
DESCENT PROPERTIES OF AN ANDERSON ACCELERATED
GRADIENT METHOD WITH RESTARTING∗

WENQING OUYANG† , YANG LIU‡ , AND ANDRE MILZAREK†

Abstract. Anderson Acceleration (AA) is a popular acceleration technique to enhance the
convergence of fixed-point schemes. The analysis of AA approaches often focuses on the convergence
behavior of a corresponding fixed-point residual, while the behavior of the underlying objective
function values along the accelerated iterates is currently not well understood. In this paper, we
investigate local properties of AA with restarting applied to a basic gradient scheme (AA-R) in terms
of function values. Specifically, we show that AA-R is a local descent method and that it can decrease
the objective function at a rate no slower than the gradient method up to higher-order error terms.
These new results theoretically support the good numerical performance of AA(-R) when heuristic
descent conditions are used for globalization and they provide a novel perspective on the convergence
analysis of AA-R that is more amenable to nonconvex optimization problems. Numerical experiments
are conducted to illustrate our theoretical findings.

Key words. Anderson Acceleration, Descent Properties, Restarting

AMS subject classifications. 90C30, 65K05, 90C06, 90C53

1. Introduction. In this work, we consider the smooth optimization problem

min
x∈Rn

f(x),(1.1)

where f : Rn → R is a continuously differentiable function. If the gradient mapping ∇f
is additionally Lipschitz continuous with modulus L, then the basic gradient descent
method with fixed step size,

xk+1 = xk − 1

L
∇f(xk) =: g(xk),(1.2)

can be utilized to solve problem (1.1). Here, g : Rn → Rn represents the associated
gradient step mapping with step size 1

L . The gradient descent step (1.2) can be viewed
as a fixed-point iteration and the fixed-points of g are exactly the stationary points of
the objective function f .

Anderson Acceleration (AA) applies to fixed-point iterations of the form (1.2)
and is a popular technique to accelerate the convergence of such iterative fixed-
point schemes. For instance, AA-based algorithms have been applied successfully in
computer graphics [31, 52, 27], reinforcement learning [15, 43], machine learning [49],
and numerical methods for PDEs [34]. In iteration k and based on the past m iterations
{xk−m, . . . , xk}, AA first computes the mixing coefficients αk = (αk1 , . . . , α

k
m)

⊤ ∈ Rm
as solution of the following optimization problem:

min
α∈Rm

∥∥∥h(xk−m) +
∑m

i=1
αi(h(x

k−m+i)− h(xk−m))
∥∥∥2 ,(1.3)

∗Submitted to the editors DATE.
Funding: A. Milzarek is partly supported by the Internal Project Fund from Shenzhen Research

Institute of Big Data (SRIBD) under Grant T00120230001 and by the Shenzhen Science and Technology
Program under Grant GXWD20201231105722002-20200901175001001. Y. Liu is supported by the
Hong Kong Innovation and Technology Commission (InnoHK Project CIMDA).

†School of Data Science (SDS), Shenzhen Research Institute of Big Data (SRIBD), The
Chinese University of Hong Kong, Shenzhen, China (wenqingouyang1@link.cuhk.edu.cn and an-
dremilzarek@cuhk.edu.cn).

‡Mathematical Institute, University of Oxford, UK (yang.liu@maths.ox.ac.uk).

1

ar
X

iv
:2

20
6.

01
37

2v
2

 [
m

at
h.

O
C

]
 2

5
Se

p
20

23

mailto:wenqingouyang1@link.cuhk.edu.cn
mailto:andremilzarek@cuhk.edu.cn
mailto:andremilzarek@cuhk.edu.cn
mailto:yang.liu@maths.ox.ac.uk

2 W. OUYANG, Y. LIU, AND A. MILZAREK

where h(x) := g(x)− x denotes the residual map and m is a corresponding memory
parameter. AA then performs the accelerated iteration:

(1.4) xk+1 = g(xk−m) +
∑m

i=1
αki (g(x

k−m+i)− g(xk−m)).

The parameter m is usually chosen to be fixed or it is allowed to increase each iteration
until a given threshold is reached after which m is reinitialized. We will refer to such
a restarted version of the Anderson accelerated gradient scheme (1.4) as AA-R (cf.
Algorithm 2.1 in section 2). The goal of this paper is to analyze and establish novel
descent properties of AA-R. In particular, we show that AA-R not only decreases the
norm of the residual ∥h(x)∥, but it can also decrease the underlying objective function
f . Therefore, we answer the following question affirmatively:

Can Anderson accelerated schemes achieve descent on the underlying objective
function values?

1.1. Related Work and Literature. Originally proposed by Anderson [1]
for solving partial differential equations, AA has gained steadily growing attention
during the last decade [31, 30, 19, 23, 27]. Though widely used in various fields and
applications, the theoretical analysis and properties of AA are still somewhat limited.
AA is known to belong to the class of multi-secant quasi-Newton methods [11, 12, 38].
When applied to linear problems, AA is equivalent to the generalized minimal residual
method (GMRES) [47, 35]. For nonlinear problems, AA is also closely related to
the nonlinear generalized minimal residual method (NGMRES) [48]. The convergence
analysis in [46] shows that AA converges locally r-linearly under a smoothness condition
on the map g and uniform boundedness of the coefficients {αk}k, but the obtained
linear rate is slower than the rate of the original scheme. Later, in [10], the authors
prove that AA can achieve an improved linear rate with additional quadratic error
terms which overall yields r-linear convergence. This result is further improved in
[33] by assuming sufficient linear independence on the set of difference vectors of
the residuals h(xk) and q-linear convergence of AA is established with a rate faster
than the Picard iteration (1.2). Moreover, if the coefficients {αk}k are assumed to
be constant in each iteration, an asymptotic rate is given in [48]. The convergence
behavior of AA applied to nonsmooth algorithmic schemes is also considered in [23, 6].

Since AA is known to only converge locally [46, 23], globalization mechanisms are
required to use it in practice. A simple and heuristic choice is to check whether AA
decreases the objective function value f and to perform a fixed-point iteration if the
decrease of the AA step is not sufficient. Such a strategy is utilized in [31, 27, 41, 17].
However, to the best of our knowledge, no consistent global-local convergence proofs
are known in this case. Alternatively, one can check whether AA decreases the residual
∥h(x)∥ and to reject the step if no sufficient decrease is observed. This strategy is
more common and has been used in [51, 28, 14, 9]. Transition to local fast convergence
of such a globalized AA approach is provided in [28]. Unfortunately, the convergence
analyses in [51, 28, 14, 9] require global nonexpansiveness of g1, which often necessitates
convexity of f . Notably, it is also possible to combine function value- and residual-based
globalization techniques, see, e.g., [17, 45].

