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A CONVEXITY-PRESERVING AND PERIMETER-DECREASING
PARAMETRIC FINITE ELEMENT METHOD FOR THE

AREA-PRESERVING CURVE SHORTENING FLOW

WEI JIANG∗, CHUNMEI SU† , AND GANGHUI ZHANG‡

Abstract. We propose and analyze a semi-discrete parametric finite element scheme for solving
the area-preserving curve shortening flow. The scheme is based on Dziuk’s approach (SIAM J.
Numer. Anal. 36(6): 1808-1830, 1999) for the anisotropic curve shortening flow. We prove that the
scheme preserves two fundamental geometric structures of the flow with an initially convex curve:
(i) the convexity-preserving property, and (ii) the perimeter-decreasing property. To the best of our
knowledge, the convexity-preserving property of numerical schemes which approximate the flow is
rigorously proved for the first time. Furthermore, the error estimate of the semi-discrete scheme is
established, and numerical results are provided to demonstrate the structure-preserving properties
as well as the accuracy of the scheme.

Key words. area-preserving curve shortening flow, parametric finite element method, error
estimate, convexity-preserving, perimeter-decreasing
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1. Introduction. Consider the volume-preserving mean curvature flow driven
by the motion law

(1.1) v = (H − 〈H〉)N , on Γt,

where Γt is a family of smooth hypersurfaces in Rn, v denotes the velocity, N is the
inner normal vector, H represents the scalar mean curvature (with the sign convention
that H is positive for balls), and 〈H〉 :=

∫

Γt
Hdsn−1/

∫

Γt
dsn−1 is the average mean

curvature along Γt. It is well-known that the volume-preserving mean-curvature flow
can be interpreted as the L2-gradient flow of the area functional under configurations
with a fixed volume [37]. The volume-preserving mean curvature flow has the following
fundamental geometric properties, i.e.,

(i) Volume-preserving blue [2, Lemma 5.25]. It can be immediately verified that
the volume enclosed by Γt is indeed preserved by noticing

d

dt
|Ωt| = −

∫

Γt

v · Ndsn−1 = −

∫

Γt

(H − 〈H〉)dsn−1 = 0,

where Ωt is the region enclosed by Γt. In dimension two (i.e., n = 2), it
becomes the area-preserving property for a planar curve.

(ii) Area-shrinking blue [2, Lemma 5.25]. Actually, one can easily check that

d

dt
|Γt| = −

∫

Γt

Hv · Ndsn−1 = −

∫

Γt

(H − 〈H〉)2dsn−1 ≤ 0.

When n = 2, it becomes perimeter-decreasing for a planar curve.
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(iii) Convexity-preserving. When n = 2, it was shown by Gage that starting from
an initially, smooth and convex closed curve, this flow (1.1) preserves the
convexity and evolves the curve into a circle [23]. Furthermore, Huisken
extended the result to higher dimensional cases [25]. For more general initial
data, interested readers may refer to [1, 22].

In this paper, we focus on the planar curve (n = 2). In this case, the volume-
preserving mean curvature flow is also known as the area-preserving curve shortening
flow (AP-CSF), and it can be parametrized by the following equation [23]

(1.2)

{

∂tX =
(

H − 2π
L

)

N , ξ ∈ S1, t ∈ (0, T ],

X(ξ, 0) = X0(ξ), ξ ∈ S1,

where X(ξ, t) : S1 × [0, T ] → Γt ⊆ R2, L := L(t) is the length of Γt, by recalling the
theorem of turning tangents [17], i.e.,

∫

Γt
Hds1 = 2π, for a simple closed curve Γt.

Nowadays, the AP-CSF has found important applications in many research areas,
such as material science and image processing [27], and it can be viewed as an area-
preserving variant of the CSF [35, 42] or a limit flow of nonlocal Ginzburg-Landau
equation [13]. There have been extensive numerical investigations concerning with
the CSF or AP-CSF in the last decades. Among them, parametric finite element
methods (PFEMs) have been widely proposed for simulating the CSF and some other
related geometric flows [3], e.g., the surface diffusion flow [4], and anisotropic geomet-
ric flows [6,8–10]. Numerical approximations to the CSF by using PFEMs could date
back to the pioneering work of Dziuk [18] in 1991. Since then, various techniques
have been introduced to make the designed PFEMs more accurate and efficient in
practical simulations, including the method of Barrett, Garcke and Nürnberg (the
BGN scheme) [6, 7] based on a novel variational formulation, the method of Deckel-
nick and Dziuk by introducing an artificial tangential velocity [15], and the method
proposed by Elliott and Fritz based on special reparametrizations [21]. These methods
induce appropriate tangential motions that lead to good mesh distribution property,
which play a vital role in numerical simulations. Recently, more and more attention
has been paid to designing “structure-preserving” (e.g., area-preserving or perimeter-
decreasing) PFEMs for solving geometric evolution flows [3, 4, 28].

However, error estimates for these schemes seem difficult and quite challenging.
For example, Dziuk first studied the convergence of a semi-discrete linearly implicit
PFEM for the CSF [19] and anisotropic CSF [20], respectively, based on a finite
difference structure; Li developed a new technique to analyze the convergence of
semi-discrete high-order PFEMs for the CSF [33] and mean curvature flow of closed
surfaces [34], respectively. For Dziuk’s fully discrete linearly implicit scheme [19],
until very recently, an optimal error estimate in H1 has been established by Ye and
Cui [44]. As for the error analysis about other numerical methods of the CSF or other
related geometric flows, we refer to [5, 15, 21, 26, 30, 31, 39].

Back to the AP-CSF, there exist various numerical methods in the literature,
e.g., the finite difference method [35], the MBO method [29, 40], the crystalline al-
gorithm [43] and PFEMs [11, 38]. Particularly, structure-preserving properties were
investigated in [11, 38, 41, 43]. For example, the semi-discrete PFEM in [11] based on
an elegant variational formulation was shown to preserve the length shortening prop-
erty, and the fully discrete crystalline algorithm in [43], the semi-discrete polygonal
evolution law in [41] based on the definition of tangent and normal vectors/velocities
at each vertex, the fully discrete PFEM in [38] was shown to be area-preserving and
perimeter-decreasing. However, error estimates have been barely studied for the above
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mentioned methods, except for the crystalline algorithm in [43] where the error esti-
mate was only established for the curvature since the numerical scheme was designed
based on the crystalline approximation which merely involves the curvature. To the
best of our knowledge, there exists few numerical analysis about numerical methods
for solving the AP-CSF, and the convexity-preserving property has never been inves-
tigated in the literature. The reason lies in that the nonlocal term in the AP-CSF
has brought troubles and considerable challenges in numerical analysis.

In this paper, we propose a semi-discrete PFEM for the AP-CSF based on Dziuk’s
approach for anisotropic CSF [20], investigate its structure-preserving properties and
present its error analysis. Specifically, we prove that our scheme preserves two impor-
tant geometric structures of the AP-CSF, i.e., convexity-preserving and perimeter-
decreasing properties. As far as we know, this is the first job to rigorously prove the
convexity-preserving property and to give the error estimate of numerical methods
for solving the AP-CSF.

To start, (1.2) can be written more explicitly as

(1.3) ∂tX =
1

|∂ξX |
∂ξ

( ∂ξX

|∂ξX |

)

−
2π

L

( ∂ξX

|∂ξX |

)⊥

,

where (a, b)⊥ := (−b, a). This naturally yields a weak formulation: for any v ∈
(H1(S1))2, it holds

∫

S1

|∂ξX |∂tX · v dξ +

∫

S1

∂ξX

|∂ξX |
· ∂ξv dξ +

∫

S1

2π

L
(∂ξX)⊥ · v dξ = 0.(1.4)

As mentioned in [19], the derived linearly implicit PFEM from the above formulation
for the CSF (with the last term missing) may fail to preserve the length shortening
property of the CSF. To overcome this, Dziuk proposed another scheme based on the
lumping of masses in [19] for the CSF. Here we utilize the similar approach: find a
solution Xh(ξ, t) ∈ Vh × [0, T ] satisfying the weak form (2.4) with initial condition
Xh(ξ, 0) = IhX

0, where Vh is a vector valued Lagrange finite element space consisting
of piecewise linear polynomial and Ih is the standard Lagrange interpolation. Similar
as in [14], the semi-discrete scheme focuses on the motion of the initial polygon,
which is determined by the evolution of the vertices. We show that if the initial
curve is convex, then the evolved polygon keeps convex all the time. Moreover, the
perimeter of the polygon is decreasing. To show the convexity-preserving property,
we characterize the convexity of a polygon by the positivity of the oriented area of
all adjacent triangles, which will be shown by a contradiction argument. Surprisingly,
the perimeter-decreasing property can be reduced to a pure trigonometric inequality
when the polygon keeps convex. We note that nondegeneration of vertices is necessary
to ensure the evolved polygons are well-behaved. This will be guaranteed by the error
estimate of the scheme, which shows that the semi-discrete scheme (2.4) converges in
H1 at the first order, and the lower bound of the edge lengths of the polygon could
keep positive all the time.

