathematical Sciences and Shanghai Key Laboratory for Contemporary Applied Mathematics,
Fudan University, Shanghai 200433, China. E-mail: lunzhang@fudan.edu.cn

1

ar
X

iv
:2

20
9.

12
52

4v
1 

 [
m

at
h.

PR
] 

 2
6 

Se
p 

20
22



Figure 1: Simulation picture of 50 rescaled non-intersecting squared Bessel paths with α = 4
that start at x = 5 and end at x = 0.

universal determinantal point processes, which also appear in a wide range of interacting particle
systems.

The hard edge Pearcy process is a concrete example related to a model of non-intersecting
squared Bessel paths. The squared Bessel process is a diffusion process depending on a pa-
rameter α > −1 with transition probability function constructed via the the modified Bessel
functions of the first kind; cf. [6]. If d = 2(α + 1) is an integer, it can be obtained as the
square of the distance to the origin of a d-dimensional Brownian motion. The model consists
of n independent copies of the squared Bessel process such that they all start at some fixed
positions at t = 0, end at some fixed positions at t = T , and do not intersect one another for
0 < t < T . By [35], non-intersecting squared Bessel paths provides a process version of the
Laguerre unitary ensemble, and different types of initial and ending conditions are considered
in [19, 20, 31, 32, 33, 34, 38, 39]. If all the paths start at the same positive value when t = 0 and
end at x = 0 when t = T , it comes out that as n → ∞, after proper scaling, the paths will fill
in a region in the tx-plane; see Figure 1 for an illustration. It is readily seen from the numerical
simulation that there is a critical time such that the lowest path stays away from the hard edge
at x = 0 for any earlier time while stays close to 0 for any later time. The local statistics
are governed by classical Airy and Bessel processes from random matrix theory respectively;
see [39]. After scaling around the critical time, one encounters a determinantal point process
characterized by the following kernel (see [38, Equations (1.19) and (1.23)]):

Kα(x, y; ρ)

=
1

(2πi)2

∫
t∈Γ

∫
s∈Σ

eρ/t+1/(2t2)−ρ/s−1/(2s2)+xt−ys

s− t

(
t

s

)α
dt ds

=
P(x) [Q′′(y)− (α− 2)Q′(y)− ρQ(y)]− P ′(x) [yQ′(y)− (α− 1)Q(y)] + yP ′′(x)Q(y)

2πi(x− y)
(1.1)

for x, y > 0, where the parameters α > 1, ρ ∈ R,

P(x) =

∫
Γ
tα−3ext+

ρ
t
+ 1

2t2 dt, Q(y) =

∫
Σ
tα−4e−yt−

ρ
t
− 1

2t2 dt, (1.2)

and the contours Γ and Σ are illustrated in Figure 2. The functions P and Q in (1.2) satisfy
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Figure 2: The contours Γ and Σ in the definitions of P, Q and Kα.

the third order ordinary differential equations

xP ′′′(x) + αP ′′(x)− ρP ′(x)− P(x) = 0, (1.3)

yQ′′(y) + (3− α)Q′′(y)− ρQ′(y) +Q(y) = 0, (1.4)

respectively. Following the terminology in [21], we call Kα the hard edge Pearcey kernel, as it
appears at the cusp of non-intersecting squared Bessel paths model.

It was expected in [38] that Kα also admits an alternative representation in terms of the
Bessel functions of the first kind, which was derived earlier by Desrosiers and Forrester in the
context of perturbed chiral Gaussian unitary ensemble [22]. This conjecture was later resolved
in [21]. The universal feature of hard edge Pearcey process can be seen from its appearances in
the investigation of subjects as diverse as Jacobi growth process [9], non-intersecting Brownian
motions with walls [41], random surface growth models [5, 8], etc.

Let Ks be the integral operator acting on L2(0, s), s ≥ 0, with the hard edge Pearcey kernel
Kα given in (1.1). Due to the determinantal structure, the Fredholm determinant det(I −Ks)
can be interpreted as the gap probability for the hard edge Pearcey process over the interval
(0, s). Intensive studies of various Fredholm determinants arising from random matrix theory
have exhibited their close connections with integrable systems and elegant forms of the large
gap asymptotics. The relevant results can be found in [18, 23, 26, 30, 37, 45] for the sine
determinant, in [2, 15, 44] for the Airy determinant, in [17, 25, 43] for the Bessel determinant,
in [1, 3, 7, 12, 13] for the Pearcey determinant, among others. For the gap probability of the hard
edge Pearcey process, it has been shown in [11] and [28] that det(I −Ks) can be connected to
two different integrable systems, although the precise relationship is not clear yet. In addition,
asymptotics of the deformed case, i.e., det(I − γKs), 0 < γ < 1, is also obtained in [11]. This in
turn gives us large gap asymptotics of the thinned process. We contribute to these developments
by establishing large gap asymptotics for the hard edge Pearcey process stated below.

Theorem 1.1. Let
F (s; ρ) := ln det(I −Ks). (1.5)

As s→∞, we have

F (s; ρ) =− 9

214/3
s

4
3 +

ρ

2
s+

3α− ρ2

27/3
s

2
3 − αρ

22/3
s

1
3 − 12α2 + 1

72
ln s

+
ρ4

108
+
αρ2

6
+ C +O(s−

1
3 ), (1.6)

uniformly for ρ in any compact subset of R, where C is an undetermined constant independent
of ρ and s.
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Some remarks about the above theorem are the following. Our asymptotic formula supports
the so-called Forrester-Chen-Eriksen-Tracy conjecture; cf. [10, 27]. Based on a Coulomb fluid
approach, this conjecture claims that the probability E(s) of emptiness over the interval (0, s)
behaves like exp(−µs2κ+2) for large positive s with µ being some constant, provided the density
of state η(x) satisfies η(x) ∼ xκ as x → 0. The present case corresponds to κ = −1/3.
Asymptoics of det(I − γKs) exhibit significantly different asymptotic behaviours for γ = 1 and
0 < γ < 1. Indeed, by [11, Theorem 2.2], it follows that ln(det(I − γKs)) ∼ O(s−2/3). Finally,
we cannot evaluate explicitly the constant C in (1.6) with our method, which in general is a
challenging task; cf. [36].

The proof of Theorem 1.1 relies on the integrable structure of hard edge Pearcey kernel.
This special structure enables us to relate various derivatives of F to a 3× 3 Riemann-Hilbert
(RH) problem under the general framework [4, 16]. In Section 2, we recall this RH problem
derived in [11] and further establish its connection with ∂F/∂ρ. A key step in our analysis is
the construction of λ-functions defined on a Riemann surface with a specified sheet structure,
which is given in Section 3. With the aid of these auxiliary functions, we perform a Deift-Zhou
steepest descent analysis on the relevant RH problem as s → ∞ in Section 4. The proof of
Theorem 1.1 is an outcome of our asymptotic analysis, which is presented in Section 5.

Notations Throughout this paper, the following notations are frequently used.

• If A is a matrix, then (A)ij stands for its (i, j)-th entry and AT stands for its transposition.
An unimportant entry of A is denoted by ∗. We use I to denote the identity matrix, and
the size might differ in different contexts.

• We denote by D(z0; r) the open disc centred at z0 with radius r > 0, i.e.,

D(z0; r) := {z ∈ C | |z − z0| < r}, (1.7)

and denote by ∂D(z0, r) its boundary.

• As usual, the three Pauli matrices {σj}3j=1 are defined by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.8)

2 Preliminaries

It has been shown in [11] that ∂F/∂s is related to the local behavior of a 3× 3 RH problem. In
this section, we will recall the derivation of this RH problem and further establish its connection
with ∂F/∂ρ.

We start with a 3× 3 RH problem which characterizes the hard edge Pearcey kernel Kα, as
given in [38] and stated next.

RH problem 2.1.

(a) Ψ(z) = Ψ(z; ρ, α) is analytic in C \ ΣΨ, where α > −1 and ρ are real parameters,

ΣΨ := ∪5
k=0Σk ∪ {0}, (2.1)

with
Σ0 = (0,∞), Σ1 = e

π
4

i(0,∞), Σ2 = e
3π
4

i(0,∞), (2.2)

and
Σ3+k = −Σk, k = 0, 1, 2; (2.3)

see Figure 3 for an illustration.
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Figure 3: The jump contours Σk, k = 0, 1, . . . , 5, in the RH problem for Ψ.

(b) For z ∈ Σk, k = 0, 1, . . . , 5, Ψ has continuous boundary values Ψ±(z), where the +/−-side
of Σk is the side which lies on the left/right of Σk, when traversing Σk according to its
orientation. These boundary values satisfy

Ψ+(z) = Ψ−(z)JΨ(z), z ∈ ∪5
k=0Σk, (2.4)

where

JΨ(z) :=



 0 1 0

−1 0 0

0 0 1

 , z ∈ Σ0,

1 0 0

1 1 0

0 0 1

 , z ∈ Σ1,

1 0 0

0 1 eαπi

0 0 1

 , z ∈ Σ2,

1 0 0

0 0 −e−απi

0 e−απi 0

 , z ∈ Σ3,

1 0 0

0 1 e−απi

0 0 1

 , z ∈ Σ4,

1 0 0

1 1 0

0 0 1

 , z ∈ Σ5.