Restarting strategies are part of many numerical algorithms. For instance, restart-
ing is used in the conjugate gradient method (CG) [36], the generalized minimal residual
method (GMRES) [40], and in quasi-Newton methods [24]. Restarting strategies have

1Though residual-based globalizations of AA without nonexpansiveness are possible, it is not fully
clear which type of convergence guarantees can be achieved.

DESCENT OF A RESTARTED ANDERSON ACCELERATED GRADIENT METHOD 3

also been widely applied in the context of AA. In [4, 12], AA is restarted whenever the
ratio of the square of the current residual to the sum of the squares of the previous
residuals exceeds a predetermined constant. Similar ideas are discussed in [51, Section
3.2] and [32]. Restarting strategies are sometimes also used in tandem with regular-
ization techniques to enhance the numerical stability of AA, see, e.g., [19, 43, 41]. A
comprehensive comparison between AA with restarting and the original AA scheme
on linear problems with parallel implementation can be found in [22]. The results in
[22] suggest that the performance of AA with restarting is generally comparable to
the performance of the original AA method. Further supporting observations for the
effectiveness of restarted AA are provided in [37].

1.2. Contributions. The convergence analyses of AA [46, 10, 33, 28] focus on
the decrease of the residual ∥h(x)∥, which is natural since AA aims to minimize this
norm in the AA subproblem (1.3). However, as mentioned, such globalization strategies
usually require global nonexpansiveness of g in order to obtain global convergence
results, see, e.g., [51, 28, 14, 9]. Hence, the heuristic idea to base the acceptance of
an AA step on the decrease of the objective function value seems attractive, since
the Picard iteration (1.2) can decrease the function value even if f is nonconvex.
So far, there seems to be no theoretical backing ensuring that AA(-R) can achieve
descent on the underlying objective function — even if strong convexity is assumed
and an appropriate initial point is selected. Our aim is to investigate this gap and
to show that AA-R can decrease the objective function value locally. This result
provides theoretical guarantees for algorithms that utilize descent conditions for f as
globalization mechanism without hindering the local fast convergence of AA-R. We
now summarize our main contributions:

• To the best of our knowledge, we establish the first descent properties of
AA-R iterations for the gradient descent scheme (1.2). On the one hand, this
illuminates the success of algorithms that have used heuristic descent-type
conditions to globalize AA(-R) [31, 27, 41]. On the other hand, our findings can
be utilized in the design of novel globalization techniques for AA-R methods.

• We verify that the iterates generated by AA-R in one restarting cycle are
equivalent to the iterates generated by GMRES when being run on a perturbed
linear system model (for the same amount of iterations). This model, without
perturbation, is exactly the quadratic expansion of f and the Hessian of this
model is symmetric and positive definite if we assume local strong convexity.
Hence, AA-R is close to running the conjugate residual method (CR) [44] on
such a quadratic model of f . Motivated by these observations, we analyze
and specify the error between GMRES and CR under small perturbations of
the system matrix which will allow us to link AA-R, CR, and CG. Based on
classical results for CG [20], we then show that AA-R not only decreases the
objective function value, but the overall achieved descent is actually no smaller
than the one obtained by performing a gradient descent step with step size 1

L
up to higher-order error terms. Some byproducts of our results indicate that
CR itself decreases the objective function value no slower than the gradient
descent method.

• We design a practical function value-based globalization mechanism for AA-R.
Unlike residual-based globalizations, this allows to apply AA-R directly to
nonconvex problems without requiring any adjustments of the underlying AA-R
scheme. We illustrate the numerical performance of our simple globalization
and numerically confirm the derived theoretical descent guarantees of AA-R

4 W. OUYANG, Y. LIU, AND A. MILZAREK

on several nonconvex large-scale problems.

1.3. Organization. This work is organized as follows. In section 2, we introduce
the algorithmic details of AA-R and list the standing assumptions. In section 3, we
derive the core descent properties of AA-R. This is done step by step. In subsection 3.1,
we first establish q-linear convergence. The mentioned equivalence between AA-R
and GMRES is shown in subsection 3.3. Next, in subsection 3.4, we analyze the error
between the sequences generated by CR and GMRES which allows to connect GMRES
and CR. The detailed connection between CR and CG is investigated in subsection 3.5.
An objective function value-based globalization of AA-R is presented in section 4.
Finally, in section 5, we verify our theoretical results and test the proposed globalized
AA-R algorithm on several examples.

1.4. Notation. Throughout this work, we consider the fixed-point mapping
g(x) = x−∇f(x)/L and the corresponding residual h(x) := g(x)− x = −∇f(x)/L.
For a given sequence of iterates {xk}k, we define the terms:

Mk
h := max

k−m̂≤i≤k
∥h(xi)− h(xk−m̂)∥, Mk

x := max
k−m̂≤i≤k

∥xi − xk−m̂∥,

where m̂ = mod(k,m+ 1). We further introduce the following matrices and notations:

Xk := [xk−m̂+1 − xk−m̂, . . . , xk − xk−m̂] ∈ Rn×m̂,
Hk := [h(xk−m̂+1)− h(xk−m̂), . . . , h(xk)− h(xk−m̂)] ∈ Rn×m̂,
Gk := [g(xk−m̂+1)− g(xk−m̂), . . . , g(xk)− g(xk−m̂)] ∈ Rn×m̂,

x̂0 := x0, x̂k := xk−m̂ + Xkα
k, gk := g(xk), ĝk := gk−m̂ + Gkα

k, hk := h(xk), and
ĥk := ĝk − x̂k. The definition of x̂k follows [10, Equation (2.4)]. We further note that
the AA subproblem (1.3) can be viewed as finding the minimal value of the linearized
residual of x̂k which is ĥk. Based on these notations, we can express the solution to
(1.3) explicitly by αk = −(H⊤

k Hk)
−1H⊤

k h
k−m̂ provided that H⊤

k Hk is invertible.
For given n ∈ N, we set [n] := {1, . . . , n}. For a matrix A, σmax(A) (λmax(A))

denotes the largest singular value (eigenvalue) of A and σmin(A) (λmin(A)) is the
smallest singular value (eigenvalue) ofA. The condition number ofA is given by κ(A) :=
σmax(A)/σmin(A). Unless specified otherwise, the norm ∥ · ∥ refers to the standard
Euclidean norm for vectors and the spectral norm for matrices. We will use ∥ · ∥F to
denote the Frobenius norm of a matrix. The space Kt(A, b) := span{b, Ab, . . . , At−1b}
is used to denote the t-th Krylov space generated by A and b.

