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Abstract. Surrogate models can reduce computational costs for multivariable functions with an

unknown internal structure (black boxes). In a discrete formulation, surrogate modeling is equivalent

to restoring a multidimensional array (tensor) from a small part of its elements. The alternating least

squares (ALS) algorithm in the tensor train (TT) format is a widely used approach to effectively

solve this problem in the case of non-adaptive tensor recovery from a given training set (i.e., tensor

completion problem). TT-ALS allows obtaining a low-parametric representation of the tensor, which

is free from the curse of dimensionality and can be used for fast computation of the values at arbitrary

tensor indices or efficient implementation of algebra operations with the black box (integration, etc.).

However, to obtain high accuracy in the presence of restrictions on the size of the train data, a good

choice of initial approximation is essential. In this work, we construct the ANOVA representation

in the TT-format and use it as an initial approximation for the TT-ALS algorithm. The performed

numerical computations for a number of multidimensional model problems, including the parametric

partial differential equation, demonstrate a significant advantage of our approach for the commonly

used random initial approximation. For all considered model problems we obtained an increase in

accuracy by at least an order of magnitude with the same number of requests to the black box. The

proposed approach is very general and can be applied in a wide class of real-world surrogate modeling

and machine learning problems.
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1. Introduction. Many physical and engineering models can be represented as

a real function (output of the model), which depends on a multidimensional argument

(input of the model) and looks like

(1.1) y = f(x) ∈ R, x = [x1, x2, . . . , xd]
T ∈ Ω ⊂ Rd.

Such functions often have a form of a black box (BB), i.e., its internal structure and

smoothness properties remain unknown. The time and/or required resources for one

computation of the function f may be significant, and it is relevant to train some

surrogate model g (low-parametric approximation) that can be evaluated quickly, but

at the same time remains sufficiently close to the original function. Then such a

simple model g can be used instead of the original BB for faster computations of its

outputs from given inputs. Moreover, the statistical characteristics of the BB may be
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approximately recovered from this model g by fast Monte-Carlo sampling or with the

usage of the known specific internal structure of the function g.

The model g may be a decomposition by some basis functions, for example,

Chebyshev polynomials [32], but in many cases, it is more natural to directly discretize

the target function (1.1) on a multidimensional grid

(1.2)
{
x

(n1)
1 , x

(n2)
2 , . . . , x

(nd)
d

}
, nk = 1, 2, . . . , Nk for k = 1, 2, . . . , d,

and then represent the BB as implicitly specified multidimensional array (tensor)1

Y∈ RN1×N2×...×Nd that collects all possible discrete values of the function (1.1) inside

the domain Ω, i.e.,

(1.3) Y[n1, n2, . . . , nd] = f
(
x

(n1)
1 , x

(n2)
2 , . . . , x

(nd)
d

)
.

Undoubtedly, the task of explicitly constructing and storing such a tensor is too

computationally expensive, and for large values of the dimension d, this is completely

impossible due to the course of the dimensionality. However, the usage of the low-rank

tensor approximations, namely the tensor train (TT) decomposition [21], makes it

possible to approximately represent the tensor in a compact low-parameter format

using only a small number of explicitly computed elements. The TT-decomposition

is a common approach for compact approximation of multidimensional arrays and

multivariable functions [8, 9, 24]. The approximation in the TT-format allows subse-

quent usage both for quick calculation of BB values and for constructing its various

statistical characteristics. It is possible to effectively perform algebraic operations

(element-by-element addition and multiplication, convolution, etc.) over tensors in the

TT-format [21]. Thus, for example, it turns out to be more efficient in some cases to

construct a surrogate model of a multidimensional tensor in the TT-format first, and

then perform summation with it (see, e.g., [3, 26]).

The TT-ALS (alternating least squares in the TT-format) [15, 14] is a tensor

completion method that constructs the TT-approximation from a given set of tensor

elements (e.g., random samples may be used), alternately optimizing the current

approximation for each mode, with fixed values of the parameters corresponding to

the rest of the modes. The TT-ALS is a powerful tool for tensor approximation, and

it has found a wide range of practical applications [34, 28, 5]. To use the TT-ALS, it

is necessary to set an initial approximation, which can, for example, be given in the

form of a random TT-tensor. However, the choice of this initial approximation plays

