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Lower Bounds on
Lattice Covering Densities of Simplices

Miao Fu, Fei Xue and Chuanming Zong

Abstract. This paper presents new lower bounds for the lattice covering
densities of simplices by studying the Degree-Diameter Problem for abelian
Cayley digraphs. In particular, it proves that the density of any lattice covering
of a tetrahedron is at least 25/18 and the density of any lattice covering of a
four-dimensional simplex is at least 343/264.
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1. Introduction

More than 2,300 years ago, Aristotle claimed that congruent regular tetrahedra can tile

the whole space. In other words, he believed that congruent regular tetrahedra can fill
the whole space with neither gap nor overlap. Unfortunately, his claim was wrong:
Congruent regular tetrahedra can not tile the whole space, which was discovered by
Regiomontanus in the fifteenth century (see [16]). Then, two natural questions arose
immediately: What is the density of the densest tetrahedron packing and what is the

density of the thinnest tetrahedron covering? In fact, the packing case was emphasized
by D. Hilbert [12] as a part of his 18th problem.

Tetrahedron packings has been studied by many scholars, including mathematicians,
physicists, and chemical engineers. Its history is dramatic and eventful. Let S3 be a
regular tetrahedron (a three-dimensional regular simplex). Let δc(S3) and δl(S3) denote
the densities of the densest congruent packing and the densest lattice packing of S3,
respectively. Let’s recall several events here, just as comparisons to the covering case. In
1904, H. Minkowski [18] claimed that δl(S3) =

9
38 . In fact, he also made a mistake. The

correct answer is δl(S3) =
18
49 , which was proved by D.J. Hoylman [13] in 1970. Although

Aristotle’s claim was disproved by Regiomontanus in the fifteenth century which implied
that δc(S3) < 1, up to now we only know that δc(S3) < 1 − 2.6 × 10−25 which was
discovered by S. Gravel, V. Elser and Y. Kallus [11] in 2011. For comprehensive surveys
on packings and tetrahedron packings, we refer to [6] and [16], respectively.

Covering is often regarded as a counterpart of packing. At least, their concepts,
problems and results are often pairwise indeed. Nevertheless, covering came to math-
ematics much later than packing and our knowledge about it is still very limited. Let
K denote a convex body in E

n and let C denote a centrally symmetric one. In par-
ticular, let Bn denote the n-dimensional unit ball centered at the origin and let Sn

denote an n-dimensional regular simplex with unit edges and centered at the origin.
Let θc(K), θt(K) and θl(K) denote the densities of the thinnest congruent covering,
the thinnest translative covering, and the thinnest lattice covering of En with K, re-
spectively. Clearly, for every convex body K we have

1 ≤ θc(K) ≤ θt(K) ≤ θl(K).

Moreover, both θt(K) and θl(K) are invariant under non-singular linear transformations
on K. Therefore, in this paper we will work on the simplex with vertices (0, 0, . . . , 0),
(1, 0, . . . , 0), (0, 1, . . . , 0), . . ., (0, 0, . . . , 1), instead of the regular one.
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In the plane, our covering knowledge is comparatively complete. In 1939, R. Kershner
[15] proved that

θt(B2) = θl(B2) =
2π√
27

.

In 1946 and 1950, L. Fejes Tóth [7, 8] showed that

θt(C) = θl(C) ≤ 2π√
27

holds for all centrally symmetric convex domains C and the second equality holds if
and only if C is an ellipse. In 1950, I. Fáry [5] proved that

θl(K) ≤ 3

2

holds for all convex domains K, where the equality holds if and only if K is a triangle.
It is rather surprising that

θt(S2) =
3

2
was proved only in 2010 by J. Januszewski [14]. It is even more surprising that, up to
now some basic covering problems in the plane are still open (see [24]). For example,
we do not know yet if θt(K) = θl(K) holds for all convex domains.

In E
3, we only know one exact covering result

θl(B3) =
5
√
5π

24
,

which was discovered in 1954 by R. P. Bambah [1]. For tetrahedron coverings, several
bounds have been achieved. In the lattice case, we have

216 + 1

216
≤ θl(S3) ≤

125

63
,

where the upper bound was discovered by C. M. Fiduccia, R. W. Forcade and J. S.
Zito [9] and R. Dougherty and V. Faber [4] in the 1990s by constructing a particular
lattice covering and the lower bound was achieved by F. Xue and C. Zong [22] in 2018.
In fact, it was proved by R. Forcade and J. Lamoreaux [10] and R. Dougherty and V.
Faber [4] that the upper bound is a local minimum. They even conjectured it to be the
exact value of θl(S3). In the congruent case, in 2006 J. H. Conway and S. Torquato [3]
obtained

θc(S3) ≤
9

8
by constructing a particular tetrahedron covering. Nothing nontrivial is known about
θt(S3).