(2.5)

(c) As z →∞ with z ∈ C \ ΣΨ, we have

Ψ(z) =
iz−α/3√

3
Ψ0

(
I +

Ψ1

z
+O(z−2)

)
diag (z

1
3 , 1, z−

1
3 )

× L± diag (e±
απ
3

i, e∓
απ
3

i, 1)eΘ(z), ±Im z > 0, (2.6)

where

Ψ0 =

1 π3(ρ) π6(ρ)
0 1 π3(ρ) + ρ/3
0 0 1

 , Ψ1 =

 ∗ ∗ ∗
∗ ∗ ∗

π3(ρ) + 2ρ/3 ∗ ∗

 (2.7)
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with

π3(ρ) =
ρ(ρ2 + 9α− 18)

27
, (2.8)

π6(ρ) =
ρ6 + (18α− 45)ρ4 + (81α2 − 405α+ 405)ρ2 − 243α2 + 729α− 405

2 · 36
, (2.9)

L+ =

 ω ω2 1
1 1 1
ω2 ω 1

 , L− =

ω2 −ω 1
1 −1 1
ω −ω2 1

 , (2.10)

with ω = e2πi/3, and

Θ(z) = Θ(z; ρ) =

{
diag (θ1(z; ρ), θ2(z; ρ), θ3(z; ρ)), Im z > 0,

diag (θ2(z; ρ), θ1(z; ρ), θ3(z; ρ)), Im z < 0,
(2.11)

with

θk(z; ρ) =
3

2
ω2kz

2
3 + ρωkz

1
3 , k = 1, 2, 3. (2.12)

(d) As z → 0, we have

Ψ(z)

zα 0 0
0 zα 0
0 0 1

 = O(1), 0 < | arg z| < π

4
, (2.13)

Ψ(z)

1 0 0
0 zα 0
0 0 1

 = O(1),
π

4
< | arg z| < 3π

4
, (2.14)

Ψ(z)

1 0 0
0 zα 0
0 0 zα

 = O(1),
3π

4
< | arg z| < π. (2.15)

By [38, Theorem 1.4 and Proposition 5.2], RH problem 2.1 for Ψ has a unique solution which
can be constructed through the functions

Pk(z) :=



∫
γk
tα−3ezt+

ρ
t
+ 1

2t2 dt, k = 1 with −π
2 < arg t < π

2 ,

e−απi
∫
γk
tα−3ezt+

ρ
t
+ 1

2t2 dt, k = 2 with π
2 < arg t < 3π

2 ,

e−απi
∫
γk
tα−3ezt+

ρ
t
+ 1

2t2 dt, k = 3 with 0 < arg t < π,

eαπi
∫
γk
tα−3ezt+

ρ
t
+ 1

2t2 dt, k = 4 with −π < arg t < 0,

(2.16)

where the contours γk, k = 1, . . . , 4, are illustrated in Figure 4. We refer to [38] for the precise
descriptions of the contours γk and the construction of Ψ. It is worthwhile to mention that
Pk, k = 1, 2, 3, 4, satisfies the differential equation (1.3) and any three of them are linearly
independent.

Define

Ψ̃(z) =
eρ

2/6

√
2π

P2(z) P3(z) P1(z)
P ′2(z) P ′3(z) P ′1(z)
P ′′2 (z) P ′′3 (z) P ′′1 (z)

 , z ∈ C \ iR−. (2.17)

It is shown in [38] that

Ψ(z) = Ψ̃(z),
π

4
< arg z <

3π

4
, (2.18)
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γ10

Figure 4: The contour of integration Γk in the definition of Pk(z), k = 1, 2, 3, 4.

and the hard edge Pearcey kernel (1.1) admits the following representation in terms of Ψ̃:

Kα(x, y; ρ) =
1

2πi(x− y)

(
0 1 0

)
Ψ̃(y)−1Ψ̃(x)

1
0
0

 , x, y > 0. (2.19)

From (2.19), it is easily seen that

Kα(x, y; ρ) =
f(x)Th(y)

x− y
, (2.20)

where recall that the superscript T denotes transpose operation,

f(x) =

f1(x)
f2(x)
f3(x)

 := Ψ̃(x)

1
0
0

 , h(y) =

h1(y)
h2(y)
h3(y)

 :=
1

2πi
Ψ̃(y)−T

0
1
0

 . (2.21)

This integrable structure of Kα (in the sense of [29]) particularly implies that the associated
resolvent kernel is also integrable. Indeed, let R be the kernel of the resolvent operator (I −
Ks)−1Ks. It then follows from [16, Lemma 2.12] that

R(u, v) =
F(u)TH(v)

u− v
, (2.22)

where

F(u) =

F1(u)
F2(u)
F3(u)

 := (I −Ks)−1f(u) = Y (u)f(u) (2.23)

H(v) =

H1(v)
H2(v)
H3(v)

 := (I −Ks)−1h(v) = Y (v)−Th(v), (2.24)

with

Y (z) = I −
∫ s

0

F(t)h(t)T

t− z
dt. (2.25)

Moreover, Y is the unique solution of the following RH problem.
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Figure 5: Regions Di, i = 1, . . . , 6, and the jump contours for the RH problem for X.

RH problem 2.2.

(a) Y (z) is analytic in C \ [0, s].

(b) For x ∈ (0, s), we have

Y+(x) = Y−(x)(I − 2πif(x)h(x)T), (2.26)

where the functions f and h are defined in (2.21).

(c) As z →∞, we have

Y (z) = I +
Y1

z
+O(z−2), (2.27)

where the function Y1 is independent of z.

(d) As z → 0, we have

Y (z) =

{
O(zα ln z), α ∈ N ∪ {0},
O(zα), α /∈ Z.

(2.28)

(e) As z → s, we have Y (z) = O(ln (z − s)).

The RH problem that is related to the partial derivatives of F is then constructed by using
the functions Ψ and Y . Let

Σ
(s)
0 = (s,+∞), Σ

(s)
1 = s+ e

π
4

i(0,+∞), Σ
(s)
5 = s+ e−

π
4

i(0,+∞), (2.29)

which are parallel to the rays Σi, i = 0, 1, 5, respectively. Clearly, the rays Σ
(s)
1 , Σ2, Σ4, Σ

(s)
5

and R are the boundaries of six regions Di, i = 1, . . . , 6; see Figure 5 for an illustration. We
now define

X(z) =



Y (z)Ψ̃(z), z ∈ D2,

Y (z)Ψ̃(z)

1 −1 0

0 1 0

0 0 1

 , z ∈ D5,

Y (z)Ψ(z), z ∈ C \ {D2 ∪ D5},

(2.30)

where Ψ̃(z) is given in (2.17). With the aid of RH problems 2.1 and 2.2, it is readily seen that
X solves the following RH problem (see [11, Proposition 3.5]).

RH problem 2.3.
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(a) X(z) is analytic in C \ ΣX , where

ΣX := ∪i=2,3,4Σi ∪ {0} ∪i=0,1,5 Σ
(s)
i ∪ {s}, (2.31)

see the solid lines in Figure 5.

(b) For z ∈ ΣX \ {0, s}, we have
X+(z) = X−(z)JX(z), (2.32)

where

JX(z) =



JΨ(z), z ∈ ∪4
i=2Σi, 0 1 0

−1 0 0

0 0 1

 , z ∈ Σ
(s)
0 ,

1 0 0

1 1 0

0 0 1

 , z ∈ Σ
(s)
1 ,

1 0 0

1 1 0

0 0 1

 , z ∈ Σ
(s)
5 ,

(2.33)

with JΨ given in (2.5).

(c) As z →∞ with z ∈ C \ ΣX , we have

X(z) =
iz−α/3√

3
Ψ0

(
I +

X1

z
+O(z−2)

)
diag (z

1
3 , 1, z−

1
3 )

× L± diag (e±
απ
3

i, e∓
απ
3

i, 1)eΘ(z), ±Im z > 0, (2.34)

where Ψ0, L± and Θ(z) are given in (2.7), (2.10) and (2.11), respectively, and

X1 = Ψ1 + Ψ−1
0 Y1Ψ0 (2.35)

with Ψ1 and Y1 given in (2.7) and (2.27).

(d) As z → 0, we have

X(z) =


O(z−α), α > 0,

O(ln z), α = 0,

O(1), −1 < α < 0.

(2.36)

(e) As z → s, we have X(z) = O(ln (z − s)).

The relationship between X and F is given in the following lemma through some differential
identities.

Lemma 2.4. Let F be the function defined in (1.5). We have

∂

∂s
F (s; ρ) = − 1

2πi
lim
z→s

(
X(z)−1X ′(z)

)
21
, z ∈ D2, (2.37)

∂

∂ρ
F (s; ρ) = −(X1)31 +

ρ(ρ2 + 9α)

27
, (2.38)

where X1 is given in (2.34).
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To prove Lemma 2.4, we need the following proposition.

Proposition 2.5. Let Ψ be the unique solution to the RH problem 2.1. We have

∂Ψ

∂ρ
=

−2ρ/3 α− 1 z
1 ρ/3 0
0 1 ρ/3

Ψ. (2.39)

Proof. Since the jumps of Ψ are constant matrices, by (2.18), it suffices to show (2.39) holds for
Ψ̃. Recall that P1, P2 and P3 are three linearly independent solutions of (1.3), by differentiating
both sides of (1.3) with respect to ρ, it follows that for k = 1, 2, 3,

∂Pk
∂ρ

= z
∂P ′′′k
∂ρ

+ α
∂P ′′k
∂ρ
− P ′k − ρ

∂P ′k
∂ρ

. (2.40)

By (2.16), it is readily seen that

∂P ′′′k
∂ρ

= P ′′k ,
∂P ′′k
∂ρ

= P ′k,
∂P ′k
∂ρ

= Pk. (2.41)

Thus,
∂Pk
∂ρ

= zP ′′k + (α− 1)P ′k − ρPk. (2.42)

A combination of the above two formulas and (2.17) gives us (2.39) for Ψ̃.
This finishes the proof of Proposition 2.5.

Proof of Lemma 2.4 The proof of (2.37) can be found in [11, Proposition 3.6].
To show (2.38), we note from (2.21) and (2.39) that

∂f

∂ρ
(x) =

−2ρ/3 α− 1 x
1 ρ/3 0
0 1 ρ/3

 f(x),
∂h

∂ρ
(y) = −

−2ρ/3 1 0
α− 1 ρ/3 1
y 0 ρ/3

h(y). (2.43)

This, together with (2.20), implies that

∂

∂ρ
Kα(x, y; ρ) =

∂fT

∂ρ (x)h(y) + f(x)T ∂h∂ρ (y)

x− y
= f(x)T

0 0 0
0 0 0
1 0 0

h(y) = f3(x)h1(y). (2.44)

Thus, it is readily seen from (1.5) and (2.23) that

∂

∂ρ
F (s; ρ) =

∂

∂ρ
ln det (I −Ks) = − tr

(
(I −Ks)−1 ∂

∂ρ
Kα

)
= −

∫ s

0
F3(v)h1(v) dv. (2.45)

On the other hand, it follows from (2.27) and (2.25) that

Y1 =

∫ s

0
F(w)h(w)T dw =

∫ s

0

F1(w)
F2(w)
F3(w)

(h1(w) h2(w) h3(w)
)

dw. (2.46)

The above two formulas gives us

∂

∂ρ
F (s; ρ) = −(Y1)31. (2.47)

We finally arrive at the differential identity (2.38) by combining (2.47), (2.7), (2.35) and a
straightforward calculation.

This completes the proof of Lemma 2.4.
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3 Meromorphic λ-functions on a Riemann surface

It is the aim of this section to introduce the so-called λ-functions and to investigate their
properties. These auxiliary functions will be used to ‘partially’ normalize the large-z asymptotics
of the scaled RH problem 2.3 for X. In particular, the analytic continuation of λ-functions
defines a meromorphic on a specific Riemann surface. This Riemann surface consists of three
sheets Rj , j = 1, 2, 3, given by

R1 = C \ [1,+∞), R2 = C \ ((−∞, 0] ∪ [1,+∞)), R3 = C \ (−∞, 0].