2. Anderson Acceleration with Restarting. Throughout this paper, we
assume that:

Assumption 2.1. There is some r > 0 and a stationary point x⋆ ∈ Rn of f (i.e.,
∇f(x⋆) = 0) such that:

(A.1) The function f is L-smooth on Rn.
(A.2) The function f is µ-strongly convex on Br(x⋆) := {x : ∥x− x⋆∥ < r}.
(A.3) The Hessian ∇2f is Lipschitz continuous with modulus LH on Br(x⋆).

We note that the conditions formulated in Assumption 2.1 are common in the
convergence analysis of Anderson accelerated gradient methods, see, e.g., [46, 10] for
comparison. Let κr := L

µ denote the condition number of the Hessian ∇2f on Br(x⋆).
Then, under Assumption 2.1, it follows:

∥g(x)− g(y)∥ ≤
∥∥∥∥I − 1

L
F̄

∥∥∥∥ ∥x− y∥ ≤
(
1− 1

κr

)
∥x− y∥, ∀ x, y ∈ Br(x⋆),(2.1)

DESCENT OF A RESTARTED ANDERSON ACCELERATED GRADIENT METHOD 5

where F̄ :=
∫ 1

0
∇2f(y + t(x− y)) dt. Hence, g is contractive on Br(x⋆) with Lipschitz

constant 1− 1
κr

.
We study local properties of AA with restarting applied to the gradient mapping

g(x) = x − 1
L∇f(x). In particular, given some initial point x0 which is sufficiently

close to x⋆, we apply AA on {x0, . . . , xk−1} to obtain the new iterate xk. After m
iterations (m is the fixed memory parameter), this procedure is stopped and AA is
restarted with xm+1 as new initial point of the next cycle. The full algorithm of the
restarted AA scheme for problem (1.1) – AA-R – is shown below in Algorithm 2.1.

Algorithm 2.1 AA with Restarting (AA-R)
Require: Choose the initial point x0 and the memory parameter m ∈ N. Set the

current memory parameter as m̂ = 0.
1: for k = 0, 1, . . . do
2: m̂ = mod(k,m+ 1).
3: if m̂ = 0 then
4: Set xk+1 = g(xk).
5: else
6: Calculate the coefficient αk based on the sequence {h(xk), . . . , h(xk−m̂)} via

solving (1.3) and set xk+1 = gk−m̂ +Gkα
k.

7: end if
8: end for

3. Convergence and Descent Properties of AA-R. Most classical convergence
analyses of AA are based on the same idea — linearization [46, 10, 23, 28]. It is well-
known that AA(-R) is equivalent to GMRES if the mapping g is affine [35] and therefore,
AA(-R) can be viewed as GMRES being applied to a linear approximation of g along
with some linearization error. When specialized to the gradient mapping, these
analyses ignore the structural information that g has a symmetric Hessian. Taking
this information into account, we can deduce that the system matrix of the GMRES
procedure is essentially close to a symmetric positive definite matrix, which means
that GMRES is close to CR in this case. This observation motivates us to utilize
classical tools for CR to show that AA-R locally performs descent steps for f . The
main technical difficulty lies in the fact that the iterates generated by AA-R only
coincide with the iterates generated by GMRES after one additional gradient step. We
resolve this complication by connecting GMRES and CG (via CR) and by analyzing
the relevant properties via a CG-based perspective.

3.1. Q-Linear Convergence of AA-R. We first present an additional assump-
tion and several basic properties of AA-R (and AA) that allow to establish q-linear
convergence. This will serve as a foundation for our later results.

Assumption 3.1. (A.4) The condition number of X⊤
k Xk is bounded by M2 for

every k ∈ N.

Let us note that the analogous assumption on Hk is more common, since Hk

appears directly in the computation of the coefficient αk in (1.3). We address this issue
in the following proposition and show that condition (A.4) is actually equivalent to
assuming that the condition number of H⊤

k Hk is bounded locally. Hence, in practice,
(A.4) can be ensured by monitoring the condition number of H⊤

k Hk. For instance,
we can restart the current cycle whenever the condition number of H⊤

k Hk exceeds a
given tolerance. Alternative strategies are further discussed in [33, Section 5.1.3]. It

6 W. OUYANG, Y. LIU, AND A. MILZAREK

is also possible to mitigate condition (A.4) and related boundedness assumptions on
the mixing coefficients {αk}k, [46, 10, 23, 6] via algorithmic independence checks or
adaptive depth mechanisms, see, e.g., [7]. However, such adjustments naturally affect
the achievable convergence and acceleration results.

Proposition 3.2. Suppose that the conditions (A.1)–(A.3) are satisfied. Then,
the following statements hold:

(i) For every MX > 0 there is a neighborhood U1 of x⋆ such that if xk−m̂ . . . , xk ∈
U1 and κ(X⊤

k Xk) ≤M2
X , then it holds that κ(H⊤

k Hk) ≤ 4κ2rκ(X
⊤
k Xk).

(ii) For every MH > 0 there is a neighborhood U2 of x⋆ such that if xk−m̂, . . . , xk ∈
U2 and κ(H⊤

k Hk) ≤M2
H , then we have κ(X⊤

k Xk) ≤ 4κ2rκ(H
⊤
k Hk).

Proof. Without loss of generality and in order to simplify the notation, we assume
m̂ = m and k = m. Let us first define U1 := Bδ1(x⋆) where δ1 := min{r, (1 −
1√
2
) µ√

mMXLH
}. We further set bi := ∇f(xi) − ∇f(x0) − ∇2f(x0)(xi − x0) and

Bk := [b1, . . . , bk]. Utilizing [25, Lemma 4.1.1], it follows ∥bi∥ ≤ LH

2 ∥xi − x0∥2 for all
i ∈ [k] and we obtain

∥Bk∥ ≤ ∥Bk∥F ≤
√
m max

1≤i≤k
∥bi∥ ≤

√
mLH
2

max
1≤i≤k

∥xi − x0∥2 =

√
mLH(Mk

x)
2

2
.