In E
n, covering has been studied by R. P. Bambah, H. S. M. Coxeter, H. Davenport,

P. Erdős, L. Few, G. L. Watson, and in particular by C. A. Rogers (see [20]). They
proved that

θl(K) ≤ nlog2 loge n+c,

θt(K) ≤ n log n+ n log log n+ 5n,

and
n

e
√
e
≪ θt(Bn) ≤ θl(Bn) ≤ c · n(loge n)

1

2
log2 2πe.

Since the 1960s, progress in covering is very limited (see [2]). In 2018, F. Xue and C.
Zong [22] discovered that

θl(Sn) ≥ 1 +
1

23n+7
. (1.1)
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In 2021, O. Ordentlich, O. Regev and B. Weiss [19] improved Rogers’ upper bound to

θl(K) ≤ cn2,

where c is a suitable positive constant.

In this paper, we prove the following results:

Theorem 1.1. If S3 + Λ is a lattice covering of E3, then its density is at least 25/18.
In other words, we have

θl(S3) ≥
25

18
.

Theorem 1.2. If S4+Λ is a lattice covering of E4, then its density is at least 343/264.
In other words, we have

θl(S4) ≥
343

264
.

Our method is based on the Degree-Diameter Problem for abelian Cayley digraphs.
Let G be a finite abelian group and let E = {g1,g2, . . . ,gn} be a set of generators for G.
Then the abelian Cayley digraph of G and E has the elements of G as its vertices and
directed edges from each vertex u to all vertices v = u+gi, 1 ≤ i ≤ n. Note that every
vertex in the digraph has out-degree n, and the order of the digraph is |G|. Then, the
Degree-Diameter Problem for abelian Cayley digraphs can be stated as: Given positive

integers n and d, find the largest order f(n, d) among all abelian Cayley digraphs of G
and E, where |E| = n and the diameters of these digraphs are at most d.

Both the Degree-Diameter Problem and Cayley graphs are well-known in the graph
theory community. For a survey and recent progress, we refer to M. Miller and J.
Širáň [17] and T. Zhang and G. Ge [23], respectively. In 1974, C. K. Wong and D.
Coppersmith [21] showed that

f(2, d) =

⌊

(d+ 2)2

3

⌋

.

In 1998, C. M. Fiduccia, R. W. Forcade and J. S. Zito [9] proved that

f(3, d) ≤ 3(d + 3)3

25
(1.2)

and asked for a similar bound for f(4, d). In 2004, R. Dougherty and V. Faber [4]
obtained that

cdn

n!n(lnn)1+log2 e
+O(dn−1) ≤ f(n, d) ≤

(

d+ n

n

)

. (1.3)

In this paper, we also prove the following result.

Theorem 1.3. If an abelian Cayley digraph has degree at most 4 and diameter at most

d, then it has at most
11(d+4)4

343 elements. In other words,

f(4, d) ≤ 11(d + 4)4

343
.

Remark 1.1. Theorem 1.3 will be useful in the proof of Theorem 1.2. As one can
check, Theorem 1.3 is better that (1.3) when d is large. In fact, by similar method the
upper bound in (1.3) can be improved to

f(n, d) ≤ (d+ n)n

n · n!

(

n− 1 +

(

n− 1

2n− 1

)n−1
)

.
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Consequently, the lower bound in (1.1) can be improved to

θl(Sn) ≥
n

n− 1 +
(

n−1
2n−1

)n−1 .

However, since the improvements are not essential, we will not include their proofs
here.

2. The Degree-Diameter Problem

The Degree-Diameter Problem for abelian Cayley digraphs is closely related to lattice
coverings (see [4] and [9]). Let Z

n be the integer lattice generated by the standard
basis {e1, e2, . . . , en}. From the algebraic point of view, Zn is a free abelian group with
n generators. Thus for any finite abelian group G generated by {g1,g2, . . . ,gn} (in
additive), there is a homomorphism φ : Zn → G defined by

φ

(

n
∑

i=1

ziei

)

=
n
∑

i=1

zigi, zi ∈ Z.