The rest of the paper is organized as follows. In Section 2, we start with the spatial
discretization which approximates the AP-CSF and summarize our main results. In
Section 3, we prove that the numerical scheme rigorously preserves two important ge-
ometric structures of the flow, i.e., the convexity-preserving and perimeter-decreasing
properties. Then, we present the proof of the error estimate of the scheme in Section
4. Finally, some numerical results produced by the scheme are provided in Section 5
to validate our theoretical results.
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2. Spatial discretization and main results. Let 0 = ξ0 < ξ1 < . . . < ξN =
2π be a partition of S1 = [0, 2π]. We denote hj = ξj − ξj−1 by the length of the
interval Ij := [ξj−1, ξj ] and h = max

j
hj . Throughout the paper, we use a periodic

index, i.e., fj = fj±N when involved. We assume that the partition and the exact
solution are regular in the following senses, respectively:

(Assumption 2.1) There exist constants Cp and CP such that

min
j

hj ≥ Cph, |hj+1 − hj| ≤ CPh
2, 1 ≤ j ≤ N.

(Assumption 2.2) Suppose that the unique solution of (1.2) with an initial
value X0 ∈ H2(S1) satisfies X ∈ W 1,∞

(

[0, T ], H2(S1)
)

, i.e.,

K(X) := ‖X‖W 1,∞([0,T ],H2(S1)) < ∞.

We further assume that there exist constants 0 < κ1 < κ2 such that

κ1 ≤ |∂ξX(ξ, t)| ≤ κ2, ∀ (ξ, t) ∈ S
1 × [0, T ].

We define the following finite element space consisting of piecewise linear functions
satisfying periodic boundary conditions:

Vh =
{

v ∈ C0(S1,R2) : v|Ij ∈ P1(Ij), 1 ≤ j ≤ N, v(ξ0) = v(ξN )
}

,

where P1 denotes all polynomials with degrees at most 1. For any continuous func-
tion v ∈ C0(S1,R2), the linear interpolation Ihv ∈ Vh is uniquely determined through
Ihv(ξj) = v(ξj) for all 1 ≤ j ≤ N and can be explicitly written as Ihv(ξ) =
N
∑

j=1

v(ξj)ϕj(ξ), where ϕj represents the standard Lagrange basis function satisfying

ϕj(ξi) = δij . We have the following basic estimates from finite element theory.

Lemma 2.1 ( [12]). Under Assumption 2.1, there exists a constant C depending
on Cp, CP such that the following estimates hold:
(i) (Interpolation estimate). For any Y ∈ H2(S1), we have

‖Y − IhY ‖L2 ≤ Chk‖Y ‖Hk , k = 1, 2; ‖Y − IhY ‖L∞ ≤ Ch1/2‖Y ‖H1 ,

‖∂ξ (Y − IhY ) ‖L2 ≤ Ch‖Y ‖H2 , ‖∂ξIhY ‖L2 ≤ C‖Y ‖H1 .
(2.1)

(ii) (Inverse estimate). For vh ∈ Vh, we have

(2.2) ‖vh‖L∞ ≤ Ch−1/2‖vh‖L2, ‖vh‖H1 ≤ Ch−1‖vh‖L2 .

Definition 2.2. We call a function

(2.3) Xh(ξ, t) =
N
∑

j=1

Xj(t)ϕj(ξ) : S
1 × [0, T ] → R

2

is a semidiscrete solution of (1.3) if it satisfies the following weak formulation
∫

S1

|∂ξXh|∂tXh · vh dξ +

∫

S1

∂ξXh

|∂ξXh|
· ∂ξvh dξ

+

∫

S1

h2|∂ξXh|

6
∂ξ∂tXh · ∂ξvh dξ +

∫

S1

2π

Lh
(∂ξXh)

⊥ · vh dξ = 0, ∀ vh ∈ Vh,

(2.4)
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with initial condition Xh(ξ, 0) = IhX
0, where Lh represents the perimeter of the

evolved curve (image of Xh), i.e.,

Lh :=

N
∑

j=1

hj |∂ξXh||Ij =

N
∑

j=1

|Xj −Xj−1| =:

N
∑

j=1

qj ,

and h is a piecewise constant h = hj on Ij.
Remark 2.1. A similar version of (2.4) was proposed and analyzed in [19, (9)

and (15)] and [20, Definition 4.1] for CSF and anisotropic CSF, respectively. The

introduction of the third term
∫

S1

h
2|∂ξXh|

6 ∂ξ∂tXh · ∂ξvhdξ in (2.4) gives rise to the
so-called mass-lumped scheme (similar to (3.1)) that preserves the length shortening
property for the CSF, which was missing for the original formulation (e.g., (1.4)). On
the other hand, a more natural explanation was given in [39, (1.6) and (3.12)], where
it was shown that (2.4) is equivalent to the following scheme
∫

S1

|∂ξXh|Ih(∂tXh·vh) dξ+

∫

S1

∂ξXh

|∂ξXh|
·∂ξvh dξ+

∫

S1

2π

Lh
(∂ξXh)

⊥·vh dξ = 0, ∀ vh ∈ Vh,

which looks like the original version (1.4) with the Lagrangian interpolation introduced
for the first term.

Next we present the main results of this paper.

Theorem 2.3. (Convexity-preserving) Suppose the initial curve Xh(ξ, 0) =
IhX

0 is a convex N -polygon, then it is always a convex N -polygon during the evolution
by (2.4) if qj > 0 for all j.

Theorem 2.4. (Perimeter-decreasing) Let Xh be the solution of (2.4) with
convex initial data, then the perimeter of the closed curve is decreasing, i.e.,

(2.5)
d

dt
Lh ≤ 0.

Remark 2.2. For the cases of classical CSF or anisotropic CSF and the corre-
sponding solutions based on similar formulations as in (2.4), by direct computations
based on a finite difference structure, it was shown in [19, 20] that the length of each
element of Xh is decreasing, i.e., q′j(t) ≤ 0 for 1 ≤ j ≤ N . This directly implies the
perimeter-decreasing property. We point out that this property can also be obtained
by standard energy estimates for the CSF. However, in our AP-CSF case, both argu-
ments fail to derive the perimeter-decreasing property. We have to carry out a more
careful investigation in which the convexity property plays a vital role (Section 3.2).

Theorem 2.5. (Error estimate) Let X(ξ, t) be a solution of (1.3) satisfying
Assumption 2.2. Assume that the partition of S1 satisfies Assumption 2.1. Then there
exists h0 > 0 such that for all 0 < h ≤ h0, there exists a unique semi-discrete solution
Xh for (2.4). Furthermore, the solution satisfies

∫ T

0

‖∂tX − ∂tXh‖
2
L2ds+ sup

[0,T ]

‖X −Xh‖
2
H1 ≤ Ch2,

where h0 and C depend on Cp, CP , κ1, κ2, T and K(X). In particular, we have

(2.6) min
j

qj(t) > 0, ∀ t ∈ [0, T ].
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3. Convexity-preserving and perimeter-decreasing properties. Similar
as in [16], we rewrite (2.4) into a lumped mass formulation. More precisely, taking

vh = (ϕj , 0) =
(ξ − ξj−1

hj
χIj +

ξj+1 − ξ

hj+1
χIj+1

, 0
)

,

in (2.4), where χ is the characteristic function, calculations in [20] give
∫

S1

|∂ξXh|∂tXh · vh dξ +

∫

S1

∂ξXh

|∂ξXh|
· ∂ξvh dξ +

∫

S1

h2|∂ξXh|

6
∂ξ∂tXh · ∂ξvh dξ

=
qj + qj+1

2
Ẋ

[1]
j −

(

T
[1]
j+1 − T

[1]
j

)

,

where a[1] denotes the first component of the vector a ∈ R2, and

Tj :=
Xj −Xj−1

|Xj −Xj−1|
, Nj =

( Xj −Xj−1

|Xj −Xj−1|

)⊥

.