1By tensors we mean multidimensional arrays with a number of dimensions d (d ≥ 1). A two-
dimensional tensor (d = 2) is a matrix, and when d = 1 it is a vector. For scalars we use normal
font, we denote vectors with bold letters and we use upper case calligraphic letters (A,B, C, . . .) for
tensors with d > 2. The (n1, n2, . . . , nd)th entry of a d-dimensional tensor A∈ RN1×N2×...×Nd is
denoted by A[n1, n2, . . . , nd], where nk = 1, 2, . . . , Nk (k = 1, 2, . . . , d) and Nk is a size of the k-th
mode, and mode-k slice of such tensor is denoted by A[n1, . . . , nk−1, :, nk+1, . . . , nd].
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an important role in the quality of the resulting representation in the TT-format and

often the use of a random TT-tensor turns out to be unsatisfactory [17, 25, 12, 6]. So,

in particular, with an unsuccessful initial approximation, too many iterations of the

method may be required, or the resulting solution may converge to a local optimum

that is not good enough. In this work, we propose the modified version of the ANOVA

(analysis of variance) representation [29] in the TT-format as an initial approximation

for the TT-ALS algorithm. The interdependence of the model inputs utilizing a

split representation corresponding to the ANOVA decomposition allows significantly

increase the stability of the TT-ALS approach for constructing a TT-tensor from

restricted observations.

As a practically significant numerical example, we consider a parameter-dependent

partial differential equation (PDE). Equations of this kind have a wide range of appli-

cations [10, 1] such as those associated with optimization or uncertainty quantification

after random field discretization. These include groundwater heights in geotechnical

engineering, soil parameters, wind loads and snow loads in structural engineering,

the amount of precipitation and evaporation in hydrology, etc. We consider the

mean value of the PDE solution as a multivariable function of PDE parameters and

construct its compact representation in the TT-format using the proposed approach.

The performed numerical computations for this problem, as well as for a number of

model analytical multivariable functions, demonstrate a significant advantage of our

approach concerning the commonly used random initial approximation.

To summarize, our main contributions are the following:

• we construct the ANOVA expansion in the form of the TT-tensor (TT-ANOVA)

and we propose to use it as an initial approximation for the TT-ALS algorithm

to approximate the multidimensional BB (TT-ANOVA-ALS method);

• we implement the proposed algorithms as a publicly available python package2;

• we apply our approach3 for several multidimensional model problems, includ-

ing the approximation of the parametric PDE solution, to demonstrate its

robustness and performance.

2. Tensor train format. There has been much interest lately in the development

of data-sparse tensor formats for high-dimensional problems. A very promising tensor

format is provided by the TT-approach [21]. It can be computed via standard

decompositions (such as SVD and QR) [23], but does not suffer from the curse of

dimensionality.

2We implemented basic operations in the TT-format, as well as TT-ALS and TT-ANOVA
approaches within the framework of the software product teneva, which is available from https:
//github.com/AndreiChertkov/teneva.

3The program code with numerical examples, given in this work, is publicly available in the
repository https://github.com/AndreiChertkov/teneva research anova and als. For all considered
model problems, including parametric PDE, we obtained an increase in accuracy by at least an order
of magnitude with the same number of requests to the BB.

https://github.com/AndreiChertkov/teneva
https://github.com/AndreiChertkov/teneva
https://github.com/AndreiChertkov/teneva_research_anova_and_als
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Fig. 1: Schematic representation of the low-rank TT-decomposition. The tensor
Y ∈ RN1×N2×...×Nd is represented in the low-rank TT-format as an ordered list of
three-dimensional tensors Gk ∈ RRk−1×Nk×Rk (k = 1, 2, . . . , d), which are named TT-
cores. To compute an arbitrary element (n1, n2, . . . , nd) of the tensor Y, the product
of the TT-cores according to the formula (2.1) or (2.2) should be performed.

A tensor Y∈ RN1×N2×...×Nd is said to be in the TT-format, if its elements are

represented by the following formula (see also illustration on Figure 1)

(2.1) Y[n1, n2, . . . , nd] =

R1∑
r1=1

R2∑
r2=1

· · ·
Rd−1∑
rd−1=1

G1[1, n1, r1]G2[r1, n2, r2] · · ·

Gd−1[rd−2, nd−1, rd−1]Gd[rd−1, nd, 1],

where nk = 1, 2, . . . , Nk (k = 1, 2, . . . , d) represent the multi-index, three-dimensional

tensors Gk ∈ RRk−1×Nk×Rk are named TT-cores, and integers R0, R1, . . . , Rd (with

convention R0 = Rd = 1) are named TT-ranks. The latter formula can be also

rewritten in a more compact form

(2.2) Y[n1, n2, . . . , nd] = G1(n1)G2(n2) · · ·Gd(nd),

where Gk(nk) = Gk[:, nk, :] is an Rk−1×Rk matrix for each fixed nk (since R0 = Rd = 1,

the result of matrix multiplications in (2.2) is a scalar).