Clearly, φ is surjective. Let Ln be the kernel of φ. It is well-known and easy to check
that Ln is an n-dimensional sublattice of Zn. Then there is an isomorphism

φ : Zn/Ln → G

and
|G| = [Zn : Ln] = d(Ln),

where d(Ln) denote the determinant of Ln.
Let o be the origin of En and let On denote the positive orthant in E

n. We start from
o and perform a breadth-first search in Z

n∩On until we find all representative elements
of the group G. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two distinct points
in Z

n ∩ On and let |o,x|M denote the Manhattan distance between o and x. In other
words,

|o,x|M =

n
∑

i=1

xi.

Then, we write x ≺ y if either |o,x|M < |o,y|M or |o,x|M = |o,y|M but x precedes y
lexicographically. For example, in Z

2 ∩ O2 we have

(0, 0) ≺ (0, 1) ≺ (1, 0) ≺ (0, 2) ≺ (1, 1) ≺ (2, 0) ≺ (0, 3) ≺ (1, 2) ≺ (2, 1) ≺ (3, 0) ≺ . . .

and in Z
3 ∩ O3 we have

(0, 0, 0) ≺ (0, 0, 1) ≺ (0, 1, 0) ≺ (1, 0, 0) ≺ (0, 0, 2) ≺ (0, 1, 1) ≺ (0, 2, 0) ≺ (1, 0, 1) ≺ . . .

Clearly, the linear order ≺ compatible with addition. In other words, if x ≺ y, then

x+ z ≺ y + z

holds for all z ∈ Z
n ∩ On.

For g ∈ G, let φ∗(g) be the first lattice point x in the ordered sequence satisfying
φ(x) = g. Then

Tn = {φ∗(g) : g ∈ G} (2.1)

is a complete set of coset representatives for the kernel Ln. From the geometric point
of view, Tn + Ln is a tiling of Zn, i.e., Tn + Ln = Z

n and the translates are pairwise
disjoint. Of course, we have

|G| = [Zn : Ln] = |Tn|. (2.2)
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x2

x1o

π1 (T2)

π2 (T2)

T2v

Fig. 1. A Cayley tile in E
2 and its silhouette

Note that the diameter of the abelian Cayley digraph of G and E = {g1,g2, . . . ,gn} is
equal to the greatest Manhattan distance of any point in Tn from o. We will accordingly
call it the M-diameter of Tn. Thus we have the following result:

Proposition 2.1. The abelian Cayley digraph of G and E has a diameter of at most

d if and only if Tn + Ln is a tiling of Zn, where Tn has a M-diameter of at most d.
Moreover, the order of the graph is equal to |Tn|, i.e., [Zn : Ln].

If Tn + Ln is a tiling of Zn, then Tn + Ln is a tiling of En, where

Tn = Tn + [0, 1)n

is called a Cayley tile of En. Clearly, we have

vol(Tn) = |Tn| = d(Ln), (2.3)

where vol(Tn) denotes the volume of Tn. If d is the M-diameter of Tn, then the greatest
Manhattan distance between a point of Tn and o is d+n. We say that the M-diameter

of Tn is d + n. Based on Proposition 2.1 and (2.3), the order of the graph is equal to
vol(Tn), and the Degree-Diameter Problem for abelian Cayley digraphs is equivalent to
the following problem:

Given positive integers n and d, find the largest vol(Tn) among all Cayley

tiles Tn of En with M -diameter at most d+ n.

Let’s recall some useful definitions and notions introduced by Fiduccia, Forcade and
Zito [9]. Assume that both x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are points in
On. We say that x � y if xi ≤ yi holds for all i. A notch in the boundary of Tn is a
place where it looks like a translation of On has been cut out of the tile (for example,
the point v in Fig. 1). The silhouette of Tn is the set of points p with at least one zero
coordinate such that p � q holds for some point q ∈ Tn. In fact, as one can see from the
next lemma, it is the union of the projections of Tn onto the coordinate hyperplanes.
Let πi denote the projection from E

n to the hyperplane Hi = {x : xi = 0}. Then, as
shown in Fig. 1, the silhouette of Tn is

⋃n
i=1 πi(Tn).

Lemma 2.1 (Fiduccia, Forcade and Zito [9]). The Cayley tile Tn has the following

properties:

(1) If x ∈ Tn and o � y � x, then y ∈ Tn.

(2) It has at most one notch.