For the last term involving the perimeter, we similarly compute
∫

S1

2π

Lh
(∂ξXh)

⊥ · vh dξ

=

∫ ξj

ξj−1

2π

Lh

qj
hj

Nj ·
(ξ − ξj−1

hj
, 0
)

dξ +

∫ ξj+1

ξj

2π

Lh

qj+1

hj+1
Nj+1 ·

(ξj+1 − ξ

hj+1
, 0
)

dξ

=
π

Lh
qjN

[1]
j +

π

Lh
qj+1N

[1]
j+1.

Similarly taking vh = (0, ϕj) yields the equation for the second component. Thus the
weak formulation (2.4) is equivalent to the following lumped mass formulation
(3.1)
qj + qj+1

2
Ẋj = Tj+1 −Tj −

π

Lh
(qjNj + qj+1Nj+1) = Tj+1 −Tj −

π

Lh
(Xj+1 −Xj−1)

⊥.

Hence it remains to solve the ODE system (3.1) and the image of Xh is a polygon
with Xj(t) as the vertices.

For further studies, we derive some important formulae which will be used fre-
quently. Straightforward calculations as in [16, Proposition 4.1], [20, Lemma 3.1,
Lemma 4.2] and [39, Lemma 2.4, Lemma 3.2] lead to

∂t|∂ξX | = −|∂ξX ||∂tX |2 + ∂tX ·R|∂ξX |,(3.2)

d

dt
qj = −

1

qj + qj+1
|Tj+1 − Tj |

2 −
1

qj + qj−1
|Tj−1 − Tj |

2 + Tj · (Rj −Rj−1)(3.3)

= −
qj + qj+1

4
|Ẋj −Rj |

2 −
qj + qj−1

4
|Ẋj−1 −Rj−1|

2 + Tj · (Rj −Rj−1) ,(3.4)

where for simplicity we denote

(3.5) R := −
2π

L
N , Rj := −

2π

Lh

Njqj +Nj+1qj+1

qj + qj+1
.

By using above quantities, the equation (3.1) can also be written as

(3.6) Ẋj −Rj = 2 (Tj+1 − Tj) /(qj + qj+1).

In this section, we will prove that this semi-discrete geometric flow preserves the
convexity of polygons under the nondegeneration property of vertices, which can be
guaranteed by (2.6). Furthermore, the perimeter-decreasing property is also shown
for convex initial data.
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3.1. Proof of Theorem 2.3. First, we carry out some clarifications concerning
with a polygon. We denote P = (Y1, . . . , YN ) as an N -polygon with Yj being its
vertices and Yj−1Yj being the edge connecting Yj−1 and Yj . We emphasize that
P = (Y1, . . . , YN ) has exactly N sides, i.e., none of any three adjacent points are
collinear. We say P is a convex polygon if it is the boundary of a convex set. Without
loss of generality, we assume that Yj is arranged in an anticlockwise way. We define
the oriented area of three points Y1, Y2, Y3 ∈ R2 as

Area(Y1, Y2, Y3) :=
1

2

∣

∣

∣

∣

∣

∣

1 x1 y1
1 x2 y2
1 x3 y3

∣

∣

∣

∣

∣

∣

=
1

2
(Y3 − Y2) · (Y2 − Y1)

⊥,

where Yi = (xi, yi), i = 1, 2, 3. The following characterizations of convexity are
straightforward.

Lemma 3.1. Let P = (X1, . . . , XN ) be an N -polygon. The following statements
are equivalent:

(i) The N -polygon P = (X1, . . . , XN) is convex;

(ii) Any internal angle ∠Xj−1XjXj+1 < π for j = 1, . . . , N ;

(iii) Sj := Area(Xj−1, Xj , Xj+1) > 0 for j = 1, . . . , N ;

(iv) Sk
j := Area(Xj−1, Xj, Xk) > 0 for j = 1, . . . , N and k 6= j − 1, j.

Here, we set X0 = XN and XN+1 = X1 when involved.
Proof. Clearly we have (i)⇔(ii)⇔(iii) and (iv)⇒(iii). It suffices to show (i)⇒(iv).

Indeed, by the support property of convex polygons [24, Theorem 4.2], for any X ∈
Xj−1Xj , there exists a support hyperplane ℓ(X) such that P is contained in one of
the two closed halfspaces determined by ℓ(X). It’s obvious that Xj−1Xj ⊆ ℓ(X). In
particular, for any k 6= j − 1, j, Xk lies in the same halfspace determined by ℓ(X),
i.e., there exists a nonzero vector N ∈ R2 such that

(3.7) N · (Xj −Xj−1) = 0, N · (Xk −Xj−1) > 0 (k 6= j − 1, j).

Thus we can write N = ε(Xj −Xj−1)
⊥. Noticing

2Sk
j = (Xk −Xj) · (Xj −Xj−1)

⊥ = (Xk −Xj−1) · N/ε, k 6= j − 1, j,

which together with (iii) implies ε > 0, this yields (iv) by recalling (3.7) and the proof
is completed.

Inspired by (2.3) and (3.1), to prove Theorem 2.3, it suffices to show that for any
t > 0, the N -polygon P = (X1, . . . , XN ) is convex. We first compute the evolution
formula of the oriented area of the triangles consisting of three adjacent vertices.

Lemma 3.2. Under the flow (3.1), if qj > 0 for any j, then the oriented area
Sj(t) satisfies

d

dt
Sj(t) = −aj · Sj + bj · S

j−2
j+1 + cj · S

j+2
j +

1

qj + qj+1

π

Lh
|Xj+1 −Xj−1|

2

+
1

qj−1 + qj

π

Lh
(Xj −Xj+1) · (Xj −Xj−2)

+
1

qj+1 + qj+2

π

Lh
(Xj −Xj−1) · (Xj −Xj+2),

(3.8)
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where aj , bj , cj are positive functions defined by

aj =
2

qjqj−1
+

2

qjqj+1
+

2

qj+1qj+2
, bj =

2

qj−1(qj−1 + qj)
, cj =

2

qj+2(qj+1 + qj+2)
.

Proof. By definition, it can be observed

Sj =
1

2
(Xj+1 −Xj) · (Xj −Xj−1)

⊥ =
qjqj+1

2
Tj+1 · Nj .

Employing the flow equation (3.1), we derive

d

dt
Sj =

1

2

d

dt

(

Xj+1 ·X
⊥
j +Xj ·X

⊥
j−1 −Xj+1 ·X

⊥
j−1

)

=
1

2

dXj+1

dt
· (X⊥

j −X⊥
j−1)−

1

2

dXj

dt
· (X⊥

j+1 −X⊥
j−1) +

1

2

dXj−1

dt
· (X⊥

j+1 −X⊥
j )

,: J1 + J2 + J3,

where we have used the property u · v⊥ = −v · u⊥ for any u, v ∈ R2. Applying (3.1),
one can calculate Jj as

(qj+1 + qj+2)J1 =
qj
2
(qj+1 + qj+2)Ẋj+1 · Nj

= qj

(

Tj+2 − Tj+1 −
π

Lh

(

Xj+2 −Xj

)⊥
)

· Nj

=
Xj+2 −Xj

qj+2
· qjNj −

(

1 +
qj+1

qj+2

)

Tj+1 · qjNj −
π

Lh
(Xj+2 −Xj) · qjTj

=
2

qj+2
Sj+2
j −

( 2

qj+1
+

2

qj+2

)

Sj −
π

Lh
(Xj −Xj−1) · (Xj+2 −Xj).