The sheet R1 is connected to the sheet R2 through [1,+∞) and R2 is connected to R3 through
(−∞, 0]. All these gluings are performed in the usual crosswise manner; see Figure 6. By adding
a common point at ∞ to the three sheets, we obtain a compact Riemann surface of genus zero
denoted by R.

R1

R2

R3

1

0

Figure 6: The Riemann surface R.

For each j = 1, 2, 3, we will construct a function λj , which is analytic on Rj and admits an
analytic continuation across the cuts. The construction, however, is indirect in the sense that
the λ-functions are built in terms of the w-functions introduced next.

3.1 The w-functions

The w-functions are three solutions of the algebraic equation

w(z)3 − 3

2
w(z)2 +

z

2
= 0. (3.1)

It is straightforward to check that the discriminant of (3.1) is −27(z − 1)z/4. Its two roots
along with the point at infinity constitute the three branch points of the Riemann surface R.
By using Cardano’s formula, the three solutions of (3.1) are explicitly given by

w1(z) =
1

2

(
η(z)

1
3 + η(z)−

1
3 + 1

)
, (3.2)

w2(z) =
1

2

(
ω−1η(z)

1
3 + ωη(z)−

1
3 + 1

)
, (3.3)

w3(z) =
1

2

(
ωη(z)

1
3 + ω−1η(z)−

1
3 + 1

)
, (3.4)

where ω = e2πi/3,

η(z) = 2
√
z(z − 1) + 1− 2z, z ∈ C \ ((−∞, 0] ∪ [1,+∞)), (3.5)

11



with
arg η(z) ∈ (0, π). (3.6)

Indeed, it is readily seen that η(z) satisfies the quadratic equation

η(z)2 + 4zη(z)− 2η(z) + 1 = 0. (3.7)

Thus, for j = 1, 2, 3, we obtain from (3.2)–(3.4) that

wj(z)
3 − 3

2
wj(z)

2 +
z

2
=

1

8

(
η(z) + η(z)−1 + 4z − 2

)
= 0, (3.8)

where we have made use of (3.7) and the fact that η(z) 6= 0 in the last step. The condition
(3.6) follows from the observation that Im η(z) > 0 for z ∈ C \ ((−∞, 0] ∪ [1,+∞)).

Some properties of the w-functions are collected in the following proposition.

Proposition 3.1. The functions wj(z), j = 1, 2, 3, given in (3.2)–(3.4) satisfy the following
properties.

(i) wj(z) is analytic on the sheet Rj and satisfies

w2,±(x) = w3,∓(x), x ∈ (−∞, 0), (3.9)

w2,±(x) = w1,∓(x), x ∈ (1,∞). (3.10)

Here, we orient (−∞, 0) and (1,∞) from the left to the right. Hence, the function

w : ∪3
j=1Rj → C, w|Rj = wj , (3.11)

extends to a meromorphic function on the Riemann surface R. This function is a bijection.

(ii) As z →∞ with −π < arg z < π, we have

w2(z) =

{
−2−

1
3ω2z

1
3 + 1

2 −
ω

25/3
z−

1
3 + ω2

6·21/3 z
− 2

3 − ω
6·25/3 z

− 4
3 +O(z−

5
3 ), Im z > 0,

−2−
1
3ωz

1
3 + 1

2 −
ω2

25/3
z−

1
3 + ω

6·21/3 z
− 2

3 − ω2

6·25/3 z
− 4

3 +O(z−
5
3 ), Im z < 0,

(3.12)
and

w3(z) = −2−
1
3 z

1
3 +

1

2
− 1

25/3
z−

1
3 +

1

6 · 21/3
z−

2
3

− 1

6 · 25/3
z−

4
3 +O(z−

5
3 ), z ∈ C \ (−∞, 0]. (3.13)

(iii) As z → 0 with −π < arg z < π, we have

w2(z) =

√
3

3
z

1
2 +

z

9
+

5
√

3

162
z

3
2 +O(z

5
2 ), (3.14)

and

w3(z) = −
√

3

3
z

1
2 +

z

9
− 5
√

3

162
z

3
2 +O(z

5
2 ). (3.15)

(iv) As z → 1 with −π < arg (z − 1) < π, we have

w1(z) =


1− i√

3
(z − 1)

1
2 + 1

9(z − 1) + 5
√

3i
162 (z − 1)

3
2

− 8
243(z − 1)2 +O((z − 1)

5
2 ), Im z > 0,

1 + i√
3
(z − 1)

1
2 + 1

9(z − 1)− 5
√

3i
162 (z − 1)

3
2

− 8
243(z − 1)2 +O((z − 1)

5
2 ), Im z < 0,

(3.16)
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and

w2(z) =


1 + i√

3
(z − 1)

1
2 + 1

9(z − 1)− 5
√

3i
162 (z − 1)

3
2

− 8
243(z − 1)2 +O((z − 1)

5
2 ), Im z > 0,

1− i√
3
(z − 1)

1
2 + 1

9(z − 1) + 5
√

3i
162 (z − 1)

3
2

− 8
243(z − 1)2 +O((z − 1)

5
2 ), Im z < 0.

(3.17)

Proof. To prove (3.9), we see from the definition of η(z) in (3.5) that for x < 0,

η±(x) = 1− 2x∓
√
x(x− 1) and η+(x)η−(x) = 1 (3.18)

Thus, from the definition of w2(z) in (3.3), it follows that

w2,+(x) =
1

2

(
ω−1η+(x)

1
3 + ωη+(x)−

1
3 + 1

)
=

1

2

(
ω−1η−(x)−

1
3 + ωη−(x)

1
3 + 1

)
= w3,−(x).

Similarly, we can obtain w2,−(x) = w3,+(x) for x < 0 and (3.10).
Next, we come to the asymptotics of wj(z), j = 2, 3, as z →∞. From (3.5), it is easily seen

that as z →∞,

η(z) =

{
− 1

4z −
1

8z2
− 5

64z3
+O(z−4), Im z > 0,

−4z + 2 + 1
4z + 1

8z2
+ 5

64z3
+O(z−4), Im z < 0.

(3.19)

Substituting the above formula into (3.3), it is readily seen that, as z →∞,

w2(z) =
1

2

(
ω−1η(z)

1
3 + ωη(z)−

1
3 + 1

)
=

1

2

(
e−πi/3

22/3z1/3

(
1 +

1

2z
+

5

16z2
+O(z−3)

) 1
3

+ e
πi
3 2

2
3 z

1
3

(
1 +

1

2z
+

5

16z2
+O(z−3)

)− 1
3

+ 1

)

= −2−
1
3ω2z

1
3 +

1

2
− ω

25/3
z−

1
3 +

ω2

6 · 21/3
z−

2
3 − ω

6 · 25/3
z−

4
3 +O(z−

5
3 ), Im z > 0,

and

w2(z) =
1

2

(
ω−1η(z)

1
3 + ωη(z)−

1
3 + 1

)
=

1

2

(
e−

πi
3 2

2
3 z

1
3

(
1− 1

2z
− 1

16z2
+O(z−3)

) 1
3

+
eπi/3

22/3z1/3

(
1− 1

2z
− 1

16z2
+O(z−3)

)− 1
3

+ 1

)

= −2−
1
3ωz

1
3 +

1

2
− ω2

25/3
z−

1
3 +

ω

6 · 21/3
z−

2
3 − ω2

6 · 25/3
z−

4
3 +O(z−

5
3 ), Im z < 0,

which is (3.12). The asymptotics of w3(z) in (3.13) can be obtained through the same fashion.
We then show the asymptotics of wj(z), j = 2, 3, as z → 0. It follows from (3.5) that, as

z → 0,

η(z) = 1 + 2iz
1
2 − 2z − iz

3
2 − i

4
z

5
2 +O(z

7
2 ). (3.20)

Inserting the above formula into (3.3) and (3.4) gives us

w2(z) =
1

2

(
ω−1η(z)

1
3 + ωη(z)−

1
3 + 1

)
=

1

2

(
e−

2πi
3

(
1 +

2i

3
z

1
2 − 2z

9
+

5i

81
z

3
2 +O(z

5
2 )

)
+ e

2πi
3

(
1− 2i

3
z

1
2 − 2z

9
− 5i

81
z

3
2 +O(z

5
2 )

)
+ 1

)
=

√
3

3
z

1
2 +

z

9
+

5
√

3

162
z

3
2 +O(z

5
2 ),
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and

w3(z) =
1

2

(
ωη(z)

1
3 + ω−1η(z)−

1
3 + 1

)
=

1

2

(
e

2πi
3

(
1 +

2i

3
z

1
2 − 2z

9
+

5i

81
z

3
2 +O(z

5
2 )

)
+ e−

2πi
3

(
1− 2i

3
z

1
2 − 2z

9
− 5i

81
z

3
2 +O(z

5
2 )

)
+ 1

)
= −
√

3

3
z

1
2 +

z

9
− 5
√

3

162
z

3
2 +O(z

5
2 ),

which is (3.14) and (3.15).
Finally, we move to the asymptotics wj(z), j = 1, 2, as z → 1. We note that, as z → 1,

η(z) =

{
−1 + 2(z − 1)

1
2 − 2(z − 1) + (z − 1)

3
2 +O((z − 1)

5
2 ), Im z > 0,

−1− 2(z − 1)
1
2 − 2(z − 1)− (z − 1)

3
2 +O((z − 1)

5
2 ), Im z > 0.

(3.21)

Substituting the above formula into (3.2) and (3.3) gives us (3.16) and (3.17) after direct cal-
culations.

This finishes the proof of Proposition 3.1.

It is easily seen from the above proposition that the branch points of R–0, 1,∞, are mapped
to the points 0, 1,∞, on the w-sphere. Bijection (3.11) between the Riemann surface R and the
extended w-plane are illustrated in Figure 7.

1/20 1

Figure 7: Image of the map w: R 7→ C. The solid lines γ±i , i = 1, 2, are the images of the cuts
in the Riemann surface R under this map. More precisely, γ±1 = w2,±(−∞, 0), γ±2 = w2,±(1,∞)

and w(Rk) = R̂k, k = 1, 2, 3.

3.2 The λ-functions

With the w-functions given in (3.2)–(3.4), the λ-functions are defined by

λj(z) =
3

21/3
wj(z)

2 −

(
3

21/3
+

21/3

s1/3
ρ

)
wj(z)−

3

27/3
+

ρ

22/3s1/3
, j = 1, 2, 3, (3.22)

which depend on the parameters s > 0 and ρ ∈ R. In view of Proposition 3.1, the following
properties of the λ-functions follow directly from (3.22) and straightforward calculations.
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Proposition 3.2. The functions λj(z), j = 1, 2, 3, defined in (3.22) have the following proper-
ties.