(3) It is uniquely determined by its silhouette and, if it has a notch, the coordinates

of the notch.
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Remark 2.1. Let v be a notch of Tn. The last properties of Lemma 2.1 implies that, if
all projections πi(p) of a point p are in the silhouette Tn and v 6� p, then p ∈ Tn. Let
[p, πi(p)] denote the segment connecting p and πi(p). It follows from the first property
of Lemma 2.1 that πi(p) belongs to the silhouette of Tn if and only if

[p, πi(p)] ∩ Tn 6= ∅.

Recall that T4 is a Cayley tile of E4 with M -diameter of d∗, where d∗ ≤ d + 4. We
proceed to prove Theorem 1.3 by dealing with two cases:

Case 1. The Cayley tile T4 has no notch

By Lemma 2.1, T4 is completely determined by its silhouette. For each point p /∈ T4

in O4, according to Remark 2.1, there must be a πi satisfying

[p, πi(p)] ∩ T4 = ∅.

For convenience, then we say p is of πi-type. Note that there are at most four types
and a point can be of more than one type simultaneously.

Lemma 2.2. Assume that p and q are two points in O4. If p � q and p is of πi-type,
then q is also of πi-type.

Proof. Suppose that p is πi-type. Then, we have

[p, πi(p)] ∩ T4 = ∅.

Therefore, we have
πi(p) /∈ T4.

Since p � q, for every point w ∈ [q, πi(q)] one can deduce that

πi(p) � w.

Thus w can not be a point of T4, which implies that

[q, πi(q)] ∩ T4 = ∅.

Therefore, q is also πi-type. The lemma is proved. �

For convenience, we define

S4,d∗ = {(x1, x2, x3, x4) ∈ E
4 : xi ≥ 0, x1 + x2 + x3 + x4 ≤ d∗}.

Note that the greatest Manhattan distance between any point of S4,d∗ and o is d∗,
which implies that

T4 ⊆ S4,d∗ . (2.4)

Clearly,
F = {(x1, x2, x3, x4) ∈ E

4 : xi ≥ 0, x1 + x2 + x3 + x4 = d∗}
is a facet of S4,d∗ , which in fact is a regular tetrahedron.

Let F1 denote the subset of F including all points of π1-type and successively define
Fi to be the subset of F including all points of πi-type which are not in F1 ∪ · · · ∪Fi−1.
Clearly, F1, F2, F3 and F4 are pairwise disjoint and, since T4 has no notch,

F = F1 ∪ F2 ∪ F3 ∪ F4.

For 1 ≤ i ≤ 4, we define

Di =
⋃

p∈Fi

[p, πi(p)].

Since [p, πi(p)] ∩ T4 = ∅ holds for all p ∈ Fi, we have

Di ∩ T4 = ∅,



7

which implies that Di is in the complement of T4.

Lemma 2.3. The sets Di, where 1 ≤ i ≤ 4, are pairwise disjoint.

Proof. If, on the contrary, Di and Dj have a common point p, where i < j. Then
there is a point pi ∈ Fi and a point pj ∈ Fj such that

p ∈ [pi, πi(pi)] ∩ [pj , πj(pj)],

where [pi, πi(pi)] ∩ T4 = ∅ and [pj , πj(pj)] ∩ T4 = ∅. Consequently, p � pi, p � pj ,
and p is both πi-type and πj-type. According to Lemma 2.2, pj is also of πi-type, i.e.,
pj ∈ Fi, which contradicts the fact

Fi ∩ Fj = ∅.

The lemma is proved. �

By (2.4) and Lemma 2.3 we have

vol(T4) ≤ vol(S4,d∗)−
4
∑

i=1

vol(Di) =
d∗4

4!
−

4
∑

i=1

vol(Di). (2.5)

Notice that

4
∑

i=1

vol(Di) =

∫∫∫

F

λf(x)dx =
4
∑

i=1

∫∫∫

πi(Fi)

(d∗− |o,x|M ) dx, (2.6)

where λ is a constant because we are integrating over F instead of over the coordinate
hyperplanes, f(x) is the distance from x to an appropriate coordinate hyperplane. In
fact, if x = (x1, x2, x3, x4) ∈ Fi, then

f(x) = xi.

To maximize the right-hand side of (2.5), we need to minimize the value of (2.6).
For any x = (x1, x2, x3, x4) in F , we define

g(x) = min {x1, x2, x3, x4}.

Furthermore, we define

F ′
i = {x ∈ F : g(x) = xi}.