Defining Ek := Bk(X
⊤
k Xk)

−1X⊤
k (Ek is well-defined since X⊤

k Xk is invertible) and
Ak = ∇2f(x0) + Ek, a direct calculation yields

(3.1) Ak(x
i − x0) = ∇f(xi)−∇f(x0) ∀ i ∈ [k].

In other words, we have AkXk = −LHk. Moreover, the norm of Ek can be estimated
as follows

∥Ek∥ ≤ ∥Bk∥∥(X⊤
k Xk)

−1X⊤
k ∥

= ∥Bk∥
√
∥(X⊤

k Xk)−1∥ ≤ ∥Bk∥FMX

∥Xk∥
≤

√
mLHMXM

k
x

2
,(3.2)

where we used ∥Xk∥ ≥ max1≤i≤k ∥Xkei∥ =Mk
x with ei ∈ Rk being the i-th unit vector.

Due to Mk
x ≤ 2δ1, we can further infer ∥Ek∥ ≤

√
mLHMXδ1 ≤ (1 − 1√

2
)µ. There-

fore, it holds that σmax(Ak) ≤ λmax(∇2f(x0)) + σmax(Ek) ≤
√
2L and σmin(Ak) ≥

λmin(∇2f(x0))− σmax(Ek) ≥ 1√
2
µ. Consequently, we have κ(Ak) ≤ 2κr. This allows

to bound the condition number of Hk:

κ(H⊤
k Hk) = κ(X⊤

k A
⊤
k AkXk) ≤ κ(X⊤

k Xk)κ(A
⊤
k Ak) ≤ 4κ2rM

2
X

and proves part (i). We now turn to the proof of the second statement. We define
U2 := Bδ2(x⋆), δ2 := min{r, (1 − 1√

2
) µ2

√
mLLHMH

}, b̃i = 1
L [(∇

2f(x0))−1(∇f(xi) −
∇f(x0))− (xi − x0)], and B̃k = [b̃1, . . . , b̃k]. As before, we obtain

∥B̃k∥ =
1

L
∥∇f(x0)−1Bk∥ ≤ 1

Lµ
∥Bk∥ ≤

√
mLH(Mk

x)
2

2Lµ
.

Let j ∈ [k] be given with Mk
x = max1≤i≤k ∥xi − x0∥ = ∥xj − x0∥. Using (A.2), it then

holds that

(3.3) ∥Hk∥ ≥Mk
h ≥ ∥hj − h0∥ =

1

L
∥∇f(xj)−∇f(x0)∥ ≥ 1

κr
∥xj − x0∥ =

Mk
x

κr
.

DESCENT OF A RESTARTED ANDERSON ACCELERATED GRADIENT METHOD 7

Therefore, setting Ẽk := B̃k(H
⊤
k Hk)

−1H⊤
k , it follows

∥Ẽk∥ ≤ ∥B̃k∥
√
∥(H⊤

k Hk)−1∥ ≤
√
mLH(Mk

x)
2MH

2Lµ∥Hk∥
≤

√
mLHMHM

k
x

2µ2

and by the definition of δ2, we have Mk
x ≤ 2δ2 and ∥Ẽk∥ ≤

√
mLHMHδ2

µ2 ≤ (1− 1√
2
) 1
L .

Next, defining Ãk := (∇2f(x0))−1 + Ẽk, we can again infer

Ãk(∇f(xi)−∇f(x0)) = xi − x0, i ∈ [k] =⇒ LÃkHk = −Xk,

σmax(Ãk) ≤ λmax(∇2f(x0)−1) + σmax(Ẽk) ≤
√
2
µ , and σmin(Ãk) ≥ λmin(∇2f(x0)−1)−

σmax(Ẽk) ≥ 1/(
√
2L). This yields κ(Ãk) ≤ 2κr and κ(X⊤

k Xk) ≤ κ(H⊤
k Hk)κ(Ã

⊤
k Ãk) ≤

4κ2rM
2
H .

We note that the matrix Ak = ∇2f(x0)+Ek defined in the proof of Proposition 3.2
is a key technical ingredient in this paper and will be used in the subsequent sections.
The matrix Ak consists of the symmetric Hessian ∇2f(x0) and the perturbation matrix
Ek. Our goal in the next subsections is to suitably control the norm of Ek promoting
a link between AA-R and CR.

Based on condition (A.4), we now verify q-linear convergence of the sequence
{∥hk∥}k. Let us remark that assumption (A.4) (or its equivalent formulation for the
matrices H⊤

k Hk) is generally stronger than the condition appearing in [33]. Namely,
in [33, Theorem 5.1], q-linear convergence of AA(-R) is shown under a sufficient linear
independence condition on each of the columns of (a permutation of) Hk. Here, we
will work with the slightly stronger assumption (A.4) as it allows us to study the
behavior of (H⊤

k Hk)
−1H⊤

k under perturbations which is required to link AA-R and
CR. More details can be found in the proof of Theorem 3.12. In addition, in [33],
contraction and Lipschitz differentiability of ∇f is assumed on the whole space Rn,
while we consider the local case in a neighborhood of x⋆. Following the derivation in
[33], we first analyze the behavior of the residuals {∥hk∥}k in one cycle of AA-R.

Proposition 3.3. Let the conditions (A.1)–(A.4) be satisfied and let us further
assume g(xi), xi ∈ U1 with i = k − m̂, . . . , k and x̂k, ĝk ∈ U1 (where U1 is introduced
in Proposition 3.2 for MX =M). Then, it holds that:

(3.4) ∥hk+1∥ ≤
(
1− 1

κr

)
∥hk∥+O

(
∥hk∥

(∑k

i=k−m̂
∥hi∥

))
.

Proof. This result basically follows from [33, Theorem 5.1]. A comprehensive
proof is presented in Appendix A.

In order to transfer the statement in Proposition 3.3 to the full sequence {∥hk∥}k,
we need to show that AA-R stays indeed local.

Lemma 3.4. Let the conditions (A.1)–(A.3) hold and assume xk−m̂, . . . , xk ∈
Br(x⋆). If κ(H⊤

k Hk) ≤M2
H , then we have:

∥x̂k − xk−m̂∥ ≤
√
mMHκr∥hk−m̂∥ and ∥ĝk − xk−m̂∥ ≤ (1 +

√
mMHκr)∥hk−m̂∥.