The benefit of the TT-decomposition is the following. Storage of the TT-cores

G1, G2, . . . , Gd requires less or equal than d×max1≤k≤d
(
NkR

2
k

)
memory cells instead

of N = N1N2 . . . Nd ∼ Nd
0 cells for the uncompressed tensor, where N0 is an average

size of the tensor modes, and hence the TT-decomposition is free from the curse of

dimensionality if the TT-ranks are bounded. The detailed description of the TT-format

and linear algebra operations in terms of this format is given in works [23, 21].

An exact TT-representation exists for the given full tensor Ŷ, and TT-ranks of

such representation are bounded by ranks of the corresponding unfolding matrices [21].

Nevertheless, in practical applications, it is more useful to construct TT-approximation

with a prescribed accuracy εTT , and then carry out all operations (summations,
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TT-ANOVA

TT-ALS

Black Box

Data Cache

Approximation of the Black Box
in the Tensor Train Format

Train
Data

Train
Data

Save
Data

Initial
Approximation

Model TT-ANOVA-ALS

Fig. 2: The proposed TT-ANOVA-ALS computation approach for the discretized BB
approximation based on a random training dataset.

products, etc) in the TT-format, maintaining the same accuracy εTT of the result. For

a given tensor Ŷ in the full format and desired accuracy εTT in the Frobenius norm

(2.3) ||Y− Ŷ||F ≤ εTT · ||Ŷ||F ,

the TT-decomposition (compression) can be performed by a stable TT-SVD algorithm,

but this procedure of the tensor approximation from the full format is too costly and

is even impossible for large dimensions since it requires the calculation of all elements

of the original tensor. Therefore, more efficient algorithms, that allow constructing

the TT-decomposition from a small part of the tensor elements (i.e., allow to perform

tensor completion), are used in multidimensional applications. We consider below the

TT-ALS approach, which is one of the most popular such algorithms.

3. Black box approximation. The proposed TT-ANOVA-ALS approach to im-

prove the stability of the BB approximation in terms of the TT-format is schematically

shown in Figure 2. We build the rough approximation for the BB by TT-ANOVA

algorithm (which is presented below in subsection 3.1), using K random samples from

the BB, and then apply the well-known TT-ALS algorithm (it is briefly discussed below

in subsection 3.2) on the same K samples using the result of the TT-ANOVA as an

initial approximation. Note that in this model, there is no need to access the BB

during iterations of the algorithm, just a random training dataset is sufficient. We show

by numerical examples, that this approach significantly increases the final accuracy of

the approximation with virtually no increase in the computational complexity and

eliminates the possibility of an accidental failure of the TT-ALS when the random

initial approximation is chosen poorly.
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3.1. ANOVA decomposition in the tensor train format. We assume that

our model function (1.1) is defined in the hypercube Ω = [0, 1]d and integrable.

Consider its ANOVA representation (or decomposition into summands of different

dimensions) [29]

(3.1) f(x1, . . . , xd) = f0 +

d∑
i=1

fi(xi) +
∑

1≤i<j≤d

fij(xi, xj) + . . .+ f123...d(x1, . . . , xd),

where for all the functions fi1i2...is (1 ≤ i1 < i2 < . . . < is ≤ d, s = 1, 2, . . . , d) the

following equality holds

(3.2)

∫
Ω

fi1...ik...is(xi1 , . . . , xik , . . . , xis) dxik = 0, for k = 1, 2, . . . , s.

It can be shown from the definition of ANOVA (3.1) and (3.2) that this decomposition

is unique and all the members are orthogonal, hence the zero and first-order terms

can be expressed as follows

(3.3) f0 =

∫
Ω

f(x) dx, fi(xi) =

∫
Ω

f(x)
∏
k 6=i

dxk − f0, for i = 1, 2, . . . , d.

The ANOVA representation (3.1) is often used to estimate the sensitivity of a

function to input variables or their combinations (Sobol indices) and to understand the

relationship of variables or their effect on the model output [29, 4]. This information

may be useful to eliminate uncertainty or simplify the model, i.e., the variables on

which the output depends weakly can be fixed (“frozen”). However, in our case, the

attractiveness of ANOVA lies in the possibility of its fast and efficient representation

in the form of a TT-tensor using some samples from the objective function f.