(i) λj(z) is analytic on Rj and satisfies

λ2,±(x) = λ3,∓(x), x ∈ (−∞, 0), (3.23)

λ2,±(x) = λ1,∓(x), x ∈ (1,∞). (3.24)

Hence, the function
λ : ∪3

j=1Rj → C, λ|Rj = λj , (3.25)

extends to a meromorphic function on the Riemann surface R.

(ii) As z →∞ with −π < arg z < π, we have

λ2(z) =

{
3
2ωz

2
3 + ρω2

s1/3
z

1
3 + ωd1z

− 1
3 + ω2d2z

− 2
3 +O(z−1), Im z > 0,

3
2ω

2z
2
3 + ρω

s1/3
z

1
3 + ω2d1z

− 1
3 + ωd2z

− 2
3 +O(z−1), Im z < 0,

(3.26)

and

λ3(z) =
3

2
z

2
3 +

ρ

s1/3
z

1
3 + d1z

− 1
3 + d2z

− 2
3 +O(z−1), z ∈ C \ (−∞, 0], (3.27)

where

d1 = −1

2
+

ρ

24/3s1/3
, d2 =

3

211/3
− ρ

6s1/3
. (3.28)

(iii) As z → 0 with −π < arg z < π, we have

λ2(z) = c0 + c1z
1
2 + c2z + c3z

3
2 +O(z2), (3.29)

and
λ3(z) = c0 − c1z

1
2 + c2z − c3z

3
2 +O(z2), (3.30)

where

c0 = − 3

27/3
+

ρ

22/3s1/3
, c1 = −

√
3

21/3
− 21/3ρ√

3s1/3
,

c2 =
22/3

3
− 21/3ρ

9s1/3
, c3 =

7 · 22/3

36
√

3
− 5 · 21/3ρ

54
√

3s1/3
.

(3.31)

(iv) As z → 1 with −π < arg (z − 1) < π, we have

λ1(z) =

{
c̃0 − ic̃1(z − 1)

1
2 + c̃2(z − 1)− ic̃3(z − 1)

3
2 +O((z − 1)2), Im z > 0,

c̃0 + ic̃1(z − 1)
1
2 + c̃2(z − 1) + ic̃3(z − 1)

3
2 +O((z − 1)2), Im z < 0,

(3.32)

and

λ2(z) =

{
c̃0 + ic̃1(z − 1)

1
2 + c̃2(z − 1) + ic̃3(z − 1)

3
2 +O((z − 1)2), Im z > 0,

c̃0 − ic̃1(z − 1)
1
2 + c̃2(z − 1)− ic̃3(z − 1)

3
2 +O((z − 1)2), Im z < 0,

(3.33)

where

c̃0 = − 3

27/3
− ρ

22/3s1/3
, c̃1 =

√
3

21/3
− 21/3ρ√

3s1/3
,

c̃2 =
22/3

3
+

21/3ρ

9s1/3
, c̃3 =

7 · 22/3

36
√

3
+

5 · 21/3ρ

54
√

3s1/3
.

(3.34)
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In view of items (i) and (ii) in Proposition 3.2 and (2.12), it is readily seen that, as z →∞,

λ1(z) =

{
s−

2
3 θ1(sz) +O(z−

1
3 ), Im z > 0,

s−
2
3 θ2(sz) +O(z−

1
3 ), Im z < 0,

(3.35)

λ2(z) =

{
s−

2
3 θ2(sz) +O(z−

1
3 ), Im z > 0,

s−
2
3 θ1(sz) +O(z−

1
3 ), Im z < 0,

(3.36)

and
λ3(z) = s−

2
3 θ3(sz) +O(z−

1
3 ). (3.37)

4 Asymptotic analysis of the RH problem for X

In this section, we will perform a Deift-Zhou steepest descent analysis [14] for the RH problem
for X. It consists of a series of explicit and invertible transformations and the final goal is to
arrive at an RH problem tending to the identity matrix as s→∞.

4.1 First transformation: X → T

The first transformation is a rescaling of the RH problem for X, which is defined by

T (z) = X(sz). (4.1)

It is then easily seen from the RH problem 2.3 for X that T (z) satisfies the following RH
problem.

RH problem 4.1.

(a) T (z) is analytic in C \ ΣT , where

ΣT := ∪i=2,3,4Σi ∪ {0} ∪i=0,1,5 Σ
(1)
i ∪ {1}, (4.2)

see the solid lines in Figure 5 with s = 1.

(b) For z ∈ ΣT \ {0, 1}, we have
T+(z) = T−(z)JT (z), (4.3)

where

JT (z) =



JΨ(z), z ∈ ∪4
i=2Σi, 0 1 0

−1 0 0

0 0 1

 , z ∈ Σ
(1)
0 ,

1 0 0

1 1 0

0 0 1

 , z ∈ Σ
(1)
1 ,

1 0 0

1 1 0

0 0 1

 , z ∈ Σ
(1)
5 ,

(4.4)

with JΨ given in (2.5).
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(c) As z →∞ with z ∈ C \ ΣT , we have

T (z) =
iz−α/3√

3
Ψ0

(
I +

X1

sz
+O(z−2)

)
diag ((sz)

1
3 , 1, (sz)−

1
3 )

× L± diag (e±
απ
3

i, e∓
απ
3

i, 1)eΘ(sz), ±Im z > 0, (4.5)

where Ψ0, X1, L± and Θ(z) are given in (2.7), (2.35), (2.10) and (2.11), respectively.

(d) As z → 0, we have

T (z) =


O(z−α), α > 0,

O(ln z), α = 0,

O(1), −1 < α < 0.

(4.6)

(e) As z → 1, we have
T (z) = O(ln (z − 1)). (4.7)

4.2 Second transformation: T → S

On account of (3.35)–(3.37), we use the λ-functions to ‘partially’ normalize the large-z asymp-
totics of T in the second transformation. It is defined by

S(z) = −i
√

3s
α
3 S0 diag (s−

1
3 , 1, s

1
3 )Ψ−1

0 T (z) diag (e−s
2/3λ1(z), e−s

2/3λ2(z), e−s
2/3λ3(z)), (4.8)

where

S0 =

1 s
2
3d1

s4/3

2 d2
1 + s

2
3d2

0 1 s
2
3d1

0 0 1

 (4.9)

with d1 and d2 being the constants given in (3.28), Ψ0 and the functions λi, i = 1, 2, 3, are
defined in (2.7) and (3.22), respectively. With the aid of Proposition 3.2 and RH problem 4.1
for T , it is straightforward to check that S(z) defined in (4.8) satisfies the following RH problem.

RH problem 4.2.

(a) S(z) is analytic in C \ ΣT ; where ΣT is defined in (4.2).

(b) For z ∈ ΣT \ {0, 1}, we have
S+(z) = S−(z)JS(z), (4.10)
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where

JS(z) =



 0 1 0

−1 0 0

0 0 1

 , z ∈ Σ
(1)
0 ,

 1 0 0

es
2/3(λ2(z)−λ1(z)) 1 0

0 0 1

 , z ∈ Σ
(1)
1 ,

1 0 0

0 1 eαπies
2/3(λ2(z)−λ3(z))

0 0 1

 , z ∈ Σ2,

1 0 0

0 0 −e−απi

0 e−απi 0

 , z ∈ Σ3,

1 0 0

0 1 e−απies
2/3(λ2(z)−λ3(z))

0 0 1

 , z ∈ Σ4,

 1 0 0

es
2/3(λ2(z)−λ1(z)) 1 0

0 0 1

 , z ∈ Σ
(1)
5 .

(4.11)

(c) As z →∞ with z ∈ C \ ΣT , we have

S(z) = z−
α
3

(
I +

S1

z
+O(z−2)

)
diag (z

1
3 , 1, z−

1
3 )

× L± diag (e±
απi
3 , e∓

απi
3 , 1), ±Im z > 0, (4.12)

where

S1 =

 ∗ ∗ ∗
∗ ∗ ∗

−s
2
3d1 + s−

1
3 (X1)31 ∗ ∗

 (4.13)

with d1 and X1 given in (3.28) and (2.35), and L± are given in (2.10).

(d) S(z) has the same local behaviors as T near z = 0 and z = 1; see (4.6) and (4.7).

A close look at the λ-functions defined in (3.22) gives us the following estimates.

Proposition 4.3. Let ε be any fixed, small positive number, there exist positive constants c1
and c2 such that

Re (λ2(z)− λ1(z)) < −c1|z|
2
3 , z ∈ (Σ

(1)
1 ∪ Σ

(1)
5 ) \D(1, ε), (4.14)

Re (λ2(z)− λ3(z)) < −c2|z|
2
3 , z ∈ (Σ2 ∪ Σ4) \D(0, ε). (4.15)

for s large enough, where the discs D(1, ε) and D(0, ε) are defined in (1.7).

Proof. Let

λ∗j (z) :=
3

21/3
wj(z)

2 − 3

21/3
wj(z)−

3

27/3
, j = 1, 2, 3. (4.16)

18



In view of Proposition 3.1 and (3.22), it is readily seen that

|λj(z)− λ∗j (z)| ≤
%

s1/3
|z|

2
3 , z ∈ C \D(0, ε),

for some positive %. Thus, by the triangle inequality, it suffices to show (4.14) and (4.15) hold
for λ∗j .

We see from (3.2) and (3.3) that

λ∗2(z)− λ∗1(z) =
3

21/3
(w2(z)2 − w2(z)− w1(z)2 + w1(z))

=
3

4 · 21/3

(
e

2πi
3 η(z)

2
3 + e−

2πi
3 η(z)−

2
3 − η(z)

2
3 − η(z)−

2
3

)
.

For bounded z ∈ (Σ
(1)
1 ∪Σ

(1)
5 ) \D(1, ε), by writing η(z) = reiθ, where r > 0 and θ belongs to a

compact subset of (0, π), it follows that

Re (λ∗2(z)− λ∗1(z)) =
3

27/3
(r

2
3 + r−

2
3 )

(
cos

(
2(π + θ)

3

)
− cos

(
2θ

3

))
= − 3

24/3
(r

2
3 + r−

2
3 ) sin

(
π + 2θ

3

)
sin
(π

3

)
< −c1|z|

2
3 ,

where c1 > 0 is independent of z. For large z ∈ (Σ
(1)
1 ∪Σ

(1)
5 )\D(1, ε), the above estimate follows

from asymptotics of λ∗j , which can be readily obtained from item (ii) of Proposition 3.2.
The proof of (4.15) is similar, we omit the details here. This finishes the proof of Proposition

4.3.