Proof. We start with bounding the coefficient αk. As mentioned, the closed-form
expression for αk is given by αk = −(H⊤

k Hk)
−1H⊤

k h
k−m̂. Therefore, it holds that

∥αk∥ ≤
√
∥(H⊤

k Hk)−1∥∥hk−m̂∥ ≤ MH

∥Hk∥
∥hk−m̂∥ ≤ MHκr

Mk
x

∥hk−m̂∥,

8 W. OUYANG, Y. LIU, AND A. MILZAREK

where we used (3.3) in the last inequality. Due to ∥Xk∥F ≤
√
m̂Mk

x , the definition of
ĥk, and (1.3), this implies

∥x̂k − xk−m̂∥ = ∥Xkα
k∥ ≤ ∥Xk∥∥αk∥ ≤ ∥Xk∥F ∥αk∥ ≤

√
mMHκr∥hk−m̂∥

and ∥ĝk − xk−m̂∥ ≤ ∥ĥk∥+ ∥x̂k − xk−m̂∥ ≤ (1 +
√
mMHκr)∥hk−m̂∥.

Proposition 3.5. Let (A.1)–(A.4) be satisfied and let {xk}k be generated by
Algorithm 2.1. Then there exists a neighborhood U of x⋆ such that if x0 ∈ U , it follows
{xk}k ⊂ U and ∥h(xk+1)∥ ≤ (1− 1

2κr
)∥h(xk)∥ for all k ∈ N.

Proof. We define Sϵ = {x ∈ Rn : ∥h(x)∥ ≤ ϵ} ∩ Br(x⋆). Due to (A.2), we obtain

∥h(x)∥ =
1

L
∥∇f(x)∥ ≥ µ

L
∥x− x⋆∥ =

1

κr
∥x− x⋆∥ ∀ x ∈ Br(x⋆).

Let U1 be defined as in Proposition 3.2 for MX =M . The previous inequality implies
that there is some ϵ1 > 0 such that Sϵ1 ⊂ U1. Moreover, by Proposition 3.3, there
exists another neighborhood Sϵ2 such that if xk, . . . , xk−m̂, x̂k, ĝk ∈ Sϵ2 , then we have

(3.5) ∥h(ĝk)∥ ≤ (1− (2κr)
−1)∥h(xk)∥.

We now take ϵ̄ = min{ϵ1, ϵ2
2+2

√
mκ2

rM
, r
1+(2

√
mκrM+1)κr

} and set U = Sϵ̄. Let us further
suppose x0 ∈ U . We use an induction to show ∥hk∥ ≤ (1−(2κr)

−1)∥hk−1∥ and xk ∈ U
for all k. It is clear that we only need to prove this conclusion for k = 1, . . . ,m+ 1,
since the analysis is identical for the next cycle of the restarted AA method. We start
with k = 1. By definition, we have x1 = g(x0) and according to (2.1), it follows:

∥x1 − x⋆∥ = ∥g(x0)− g(x⋆)∥ ≤ (1− κ−1
r)∥x0 − x⋆∥ ≤ r.

This proves x1 ∈ Br(x⋆). Moreover, it holds that:

∥h(x1)∥ = ∥g(x1)− x1∥ = ∥g(x1)− g(x0)∥ ≤ (1− κ−1
r)∥h(x0)∥ ≤ ϵ̄,

which shows ∥h(x1)∥ ≤ (1− (2κr)
−1)∥h(x0)∥ and x1 ∈ Sϵ̄. Next, let us assume that

the induction hypothesis is true for i = 1, . . . , k and let us prove the conclusion for
i = k + 1. Applying Proposition 3.2 and (A.4), we obtain κ(H⊤

k Hk) ≤ 4κ2rM
2 and

using Lemma 3.4, we can further infer:

∥xk+1 − x⋆∥ ≤ ∥ĝk − x0∥+ ∥x0 − x⋆∥ ≤ (1 + 2
√
mMκ2r)∥h0∥+ κr∥h0∥ ≤ r.

This establishes xk+1 ∈ Br(x⋆). Similarly, we also have x̂k ∈ Br(x⋆) and it holds that

∥h(x̂k)∥ ≤ ∥h(x̂k)− h(x0)∥+ ∥h0∥ ≤ ∥x̂k − x0∥+ ϵ̄ ≤ (1 + 2
√
mκ2rM)ϵ̄ ≤ ϵ2

and ∥h(ĝk)∥ ≤ ϵ2. Hence, by (3.5), we can conclude ∥hk+1∥ = ∥h(ĝk)∥ ≤ (1− 1
2κr

)∥hk∥
and xk+1 ∈ Sϵ̄.

3.2. Local Descent Properties of AA-R. We now formulate and present one
of the main theoretical results of this paper.

theorem 3.6. Let the conditions (A.1)–(A.4) hold and let {xk}k be generated by
Algorithm 2.1. There is a neighborhood U of x⋆ such that if x0 ∈ U , then we have:

(3.6) f(xk+1) ≤ f(g(xk)) +O(∥∇f(xk−m̂)∥3)

for all k ∈ N, where m̂ = mod(k,m+ 1).

DESCENT OF A RESTARTED ANDERSON ACCELERATED GRADIENT METHOD 9

As already outlined, the proof of Theorem 3.6 relies on subtle connections between
AA-R, GMRES, CR, and CG. We will establish and discuss these connections step-by-
step in the subsequent subsections.

Before proceeding with further details, let us briefly discuss GMRES, CR, and CG,
cf. [39]. All of these algorithms are designed to solve linear systems of form Ax = b
via Krylov subspace techniques. For GMRES and CR, the k-th iterate is the point in
the k-th Krylov subspace Kk(A, b) with minimal residual norm ∥Ax− b∥. Here, CR
typically requires the matrix A to be symmetric positive semidefinite, which can be
exploited in (faster) implementations. No additional assumptions (on A) need to be
made when applying GMRES. CG is connected to CR and requires A to be symmetric,
positive (semi)definite. Instead of finding elements with minimal residual norm, CG
aims at minimizing the quadratic form 1

2x
⊤Ax− b⊤x within the subspace Kk(A, b).