Suppose we have a training dataset (X(train), Y (train))

X(train) = {x(1),x(2), . . . , x(M)}, x(m) ∈ Rd,

Y (train) = {y(1), y(2), . . . , y(M)}, y(m) = f(x(m)) ∈ R,

obtained from a uniform distribution, or from any low discrepancy sequence (LHS,

Sobol, etc.). Note that for the tensor approximation problem each variable xi (i =

1, 2, . . . , d) take only a discrete set of values v(i) = {v(i)
1 , v

(i)
2 , . . . , v

(i)
Ni
}, moreover, the

number of these values Ni for different variables may be different4. Then, we introduce

4For simplicity, we will further assume that the number of different values present in the dataset
is the same as the size of the corresponding tensor modes N1, N2, . . . , Nd. This can be achieved, for
example, by using the LHS distribution.
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the notation

X
(train)
i,j =

{
x ∈ X(train) | xi = v

(i)
j

}
, for j = 1, 2, . . . , Ni, i = 1, 2, . . . , d.

In other words, the set X
(train)
i,j collects those and only those vectors from X(train),

for which the i-th component coincides with its j-th possible value.

Taking into account the introduced notation, we can represent the zero and

first-order terms from (3.3) as

(3.4) f̂0 ≈
1

M

M∑
m=1

f(x(m)) = mean{f(x) | x ∈ X(train)},

(3.5) f̂i(v
(i)
j ) ≈ 1

|X(train)
i,j |

∑
x∈X(train)

i,j

f(x)− f̂0 = mean{ f(x) | x ∈ X(train)
i,j } − f̂0,

where j = 1, 2, . . . , Ni, i = 1, 2, . . . , d and | · | denotes the cardinality of a set.

The resulting approximations (3.4) and (3.5) allow to construct the discretized first

order ANOVA representation for a given training dataset. In the following Theorem,

we consider a way to explicitly convert this representation to the TT-format.

Theorem 3.1. Consider the TT-decomposition Y for tensor Ŷ∈ RN1×N2×...×Nd

with the TT-cores G1 ∈ R1×N1×2, Gi ∈ R2×Ni×2 (for i = 2, 3, . . . , d − 1) and Gd ∈
R2×Nd×1 such that

(3.6) G1[1, j, :] =
(

1 f̂1(v
(1)
j )
)
, j = 1, 2, . . . , N1,

(3.7) Gi[:, j, :] =

(
1 f̂i(v

(i)
j )

0 1

)
, j = 1, 2, . . . , Ni, i = 2, 3, . . . , d− 1,

(3.8) Gd[:, j, 1] =

(̂
fd(v

(d)
j ) + f̂0

1

)
, j = 1, 2, . . . , Nd,

where f̂i (i = 0, 1, . . . , d) are the zero and first order terms from (3.4) and (3.5). Then

the TT-tensor Y has the same values for all possible elements as the corresponding

first-order ANOVA decomposition.

Proof. Let directly calculate the matrix product of the TT-cores (3.6), (3.7), (3.8)

G1[1, j1, :] G2[:, j2, :] =
(

1 f̂1(v
(1)
j1

)
)(1 f̂2(v

(2)
j2

)

0 1

)
=
(

1 f̂1(v
(1)
j1

) + f̂2(v
(2)
j2

)
)
,



8 A. CHERTKOV, G. RYZHAKOV, AND I. OSELEDETS

then

G1[1, j1, :] G2[:, j2, :] G3[:, j3, :] =
(

1 f̂1(v
(1)
j1

) + f̂2(v
(2)
j2

)
)(1 f̂3(v

(3)
j3

)

0 1

)
=
(

1 f̂1(v
(1)
j1

) + f̂2(v
(2)
j2

) + f̂3(v
(3)
j3

)
)
,

and so on by induction, up to the last TT-core

G1[1, j1, :] G2[:, j2, :] . . . Gd−1[:, jd−1, :] Gd[:, jd, 1] =(
1 f̂1(v

(1)
j1

) + f̂2(v
(2)
j2

) + . . .+ f̂d−1(v
(d−1)
jd−1

)
) (̂fd(v(d)

jd
) + f̂0

1

)
=

f̂0 + f̂1(v
(1)
j1

) + f̂2(v
(2)
j2

) + . . .+ f̂d(v
(d)
jd

),

that is, the (j1, j2, . . . , jd)th element of the TT-tensor (taking into account the formula

(2.1)) coincides with the ANOVA representation (3.1).

Thus, the given scheme for choosing the elements of the TT-cores allows us

to obtain the ANOVA representation within the framework of the low-rank TT-

decomposition, and we call this representation TT-ANOVA. Note that this result can

be directly generalized to the case of arbitrary TT-rank if we take the corresponding

additional elements of the TT-cores equal to zero.