The following corollary is an immediate consequence of Proposition 4.3.

Corollary 4.4. For s large enough, there exists a constant c > 0 such that

JS(z) = I +O(e−cs
2/3|z|2/3), (4.17)

uniformly for z ∈ (Σ
(1)
1 ∪ Σ

(1)
5 ∪ Σ2 ∪ Σ4) \ (D(0, ε) ∪D(1, ε)).

4.3 Global parametrix

By Corollary 4.4, we could ignore the jump of S for z bounded away from the intervals (−∞, 0)∪
(1,+∞) and large s, which leads to the following global parametrix.

RH problem 4.5.

(a) Nα(z) is analytic for z ∈ C \ ((−∞, 0] ∪ [1,+∞)).

(b) For x ∈ (−∞, 0] ∪ [1,+∞), we have

Nα,+(x) = Nα,−(x)JNα(x), (4.18)

where

JNα(x) =



1 0 0

0 0 −e−απi

0 e−απi 0

 , x ∈ (−∞, 0),

 0 1 0

−1 0 0

0 0 1

 , x ∈ (1,+∞).

(4.19)
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(c) As z →∞ and ±Im z > 0, we have

Nα(z) = z−
α
3
(
I +O(z−1)

)
diag (z

1
3 , 1, z−

1
3 )L± diag (e±

απi
3 , e∓

απi
3 , 1), (4.20)

where the constant matrices L± are given in (2.10).

The RH problem for Nα can be solved explicitly in two steps. As the first step, we construct
a solution for the special case α = 0.

Lemma 4.6. Let wi, i = 1, 2, 3, be three solutions of the algebraic equation (3.1) given in
(3.2)–(3.4). A solution of the RH problem 4.5 with α = 0 is given by

N0(z) =
1

9

−5 · 2−
2
3 −7 · 2

1
3 2−

2
3

4 −2 −2

−2
5
3 2

8
3 −2

5
3


N1(w1(z)) N1(w2(z)) N1(w3(z))
N2(w1(z)) N2(w2(z)) N2(w3(z))
N3(w1(z)) N3(w2(z)) N3(w3(z))

 , (4.21)

where

N1(w) =
w2√

w(w − 1)
, N2(w) =

w(w − 3/2)√
w(w − 1)

, N3(w) =
(w − 3/2)2√
w(w − 1)

. (4.22)

Here, the branch cut for the square root is taken along γ−1 ∪ γ
−
2 , i.e., the curve defined by

w2,−((−∞, 0] ∪ [1,+∞)); see Figure 7 for an illustration.

Proof. By item (i) of Proposition 3.1 and the definition of Nj(w), j = 1, 2, 3, in (4.22), it is
easily seen that if x < 0

Nj,+(w1(x)) = Nj(w1,+(x)) = Nj(w1,−(x)) = Nj,−(w1(x)),

Nj,+(w2(x)) = Nj(w2,+(x)) = Nj(w3,−(x)) = Nj,−(w3(x)),

Nj,−(w2(x)) = Nj(w2,−(x)) = −Nj(w3,+(x)) = −Nj,+(w3(x)),

and if x > 1,

Nj,+(w2(x)) = Nj(w2,+(x)) = Nj(w1,−(x)) = Nj,−(w1(x)),

Nj,−(w2(x)) = Nj(w2,−(x)) = −Nj(w1,+(x)) = −Nj,+(w1(x)),

Nj,+(w3(x)) = Nj(w3,+(x)) = Nj(w3,−(x)) = Nj,−(w3(x)),

These are exactly the jump condition (4.18) and (4.19) with α = 0.
To show the asymptotic condition (4.20) with α = 0, we obtain from items (i) and (ii) of
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Proposition 3.1, (4.22) and straightforward calculations that, as z →∞,

N1(w1(z)) =


−2−

1
3ωz

1
3 + 1− 5·21/3ω2

8 z−
1
3 + 5·22/3ω

24 z−
2
3

+ 5
64z
−1 − 35·21/3ω2

192 z−
4
3 +O(z−

5
3 ), Im z > 0,

−2−
1
3ω2z

1
3 + 1− 5·21/3ω

8 z−
1
3 + 5·22/3ω2

24 z−
2
3

+ 5
64z
−1 − 35·21/3ω

192 z−
4
3 +O(z−

5
3 ), Im z < 0,

N1(w2(z)) =


−2−

1
3ω2z

1
3 + 1− 5·21/3ω

8 z−
1
3 + 5·22/3ω2

24 z−
2
3

+ 5
64z
−1 − 35·21/3ω

192 z−
4
3 +O(z−

5
3 ), Im z > 0,

−2−
1
3ωz

1
3 + 1− 5·21/3ω2

8 z−
1
3 + 5·22/3ω

24 z−
2
3

+ 5
64z
−1 − 35·21/3ω2

192 z−
4
3 +O(z−

5
3 ), Im z < 0,

N1(w3(z)) = −2−
1
3 z

1
3 + 1− 5 · 21/3

8
z−

1
3 +

5 · 22/3

24
z−

2
3 +

5

64
z−1 − 35 · 21/3

192
z−

4
3 +O(z−

5
3 ),

N2(w1(z)) =


−2−

1
3ωz

1
3 − 1

2 + 21/3ω2

8 z−
1
3 + 22/3ω

48 z−
2
3

− 7
64z
−1 + 23·21/3ω2

384 z−
4
3 +O(z−

5
3 ), Im z > 0,

−2−
1
3ω2z

1
3 − 1

2 + 21/3ω
8 z−

1
3 + 5·22/3ω2

48 z−
2
3

− 7
64z
−1 + 23·21/3ω

384 z−
4
3 +O(z−

5
3 ), Im z < 0,

N2(w2(z)) =


−2−

1
3ω2z

1
3 − 1

2 + 21/3ω
8 z−

1
3 + 5·22/3ω2

48 z−
2
3

− 7
64z
−1 + 23·21/3ω

384 z−
4
3 +O(z−

5
3 ), Im z > 0,

−2−
1
3ωz

1
3 − 1

2 + 21/3ω2

8 z−
1
3 + 22/3ω

48 z−
2
3

− 7
64z
−1 + 23·21/3ω2

384 z−
4
3 +O(z−

5
3 ), Im z < 0,

N2(w3(z)) = −2−
1
3 z

1
3 − 1

2
+

21/3

8
z−

1
3 +

5 · 22/3

48
z−

2
3 − 7

64
z−1 +

23 · 21/3

384
z−

4
3 +O(z−

5
3 ),

and

N3(w1(z)) =


−2−

1
3ωz

1
3 − 2− 11·21/3ω2

8 z−
1
3 + 22/3ω

6 z−
2
3

+17
64z
−1 − 7·21/3ω2

96 z−
4
3 +O(z−

5
3 ), Im z > 0,

−2−
1
3ω2z

1
3 − 2− 11·21/3ω

8 z−
1
3 + 22/3ω2

6 z−
2
3

+17
64z
−1 − 7·21/3ω

96 z−
4
3 +O(z−

5
3 ), Im z < 0,

N3(w2(z)) =


−2−

1
3ω2z

1
3 − 2− 11·21/3ω

8 z−
1
3 + 22/3ω2

6 z−
2
3

+17
64z
−1 − 7·21/3ω

96 z−
4
3 +O(z−

5
3 ), Im z > 0,

−2−
1
3ωz

1
3 − 2− 11·21/3ω2

8 z−
1
3 + 22/3ω

6 z−
2
3

+17
64z
−1 − 7·21/3ω2

96 z−
4
3 +O(z−

5
3 ), Im z < 0,

N3(w3(z)) = −2−
1
3 z

1
3 − 2− 11 · 21/3

8
z−

1
3 +

22/3

6
z−

2
3 +

17

64
z−1 − 7 · 21/3

96
z−

4
3 +O(z−

5
3 ).

Inserting the above formulas into (4.21), we have

N0(z) =
(
I +O(z−1)

)
diag (z

1
3 , 1, z−

1
3 )L±, ±Im z > 0, (4.23)

as required.
This completes the proof of Lemma 4.6.

For general α 6= 0, we define, with the aid of N0 in (4.21),

Nα(z) = CαN0(z) diag(D1(z), D2(z), D3(z)), (4.24)
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where

Cα = 2−
α
3

1 −2−
2
3α 2−

7
3α(α+ 1)

0 1 −2−
2
3α

0 0 1

 (4.25)

and
D1(z) = w1(z)−α, D2(z) = w2(z)−α, D3(z) = eαπiw3(z)−α, (4.26)

and the branch cut for zα is taken along γ−1 = w2,−(−∞, 0). The functions Di(z), i = 1, 2, 3,
can be viewed as an analogue to the Szegő function; cf. [40].

Lemma 4.7. The function Nα(z) defined in (4.24) solves the RH problem 4.5.

Proof. From the definitions (4.26) with special choice of the branch cut, it is readily seen that

D1,+(x) = D1,−(x), D2,+(x) = e−απiD3,−(x), D3,+(x) = e−απiD2,−(x), (4.27)

for x ∈ (−∞, 0), and

D1,+(x) = D2,−(x), D2,+(x) = D1,−(x), D3,+(x) = D3,−(x). (4.28)

for x ∈ (1,+∞). A combination of (4.18) and (4.19) with α = 0, (4.24) and the above relations
implies that Nα(z) is indeed analytic in C\ ((−∞, 0]∪ [1,+∞)) and satisfies the jump condition
(4.18) and (4.19).