Similarly one easily gets

(qj + qj+1)J2 = −
( 2

qj
+

2

qj+1

)

Sj +
π

Lh
|Xj+1 −Xj−1|

2
,

(qj−1 + qj)J3 = −
( 2

qj−1
+

2

qj

)

Sj +
2

qj−1
Sj−2
j+1 +

π

Lh
(Xj −Xj+1) · (Xj −Xj−2).

Combining the above equations together yields (3.8) immediately.

Now we turn to the proof of convexity-preservation.

Proof of Theorem 2.3. Define the function F (t) := min{Sj(t), 1 ≤ j ≤ N}. It
follows from the assumption that F (0) > 0. By the definition of N -polygon and
Lemma 3.1 (iii), it suffices to show F (t) > 0, for t ∈ (0, T ].

We argue by contradiction. Suppose the contrary, by continuity there exists the
smallest time 0 < t0 ≤ T such that F (t0) = 0. Then we have

(1) there exists some triangle such that the oriented area achieves zero at t0,
without loss of generality, we may assume S2(t0) = Area(X1, X2, X3) (t0) = 0;

(2) the N -polygon P(t) = (X1(t), . . . , XN (t)) is convex for 0 ≤ t < t0, hence by
Lemma 3.1 (iv), it holds

Sk
j (t) > 0, ∀ 0 ≤ t < t0, ∀ j = 1, . . . , N, ∀ k 6= j − 1, j.
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Thus by (3.8), one has

(3.9) 0 ≥
d

dt
S2(t0) = b2 · S

0
3(t0) + c2 · S

4
2(t0) +Q(t0),

where

Q(t0) =
1

q2 + q3

π

Lh
|X3 −X1|

2(t0) +
1

q1 + q2

π

Lh
(X2 −X3) · (X2 −X0) (t0)

+
1

q3 + q4

π

Lh
(X2 −X1) · (X2 −X4) (t0).

Noticing that (1) implies that X1(t0), X2(t0), X3(t0) are collinear. There are two
possibilities: (i) (X2 − X1) · (X3 − X2)(t0) > 0; (ii) (X2 −X1) · (X3 −X2)(t0) < 0.
Next we discuss it case by case.
Case (i): (X2 −X1) · (X3 −X2)(t0) > 0.

Firstly by (2) and continuity, we easily find that S0
3(t0) ≥ 0, S4

2(t0) ≥ 0. We
claim that Q(t0) ≥ 0. Actually, notice that in this case it holds

|X3 −X1|(t0) = |X3 −X2|(t0) + |X2 −X1|(t0) = q2(t0) + q3(t0),

which implies

π

Lh

|X3 −X1|2

q2 + q3
(t0) =

π

Lh

(q2 + q3)
2

q2 + q3
(t0) =

π

Lh
(q2 + q3) (t0).

On the other hand, by the triangle inequality, one can estimate

1

q1 + q2

π

Lh
(X2 −X3) · (X2 −X0) ≥ −

1

q1 + q2

π

Lh
(q3 · (q1 + q2)) = −

π

Lh
q3,

1

q3 + q4

π

Lh
(X2 −X1) · (X2 −X4) ≥ −

π

Lh
q2.

Thus

Q(t0) ≥
π

Lh
(q2 + q3) (t0)−

π

Lh
q3(t0)−

π

Lh
q2(t0) = 0.

Recalling (3.9), all above inequalities become equalities, i.e., S0
3(t0) = S4

2(t0) = 0, and

|X2 −X0|(t0) = q1(t0) + q2(t0), |X2 −X4|(t0) = q2(t0) + q3(t0).

This means X0, X1, X2, X3, X4 are collinear at t0 and are arranged in order, i.e.,
(Xj+1 −Xj)(t0) = dj(X1 −X0)(t0) with dj > 0, j = 1, 2, 3. In particular,

S3(t0) = 0, (X3 −X2) · (X4 −X3)(t0) > 0.

Repeating the above procedure by another N − 4 times, we get that at time t0, all
vertices (X0, X1, . . . , XN ) are collinear and are arranged in order, i.e.,

Xj+1(t0)−Xj(t0) = dj(X1(t0)−X0(t0)), dj > 0, j = 1, 2, . . . , N − 1,

which contradicts with the periodic condition X0 = XN .

Case (ii): (X2 −X1) · (X3 −X2)(t0) < 0.
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This means (X3−X2)(t0) = d2(X2−X1)(t0) with d2 < 0. By (2) and continuity,
we have S3(t0) ≥ 0, S4

2(t0) ≥ 0. On the other hand, by definition, one finds

S3(t0) =
1

2
(X4 −X3) · (X3 −X2)

⊥(t0) =
1

2
(X4 −X2) · (X3 −X2)

⊥(t0)

=
d2
2
(X4 −X2) · (X2 −X1)

⊥(t0) = d2S
4
2(t0) ≤ 0.

It follows S3(t0) = 0 and X1, X2, X3, X4 are collinear. We claim that

(X4 −X3) · (X3 −X2)(t0) < 0.

Otherwise, Case (i) happens for the collinear points X2, X3, X4. Differentiating S3 at
t0 and repeating the arguments as in Case (i) involving S3 will lead to the conclusion
that X1, X2, X3, X4, X5 are collinear and are arranged in order, which contradicts
with the premise that (X2 −X1) · (X3 −X2)(t0) < 0. Thus it holds

S3(t0) = 0, (X4 −X3) · (X3 −X2)(t0) < 0.

Repeating this argument, we can conclude that all verticesX1, X2, . . . , XN are collinear,
furthermore, every three adjacent vertices are interlaced, i.e.,

(Xj+1 −Xj) · (Xj −Xj−1)(t0) < 0, j = 1, . . . , N.

In particular, all exterior angles of the polygon P(t0) are π. On the other hand,
noticing each exterior angle αj is continuous, by continuity and convexity, we have

Nπ =

N
∑

j=1

αj(t0) = lim
t→t0

N
∑

j=1

αj(t) = 2π,

which leads to a contradiction since N ≥ 3. �
Remark 3.1. A similar argument holds for Dziuk’s semi-discrete scheme [19] for

the CSF. More precisely, under nondegeneration of vertices (qj > 0) we can first prove
that if the initial polygon is convex, then the evolved polygon under the semi-discrete
scheme of the CSF is also convex unless all vertices are collinear at some t0 > 0, in
which case the area vanishes, i.e., Area(P(t0)) = 0. On the other hand, applying the
error estimate of the scheme for the CSF [19,20], we arrive at

|Area(Γt0)−Area(P(t0))| =
∣

∣

∣

∫

S1

∂ξx · y dξ −

∫

S1

∂ξxh · yh dξ
∣

∣

∣

≤

∫

S1

|∂ξx− ∂ξxh| · |y| dξ +

∫

S1

|∂ξxh| · |y − yh| dξ

≤ C sup
[0,T ]

‖X −Xh‖H1(S1) ≤ Ch,

where Γt represents the real curve driven by the AP-CSF. This implies that Area(P(t0))
stays away from zero, if Area(Γt) has a positive lower bound for t ∈ (0, T ] and h is
small enough. This leads to a contradiction!

3.2. Proof of Theorem 2.4.

Proof. Applying (3.3), we get the derivative of the perimeter

d

dt
Lh =

N
∑

j=1

d

dt
qj =

N
∑

j=1

(

−
1

qj + qj+1
|Tj+1 − Tj |

2 −
1

qj + qj−1
|Tj−1 − Tj |

2
)
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+
2π

Lh

N
∑

j=1

(

−
qj+1

qj + qj+1
Tj · Nj+1 +

qj−1

qj + qj−1
Tj · Nj−1

)

= −2
N
∑

j=1

|Tj+1 − Tj |2

qj + qj+1
−

2π

Lh

N
∑

j=1

Tj · Nj+1,

where we have used the fact that

N
∑

j=1

(

−
qj+1

qj + qj+1
Tj · Nj+1 +

qj−1

qj + qj−1
Tj · Nj−1

)

=

N
∑

j=1

(

−
qj+1

qj + qj+1
Tj · Nj+1 −

qj
qj + qj+1

Nj+1 · Tj
)

= −
N
∑

j=1

Tj · Nj+1.