3.2. ALS algorithm for tensor completion. The idea of the TT-ALS tensor

completion algorithm [15, 14] is to successively refine each of the TT-cores by solving

an overdetermined system of linear equations with the right-hand side equal to the

given tensor values from the train dataset (X(train), Y (train)) using the least-squares

method. The TT-ALS starts from some initial approximation, which is usually a

random TT-tensor, and successively refines the TT-cores in passes from left to right

(i.e., from the first TT-core to the last one) and back. One complete pass from left to

right and back is called a sweep, and the total number of sweeps is a hyperparameter

of the algorithm.

Suppose at the current step we need to update the values of the i-th TT-core.

Consider a point x from the train dataset in which the value is known and is equal

to y = f(x). In the discrete setting, this point corresponds to some multi-index

j = (j1, j2, . . . , jd) of the tensor. We denote by gl and gr the two vectors that are

obtained after the multiplication of the TT-cores to the left and right of the i-th

TT-core correspondingly and by G the slice of the i-th TT-core:

gTl = G1[1, j1, :] G2[:, j2, :] · · · Gi−1[:, ji−1, :], gl ∈ RRi−1 ,

gr = Gi+1[:, ji+1, :] Gi+2[:, ji+2, :] · · · Gd[:, jd, 1], gr ∈ RRi ,

G = Gi[:, ji, :], G ∈ RRi−1×Ri ,
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Algorithm 3.1 TT-ALS algorithm

Require: input multi-indices J and related outputs Y of the BB; initial approximation
G1, G2, . . . , Gd (Gi ∈ RRi−1×Ni×Ri for i = 1, . . . , d)

Ensure: TT-cores of the tensor that approximate the given BB
1: while stooping criterion is not met do
2: for i from 1 to d do
3: for nk from 1 to Nk do
4: l← 1
5: Allocate A ∈ RK×(Ri−1Ri), b ∈ RK , where K is the number of samples J

for which the i-th component equal to nk
6: for j from J such that its i-th component equal to nk do
7: A[l, :]← a, where vector a is defined in (3.10) and is based on the current

TT-cores and the components of the vector j
8: b[l]← the value from Y corresponds to input j
9: l← l + 1

10: end for
11: Solve A g = b for g using least squares method
12: Update Gi[:, nk, :]← reshape(g, (Ri−1, Ri))
13: end for
14: end for
15: end while
16: return G1, G2, . . . , Gd

where Ri−1 and Ri are the corresponding TT-ranks. Given the explicit form of the

TT-decomposition (2.1), we need to achieve, at least approximately, the equality

(3.9) gTl G gr = y,

by selecting the elements of the matrix G. Note that we can rewrite the left-hand side

of the equality (3.9) in a form of the scalar product

Ri·Ri+1∑
r=1

a[r] · (vecG)[r] = y,

a[r] = gl[ b(r − 1)/Ric+ 1 ] · gr[ (r − 1) mod Ri + 1 ],

(3.10)

where vecG ∈ RRi−1·Ri denotes vectorization of the matrix G, i.e.,

(vecG)[ r2 + (r1 − 1) ·Ri ] = G[ r1, r2 ], r1 = 1, 2, . . . , Ri−1, r2 = 1, 2, . . . , Ri,

operation “· mod ·” denotes taking the remainder of a division and b·c denotes

rounding down to the nearest integer.

Now we select all points from the training dataset with the value of the i-th

element of the multi-index equal to the selected value of ji. Let there be K such points

and K ≥ Ri−1Ri. Thus we have K equations of the form (3.10) for the unknown G.
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Table 1: Benchmark functions for performance analysis of the proposed algorithm.

Function Ref. Bounds Analytical formula

Ackley [16] [−32.768,
32.768]

f(x) = −Ae−B
√

1
d

∑d
i=1 x

2
i−e

1
d

∑d
i=1 cos (Cxi)+A+e1,

where A = 20, B = 0.2 and C = 2π

Alpine [16] [−10, 10] f(x) =
∑d
i=1 |xi sinxi + 0.1xi|

Dixon [16] [−10, 10] f(x) = (x1 − 1)2 +
∑d
i=2 i ·

(
2x2i − xi−1

)2
Exponential [16] [−1, 1] f(x) = −e−

1
2

∑d
i=1 x

2
i

Grienwank [16] [−600,
600]