Of course, πi(F
′
i ) is the projection of F ′

i onto the nearest coordinate hyperplane. Thus,
we have

vol(T4) ≤
d∗4

4!
−
∫∫∫

F

λg(x)dx

=
d∗4

24
−

4
∑

i=1

∫∫∫

πi(F ′

i
)

(d∗− |o,x|M ) dx

=
d∗4

24
− 4

∫∫∫

π4(F ′

4
)

(d∗−x1−x2−x3) dx.
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o

x1

x2

x3

o

x1

x2

x3

(d∗,0,0,0)

(0,d∗,0,0)

(0,0,d∗,0)

(d
∗

4
,d

∗

4
,d

∗

4
,0)

(d∗,0,0,0)

(0,d∗,0,0)

(d
∗

4
,d

∗

4
,0,0)

Fig. 2. The integral region π4(F
′

4) and its projection on the x1x2-plane

The integral region π4(F
′
4) and its projection on the x1x2-coordinate plane are shown

in Fig. 2. It follows that

∫∫∫

π4(F ′

4
)

(d∗−x1−x2−x3) dx =

∫ d
∗

4

0
dx1

∫ d∗−x1

d∗−3x1

dx2

∫ d∗−x1−x2

1

2
(d∗−x1−x2)

(d∗−x1−x2−x3) dx3

+

∫ d∗

d∗

4

dx1

∫ d∗−x1

1

3
(d∗−x1)

dx2

∫ d∗−x1−x2

1

2
(d∗−x1−x2)

(d∗−x1−x2−x3) dx3

+

∫ d
∗

4

0
dx1

∫ d∗−3x1

x1

dx2

∫ d∗−x1−x2

d∗−2x1−x2

(d∗−x1−x2−x3) dx3

+

∫ d
∗

4

0
dx2

∫ d∗−3x2

x2

dx1

∫ d∗−x1−x2

d∗−x1−2x2

(d∗−x1−x2−x3) dx3

=
d∗4

384
.

Thus, with no notch in T4, we have

vol(T4) ≤
d∗4

32
.

Case 2. The Cayley tile T4 has a notch

From Remark 2.1, if T4 has a notch v, then not all points x ∈ F are of π1-, π2-, π3-,
and π4-type, and those that are not must satisfy v � x. Then, we define

Q = {x ∈ F : v � x}.

Following the previous argument, let F1 denote the subset of F \Q including all points
of π1-type and successively define Fi to be the subset of F \ Q including all points of
πi-type which are not in F1 ∪ · · · ∪ Fi−1. Then, we write

Di =
⋃

x∈Fi

[x, πi(x)].

It is easy to see that

F = F1 ∪ F2 ∪ F3 ∪ F4 ∪Q
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c

(1) (2)

QQ

F F

Q

c(d∗,0,0,0)

(0,0,0,d∗) (0,0,0,d∗)

(0,0,d∗,0) (0,0,d∗,0)

(d∗,0,0,0)

(0,d∗,0,0) (0,d∗,0,0)

Fig. 3. The F ′

i
regions and the placement of Q

is a disjoint union, and the sets Di are in the complement of T4. Furthermore, similar
to Lemma 2.3, one can prove that Di are pairwise disjoint. Then, we define

P = {p ∈ S4,d∗ : v � p} .
In other words, P is the union of all segments from Q to the notch point v. Thus, we
have

vol(T4) ≤
d∗4

4!
−

4
∑

i=1

vol(Di)− vol(P ). (2.7)

Similar to (2.6), we have

4
∑

i=1

vol(Di) =

∫∫∫

F\Q

λf(x)dx =

4
∑

i=1

∫∫∫

πi(Fi)

(d∗− |o,x|M ) dx, (2.8)

where λ is a constant because we are integrating over F instead of over the coordinate
hyperplanes, f(x) is the distance from x to an appropriate coordinate hyperplane. In
fact, if x = (x1, x2, x3, x4) ∈ Fi, then

f(x) = xi.

First, let’s fix the volumes of Q and P and to minimize the value of (2.8). For a
point x = (x1, x2, x3, x4) in F\Q, we define

g(x) = min {x1, x2, x3, x4},
which is the distance from x to the nearest coordinate hyperplane, and

F ′
i = {x ∈ F\Q : g(x) = xi}.

Of course, then πi(F
′
i ) is the projection of F ′

i onto the nearest coordinate hyperplane.
Therefore, we have

4
∑

i=1

vol(Di) ≥
∫∫∫

F\Q

λg(x)dx.