We denote αj by the exterior angle of the polygon at Xj . By Theorem 2.3, P(t) keeps

convex for all t, which implies 0 < αj < π for j = 1, . . . , N , and
N
∑

j=1

αj = 2π. Direct

computations yield

|Tj+1 − Tj |
2
= 2− 2 cosαj = 4 sin2(αj/2), and Tj · Nj+1 = − sinαj .

By Cauchy-Schwarz inequality, one easily gets

N
∑

j=1

2 sin
(αj

2

)

≤
(

N
∑

j=1

4 sin2
(αj

2

)

qj + qj+1

)
1
2
(

N
∑

j=1

qj + qj+1

)
1
2

= (2Lh)
1
2

(

N
∑

j=1

4 sin2
(αj

2

)

qj + qj+1

)
1
2

.

Hence we derive

dLh

dt
= −2

N
∑

j=1

(4 sin2
(αj

2

)

qj + qj+1
−

π

Lh
sinαj

)

≤
−2

Lh

(

2
(

N
∑

j=1

sin
(αj

2

))2
− π

N
∑

j=1

sinαj

)

≤ 0,

where in the last inequality we have utilized a trigonometric inequality (cf. Lemma
3.3 below) and the proof is completed.

Lemma 3.3. Define

fN (β1, . . . , βN ) :=
(

N
∑

j=1

sinβj

)2

−
1

2

(

N
∑

j=1

βj

)(

N
∑

j=1

sin(2βj)
)

, 0 ≤ βj ≤
π

2
.

Then it holds fN (β1, . . . , βN ) ≥ 0.
Proof. We prove fN (β1, . . . , βN ) ≥ 0 by induction. For N = 1, we have

f1(β1) = sin2 β1 −
β1

2
· sin(2β1) = sinβ1 cosβ1 (tanβ1 − β1) ≥ 0.

Now suppose fN−1(β1, . . . , βN−1) ≥ 0, we first compute

∂fN(β1, . . . , βN )

∂βN
= 2 cosβN ·

N
∑

j=1

sinβj −
1

2

N
∑

j=1

sin(2βj)−
N
∑

j=1

βj · cos(2βN)
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≥ 2 cos2 βN ·
N
∑

j=1

sinβj −
N
∑

j=1

sinβj cosβj −
N
∑

j=1

βj · cos(2βN )

=
N
∑

j=1

(sinβj − sinβj cosβj − (βj − sinβj) · cos(2βN ))

≥
N
∑

j=1

(sinβj − sinβj cosβj − (βj − sinβj)) =:

N
∑

j=1

Bj(βj).

Noticing

∂Bj

∂βj
= cosβj − cos2 βj + sin2 βj − (1− cosβj) = 2 cosβj − 2 cos2 βj ≥ 0,

this implies Bj is increasing and particularly,

Bj(βj) ≥ Bj(0) = 0, βj ∈ [0, π/2], j = 1, . . . , N.

Hence one gets ∂fN (β1,...,βN)
∂βN

≥ 0, and by induction,

fN (β1, . . . , βN ) ≥ fN(β1, . . . , βN−1, 0) = fN−1(β1, . . . , βN−1) ≥ 0,

which completes the proof.

4. Proof of Theorem 2.5. In this section we present the error estimate by
following the lines of Dziuk’s argument [20] and Pozzi-Stinner’s computation [39]. We
establish the stability estimate and length element difference under the assumption of
boundedness of the semi-discrete length element. Then a bound of the semi-discrete
length element is given. All above preliminary estimates together with the continuity
argument enable us to derive the desired error bound. Throughout this section, we
suppose Assumptions 2.1 and 2.2 are always valid and we denote C > 0 by a general
constant and may change from line to line. For simplicity we omit the space whenever
the norm is defined on S1.

We first give the stability estimate.
Lemma 4.1. Suppose further the solution of (2.4) satisfies

(4.1) inf
ξ
|∂ξXh| ≥ c0 > 0, and sup

ξ
|∂ξXh| ≤ C0, ∀ 0 ≤ t ≤ T ∗ ≤ T.

Then for any t ∈ [0, T ∗], we have
(4.2)
∫ t

0

∫

S1

|∂tX − ∂tXh|
2qhdξds+ sup

0≤s≤t

∫

S1

|T − Th|
2qhdξ ≤ C

∫ t

0

‖q − qh‖
2
L2ds+ Ch2,

where T =
∂ξX
|∂ξX| , Th =

∂ξXh

|∂ξXh|
, q = |∂ξX |, qh = |∂ξXh| and C depends on Cp, CP , κ1,

c0, C0 and K(X).

Proof. We first notice that the boundedness of the length element will imply the
boundedness of the perimeter. Indeed, by Assumption 2.2 and (4.1), one easily gets

(4.3) 2πκ1 ≤ L ≤ 2πκ2, 2πc0 ≤ Lh ≤ 2πC0, ∀ t ∈ [0, T ∗].
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Recalling ∂ξX 6= 0, ∂ξXh 6= 0, |T | = |Th| = 1, this enables us to write the following

|∂ξX − ∂ξXh|
2 = |∂ξX |2 + |∂ξXh|

2 − 2∂ξX · ∂ξXh

= (q − qh)
2 + 2qqh − 2qqhT · Th

= (q − qh)
2 + qqh(2− 2T · Th) = (q − qh)

2 + qqh|T − Th|
2.

(4.4)

Taking the difference between (1.4) and (2.4), we obtain the error equation
∫

S1

(|∂ξX | ∂tX − |∂ξXh| ∂tXh) · vh dξ +

∫

S1

(T − Th) · ∂ξvh dξ

+

∫

S1

(2π

L
(∂ξX)

⊥ −
2π

Lh
(∂ξXh)

⊥
)

· vh dξ =

∫

S1

h2|∂ξXh|

6
∂ξ∂tXh · ∂ξvh dξ

holds for any vh ∈ Vh. Taking vh = Ih(∂tX)−∂tXh ∈ Vh in the above equation yields
∫

S1

|∂tX − ∂tXh|
2qhdξ +

∫

S1

(T − Th) (∂ξ∂tX − ∂ξ∂tXh) dξ

=

∫

S1

∂tX · (qh − q) (Ih∂tX − ∂tXh) dξ +

∫

S1

h2qh
6

∂ξ∂tXh · ∂ξ (Ih∂tX − ∂tXh) dξ

+

∫

S1

qh · (∂tX − ∂tXh)(∂tX − Ih∂tX)dξ +

∫

S1

(T − Th) · (∂ξ∂tX − ∂ξIh∂tX) dξ

+

∫

S1

2π

L
(∂ξX − ∂ξXh)

⊥ · (∂tXh − Ih∂tX) dξ

+

∫

S1

(2π

L
−

2π

Lh

)

(∂ξXh)
⊥ · (∂tXh − Ih∂tX) dξ ,: J1 + J2 + J3 + J4 + J5 + J6.

The estimates of the second term on the left side and Jj for 1 ≤ j ≤ 4 can be found
in [20, Lemma 5.1], which read as

∫

S1

(T − Th) · (∂ξ∂tX − ∂ξ∂tXh) dξ

≥
d

dt

(

∫

S1

(1− T · Th) qhdξ
)

− C‖∂ξ∂tX‖L∞

(

∫

S1

|T − Th|
2qhdξ + ‖q − qh‖

2
L2

)

,

J1 ≤ ε

∫

S1

|∂tX − ∂tXh|
2qhdξ + C(ε)‖∂tX‖2L∞

∫

S1

(q − qh)
2

qh
dξ + C‖qh‖

2
L∞‖∂tX‖2H1h2

≤ ε

∫

S1

|∂tX − ∂tXh|
2
qhdξ + C(ε) ‖∂tX‖2L∞ ‖q − qh‖

2
L2 + Ch2‖∂tX‖2H1 ,

J2 ≤
1

24
‖qh‖L∞‖∂tX‖2H1h2 ≤ Ch2‖∂tX‖2H1 ,

J3 ≤ ε

∫

S1

|∂tX − ∂tXh|
2qhdξ + C(ε)‖qh‖L∞‖∂tX‖2H1h2

≤ ε

∫

S1

|∂tX − ∂tXh|
2qhdξ + C(ε)h2‖∂tX‖2H1 ,

J4 ≤ C‖∂tX‖H2‖T − Th‖L2h ≤ C

∫

S1

|T − Th|
2qhdξ + Ch2‖∂tX‖2H2 ,

where ε is a generic small positive constant which will be chosen later. It remains to
estimate J5 and J6. For J5, we decompose it as J5 = J51 + J52 with

J51 =

∫

S1

2π

L
(∂ξX − ∂ξXh)

⊥ · (∂tX − Ih∂tX) dξ,
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J52 =

∫

S1

2π

L
(∂ξX − ∂ξXh)

⊥ · (∂tXh − ∂tX) dξ.