f(x) =
∑d
i=1

x2i
4000
−
∏d
i=1 cos

(
xi√
i

)
+ 1

Michalewicz [33] [0, π] f(x) = −
∑d
i=1 sin (xi) sin2m

(
ix2i
π

)
Piston [35] See Ta-

ble 2
f(M, S, V0, k, P0, Ta, T0) = 2π

√
M

k+S2 P0V0
T0

Ta
V 2

,

where V = S
2k

(√
A2 + 4k P0V0

T0
Ta −A

)
and

A = P0S + 19.62M − kV0
S

Qing [16] [0, 500] f(x) =
∑d
i=1

(
x2i − i

)2
Rastrigin [11] [−5.12,

5.12]
f(x) = A · d+

∑d
i=1

(
x2i −A · cos (2π · xi)

)
,

where A = 10

Rosenbrock [16] [−2.048,
2.048]

f(x) =
∑d−1
i=1

(
100 · (xi+1 − x2i )2 + (1− xi)2

)

Schaffer [16] [−100,
100]

f(x) =
∑d−1
i=1 (0.5 +

sin2
(√

x2i+x
2
i+1

)
−0.5

(1+0.001(x2i+x
2
i+1))

2 )

Schwefel [11] [−500,
500]

f(x) = 418.9829 · d−
∑d
i=1 xi · sin (

√
|xi|)

We solve this overdetermined system using the method of least squares. We do so

consistently for all values of ji = 1, 2, . . . , Ni obtaining all slices of the TT-core

Gi. And then we repeat this procedure sequentially for all TT-cores i = 1, 2, . . . , d,

making several such passes from left to right and back. We summarise the described

procedure in Algorithm 3.1. A stopping condition in the Algorithm may be the
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Table 2: Description of Piston function parameters. For each parameter, its description,
range of values and physical units are provided.

Variable Name Range Units

M Piston weight [30, 60] kg

S Piston surface area [0.005, 0.020] m2

V0 Initial gas volume [0.002, 0.010] m3

k Spring coefficient [1000, 5000] N/m

P0 Atmospheric pressure [90000, 110000] N/m2

Ta Ambient temperature [290, 296] K

T0 Filling gas temperature [340, 360] K

Fig. 3: The PDE-VOI (on the left plot) and computation time (on the right plot) for
different numbers of mesh vertices and different values of the first PDE parameter
(p1), while the values of the other parameters (p2, . . . , p9) are fixed on the value 0.5.

reaching of a certain number of iterations (sweeps) or a threshold for changing TT-

cores components5.

4. Numerical experiments. To demonstrate the effectiveness of the proposed

TT-ANOVA-ALS approach, we consider twelve model 7-dimensional analytical functions

(benchmarks), which are presented in Table 1. Note that the list of functions includes

the Piston function, which corresponds to the practical problem of modeling the time

5It is necessary that the training samples contain all possible values of the indices, i.e., ji =
1, 2, . . . , Ni for all i = 1, . . . , d. Moreover, we need to have at least Ri−1Ri of them for the least-
squares matrix to be a full-rank matrix. This can be achieved, for example, by using the LHS
distribution with a sample of sufficient size.
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Table 3: Relative error on the train and test data for all benchmarks. The reported
values for TT-ALS method (column “ALS”) are averaged over 10 independent runs.

ANOVA ALS ANOVA-ALS

Ackley
Train 1.3e-02 5.1e-01 2.6e-04
Test 1.1e-02 7.4e-01 2.5e-03

Alpine
Train 2.1e-02 8.0e-01 1.5e-08
Test 2.1e-02 1.8e+00 1.6e-07

Dixon
Train 4.7e-02 6.5e-01 3.0e-08
Test 4.7e-02 2.9e+00 1.9e-06

Exponential
Train 1.3e-01 6.6e-01 5.2e-10
Test 1.3e-01 2.1e+00 1.9e-09

Grienwank
Train 2.0e-02 7.1e-01 1.1e-04
Test 2.0e-02 2.0e+00 3.9e-04

Michalewicz
Train 3.9e-02 6.6e-01 2.6e-08
Test 4.0e-02 5.9e+00 2.7e-06

Piston
Train 9.3e-02 7.1e-01 9.6e-04
Test 9.4e-02 1.6e+00 1.6e-03

Qing
Train 1.5e+01 7.4e-01 1.2e-08
Test 1.4e+01 3.4e+00 5.7e-05

Rastrigin
Train 7.9e-03 8.4e-01 2.6e-09
Test 8.1e-03 1.3e+00 2.1e-08

Rosenbrock
Train 2.0e-01 7.2e-01 1.1e-07
Test 2.0e-01 4.3e+00 2.3e-05

Schaffer
Train 3.9e-02 6.8e-01 2.4e-04
Test 4.0e-02 9.9e-01 2.7e-04

Schwefel
Train 1.3e-02 6.6e-01 5.0e-09
Test 1.3e-02 1.2e+00 1.6e-08

PDE-VOI
Train 3.3e-03 8.0e-01 1.0e-05
Test 3.4e-03 1.4e+00 1.4e-05

that takes a piston to complete one cycle within a cylinder; the description of related

parameters and their ranges are shown in Table 2.