We now summarize the core components of our proof. In subsection 3.3, we show
that the AA-R iterate xk+1 coincides with an iterate x̄kG that can be generated via
performing an additional gradient step on the GMRES iterate xkG. Here, GMRES is
applied to a non-symmetric perturbed linear system A(x− x0) = b that is connected
to AA-R. In addition, the gradient step g(xk) can be viewed as applying two gradient
steps on the previous GMRES iterate xk−1

G resulting in x̃k−1
G . Since the system matrix A

can be interpreted as a perturbed version of the symmetric Hessian ∇2f(x0), our idea
is to run CR on the linear system B(x− x0) = b with B = ∇2f(x0) and b = −∇f(x0)
and to bound the differences between the CR and GMRES iterates. In subsection 3.4,
we verify that this error has order O(∥b∥2). Finally, in subsection 3.5, we connect
CR and CG and use the rich computational properties of CG, [20], to show that the
CR iterates achieve the desired descent on a local quadratic model of f . In the last
subsection, we combine these different components to prove that the AA-R iterate xk+1

itself decreases the objective function value up to certain higher-order error terms.

3.3. Connecting AA-R and GMRES. We now establish equivalence of GMRES
and AA-R when running one restarting cycle. Let us introduce the matrix A := Am =
∇2f(x0) + Em, where Am and Em have been defined in the proof of Proposition 3.2,
i.e., it holds that

(3.7) A = ∇2f(x0) + Em, Em = Bm(X⊤
mXm)−1X⊤

m, Bm = [b1, . . . , bm],

where bi = ∇f(xi)−∇f(x0)−∇2f(x0)(xi − x0), i ∈ [m].
The matrix A can be utilized to construct a new perturbed gradient mapping

ḡ(x) := x − 1
L (A(x − x0) + ∇f(x0)). Recalling (3.1), it can be shown that the

function ḡ is exact at xk for all k = 0, . . . ,m, i.e., we have ḡ(xk) = g(xk). We now
study GMRES applied to the linear system A(x − x0) = −∇f(x0). While there are
various implementations of GMRES [40, 5], each of these variants will yield the same
iteration sequence {xkG}k. The following proposition (which holds for general input
data A ∈ Rn×n and b, x0 ∈ Rn) is taken from [35, Equation (4)] and characterizes the
iterates xkG more explicitly.

Proposition 3.7. Let A ∈ Rn×n be nonsingular and let b, x0 ∈ Rn be given.
Suppose further that {xkG}k is generated by GMRES to solve the system A(x− x0) = b
with x0G = x0. Then, we have:

xkG = argminx∈x0+Kk(A,b) ∥A(x− x0)− b∥2.

Next, we verify the equivalence of AA-R and GMRES (in one restarting cycle) in
the general nonlinear setting. As we will see, the matrix A in (3.7) and the perturbed

10 W. OUYANG, Y. LIU, AND A. MILZAREK

gradient mapping ḡ will play an important role when connecting AA-R and GMRES.
We further note that the linear case has been already covered in [35, Proposition 2].

Proposition 3.8. Let {xk}k=0,...,m+1 be generated by Algorithm 2.1 and suppose
that (A.4) is satisfied. Let the sequence {xkG}k=0,...,m be generated by GMRES applied
to A(x − x0) = −∇f(x0) with initial point x0G = x0, where A is defined as in (3.7).
Suppose that the matrix A is nonsingular. Setting x̂0 := x0, it then holds that

x̄kG := ḡ(xkG) = xk+1 and xkG = x̂k ∀ k = 0, . . . ,m.

In particular, we have κ((X̄k
G)

⊤X̄k
G) ≤ M2 for each k = 1, . . . ,m, where X̄k

G :=
[x̄0G − x0, . . . , x̄k−1

G − x0].

Proof. We prove Proposition 3.8 by induction. The base case k = 0 is obviously
satisfied. Next, let us suppose that the induction hypothesis is true for any i ≤ k − 1.
By definition, we have x̂k = x0 +

∑k
i=1 α

k
i (x

i − x0) where αk is the solution to

min
α

∥∥h(x0) +∑k

i=1
αi(h(x

i)− h(x0))
∥∥2.

Based on the definition of the matrix A (see (3.7)) and by (3.1), we further obtain:

(3.8) A(xi − x0) = ∇f(xi)−∇f(x0) = −L(h(xi)− h(x0)) ∀ i = 0, . . . ,m.

Hence, αk is also the solution to the problem minα ∥A[
∑k
i=1αi(x

i − x0)] +∇f(x0)∥2
and it holds that x̂k = argminx∈x0+span{x1−x0,...,xk−x0} ∥A(x − x0) + ∇f(x0)∥2. In
addition, using assumption (A.4), we can infer that the vectors {x1 − x0, . . . , xk − x0}
are linearly independent. Applying Proposition 3.7, we have xkG−x0 ∈ Kk(A,−∇f(x0))
and thus, it follows x̄kG−x0 = xkG−x0− 1

L (A(x
k
G−x0)+∇f(x0)) ∈ Kk+1(A,−∇f(x0))

(for all k). Combining these observations and using the induction hypothesis, this
yields span{x1−x0, . . . , xk−x0} = span{x̄1G−x0, . . . , x̄k−1

G −x0} = Kk(A,−∇f(x0)),
where the last equality follows from dim(span{x1 − x0, . . . , xk − x0}) = k. Thus, by
Proposition 3.7, we can deduce:

xkG = argminx∈x0+Kk(A,−∇f(x0)) ∥A(x− x0) +∇f(x0)∥2

= argminx∈x0+span{x1−x0,...,xk−x0} ∥A(x− x0) +∇f(x0)∥2 = x̂k

and thanks to (3.8), we obtain

x̄kG = ḡ(xkG) = ḡ(x̂k) = x̂k − L−1 ·
∑k

i=1
αkiA(x

i − x0) + h(x0) = ĝk = xk+1.

The last assertion in Proposition 3.8 now follows from x̄kG = xk+1 and (A.4).

3.4. Connecting GMRES and CR. In this section, we study GMRES and CR
applied to the general linear systems

A(x− x0) = b and B(x− x0) = b, A,B ∈ Rn×n, b, x0 ∈ Rn.