Applying Assumption 2.2, (4.3), (4.4) and the interpolation estimate (2.1), we derive

J51 ≤ C

∫

S1

|∂ξX − ∂ξXh|
2
dξ + C

∫

S1

|∂tX − Ih∂tX |2dξ

= C
(

∫

S1

qqh

(

|T − Th|
2
+ (q − qh)

2
)

dξ + ‖∂tX − Ih∂tX‖2L2

)

≤ C ‖∂ξX‖L∞

∫

S1

|T − Th|
2
qhdξ + C

∫

S1

(q − qh)
2dξ + Ch2‖∂tX‖2H1 ,

J52 ≤ C(ε)

∫

S1

|∂ξX − ∂ξXh|
2
dξ + ε

∫

S1

|∂tXh − ∂tX |2 qhdξ

= C(ε)

∫

S1

qqh|T − Th|
2 + (q − qh)

2dξ + ε

∫

S1

|∂tXh − ∂tX |2 qhdξ

≤ C(ε) ‖∂ξX‖L∞

∫

S1

|T − Th|
2 qhdξ + C(ε)‖q − qh‖

2
L2 + ε

∫

S1

|∂tXh − ∂tX |2 qhdξ.

Similarly we decompose J6 = J61 + J62 with

J61 =

∫

S1

(2π

L
−

2π

Lh

)

(∂ξXh)
⊥ · (∂tX − Ih∂tX) dξ,

J62 =

∫

S1

(2π

L
−

2π

Lh

)

(∂ξXh)
⊥ · (∂tXh − ∂tX) dξ.

Noticing

(4.5) |L− Lh| ≤ ‖q − qh‖L1 ≤ C‖q − qh‖L2 ,

this together with (4.3), (4.1) and (2.1) lead to

J61 ≤ C|L− Lh|
2 + C‖∂tX − Ih∂tX‖2L2 ≤ C‖q − qh‖

2
L2 + Ch2‖∂tX‖2H1 ,

J62 ≤ C

∫

S1

|Lh − L|q
1
2

h |∂tXh − ∂tX |dξ ≤ C(ε)|Lh − L|2 + ε

∫

S1

qh |∂tXh − ∂tX |2 dξ

≤ C(ε)‖q − qh‖
2
L2 + ε

∫

S1

qh|∂tXh − ∂tX |2dξ.

Combining the above inequalities, we obtain
∫

S1

|∂tX − ∂tXh|
2qhdξ +

d

dt

∫

S1

(1− T · Th) qhdξ ≤ 4ε

∫

S1

|∂tX − ∂tXh|
2qhdξ

+ C(ε)h2‖∂tX‖2H2 + C(ε,K(X))‖q − qh‖
2
L2 + C(ε,K(X))

∫

S1

|T − Th|
2qhdξ.

Choosing ε small enough, integrating both sides with respect to time from 0 to t,
noticing that

∫

S1

(1− T · Th) (0)qh(0)dξ =
1

2

∫

S1

|T − Th|
2
(0)qh(0)dξ

≤ C

∫

S1

|∂ξX − ∂ξXh|
2(0)dξ ≤ C‖∂ξ(X − IhX)(0)‖2L2 ≤ Ch2‖X0‖2H2 ,
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we are led to the estimate (4.2) with appropriate constant C by applying Gronwall’s
inequality and Sobolev embedding H1(S1) →֒ L∞(S1).

Lemma 4.2. Suppose
∫

S1

|T − Th|
2
qhdξ + ‖q − qh‖

2
L2 ≤ C1h

2, ∀ t ∈ [0, T ∗],

then there exists a constant h0 such that for any 0 < h ≤ h0, we have

inf
ξ
qh ≥ 3κ1/4, and sup

ξ
qh ≤ 3κ2/2, ∀ t ∈ [0, T ∗],

where the constant h0 depends on C1, Cp, CP , κ1, κ2 and K(X).

Proof. Applying the triangle inequality, the interpolation error estimate (2.1),
and the inverse estimate (2.2), we can derive

‖∂ξX − ∂ξXh‖L∞
≤ ‖∂ξX − Ih∂ξX‖L∞

+ ‖∂ξXh − Ih∂ξX‖L∞

≤ Ch1/2‖∂ξX‖H1 + Ch−1/2 ‖∂ξXh − Ih∂ξX‖L2

≤ Ch1/2‖X‖H2 + Ch−1/2 ‖∂ξXh − ∂ξX‖L2 .

The assumption and equality (4.4) imply

‖∂ξX − ∂ξXh‖L2 ≤
(

∫

S1

qqh|T − Th|
2dξ

)1/2

+ ‖q − qh‖L2 ≤
√

C1

(

1 + ‖∂ξX‖1/2L∞

)

h.

Then it follows that

‖∂ξX − ∂ξXh‖L∞
≤ C (K(X), C1)h

1/2,

and the conclusion follows by recalling Assumption 2.2.

In order to estimate the length element difference, we first give the following
preliminary lemma by following the lines of [39, Lemma 3.2, Lemma 4.1].

Lemma 4.3. Given the assumptions of Lemma 4.1, then there exists a constant C
depending on κ1, Cp, CP , c0, C0, T such that the following estimates hold for t ∈ [0, T ∗]:

|R −Rj | ≤ C (|L− Lh|+ |T − Tj |+ |T − Tj+1|) , j = 1, . . . , N,(4.6)
∫ t

0

(qj + qj+1)|Ẋj −Rj |
2ds ≤ Ch, j = 1, . . . , N,(4.7)

where R and Rj are defined as (3.5). Moreover, we have the estimates on Ij :

j+1
∑

k=j−1

‖T − Tk‖
2
L2(Ij)

≤ Ch2‖X‖2H2(Sj)
+ C‖T − Th‖

2
L2(Sj)

,

j
∑

k=j−1

‖∂tX − Ẋk‖
2
L2(Ij)

≤ Ch2‖∂tX‖2H1(Ij)
+ C‖∂tX − ∂tXh‖

2
L2(Ij)

,

j+1
∑

k=j−1

‖qhj − qk‖
2
L2(Ij)

≤ Ch4‖X‖2H2(Sj)
+ Ch2‖q − qh‖

2
L2(Sj)

,

(4.8)

with Sj = Ij ∪ Ij+1 ∪ Ij−1.
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Proof. Firstly (4.6) can be easily derived by employing Assumption 2.1 and (4.1):

|R−Rj | =
∣

∣

∣
−

2π

L
N +

2π

Lh

Njqj +Nj+1qj+1

qj + qj+1

∣

∣

∣

≤
∣

∣

∣
−

2π

L
N +

2π

Lh
N
∣

∣

∣
+
∣

∣

∣

2π

Lh

qj (N −Nj)

qj + qj+1

∣

∣

∣
+
∣

∣

∣

2π

Lh

qj+1 (N −Nj+1)

qj + qj+1

∣

∣

∣

≤ C (|L− Lh|+ |T − Tj |+ |T − Tj+1|) .