We also consider the more complicated problem of approximating the mean solution

of the parameter-dependent PDE [2, 31, 17]

− div
(
k(x,p)∇u(x,p)

)
= f(x), x = [x1, x2]T ∈ Ω = [0, 1]2, u

∣∣
∂Ω

= uD,

where

f(x) ≡ 1, uD ≡ 0, k(x,p) =

pµ, if x ∈ Sµ, µ = 1, 2, . . . , m2,

1, otherwise,

p = [p1, p2, . . . , pm2 ] and {Sµ}m
2

µ=1 is a set of m2 disks of radius ρ = 1
4m+2 (note that
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Table 4: Relative error on the train and test data for all selected benchmarks. Multi-
plicative noise (4.1) is applied to the training data. The reported values for TT-ALS
method (column “ALS”) are averaged over 10 independent runs.

ANOVA ALS ANOVA-ALS

Ackley
Train 1.6e-02 6.8e-01 8.9e-03
Test 1.1e-02 9.8e-01 7.4e-03

Alpine
Train 2.3e-02 8.1e-01 8.5e-03
Test 2.1e-02 1.9e+00 1.3e-02

Dixon
Train 4.8e-02 7.3e-01 8.3e-03
Test 4.7e-02 3.3e+00 1.3e-02

Exponential
Train 1.3e-01 7.4e-01 7.5e-03
Test 1.3e-01 2.4e+00 2.3e-02

Grienwank
Train 2.2e-02 7.1e-01 8.2e-03
Test 2.0e-02 1.8e+00 1.5e-02

Michalewicz
Train 4.0e-02 6.6e-01 7.1e-03
Test 3.9e-02 6.7e+00 3.0e-02

Piston
Train 9.4e-02 7.1e-01 8.8e-03
Test 9.4e-02 1.6e+00 1.2e-02

Qing
Train 2.7e+01 7.4e-01 7.9e-03
Test 2.6e+01 3.4e+00 1.8e-02

Rastrigin
Train 1.3e-02 6.7e-01 8.5e-03
Test 8.1e-03 1.1e+00 7.7e-03

Rosenbrock
Train 2.0e-01 7.2e-01 8.0e-03
Test 2.0e-01 4.2e+00 2.8e-02

Schaffer
Train 4.0e-02 8.5e-01 9.0e-03
Test 4.0e-02 1.2e+00 5.9e-03

Schwefel
Train 1.7e-02 5.8e-01 8.6e-03
Test 1.3e-02 1.1e+00 8.2e-03

these disks form m×m grid) with the centers located in the points (xµ1 , x
µ
2 ),

xµ1 = i · q + (2i− 1) · ρ, xµ2 = j · q + (2j − 1) · ρ,

q =
1− 2mρ

m+ 1
, µ = (i− 1)m+ j, i, j = 1, 2, . . . ,m.

As a scalar value of interest we consider the average temperature over domain Ω

PDE-VOI (p) =

∫
Ω

u(x,p) dx, p ∈ [0.01, 1]m
2

.

We select m = 3, hence we have 9 independent parameters, and in discrete representa-

tion, the PDE-VOI is the 9-dimensional implicit tensor.

For the numerical solution of the PDE, we use a popular software product FEn-

iCS [19] with efficient implementation of the finite element method. In Figure 3 we

present the PDE-VOI and computation time for different numbers of vertices of the spa-

tial two-dimensional mesh. As can be estimated from the plots, for sufficient stability

and accuracy of the solution, at least 5 · 104 vertices are required (and we will use this
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number in our computations), while the time of one calculation is more than 5 seconds.

Thus, for this problem, it seems justified to search for a low-parameter approximation,

which makes it possible to carry out calculations an orders of magnitude faster.

For all benchmarks, including PDE-VOI, we consider the tensor that arises when

the corresponding function is discretized on a uniform grid with 10 nodes in each

dimension. We fixed the TT-rank value at 5 and the number of ALS sweeps at 50.