Let g1(x) denote the distance from x to the nearest face of F (see Fig. 3 (1)), then
∫∫∫

F\Q

λg(x)dx =

∫∫∫

F\Q

λ1g1(x)dx

holds with a suitable constant λ1. Obviously, the four sets F ′
1, F

′
2, F

′
3 and F ′

4 are subsets
of the four pyramids with the center c of F as their common vertices and with the four
facets of F as their bases, respectively. Now, we proceed to minimize the integral
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I =

∫∫∫

F\Q

λ1g1(x)dx.

For convenience, we write

h = g1(c)

and define

χ(x, t) =

{

1, g1(x) ≥ t,
0, g1(x) < t.

Then, we have

I = λ1

∫∫∫

F\Q

∫ h

0
χ(x, t)dtdx = λ1

∫ h

0

∫∫∫

F\Q

χ(x, t)dxdt.

It is easy to see, for any t ∈ [0, h], the set

T = {x : g1(x) ≥ t}

is a tetrahedron centered at c, i.e., the blue tetrahedron in Fig. 3 (2). Thus, we have

∫∫∫

F\Q

χ(x, t)dx = vol((F\Q) ∩ T ).

Since the volume of Q is fixed, the integral is minimized when Q is centered at c. In
other words,

I = λ1

∫ h

0

∫∫∫

F\Q

χ(x, t)dxdt ≥ λ1

∫ h

0

∫∫∫

F\Q

χ(x, t)dxdt,

where Q is the translate of Q centered at c.
Now the only question remaining is, when Q is centered at c, how large should Q be

in order to maximize

d∗4

24
− I − vol(P ).

Suppose that the notch v = (v, v, v, v), where 0 ≤ v ≤ d∗

4 , then we have

vol(P ) =
(d∗ − 4v)4

4!
.
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o

x1

x2

x3

o

x1

x2

x3

(d∗,0,0,0) (d∗,0,0,0)

(0,d∗,0,0) (0,d∗,0,0)

(0,0,d∗,0)

(d∗−3v,v,v,0) (d∗−3v,v,0,0)(v,d∗−3v,v,0)

(v,d∗−3v,0,0)
(v,v,d∗−3v,0)

(v,v,0,0)

Fig. 4. The integral region π4(F
′

4) and its projection on the x1x2-coordinate
plane when there is a notch

The integral region π4(F
′
4) and its projection on the x1x2-plane are shown in Fig. 4.

Then, one can deduce that

∫∫∫

π4(F ′

4
)

(d∗−x1−x2−x3)dx =

∫ v

0
dx1

∫ d∗−x1

d∗−3x1

dx2

∫ d∗−x1−x2

1

2
(d∗−x1−x2)

(d∗−x1−x2−x3)dx3

+

∫ d∗−3v

v

dx1

∫ d∗−x1

d∗−x1−2v
dx2

∫ d∗−x1−x2

1

2
(d∗−x1−x2)

(d∗−x1−x2−x3)dx3

+

∫ d∗

d∗−3v
dx1

∫ d∗−x1

1

3
(d∗−x1)

dx2

∫ d∗−x1−x2

1

2
(d∗−x1−x2)

(d∗−x1−x2−x3)dx3

+

∫ d∗−3v

v

dx1

∫ d∗−x1−2v

v

dx2

∫ d∗−x1−x2

d∗−x1−x2−v

(d∗−x1−x2−x3)dx3

+

∫ v

0
dx1

∫ d∗−3x1

x1

dx2

∫ d∗−x1−x2

d∗−2x1−x2

(d∗−x1−x2−x3)dx3

+

∫ v

0
dx2

∫ d∗−3x2

x2

dx1

∫ d∗−x1−x2

d∗−x1−2x2

(d∗−x1−x2−x3)dx3

= 2v4 − 4d∗

3
v3 +

d∗2

4
v2.

Therefore, in the case that T4 has a notch, we have shown that

vol(T4) ≤ −56

3
v4 + 16d∗v3 − 5d∗2v2 +

2d∗3

3
v. (2.9)

To find the maximum of the right-hand side of (2.9), taking its derivative and setting
it equal to zero, we get

(

v − d∗

4

)2(

v − d∗

7

)

= 0.

It is easy to check that the right-hand side of (2.9) attains a local minimum d∗4

32 at

v = d∗

4 and attains its maximum 11d∗4

343 at v = d∗

7 . In other words, we have

vol(T4) ≤
11d∗4

343
≤ 11(d+ 4)4

343
.
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As a conclusion of these two cases, by (2.2) and (2.3) we have shown that

f(4, d) ≤ 11(d + 4)4

343
.

Theorem 1.3 is proved.