For (4.7), equation (3.4) implies

∫ t

0

(qj + qj+1)|Ẋj −Rj |
2 + (qj + qj−1)|Ẋj−1 −Rj−1|

2ds

= 4

∫ t

0

Tj · (Rj −Rj−1)−
d

dt
qj ds

≤ 4

∫ t

0

Tj ·
2π

Lh

(

−
Njqj +Nj+1qj+1

qj + qj+1
+

Njqj +Nj−1qj−1

qj + qj−1

)

ds+ 4qj(0)

≤ C

∫ t

0

∣

∣

∣
Tj ·

Nj+1qj+1

qj + qj+1

∣

∣

∣
+
∣

∣

∣
Tj ·

Nj−1qj−1

qj + qj−1

∣

∣

∣
ds+ Ch

≤ ε

∫ t

0

|Tj+1 − Tj |2

qj + qj+1
+

|Tj−1 − Tj |2

qj + qj−1
ds+ C(ε)

∫ t

0

q2j+1

qj + qj+1
+

q2j−1

qj + qj−1
ds+ Ch

≤ ε

∫ t

0

|Tj+1 − Tj |2

qj + qj+1
+

|Tj−1 − Tj |2

qj + qj−1
ds+ C(ε)h

=
ε

4

∫ t

0

(qj + qj+1)|Ẋj −Rj |
2 + (qj + qj−1)|Ẋj−1 −Rj−1|

2ds+ C(ε)h,

where for the second inequality we used (4.3) and (2.1) to get that

2π

Lh
≤ C, qj(0) = hj |∂ξX

0
h| = hj |∂ξIhX

0| ≤ C(X)h,

for the third inequality we employed Young’s inequality and the fact Tj · Nj = 0 to
derive

∣

∣

∣

∣

Tj ·
Nj+1qj+1

qj + qj+1

∣

∣

∣

∣

=

∣

∣

∣

∣

(Tj − Tj+1) ·
Nj+1qj+1

qj + qj+1

∣

∣

∣

∣

≤ |Tj − Tj+1|
qj+1

qj + qj+1
≤ ε

|Tj − Tj+1|2

qj + qj+1
+ C(ε)

q2j+1

qj + qj+1
,

and for the last equality we used (3.6). Obviously (4.7) follows by taking ε = 1. The
estimates in (4.8) can be established by using similar arguments as in [39, Lemma
4.1] and are deleted here for brevity.

Next we present the key length difference estimate with the aid of Lemma 4.3.
Lemma 4.4. Given the assumptions of Lemma 4.1, then we have

‖q − qh‖
2
L2 ≤ C

∫ t

0

∫

S1

|∂tX − ∂tXh|
2 qhdξds+ C

∫ t

0

∫

S1

|T − Th|
2 qhdξds+ Ch2,

where C is a constant depending on Cp, CP , κ1, c0, C0, T
∗ and K(X).
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Proof. By definition, one has

∫

S1

(q(ξ, t)− qh(ξ, t))
2
dξ =

N
∑

j=1

∫

Ij

(q(ξ, t)− qj(t)/hj)
2dξ.

By integration for d
dt (hjq − qj), we can write

(hjq − qj)(t) = (hjq − qj)(0) +

∫ t

0

(hj∂tq − q̇j) ds =: P +

∫ t

0

A ds,

where by the interpolation error estimate (2.1) and inverse estimate (2.2), P satisfies

|P | = hj

∣

∣|∂ξX
0| − |∂ξIhX

0|
∣

∣

Ij
≤ Ch‖∂ξ(X

0 − IhX
0)‖L∞(Ij) ≤ Ch3/2‖X0‖H2(Ij).

Applying (3.2) and (3.4), on each grid element Ij = [ξj−1, ξj ], we can write A as

A =
d

dt
(hjq − qj) = −

(hjq

2
|∂tX −R|2 −

qj + qj+1

4
|Ẋj −Rj |

2
)

−
(hjq

2
|∂tX −R|2 −

qj + qj−1

4
|Ẋj−1 −Rj−1|

2
)

− (hjq(∂tX −R) · R+ Tj · (Rj −Rj−1)) ,: −A+ −A− − Â.

The terms
∫ t

0
|A+| ds and

∫ t

0
|A−| ds are estimated in [39, Lemma 4.4], which read as

∫ t

0

(|A+|+ |A−|)ds ≤ CQj + Ch
(

∫ t

0

j
∑

k=j−1

|∂tX −R− (Ẋk −Rk)|
2ds

)1/2

,

Qj :=
(

∫ t

0

(

|hjq − qj |
2 + |hjq − qj+1|

2 + |hjq − qj−1|
2
)

ds
)1/2

,

where (4.7) has been used. Applying (4.6), we immediately get

∫ t

0

(|A+|+ |A−|)ds ≤ CQj + ChTj + ChYj + Ch
(

∫ t

0

|L− Lh|
2 ds

)1/2

,

Tj :=
(

∫ t

0

j+1
∑

k=j−1

|T − Tk|
2ds

)1/2

, Yj :=
(

∫ t

0

|∂tX − Ẋj|
2 + |∂tX − Ẋj−1|

2ds
)1/2

.

It remains to estimate
∫ t

0 |Â| ds. By definition, one has

Â =
hjq

2
(∂tX −R) ·

(

−
2π

L
N
)

−
2π

Lh

qj+1

qj + qj+1
Tj · Nj+1

+
hjq

2
(∂tX −R) ·

(

−
2π

L
N
)

+
2π

Lh

qj−1

qj + qj−1
Tj · Nj−1 ,: Â1 + Â2.

Recalling (3.6), we observe

Tj · Nj+1 = Tj · (Tj+1 − Tj)
⊥
= −Nj · (Tj+1 − Tj) = −

qj + qj+1

2
Nj ·

(

Ẋj −Rj

)

,

which implies

Â1 = hjq (∂tX −R) ·
(

−
π

L
N +

π

Lh
Nj

)
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+ (qj+1 − hjq) (∂tX −R) ·
π

Lh
Nj +

((

Ẋj −Rj

)

− (∂tX −R)
)

·
π

Lh
qj+1Nj .

Therefore, by the assumptions and (4.6), we can estimate

∫ t

0

|Â1|ds ≤ Ch

∫ t

0

∣

∣

∣

πN

L
−

πNj

Lh

∣

∣

∣
+ |Ẋj −Rj − ∂tX +R|ds+ C

∫ t

0

|qj+1 − hjq|ds

≤ Ch

∫ t

0

|L− Lh|+

j+1
∑

k=j

|T − Tk|ds+ C

∫ t

0

|qj+1 − hjq|ds+ Ch

∫ t

0

|Ẋj − ∂tX |ds

≤ Ch
(

∫ t

0

|L− Lh|
2 ds

)1/2

+ CQj + ChTj + ChYj ,

and similar estimates can be established for
∫ t

0
|Â2| ds.

To summarize, we obtain the following estimate on Ij

|hjq − qj | ≤ Ch3/2‖X0‖H2(Ij) + Ch
(

∫ t

0

‖q − qh‖
2
L2ds

)1/2

+ CQj + ChTj + ChYj ,

where we have used (4.5). Applying (4.8), we get

‖hjq(t)− qj(t)‖
2
L2(Ij)

≤ Ch4
(

‖X0‖2H2(Ij)
+

∫ t

0

‖∂tX‖2H1(Ij)
+ ‖X‖2H2(Sj)

ds
)

+ Ch2

∫ t

0

h‖q − qh‖
2
L2 + ‖q − qh‖

2
L2(Sj)

+ ‖T − Th‖
2
L2(Sj)

+ ‖∂tX − ∂tXh‖
2
L2(Sj)

ds.

Summing up over all grid elements Ij yields

Ch2‖q − qh‖
2
L2 ≤ Ch4 + Ch2

∫ t

0

‖q − qh‖
2
L2 + ‖T − Th‖

2
L2 + ‖∂tX − ∂tXh‖

2
L2ds,

where we have used the inequality

‖hjq(t)− qj(t)‖
2
L2(Ij)

= h2
j‖q − qh‖

2
L2(Ij)

≥ Ch2‖q − qh‖
2
L2(Ij)

.

Finally, the desired estimate is concluded by a Gronwall’s argument.
We are now in a position to prove Theorem 2.5.

Proof of Theorem 2.5. Since the nonlinear terms in (3.1) are locally Lipschitz
with respect to Xj , the local existence and uniqueness is guaranteed by standard ODE
theory. Let T ∗ ∈ (0, T ) be the maximal time such that the semi-discrete solution Xh

exists and the following estimates hold

(4.9) inf |∂ξXh| ≥ κ1/2, and sup |∂ξXh| ≤ 2κ2, ∀ t ∈ [0, T ∗].