Let xkG denote the k-th iteration of GMRES applied to A(x−x0) = b and let xkR denote
the k-th iteration of CR applied to the linear system B(x− x0) = b (in our case, we
will have B = ∇2f(x0) and b = −∇f(x0)). Here, we want to investigate and bound
the distance between the iterates xkG and xkR. In our analysis, we further assume
x0G = x0R = x0 and b ̸= 0. We will largely utilize the following simple fact:

DESCENT OF A RESTARTED ANDERSON ACCELERATED GRADIENT METHOD 11

Proposition 3.9. Let a1, b1, a2, b2 be given scalars, vectors, or matrices with
appropriate dimensions such that a1b1, a2b2, a1 − a2, b1 − b2, and a1b1 − a2b2 are
well-defined. Then, we have ∥a1b1 − a2b2∥ ≤ ∥a1 − a2∥∥b1∥+ ∥b1 − b2∥∥a2∥.

As usual, the concrete implementation of CR is not of our concern and we only
require the following property of CR:

Proposition 3.10. [13, Section 2.2] Suppose B ∈ Rn×n is symmetric and positive
definite and let b, x0 ∈ Rn be given. Let {xkR}k be generated by CR applied to the linear
system B(x− x0) = b with x0R = x0. Then, we have:

xkR = argminx∈x0+Kk(B,b) ∥B(x− x0)− b∥2.

Based on our earlier discussion, we now introduce several additional terms:

(3.9)

x̄kG = xkG − 1

L
(A(xkG − x0)− b), x̄kR = xkR − 1

L
(B(xkR − x0)− b),

x̃kG = x̄kG − 1

L
(A(x̄kG − x0)− b), x̃kR = x̄kR − 1

L
(B(x̄kR − x0)− b),

X̄k
G = [x̄0G − x0, . . . , x̄kG − x0], X̄k

R = [x̄0R − x0, . . . , x̄kR − x0].

Our first lemma in this section allows to connect the residuals of x̄kG and xkG.

Lemma 3.11. Let B ∈ Rn×n be a symmetric, positive definite matrix with L ≥
λmax(B), λmin(B) ≥ µ > 0 and suppose that A ∈ Rn×n satisfies ∥A − B∥ < µ. Let
x, b ∈ Rn be given and set x̄ = x− L−1(Ax− b). It holds that:

∥Ax̄− b∥ ≤ ∥Ax− b∥.

Proof. First notice that σmin(A) ≥ σmin(B) − ∥A − B∥ > 0, which shows that
A is nonsingular. We can then define x∗ := A−1b and rewrite Ax − b = A(x − x∗).
Furthermore, it holds that

∥Ax̄− b∥ = ∥A(x̄− x∗)∥ = ∥(I − L−1A)A(x− x∗)∥ ≤ ∥I − L−1A∥∥A(x− x∗)∥.

Hence, it suffices to verify ∥I − L−1A∥ ≤ 1. Indeed, we have ∥I − L−1A∥ ≤ ∥I −
L−1B∥+ ∥L−1(A−B)∥ ≤ 1− µ

L + µ
L ≤ 1 which finishes the proof.

Next, we present our main result of this subsection.

theorem 3.12. Let B ∈ Rn×n be a symmetric, positive definite matrix with
λmax(B) ≤ L and λmin(B) ≥ µ > 0 and let A ∈ Rn×n, b, x0 ∈ Rn, and N ∋ m ≤ n be
given. Let the sequences {xkG}k and {xkR}k be generated by GMRES and CR applied to
the linear systems A(x− x0) = b and B(x− x0) = b with x0G = x0R = x0, respectively.
Suppose further that there are constants C1, C2, C3 > 0 such that:

(i) ∥A−B∥ ≤ C1∥b∥.
(ii) For each k = 0, . . . ,m, we have ∥x̄kG − x0G∥ ≤ C2∥b∥.
(iii) We have κ((X̄k

G)
⊤X̄k

G) ≤ C3 for all k = 1, . . . ,m.
There exists a constant ϵ♯ > 0 such that if ∥b∥ ≤ ϵ♯, then there is C > 0 such that:

∥xkG − xkR∥ ≤ C∥b∥2, ∥x̄kG − x̄kR∥ ≤ C∥b∥2, ∥x̃kG − x̃kR∥ ≤ C∥b∥2, ∀ 0 ≤ k ≤ m.

Proof. Without loss of generality, we can assume b ̸= 0. We define the following
quantities recursively: ζ0 = 0, ck,1 = L−1C1C2 + L−2C1 + ζk, ck,2 = (k + 1)C1C2 +

L(
∑k
i=0c

2
i,1)

1
2 , ck,3 = 3ck,2L(k+1)C2, c4 = 16

9µ2C3L
2, ck,5 = c4ck,2 +

7
2c

2
4ck,3(k+1)C2,

12 W. OUYANG, Y. LIU, AND A. MILZAREK

ζk+1 = 7
4L(k + 1)C2ck,5 +

√
c4ck,2, cj = maxk=0,...,m ck,j , for all j = 1, 2, 3, 5 and

ϵ♯ :=
1
2 min{(L2C3

∑m
i=0 c

2
i,1)

− 1
2 , µ

2C1
, Lc2 ,

1
c3c4

}. Next, let us assume ∥b∥ ≤ ϵ♯. Due to
C1ϵ♯ ≤ 1

4µ ≤ 1
4L, we then immediately obtain:

∥A∥ ≤ ∥B∥+ ∥A−B∥ ≤ 5
4L and σmin(A) ≥ λmin(B)− ∥A−B∥ ≥ 3

4µ.(3.10)

This shows that A is nonsingular. Our goal is now to establish ∥xkG−xkR∥ ≤ ζk∥b∥2 by
induction. The base case k = 0 is trivial. Let us suppose that the induction hypothesis
is true for all 0 ≤ i ≤ k. By Proposition 3.7 and Proposition 3.10, we have:

xk+1
G = argmin

x∈x0+Kk+1(A,b)

∥A(x− x0)− b∥2, xk+1
R = argmin

x∈x0+Kk+1(B,b)

∥B(x− x0)− b∥2.

Furthermore, mimicking the proof of Proposition 3.8 and using (iii), we can deduce

(3.11) x̄kG − x0 ∈ Kk+1(A, b) and x̄kR − x0 ∈ Kk+1(B, b)

for all k and span{x̄0G − x0, . . . , x̄kG − x0} = Kk+1(A, b). In addition, applying (i) and
(ii), it holds that

∥x̄iG − x̄iR∥ = ∥xiG − L−1A(xiG − x0)− xiR + L−1B(xiR − x0)∥
= ∥L−1(A−B)(x0 − xiG) + (I − L−1B)(xiG − xiR)∥
≤ L−1∥A−B∥(∥x̄iG − x0∥+ ∥x̄iG − xiG∥) + ∥I − L−1B∥∥xiG − xiR∥
≤ C1L

−1∥b∥(∥x̄iG − x0∥+ ∥x̄iG − xiG∥) + ∥xiG − xiR∥
≤ C1L

−1∥b∥(C2∥b∥+ L−1∥b∥) + ζi∥b∥2 = ci,1∥b∥2,(3.12)

where we used ∥I − L−1B∥ ≤ 1− µ
L ≤ 1 and Proposition 3.7 to show that:

∥x̄iG − xiG∥ = L−1minx∈x0+Ki(A,b)∥A(x− x0)− b∥ ≤ L−1∥A(x0 − x0)− b∥ = L−1∥b∥.