3. Lattice Coverings of Simplices

If a1, a2, . . ., an are n independent vectors in E
n, then the discrete set

Λ =
{

∑

ziai : zi ∈ Z

}

is called an n-dimensional lattice. Usually, {a1, a2, . . ., an} is called a basis of Λ.
Assume that A is the n× n matrix whose ith row is the coordinates of ai, then |detA|
is called the determinant of Λ. Usually, it is written as d(Λ). If a1, a2, . . ., an are n
independent vectors in Z

n, as shown before, then Λ is an n-dimensional sublattice of
Z
n. In addition, we have

d(Λ) = [Zn : Λ] .

For a convex body K in E
n, we call K + Λ a lattice covering of En if

E
n =

⋃

v∈Λ

(K + v).

Usually, the value

θ(K,Λ) =
vol(K)

d(Λ)

is called the density of the covering. Let L denote the family of all lattices Λ such that
K + Λ is a lattice covering of En. Then we call

θl(K) = min
Λ∈L

θ(K,Λ) = min
Λ∈L

vol(K)

d(Λ)

the lattice covering density ofK. Clearly, it is the density of the thinnest lattice covering
of K.

Given a positive integers n and d, we define

S◦
n,d = {(z1, . . . , zn) ∈ Z

n : zi ≥ 0, z1 + . . .+ zn ≤ d}.
Note that the greatest Manhattan distance between a point of S◦

n,d and o is d, and

∣

∣S◦
n,d

∣

∣ =

(

d+ n

n

)

=
dn

n!
+O(dn−1). (3.1)

Usually, we call S◦
n,d + Ln a lattice covering of Zn if Ln is a lattice and

Z
n =

⋃

v∈Ln

(

S◦
n,d + v

)

.

For such a lattice covering we define

θ∗(S◦
n,d, Ln) =

|S◦
n,d|

d(Ln)
.

Let L∗
n denote the family of all Ln such that S◦

n,d+Ln is a lattice covering of Zn. Then
we call

θ∗(S◦
n,d) = min

Ln∈L∗

n

θ∗(S◦
n,d, Ln) = min

Ln∈L∗

n

|S◦
n,d|

d(Ln)

the lattice covering density of S◦
n,d.
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Clearly, Sn,d is the convex hull of S◦
n,d. To show a useful connection between θ∗(S◦

n,d)

and θl(Sn), we need the following lemma:

Lemma 3.1 (Dougherty and Faber [4]). Let Ln be a sublattice of Zn and let Λ be

a lattice in E
n which is generated by {a1, a2, . . ., an}. Then the following holds:

(1) If S◦
n,d + Ln = Z

n, then Sn,d+n + Ln = E
n.

(2) If Sn,d + Λ = E
n, then there is a constant c such that for all sufficiently large

real numbers k, if bi is obtained from kai by rounding all coordinates to the

nearest integer, and Ln is the lattice generated by {b1, b2, . . ., bn}, then
Sn,kd+c + Ln = E

n.

Lemma 3.2. For fixed n and large d, we have

θ∗(S◦
n,d) = θl(Sn) +O(d−1).

Proof. Suppose that S◦
n,d + Ln is a lattice covering of Zn with density θ∗(S◦

n,d). By

Lemma 3.1 (1), we have
Sn,d+n + Ln = E

n.

Then, by (3.1) we get

θl(Sn) = θl(Sn,d+n) ≤ θ(Sn,d+n, Ln) =
vol(Sn,d+n)θ

∗(S◦
n,d)

|S◦
n,d|

=
θ∗(S◦

n,d)

1 +O(d−1)
,

which implies
θ∗(S◦

n,d) ≥ θl(Sn) +O(d−1). (3.2)

On the other hand, suppose that Sn,1 + Λ is a lattice covering of En with density

θl(Sn). Let {a1, a2, . . ., an} and c as chosen in Lemma 3.1. Assume that d is a large
integer, we take k = d − c and define Ln to be the lattice approximating kΛ as in
Lemma 3.1 (2), generated by {b1, b2, . . ., bn}. Now Ln is a sublattice of Zn satisfying

Sn,k+c + Ln = E
n,

so we have
S◦
n,d + Ln = Z

n.

Let A and B be the n× n matrices with rows ai and bi, respectively. Then, we have

θ∗(S◦
n,d) ≤ θ∗(S◦

n,d, Ln) =
|S◦

n,d|
|detB| ,

which together with (3.1) implies

θ∗(S◦
n,d) ≤

(

1

n!
+O(d−1)

)

1

|det(d−1B)| . (3.3)

By the definitions of A = (ai,j) and B = (bi,j), we have

bi,j = kai,j +O(1) = dai,j +O(1), i, j = 1, 2, . . . , n,

which implies that

d−1bi,j = ai,j +O(d−1), i, j = 1, 2, . . . , n.