The calculations with a random initial approximation were repeated 10 times and the

averaged result was used. To train the model, we used 104 tensor elements, which are

randomly generated from the LHS distribution. To check the accuracy of the obtained

approximation, we used a set of another 104 random samples and calculated the mean

square error on it.

The results of numerical calculations are presented in Table 3. We report the

error on the train and test data for each benchmark and the following approximation

methods: the TT-ANOVA algorithm, i.e., the 1st order ANOVA in the TT-format

(column “ANOVA”); the TT-ALS algorithm with random initial approximation6

(column “ALS”); the TT-ANOVA-ALS algorithm, i.e., the TT-ALS algorithm, which

uses the result of the TT-ANOVA as an initial approximation (column “ANOVA-ALS”).

As can be seen from the results, in the latter case (TT-ANOVA-ALS), the accuracy

improves by at least an order of magnitude concerning the TT-ALS method.

To test the robustness of the algorithm, we repeated the same calculations on the

noisy training data, i.e., we replace each train value y by

(4.1) ŷ =
(
1 + 10−2z

)
· y, z ∼N(0, 1).

The corresponding results are reported in Table 4. As follows, even in the presence of

noise, a high approximation accuracy is maintained when using the TT-ANOVA-ALS

approach.

Thus, the proposed TT-ANOVA-ALS approach significantly improves the accuracy

of the TT-ALS method with virtually no increase in the computational complexity7.

Also note that this approach is deterministic (on a fixed training set), which means

that it is not prone to random failures of the TT-ALS when the initial approximation

is chosen poorly.

5. Related work. Today, TT-decomposition is a popular approach for compact

approximation of multidimensional arrays and multivariable functions [8, 24, 27, 28],

including applications in the field of data analysis, machine learning, solution of PDEs,

etc. Various practical methods based on the TT-decomposition have been proposed

6We generate all TT-cores Gk (k = 1, 2, . . . , d) from a random normal distribution.
7Calculations were conducted on a regular laptop. For our model problem, the time for building

the TT-ANOVA approximation turns out to be less than 10 milliseconds, and the average time for
building the TT-ALS approximation is about 6 seconds.
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to solve multidimensional [25, 6], parametric [12, 13] and multiscale [22, 7] PDEs, to

optimize multivariable functions [30, 20], etc. We note that in the works [25, 6, 12, 13],

special attention is paid to the choice of the initial approximation for constructing

the TT-decomposition for the PDE solution, and as such an approximation, the

solution obtained from the previous time step is used. At the same time, in the

works [22, 7, 30, 20], a random initial approximation is used.

Until now only a few works have been directly devoted to the selection of the initial

approximation in the TT-format. We note the recent work [17], where the authors

apply Gaussian process regression to construct a preliminary approximation of the

function, using a training dataset. After that, the initial approximation is generated

by the TT-cross method, which is applied to the regression model. This approach

is very promising, but it requires significant additional numerical computations to

run TT-cross and it also has all the limitations of regression methods when applied

to multidimensional problems. We also note that the authors conducted numerical

experiments for only one benchmark, which does not allow us to evaluate the general

robustness of the approach.

An interesting method was considered in [18] for constructing an initial approx-

imation in the framework of the proposed new completion method. The authors

perform a special interpolation based on the known tensor values, and then build an

initial approximation using the classical TT-SVD algorithm. However, this approach

was developed only for the problem of image and video processing, and it cannot be

transferred to essentially multidimensional problems due to the need to build a full

tensor for the TT-SVD algorithm. Also, we note that the ANOVA decomposition

was already used in combination with TT-approach, see, for example [36, 4]. But

in these works, effective methods for construction of the Sobol indices through the

calculation of multidimensional integrals by TT-decomposition were considered, and

this is a different problem than the one presented in our work.

6. Conclusions. In this work, we proposed the TT-ANOVA representation as an

initial approximation for the TT-ALS approach, which makes it possible to effectively

approximate functionally given black box. We have implemented the corresponding

method TT-ANOVA-ALS in software and demonstrated its effectiveness for the list

of model multidimensional problems, including the approximation of the solution to

the parametric PDE. For all considered model problems we obtained an increase in

accuracy by at least an order of magnitude with the same number of train samples

from the black box and with virtually no increase in the computational complexity.

The proposed approach is deterministic (on a fixed training set) and it is not prone

to random failures of the TT-ALS when the initial approximation is chosen poorly.

The TT-ANOVA-ALS method can be applied to a wide class of practically significant

problems, including surrogate modeling and various machine learning applications.
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