Combining Lemma 4.1, Lemma 4.4 and employing Gronwall’s argument, we can yield
that for any t ∈ [0, T ∗], it holds

(4.10)

∫ t

0

∫

S1

|∂tX − ∂tXh|
2
qhdξds+ sup

0≤s≤t

∫

S1

|T − Th|
2
qhdξ ≤ Ch2.

Plugging this back into Lemma 4.4, we obtain for any t ∈ [0, T ∗],

(4.11) ‖q − qh‖
2
L2 ≤ Ch2.
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By Lemma 4.2, there exists h0 > 0 depending on Cp, CP , κ1, κ2, T and K(X) such
that for any 0 < h ≤ h0, we have

inf |∂ξXh| ≥ 3κ1/4, and sup |∂ξXh| ≤ 3κ2/2, at t = T ∗.

By standard ODE theory, we can uniquely extend the above semi-discrete solution in
a neighborhood of T ∗. And by continuity, we obtain

inf |∂ξXh| ≥ κ1/2, and sup |∂ξXh| ≤ 2κ2, in a neighborhood of T ∗.

This contradicts to the maximality of T ∗, and thus T ∗ = T . Thus (4.9)-(4.11) hold
for t ∈ [0, T ] and the nondegeneration property (2.6) follows by (4.9) and Assumption
2.1 by noticing qj = hjqh. We derive the error estimate by integration and (4.4):

‖X(·, t)−Xh(·, t)‖
2
H1 =

∫

S1

|X −Xh|
2dξ +

∫

S1

|∂ξX − ∂ξXh|
2dξ

≤ 2

∫

S1

(

∫ t

0

∂tX − ∂tXhds
)2
dξ + 2‖X0 − IhX

0‖2L2 + ‖q − qh‖
2
L2 +

∫

S1

|T − Th|
2qqhdξ

≤ 2

∫

S1

T

∫ t

0

|∂tX − ∂tXh|
2dsdξ + Ch2 ≤ Ch2,

and the proof is completed. �

5. Numerical results. In this section we present a fully discrete version of (2.4)
to simulate the AP-CSF. Choose an integerm, set the time step τ = T/m and tk = kτ ,
k = 0, . . . ,m. For simplicity we choose a uniform mesh, i.e., ξj = jh for j = 0, . . . , N

and h = 2π/N . We take X0
h = IhX

0. For k ≥ 1, find Xk
h =

N
∑

j=1

Xk
j ϕj ∈ Vh by

∫

S1

∣

∣∂ξX
k−1
h

∣

∣ δτX
k
h · vhdξ +

∫

S1

∂ξX
k
h · ∂ξvh/

∣

∣∂ξX
k−1
h

∣

∣ dξ

+

∫

S1

h2|∂ξX
k−1
h |∂ξδτX

k
h · ∂ξvh/6 dξ +

∫

S1

2π(∂ξX
k
h)

⊥ · vh/L
k−1
h dξ = 0, ∀ vh ∈ Vh,

where δτ is the backward finite difference δτX
m
h = (Xm

h −Xm−1
h )/τ , and Lk−1

h is the

length of the image of Xk−1
h . Or it can be written equivalently as a discretization for

the ODE system (3.1):

qk−1
j + qk−1

j+1

2τ
(Xk

j −Xk−1
j )−

Xk
j+1 −Xk

j

qk−1
j+1

+
Xk

j −Xk
j−1

qk−1
j

+
π

Lk−1
h

(

Xk
j+1 −Xk

j−1

)⊥
= 0.

First, we test the convergence rates in the L2 norm, H1 seminorm and the error
of velocity, respectively. Since the exact solution of the AP-CSF (1.2) is unknown, we
consider the following numerical errors

(E1)h,τ (T ) := max
1≤k≤T/τ

∥

∥Xk
h,τ −X4k

h/2,τ/4

∥

∥

L2(S1)
,

(E2)h,τ (T ) := max
1≤k≤T/τ

∥

∥∂ξX
k
h,τ − ∂ξX

4k
h/2,τ/4

∥

∥

L2(S1)
,

(E3)h,τ (T ) :=
(

T/τ−1
∑

k=0

τ
∥

∥

∥

Xk+1
h,τ −Xk

h,τ

τ
−

X4k+1
h/2,τ/4 −X4k

h/2,τ/4

τ/4

∥

∥

∥

2

L2(S1)

)1/2

,
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where Xk
h,τ represents the solution obtained by the above fully discrete scheme with

mesh size h and time step τ . The corresponding convergence order is defined as:

Orderi = log
( (Ei)h,τ (T )

(Ei)h/2,τ/4 (T )

)/

log 2, i = 1, 2, 3.

The errors and convergence orders are displayed in Table 5.1, where we choose
h = 2π/N and τ = 0.5h2 and the initial value is given by X0(ξ) = (2 cos ξ, sin ξ).
The results indicate that the numerical solution converges linearly in space in the H1

seminorm, which agrees with the theoretical analysis in Theorem 2.5. We can also
observe that the solution and the velocity converge quadratically in L∞

t L2
x and L2

tL
2
x,

respectively, which is superior than the result in Theorem 2.5.

Table 5.1: Numerical errors up to T = 1/4.

N (E1)h,τ (1/4) Order1 (E2)h,τ (1/4) Order2 (E3)h,τ (1/4) Order3

16 2.08E-2 - 1.15E-0 - 3.09E-2 -
32 5.42E-3 1.94 6.01E-1 1.94 1.01E-2 1.61
64 1.37E-3 1.99 3.03E-1 0.99 2.76E-3 1.87
128 3.42E-4 2.00 1.52E-1 1.00 7.09E-4 1.96

0 0.5 1 1.5 2
t
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-100
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(a) (b)

Fig. 5.1: Numerical results for an initial ellipse curve (i.e., x2

4 + y2 = 1): (a) evolution
of the perimeter and area; (b) the asymptotic area loss at T = 1/4.

Finally, we check the structure-preserving properties of our algorithm. As is
shown in Fig. 5.1(a), the length of the curve is decreasing during the evolution, which
confirms the theoretical analysis in Theorem 2.4. Furthermore, Fig. 5.1(a) shows the
area is almost preserving and more specifically, Fig. 5.1(b) indicates that the area
enclosed by the curve has an error at O(h2). The evolution of the polygon with
the number of grid points N = 15, which approximates the evolution of the ellipse
determined by x2/4+ y2 = 1, is shown in Fig. 5.2, from which we clearly see that the
polygon keeps convex during the evolution, which verifies the convexity-preserving
property in Theorem 2.3.
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Fig. 5.2: The evolution of an initial convex polygon under the AP-CSF.
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[36] K. Mikula and D. Ševčovič, Computational and qualitative aspects of evolution of curves

driven by curvature and external force, Comput. Vis. Sci., 6 (2004), pp. 211–225.
[37] L. Mugnai and C. Seis, On the coarsening rates for attachment-limited kinetics, SIAM J.

Math. Anal., 45 (2013), pp. 324–344.
[38] L. Pei and Y. Li, A structure-preserving parametric finite element method for area-conserved

generalized mean curvature flow, arXiv:2211.13582v1 (2022).
[39] P. Pozzi and B. Stinner, Curve shortening flow coupled to lateral diffusion, Numer. Math.,

135 (2017), pp. 1171–1205.
[40] S. Ruuth and B. T. R. Wetton, A simple scheme for volume-preserving motion by mean

curvature, J. Sci. Comput., 19 (2003), pp. 373–384.
[41] K. Sakakibara and Y. Miyatake, A fully discrete curve-shortening polygonal evolution law

for moving boundary problems, J. Comput. Phys., 424 (2021), article 109857.
[42] J. E. Taylor and J. W. Cahn, Linking anisotropic sharp and diffuse surface motion laws via

gradient flows, J. Statist. Phys., 77 (1994), pp. 183–197.
[43] T. Ushijima and S. Yazaki, Convergence of a crystalline approximation for an area-preserving

motion, J. Comput. Appl. Math., 166 (2004), pp. 427–452.
[44] C. Ye and J. Cui, Convergence of Dziuk’s fully discrete linearly implicit scheme for curve

shortening flow., SIAM J. Numer. Anal., 59 (2021), pp. 2823–2842.

http://arxiv.org/abs/2211.13582