Combined with the assumption that

θl(Sn) =
vol(Sn,1)

|detA| =
1

n!|detA| ,

we get

|det(d−1B)| = |detA|+O(d−1) =
1

n!θl(Sn)
+O(d−1). (3.4)
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Therefore, by (3.3) and (3.4) we get

θ∗(S◦
n,d) ≤ θl(Sn) +O(d−1). (3.5)

Clearly, (3.2) and (3.5) together implies

θ∗(S◦
n,d) = θl(Sn) +O(d−1).

The lemma is proved. �

Remark 3.1. According to Lemma 3.2, we know that

θl(Sn) = θl(Sn,1) = lim
d→∞

θ∗(S◦
n,d),

which is more convenient for us to study θl(Sn).

Recall that Tn was defined by (2.1) with M-diameter d. To show Theorem 1.1 and
Theorem 1.2, we need another result.

Lemma 3.3. S◦
n,d + Ln is a covering of Zn if and only if Tn + Ln is a tiling of Zn,

where

Tn = S◦
n,d \

⋃

v∈(Ln∩On)\{o}

S◦
n,d + v.

Proof. Since Tn ⊆ S◦
n,d, the sufficiency is obvious. Now we proceed to show the

necessary part. In other words, if S◦
n,d +Ln is a covering of Zn, for every point x ∈ Z

n

there is exact one point u ∈ Ln satisfying x ∈ Tn + u.
Without loss of generality, we only deal with the points x = (x1, x2, . . . , xn) ∈ Z

n

with xi ≥ d for all i = 1, 2, . . . , n. Let u be the ≺-last point of Ln such that x ∈ S◦
n,d+u

and write

y = x− u ∈ S◦
n,d.

Then, for any point v ∈ (Ln ∩ On) \ {o}, we have

y /∈ S◦
n,d + v.

Otherwise, we obtain that

x = y+ u ∈ S◦
n,d + v + u,

where u ≺ v + u, which contradicts the ≺ assumption on u. Thus, we must have
y ∈ Tn and

x ∈ Tn + u.

Suppose that

x = y + u = y′ + u′,

where u and u′ are distinct points of Ln and both y and y′ are in Tn (also in S◦
n,d).

Then, one can deduce that

v = y− y′ = u′ − u

is a nonzero point of Ln. Therefore, we have either o ≺ v or v ≺ o. In the former case,
we have

y = y′ + v ∈ S◦
n,d + v,

which contradicts to y ∈ Tn; In the latter case, we get

y′ = y− v ∈ S◦
n,d + (−v),

which contradicts to y′ ∈ Tn. The lemma is proved. �
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Proof of Theorem 1.1. Based on Proposition 2.1 and Lemma 3.3, we know that the
abelian Cayley digraph of G and {g1, g2, g3} has a diameter of at most d if and only
if S◦

3,d + L3 = Z
3. By (1.2) and (2.2), we have

[

Z
3 : L3

]

≤ 3(d + 3)3

25
,

which implies

θ∗(S◦
3,d) = min

L3∈L∗

3

|S◦
3,d|

[Z3 : L3]
≥ 25

(

d+3
3

)

3(d+ 3)3
,

where L∗
3 is the family of all L3 such that S◦

3,d + L3 is a lattice covering of Z3. By
Remark 3.1, we have

θl(S3) = lim
d→∞

θ∗(S◦
3,d) ≥ lim

d→∞

25
(

d+3
3

)

3(d+ 3)3
=

25

18
.

Theorem 1.1 is proved. �

Proof of Theorem 1.2. Similar to Theorem 1.1, by (2.2) and Theorem 1.3, we have

[

Z
4 : L4

]

≤ 11(d+ 4)4

343
,

which implies

θ∗(S◦
4,d) = min

L4∈L∗

4

|S◦
4,d|

[Z4 : L4]
≥ 343

(

d+4
4

)

11(d + 4)4
,

where L∗
4 is the family of all L4 such that S◦

4,d + L4 is a lattice covering of Z4. By
Remark 3.1, we have

θl(S4) = lim
d→∞

θ∗(S◦
4,d) ≥ lim

d→∞

343
(

d+4
4

)

11(d + 4)4
=

343

264
.

Theorem 1.2 is proved. �
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