In view of (4.26) and the asymptotic behaviors of the w-functions given in (3.12) and (3.13),
we have, as z →∞,

D1(z) =



e
απi
3 2

α
3 z−

α
3

(
1 + αω2

22/3
z−

1
3 + α(α−1)ω

27/3
z−

2
3 + α(α2−3α+24/3−4)

24 z−1

+α(α+1)(α2−7α+210/3−6)ω2

96·22/3 z−
4
3 +O(z−

5
3 )
)
, Im z > 0,

e−
απi
3 2

α
3 z−

α
3

(
1 + αω

22/3
z−

1
3 + α(α−1)ω2

27/3
z−

2
3 + α(α2−3α+24/3−4)

24 z−1

+α(α+1)(α2−7α+210/3−6)ω

96·22/3 z−
4
3 +O(z−

5
3 )
)
, Im z < 0,

(4.29)

D2(z) =



e−
απi
3 2

α
3 z−

α
3

(
1 + αω

22/3
z−

1
3 + α(α−1)ω2

27/3
z−

2
3 + α(α2−3α+24/3−4)

24 z−1

+α(α+1)(α2−7α+210/3−6)ω

96·22/3 z−
4
3 +O(z−

5
3 )
)
, Im z > 0,

e
απi
3 2

α
3 z−

α
3

(
1 + αω2

22/3
z−

1
3 + α(α−1)ω

27/3
z−

2
3 + α(α2−3α+24/3−4)

24 z−1

+α(α+1)(α2−7α+210/3−6)ω2

96·22/3 z−
4
3 +O(z−

5
3 )
)
, Im z < 0,

(4.30)

D3(z) = 2
α
3 z−

α
3

(
1 +

α

22/3
z−

1
3 +

α(α− 1)

27/3
z−

2
3 +

α(α2 − 3α+ 24/3 − 4)

24
z−1

+
α(α+ 1)(α2 − 7α+ 210/3 − 6)

96 · 22/3
z−

4
3 +O(z−

5
3 )

)
. (4.31)

Inserting the above equations into (4.24), together with (4.23), gives us, if Im z > 0,

Nα(z) =
(
I +O(z−1)

)
2
α
3 z−

α
3Cα diag (z

1
3 , 1, z−

1
3 )L+

(
I +

α

22/3
z−

1
3 diag(ω2, ω, 1)

+
α(α− 1)

27/3
z−

2
3 diag(ω, ω2, 1) +

α(α2 − 3α+ 24/3 − 4)

24
z−1 diag(1, 1, 1)

+
α(α+ 1)(α2 − 7α+ 210/3 − 6)

96 · 22/3
z−

4
3 diag(ω2, ω, 1) +O(z−

5
3 )

)
diag (e

απi
3 , e−

απi
3 , 1),

(4.32)
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and if Im z < 0,

Nα(z) =
(
I +O(z−1)

)
2
α
3 z−

α
3Cα diag (z

1
3 , 1, z−

1
3 )L−

(
I +

α

22/3
z−

1
3 diag(ω, ω2, 1)

+
α(α− 1)

27/3
z−

2
3 diag(ω2, ω, 1) +

α(α2 − 3α+ 24/3 − 4)

24
z−1 diag(1, 1, 1)

+
α(α+ 1)(α2 − 7α+ 210/3 − 6)

96 · 22/3
z−

4
3 diag(ω, ω2, 1) +O(z−

5
3 )

)
diag (e−

απi
3 , e

απi
3 , 1),

(4.33)

where Cα and L± are given in (4.25) and (2.10).
After a straightforward calculation, we have

Nα(z) =

(
I +

N1

z
+O(z−2)

)
z−

α
3 diag (z

1
3 , 1, z−

1
3 )L± diag (e±

απi
3 , e∓

απi
3 , 1), ±Im z > 0,

(4.34)
where

N1 =

 ∗ ∗ ∗
∗ ∗ ∗

α/2
2
3 ∗ ∗

 , (4.35)

as shown in (4.20).
This completes the proof of Lemma 4.7.

Finally, from the asymptotic behaviors of the w-functions given in items (iii) and (iv) of
Proposition 3.1, it is readily seen the following proposition regarding the refined asymptotic
behaviors of the global parametrix Nα(z) near z = 0 and z = 1.

Proposition 4.8. With Nα(z) defined in (4.24), we have, as z → 0,

Nα(z) =
Cα
9

−5 · 2−
2
3 −7 · 2

1
3 2−

2
3

4 −2 −2

−2
5
3 2

8
3 −2

5
3


z− 1

4

0 0 0
0 0 0

0 −i39/4

4 −39/4

4

+

3
√

3
2 0 0
0 0 0
0 0 0



+ z
1
4

0 0 0

0 i33/4

2 −33/4

2

0 i37/4

4 −37/4

4

+O(z
3
4 )

diag

((
2

3

)α
, 3

α
2 z−

α
2 , 3

α
2 z−

α
2

)
. (4.36)
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If z → 1 and Im z > 0, we have

Nα(z) =
Cα
9

−5 · 2−
2
3 −7 · 2

1
3 2−

2
3

4 −2 −2

−2
5
3 2

8
3 −2

5
3


3

1
4 e

πi
4 (z − 1)−

1
4

 1 −i 0

−1
2

i
2 0

1
4 − i

4 0


− 2α√

3

0 0 1
2

0 0 2
0 0 8

+ 3−
1
4 e

πi
4 (z − 1)

1
4

 i
(
α− 5

3

)
−
(
α− 5

3

)
0

−i
(
α
2 + 2

3

)
α
2 + 2

3 0
i
(
α
4 + 13

12

)
−
(
α
4 + 13

12

)
0



+
31/4

9
e
πi
4 (z − 1)

3
4


−α(3α+5)

2 − 1
12 i

(
−α(3α+5)

2 − 1
12

)
0

α(3α+13)
4 − 35

24 −i
(
α(3α+13)

4 − 35
24

)
0

−α(3α+31)
8 − 253

48 i
(
α(3α+31)

8 + 253
48

)
0


+

2α

9
√

3
(z − 1)

0 0 2α− 8
3

0 0 8α− 14
3

0 0 32α+ 16
3


+

3−1/4

54
e
πi
4 (z − 1)

5
4

 −i
(
3α3 − 15α

2 −
1
2

)
3α3 − 15α

2 −
1
2 0

i
(

3α3

2 + 27α2

2 + 39α
4 − 7

)
−
(

3α3

2 + 27α2

2 + 39α
4 − 7

)
0

−i6α3+108α2+417α+269
8

6α3+108α2+417α+269
8 0


+O((z − 1)

7
4 )
]
. (4.37)

Since the jump matrices for S and Nα are not uniformly close to each other near z = 0 and
z = 1, we next construct local parametrices at these two points, respectively.

4.4 Local parametrices near z = 0 and z = 1

In a small disc D(0, ε) centered at 0, we seek a 2× 2 matrix-valued function P (0)(z) satisfying
an RH problem as follows.

RH problem 4.9.

(a) P (0)(z) is analytic in D(0, ε) \ ΣT , where ΣT is defined in (4.2).

(b) For z ∈ D(0, ε) ∩ ΣT , we have

P
(0)
+ (z) = P

(0)
− (z)



1 0 0

0 1 eαπies
2/3(λ2(z)−λ3(z))

0 0 1

 , z ∈ D(0, ε) ∩ Σ2,

1 0 0

0 0 −e−απi

0 e−απi 0

 , z ∈ D(0, ε) ∩ Σ3,

1 0 0

0 1 e−απies
2/3(λ2(z)−λ3(z))

0 0 1

 , z ∈ D(0, ε) ∩ Σ4.

(4.38)

(c) As s→∞, we have the matching condition

P (0)(z) =
(
I +O(s−

2
3 )
)
Nα(z), z ∈ ∂D(0, ε), (4.39)

where Nα(z) is given in (4.24).
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The RH problem 4.9 for P (0)(z) can be solved explicitly with the aid of the Bessel parametrix

Φ
(Bes)
α described in Appendix A. To this aim, we introduce the local conformal mapping

f(z) =
1

4
(λ2(z)− λ3(z))2 = c2

1z +O(z2), z → 0, (4.40)

where c1 is given in (3.31); see (3.29) and (3.30). We then define

P (0)(z) = E(z) diag
(

1, f(z)−
α
2 , f(z)−

α
2

)
1 0 0

0
(

Φ
(Bes)
α

)
11

(s
4
3 f(z))

(
Φ

(Bes)
α

)
12

(s
4
3 f(z))

0
(

Φ
(Bes)
α

)
21

(s
4
3 f(z))

(
Φ

(Bes)
α

)
22

(s
4
3 f(z))


× diag

(
1, e−

s1/3(λ2(z)−λ3(z))
2 , e

s1/3(λ2(z)−λ3(z))
2

)
, (4.41)

where

E(z) =
Nα(z)√

2


√

2 0 0

0 −iπ
1
2 s

1
3 f(z)

1
4 π−

1
2 s−

1
3 f(z)−

1
4

0 π
1
2 s

1
3 f(z)

1
4 −iπ−

1
2 s−

1
3 f(z)−

1
4

 diag
(

1, f(z)
α
2 , f(z)

α
2

)
, (4.42)

and Φ
(Bes)
α solves the RH problem A.1.

Lemma 4.10. The matrix-valued function P (0)(z) defined in (4.41) solves the RH problem 4.9.

Proof. We first show the analyticity of E(z) near z = 0. According to its definition in (4.42),
the possible jump is on (−ε, 0). It follows from (4.18) and (4.40) that, if z ∈ (−ε, 0),

E−(z)−1E+(z)

=
1

2
diag

(
1, f−(z)−

α
2 , f−(z)−

α
2

)
√

2 0 0

0 iπ−
1
2 s−

1
3 f−(z)−

1
4 π−

1
2 s−

1
3 f−(z)−

1
4

0 π
1
2 s

1
3 f−(z)

1
4 −iπ

1
2 s

1
3 f−(z)

1
4


×

1 0 0
0 0 −e−απi

0 e−απi 0



√

2 0 0

0 −iπ
1
2 s

1
3 f+(z)

1
4 π−

1
2 s−

1
3 f+(z)−

1
4

0 π
1
2 s

1
3 f+(z)

1
4 −iπ−

1
2 s−

1
3 f+(z)−

1
4


× diag

(
1, f+(z)

α
2 , f+(z)

α
2

)
= diag

(
1, f−(z)−

α
2 e−απif+(z)

α
2 , f−(z)−

α
2 e−απif+(z)

α
2

)
= I. (4.43)

Moreover, we see from (4.36) and (4.40) that

E(0) =
Cα

9
√

2

−5 · 2−
2
3 −7 · 2

1
3 2−

2
3

4 −2 −2

−2
5
3 2

8
3 −2

5
3


×

2α−
1
2 3

3
2
−α 0 0

0 0 i3
3
4

+α
2 |c1|α−

1
2π−

1
2 s−

1
3

0 −39/4+α/2

2 |c1|α+ 1
2π

1
2 s

1
3 i37/4+α/2

2 |c1|α−
1
2π−

1
2 s−

1
3

 , (4.44)

where Cα and c1 are given in (4.25) and (3.31), respectively. Thus, E(z) is indeed analytic in
D(0, ε). It is then straightforward to verify P (0)(z) satisfies the jump condition (4.38) by using
(A.1), item (i) of Proposition 2.4 and the analyticity of E(z).
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It remains to check the matching condition (4.39). As s → ∞, applying (4.41), (4.42) and

the asymptotic behavior of the Bessel parametrix Φ
(Bes)
α (z) at infinity in (A.2) yields

P (0)(z)Nα(z)−1 = I +
J1(z)

s2/3
+O(s−

4
3 ) (4.45)

with

J1(z) =
1

8f(z)1/2
Nα(z)

0 0 0
0 1 + 4α2 −2i
0 −2i −1− 4α2

Nα(z)−1, (4.46)

which is (4.39).
This completes the proof of Lemma 4.10.

Similarly, near z = 1, we intend to find a function P (1)(z) satisfying the following RH
problem.

RH problem 4.11.

(a) P (1)(z) is analytic in D(1, ε) \ ΣT , where ΣT is defined in (4.2).

(b) For z ∈ D(1, ε) ∩ ΣT , we have

P
(1)
+ (z) = P

(1)
− (z)



 0 1 0

−1 0 0

0 0 1

 , z ∈ D(1, ε) ∩ Σ
(1)
0 ,

 1 0 0

es
2/3(λ2(z)−λ1(z)) 1 0

0 0 1

 , z ∈ D(1, ε) ∩ Σ
(1)
1 ,

 1 0 0

es
2/3(λ2(z)−λ1(z)) 1 0

0 0 1

 , z ∈ D(1, ε) ∩ Σ
(1)
5 .

(4.47)

(c) As s→∞, we have the matching condition

P (1)(z) =
(
I +O(s−

2
3 )
)
Nα(z), z ∈ ∂D(1, ε), (4.48)

where Nα(z) is given in (4.24).

The RH problem 4.11 can be solved with the help of the Bessel parametrix Φ
(Bes)
0 , following

the similar spirit in the construction of P (0)(z). The conformal mapping now reads

f̃(z) =
1

4
(λ2(z)− λ1(z))2 = −c̃2

1(z − 1)− 2c̃1c̃3(z − 1)2 +O((z − 1)3), z → 1, (4.49)

where c̃1 and c̃3 are defined in (3.34); see (3.32) and (3.33). We now define

P (1)(z) = Ẽ(z)


(

Φ
(Bes)
0

)
12

(s
4
3 f̃(z)) −

(
Φ

(Bes)
0

)
11

(s
4
3 f̃(z)) 0(

Φ
(Bes)
0

)
22

(s
4
3 f̃(z)) −

(
Φ

(Bes)
0

)
21

(s
4
3 f̃(z)) 0

0 0 1


× diag

(
e
s1/3(λ2(z)−λ1(z))

2 , e−
s1/3(λ2(z)−λ1(z))

2 , 1

)
, (4.50)
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where

Ẽ(z) =
Nα(z)√

2

π
1
2 s

1
3 f̃(z)

1
4 −iπ−

1
2 s−

1
3 f̃(z)−

1
4 0

iπ
1
2 s

1
3 f̃(z)

1
4 −π−

1
2 s−

1
3 f̃(z)−

1
4 0

0 0
√

2

 (4.51)

and Φ
(Bes)
α solves the RH problem A.1 with α = 0.

Lemma 4.12. The matrix-valued function P (1)(z) defined in (4.50) solves the RH problem 4.11.

Proof. By (4.51), it is easily seen that Ẽ(z) is analytic in D(1, ε) \ [1, 1 + ε). For z ∈ (1, 1 + ε),
it follows from (4.18) and (4.49) that

Ẽ−(z)−1Ẽ+(z) =
1

2

π−
1
2 s−

1
3 f̃−(z)−

1
4 −iπ−

1
2 s−

1
3 f̃−(z)−

1
4 0

iπ
1
2 s

1
3 f̃−(z)

1
4 −π

1
2 s

1
3 f̃−(z)

1
4 0

0 0
√

2


 0 1 0
−1 0 0
0 0 1



×

π
1
2 s

1
3 f̃+(z)

1
4 −iπ−

1
2 s−

1
3 f̃+(z)−

1
4 0

iπ
1
2 s

1
3 f̃+(z)

1
4 −π−

1
2 s−

1
3 f̃+(z)−

1
4 0

0 0
√

2

 = I, (4.52)

and by (4.37),

Ẽ(1) =
Cα

9
√

2

−5 · 2−
2
3 −7 · 2

1
3 2−

2
3

4 −2 −2

−2
5
3 2

8
3 −2

5
3


3

1
4 c̃

1
2
1 π

1
2 s

1
3

 2 0 0
−1 0 0

1
2 0 0


− 2α+1/2

√
3

0 0 1
2

0 0 2
0 0 8

+
2i

31/4c̃
1/2
1 π1/2s1/3

0 α− 5
3 0

0 −α
2 −

2
3 0

0 α
4 + 13

12 0

 , (4.53)

where Cα and c̃1 are given in (4.25) and (3.34), respectively. We thus conclude that Ẽ(z) is
analytic in D(1, ε). Note that(Φ

(Bes)
0

)
12

(s
4
3 f̃(z)) −

(
Φ

(Bes)
0

)
11

(s
4
3 f̃(z))(

Φ
(Bes)
0

)
22

(s
4
3 f̃(z)) −

(
Φ

(Bes)
0

)
21

(s
4
3 f̃(z))

 = Φ
(Bes)
0 (s

4
3 f̃(z))σ1σ3, (4.54)

where the Pauli matrices σ1 and σ3 are defined in (1.8). It is then easy to check that P (1)(z) sat-
isfies the jump condition (4.47) by applying (A.1), item (i) of Proposition 2.4 and the analyticity
of Ẽ(z).

Finally, on account of (4.50), (4.51), (4.54) and the asymptotic behavior of the Bessel

parametrix Φ
(Bes)
α (z) at infinity in (A.2), we obtain after a straightforward computation that,

as s→∞,

P (1)(z)Nα(z)−1 = I +
J̃1(z)

s2/3
+O(s−

4
3 ), (4.55)

with

J̃1(z) =
1

8f̃(z)1/2
Nα(z)

−1 2i 0
2i 1 0
0 0 0

Nα(z)−1. (4.56)

This completes the proof of Lemma 4.12.
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For later use, we need to calculate Ẽ′(1). The evaluation is direct and cumbersome by
combining (4.51) and the asymptotics of Nα(z) and f̃(z) near z = 1 given in (4.37) and (4.49).
We omit the details but present the result below.

Ẽ′(1) =
Cα

9
√

2

−5 · 2−
2
3 −7 · 2

1
3 2−

2
3

4 −2 −2

−2
5
3 2

8
3 −2

5
3


31/4c̃

1/2
1 π1/2s1/3

9


9c̃3
c̃1
− α(3α− 5)− 1

6 0 0

−9c̃3
2c̃1

+ α(3α+13)
2 − 35

12 0 0
9c̃3
4c̃1
− α(3α+31)

4 − 253
24 0 0


+

i

54 · 31/4c̃
1/2
1 π1/2s1/3

0 27c̃3
c̃1

(
10
3 − 2α

)
− 6α3 + 15α+ 1 0

0 27c̃3
c̃1

(
4
3 + α

)
+ 3α3 + 27α2 + 39

2 α− 14 0

0 −27c̃3
c̃1

(
13
6 + α

2

)
− 6α3+108α2+417α+269

4 0


+

2α+1/2
√

3

27

0 0 2α− 8
3

0 0 8α− 14
3

0 0 32α+ 16
3

 , (4.57)

where the matrix Cα and the constants c̃i, i = 1, 2, 3, are given in (4.25) and (3.34).

4.5 Final transformation

The final transformation is defined by

R(z) =


S(z)P (0)(z)−1, z ∈ D(0, ε),

S(z)P (1)(z)−1, z ∈ D(1, ε),

S(z)Nα(z)−1, elsewhere.

(4.58)

It is then easily seen that R(z) satisfies the following RH problem.

RH problem 4.13.

(a) R(z) is analytic in C \ ΣR; where the contour ΣR is shown in Figure 8.

(b) For z ∈ ΣR, we have
R+(z) = R−(z)JR(z),

where

JR(z) =


P (0)(z)Nα(z)−1 z ∈ ∂D(0, ε),

P (1)(z)Nα(z)−1 z ∈ ∂D(1, ε),

Nα(z)JS(z)Nα(z)−1 z ∈ ΣR \ (∂D(0, ε) ∪ ∂D(1, ε)),

(4.59)

and where JS(z) is defined in (4.11).

(c) As z →∞, we have

R(z) = I +
R1

z
+O(z−2), (4.60)

where R1 is independent of z.

On account of Corollary 4.4, the matching conditions (4.39) and (4.48), it is readily seen
that JR(z)→ I as s→∞. By a standard argument (cf. [14]), we conclude that, as s→∞,

R(z) = I +
R1(z)

s2/3
+O(s−

4
3 ) and

d

dz
R(z) =

R′1(z)

s2/3
+O(s−

4
3 ), (4.61)
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∂D(0, ε) ∂D(1, ε)

Figure 8: The jump contour ΣR for the RH problem for R.

uniformly for z ∈ C \ ΣR. Moreover, the function R1(z) in (4.61) is analytic in C \ (∂D(0, ε) ∪
∂D(1, ε)) with asymptotic behavior O(1/z) as z →∞, and satisfies

R1,+(z)−R1,−(z) =

{
J1(z), z ∈ ∂D(0, ε),

J̃1(z), z ∈ ∂D(1, ε),

where the functions J1(z) and J̃1(z) are given in (4.46) and (4.56), respectively. By Cauchy’s
residue theorem, we have

R1(z) =
1

2πi

∮
∂D(0,ε)

J1(ζ)

z − ζ
dζ +

1

2πi

∮
∂D(1,ε)

J̃1(ζ)

z − ζ
dζ

=


Resζ=0 J1(ζ)

z +
Resζ=1 J̃1(ζ)

z−1 , z ∈ C \ (D(0, ε) ∪D(1, ε)),
Resζ=0 J1(ζ)

z +
Resζ=1 J̃1(ζ)

z−1 − J1(z), z ∈ D(0, ε),
Resζ=0 J1(ζ)

z +
Resζ=1 J̃1(ζ)

z−1 − J̃1(z), z ∈ D(1, ε).

(4.62)

We conclude this section with the calculation of R′1(1). Recall J̃1(z) in (4.56), we have from
the asymptotics of Nα(z) and f̃(z) near z = 1 in (4.37) and (4.49) that

J̃1(z) =
Resζ=1 J̃1(ζ)

z − 1
+ J0 + J1(z − 1) +O((z − 1)2), z → 1, (4.63)

where J0 and J1 are two constant matrices. This, together with (4.62), implies that

R′1(1) = −J1 − Res
ζ=0

J1(ζ). (4.64)

Although the explicit formula of J1 is available, we decide not to include it due to the compli-
cated form. For the term Res

ζ=0
J1(ζ), combining (4.46), (4.37) and (4.40) together, we have

Res
ζ=0

J1(ζ) = Cα

−5 · 2−
2
3 −7 · 2

1
3 2−

2
3

4 −2 −2

−2
5
3 2

8
3 −2

5
3


0 0 0

0 0 0

0 33/2(4α2−1)
16|c1| 0


×

−5 · 2−
2
3 −7 · 2

1
3 2−

2
3

4 −2 −2

−2
5
3 2

8
3 −2

5
3


−1

C−1
α , (4.65)

where Cα is given in (4.25).
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5 Proof of Theorem 1.1

We start with derivation of asymptotics of ∂
∂sF (s; ρ). By (2.37) and (4.1), it follows that

∂

∂s
F (s; ρ) = − 1

2πi
lim
z→s

(
X(z)−1X ′(z)

)
21

= − 1

2πis
lim
z→1

(
T (z)−1T ′(z)

)
21

(5.1)

Inverting the transformation T → S given in (4.8), we have

T (z) = AS(z) diag(es
2/3λ1(z), es

2/3λ2(z), es
2/3λ3(z)), (5.2)

where A is an invertible matrix that is independent of z. Thus,

lim
z→1

(
T (z)−1T ′(z)

)
21

= lim
z→1

(
diag(e−s

2/3λ1(z), e−s
2/3λ2(z), e−s

2/3λ3(z))S(z)−1S′(z)

× diag(es
2/3λ1(z), es

2/3λ2(z), es
2/3λ3(z))

)
21

= lim
z→1

(
S(z)−1S′(z)

)
21
, (5.3)

where we have made use of (3.32) and (3.33) in the second equality. By further tracking back
the transformation S → R given in (4.58), we obtain from (5.1) and the above formula that

∂

∂s
F (s; ρ) = − 1

2πis
lim
z→1

(
S(z)−1S′(z)

)
21

= − 1

2πis
lim
z→1

(
P (1)(z)−1R(z)−1R′(z)P (1)(z) + P (1)(z)−1(P (1)(z))′

)
21
. (5.4)

This, together with explicit expression of P (1)(z) in (4.50), estimates of R(z), R′(z) in (4.61)
and the local behaviors of λi(z), i = 1, 2, near z = 1 in (3.32) and (3.33), implies that

∂

∂s
F (s; ρ)

= − 1

2πis
lim
z→1

(
B(s

4
3 f̃(z))−1Ẽ(z)−1

(
R′1(z)

s2/3
+O(s−

4
3 )

)
Ẽ(z)B(s

4
3 f̃(z))

+B(s
4
3 f̃(z))−1Ẽ(z)−1Ẽ′(z)B(s

4
3 f̃(z)) + s

4
3 f̃ ′(z)B(s

4
3 f̃(z))−1B′(s

4
3 f̃(z))

)
21

, (5.5)

where

B(z) :=


(

Φ
(Bes)
0

)
12

(z) −
(

Φ
(Bes)
0

)
11

(z) 0(
Φ

(Bes)
0

)
22

(z) −
(

Φ
(Bes)
0

)
21

(z) 0

0 0 1

 . (5.6)

We next calculate the three terms on the right hand side of (5.5) one by one. To proceed,
we observe from (A.4) and properties of the modified Bessel functions I0 and K0 given in [42,
Chapter 10] that, as z → 0,

B(z) =

 1 +O(z) O(ln z) 0
πi
2 z +O(z2) −1 +O(z ln z) 0

0 0 1

 , (5.7)

and

B(z)−1 =


(

Φ
(Bes)
0

)
21

(z) −
(

Φ
(Bes)
0

)
11

(z) 0(
Φ

(Bes)
0

)
22

(z) −
(

Φ
(Bes)
0

)
12

(z) 0

0 0 1

 =

1 +O(z ln z) O(ln z) 0
πi
2 z +O(z2) −1 +O(z) 0

0 0 1

 . (5.8)
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A combination of the above two formulas gives us

lim
z→0

(
B(z)−1B′(z)

)
21

= −πi

2
. (5.9)

In addition, it is straightforward to check that for any 3× 3 matrix M , one has

lim
z→0

(
B−1(z)MB(z)

)
21

= −(M)21. (5.10)

For the first term in (5.5), we obtain from Ẽ(1) in (4.53) and R′1(1) in (4.64) that(
s−

2
3 Ẽ(1)−1R′1(1)Ẽ(1)

)
21

= − i(4α2 − 1)c̃1π

24|c1|
− 3ic̃3π

8c̃1
− i(8α2 + 1)π

48
, (5.11)

where c̃i, i = 1, 2, 3 are given in (3.34) and c1 is given in (3.31). This, together with (5.10) and
(4.49), implies that

lim
z→1

(
B(s

4
3 f̃(z))−1Ẽ(z)−1

(
R′1(z)

s2/3
+O(s−

4
3 )

)
Ẽ(z)B(s

4
3 f̃(z))

)
21

= − lim
z→1

(
Ẽ(z)−1

(
R′1(z)

s2/3
+O(s−

4
3 )

)
Ẽ(z)

)
21

=
i(4α2 − 1)c̃1π

24|c1|
+

3ic̃3π

8c̃1
+

i(8α2 + 1)π

48
+O(s−

2
3 ). (5.12)

Similarly, with the aids of Ẽ(1) and Ẽ′(1) in (4.53) and (4.57), we have

lim
z→1

(
B(s

4
3 f̃(z))−1Ẽ(z)−1Ẽ′(z)B(s

4
3 f̃(z))

)
21

= − lim
z→1

(
Ẽ(z)−1Ẽ′(z)

)
21

= − i
√

3απc̃1

3
s

2
3 . (5.13)

The third term in (5.5) can be evaluated directly by applying (4.49) and (5.9), which gives

lim
z→1

(
s

4
3 f̃ ′(z)B−1(s

4
3 f̃(z))B′(s

4
3 f̃(z))

)
21

=
iπc̃2

1

2
s

4
3 . (5.14)

Finally, substituting (5.12)–(5.14) and (3.34) into (5.5), we obtain

∂

∂s
F (s; ρ) = − 3

28/3
s

1
3 +

ρ

2
+

3α− ρ2

3 · 24/3
s−

1
3 − αρ

3 · 22/3
s−

2
3 − 12α2 + 1

72
s−1 +O(s−

4
3 ),

as s→∞. Integrating the above formula gives us

F (s; ρ) = − 9

16 · 22/3
s

4
3 +

ρ

2
s+

3α− ρ2

27/3
s

2
3 − αρ

22/3
s

1
3 − 12α2 + 1

72
ln s+ C(ρ) +O(s−

1
3 ), (5.15)

uniformly for ρ in any compact subset of R, where C(ρ) is a constant that might be dependent
on the parameters α and ρ.

To find more information about C(ρ), we come to ∂
∂ρF (s; ρ). From (2.38) and (4.13), we

have
∂

∂ρ
F (s; ρ) = −(X1)31 +

ρ(ρ2 + 9α)

27
= −s

1
3 (S1)31 − sd1 +

ρ(ρ2 + 9α)

27
, (5.16)

where S1 and d1 are given in (4.13) and (3.28). Recall that

S(z) = R(z)Nα(z), z ∈ C \ (D(0, ε) ∪D(1, ε) ∪ ΣT ), (5.17)
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it follows (4.12), (4.34) and (4.60) that

S1 = N1 + R1 (5.18)

where N1 and R1 are the coefficients of 1/z for R(z) and N(z) at infinity given in (4.34) and
(4.60). It is clear from (4.61) that R1 = O(s−2/3). This, together with (4.35), implies that

(S1)31 = (N1 + R1)31 =
α

22/3
+O(s−

2
3 ). (5.19)

We then obtain from (5.16), (3.28) and the above formula that

∂

∂ρ
F (s; ρ) =

s

2
− ρ

24/3
s

2
3 − α

22/3
s

1
3 +

ρ(ρ2 + 9α)

27
+O(s−

1
3 ), s→∞. (5.20)

Comparing this approximation with the asymptotics of F (s; ρ) given in (5.15), it is easily seen
that

C ′(ρ) =
ρ(ρ2 + 9α)

27
. (5.21)

Hence,

C(ρ) =
ρ4

108
+
αρ2

6
+ C, (5.22)

where C is an undetermined constant independent of s and ρ. Inserting (5.22) into (5.15) leads
to our final asymptotic result (1.6).

This completes the proof of Theorem 1.1.

A The Bessel parametrix

The Bessel parametrix Φ
(Bes)
α (z), which depends on a parameter α > −1, is the unique solution

of the following RH problem.

RH problem A.1.

(a) Φ
(Bes)
α (z) is defined and analytic in C \ (∪3

j=1Γj ∪ {0}), where the contours Γj, j = 1, 2, 3,
are shown in Fig. 9.

(b) For z ∈ ∪3
j=1Γj, we have

Φ
(Bes)
α,+ (z) = Φ

(Bes)
α,− (z)



(
1 eαπi

0 1

)
, z ∈ Γ1,(

0 −1

1 0

)
, z ∈ Γ2,(

1 e−απi

0 1

)
, z ∈ Γ3.

(A.1)

(c) As z →∞, we have

Φ(Bes)
α (z) =

(π2z)−σ3/4√
2

(
i 1
1 i

)
×
(
I +

1

8z1/2

(
1 + 4α2 −2i
−2i −1− 4α2

)
+O

(
1

z

))
e−z

1/2σ3 , (A.2)

where σ3 is defined in (1.8).
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I0

II

III

Γ1

Γ2

Γ3

Figure 9: The jump contours Γj , j = 1, 2, 3, and the domains I–III in the RH problem for Φ
(Bes)
α .

(d) As z → 0, we have

Φ(Bes)
α (z) =



O

(
|z|

α
2 |z|

α
2

|z|
α
2 |z|

α
2

)
, α < 0,

O

(
ln |z| ln |z|
ln |z| ln |z|

)
, α = 0,

O

(
|z|−

α
2 |z|

α
2

|z|−
α
2 |z|

α
2

)
, α > 0 and z ∈ I,

O

(
|z|−

α
2 |z|−

α
2

|z|−
α
2 |z|−

α
2

)
, α > 0 and z ∈ II ∪ III,

(A.3)

where the domains I–III are illustrated in Figure 9.

Although the above model RH problem is slightly different from the standard Bessel parametrix
introduced in [40], they are actually equivalent. From [40], we have

Φ(Bes)
α (z) =

(
Iα(z1/2) i

πKα(z1/2)

πiz1/2I ′α(z1/2) −z1/2K ′α(z1/2)

)


(
0 1

1 0

)
, z ∈ I,(

0 1

1 −eαπi

)
, z ∈ II,(

0 1

1 e−απi

)
, z ∈ III,

(A.4)

where Iα(z) and Kα(z) denote the modified Bessel functions [42] and the principal branch is
taken for z1/2.
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