Therefore, we are able to bound the error between X̄k
G and X̄k

R:

∥X̄k
G − X̄k

R∥ ≤
(∑k

i=0
∥x̄iG − x̄iR∥2

)1/2

≤
(∑k

i=0
c2i,1

)1/2

∥b∥2 ≤ 1

2L
√
C3

∥b∥,

where we applied the definition of ϵ♯. Furthermore, due to (iii), we can infer:

∥X̄k
G∥ ≥ ∥x̄0G − x0∥ = ∥b∥

L =⇒ σmin(X̄
k
G) ≥

σmax(X̄
k
G)√

C3
≥ ∥b∥

(L
√
C3)

.(3.13)

Consequently, it holds that σmin(X̄
k
R) ≥ σmin(X̄

k
G) − ∥X̄k

G − X̄k
R∥ ≥ 1

2L
√
C3

∥b∥ > 0.
Thus, the column vectors of X̄k

R are also linearly independent and by (3.11), it follows
span{x̄0R−x0, . . . , x̄kR−x0} = Kk+1(B, b). Combining the previous arguments, we can
now rewrite xk+1

G and xk+1
R as:

xk+1
G = argminx∈x0+span{x̄0

G−x0,...,x̄k
G−x0} ∥A(x− x0)− b∥2,

xk+1
R = argminx∈x0+span{x̄0

R−x0,...,x̄k
R−x0} ∥B(x− x0)− b∥2.

The closed-form expressions of xk+1
G and xk+1

R are therefore given by:

xk+1
G = x0 + Y kG((Y

k
G)

⊤Y kG)
−1(Y kG)

⊤b, xk+1
R = x0 + Y kR((Y

k
R)

⊤Y kR)
−1(Y kR)

⊤b

DESCENT OF A RESTARTED ANDERSON ACCELERATED GRADIENT METHOD 13

where Y kG = AX̄k
G and Y kR = BX̄k

R. Our first task is to estimate the error between Y kG
and Y kR . Using (i) and (ii), we have:

∥Y kG − Y kR∥ ≤ ∥(A−B)X̄k
G∥+ ∥B(X̄k

G − X̄k
R)∥

≤ (k + 1)C1∥b∥∥X̄k
G∥∞ + L

(∑k

i=0
c2i,1

)1/2

∥b∥2 ≤ ck,2∥b∥2 ≤ c2∥b∥2.

Moreover, applying (3.10), we can infer ∥Y kG∥ ≤ ∥A∥∥X̄k
G∥ ≤ 5L

4 ∥X̄k
G∥ ≤ 5L(k+1)C2

4 ∥b∥
and due to c2ϵ♯ ≤ L

2 ≤ L(k+1)
2 , we have c2∥b∥2 ≤ L(k+1)C2

2 ∥b∥. This allows to establish
a bound for the norm of Y kR :

∥Y kR∥ ≤ ∥Y kG∥+ ∥Y kG − Y kR∥ ≤ 7
4L(k + 1)C2∥b∥.

Therefore, by Proposition 3.9, we can bound the norm of the term (Y kG)
⊤Y kG−(Y kR)

⊤Y kR
as follows:

∥(Y kG)⊤Y kG − (Y kR)
⊤Y kR∥ ≤ ∥Y kG − Y kR∥(∥Y kG∥+ ∥Y kR∥)

≤ ck,2∥b∥2
(
7
4L(k + 1)C2 +

5
4L(k + 1)C2

)
∥b∥ = 3ck,2L(k + 1)C2∥b∥3 = ck,3∥b∥3.

Our next task is to bound ∥((Y kG)⊤Y kG)−1∥. Using A⊤A ⪰ 9
16µ

2I and (3.13), we have:

∥((Y kG)⊤Y kG)−1∥ = ∥((X̄k
G)

⊤A⊤AX̄k
G)

−1∥

≤ 16

9µ2
∥((X̄k

G)
⊤X̄k

G)
−1∥ ≤ 16C3

9µ2∥X̄k
G∥2

≤ 16C3L
2

9µ2∥b∥2
=

c4
∥b∥2

,

Since ϵ♯ is chosen such that 1 − ck,3c4∥b∥ ≥ 1
2 > 0, we can now apply Banach’s

perturbation lemma, see, e.g., [16, Theorem 2.3.4], which implies:

∥((Y kG)⊤Y kG)−1 − ((Y kR)
⊤Y kR)

−1∥ ≤ ∥((Y kG)⊤Y kG)−1∥2∥(Y kG)⊤Y kG − (Y kR)
⊤Y kR∥

1− ∥((Y kG)⊤Y kG)−1∥∥(Y kG)⊤Y kG − (Y kR)
⊤Y kR∥

≤ c24ck,3
∥b∥ − c4ck,3∥b∥2

≤ 2c24ck,3
∥b∥

.

Consequently, applying Proposition 3.9, it follows:

∥Y kG((Y kG)⊤Y kG)−1 − Y kR((Y
k
R)

⊤Y kR)
−1∥

≤ ∥((Y kG)⊤Y kG)−1∥∥Y kG − Y kR∥+ ∥((Y kG)⊤Y kG)−1 − ((Y kR)
⊤Y kR)

−1∥∥Y kR∥
≤ c4ck,2 +

7
2c

2
4ck,3(k + 1)C2 = ck,5

and ∥Y kG((Y kG)⊤Y kG)−1∥ =
√

∥((Y kG)⊤Y kG)−1∥ ≤
√
c4

∥b∥ . Altogether, this yields:

∥xk+1
G − xk+1

R ∥ = ∥Y kG((Y kG)⊤Y kG)−1(Y kG)
⊤b− Y kR((Y

k
R)

⊤Y kR)
−1(Y kR)

⊤b∥
≤ ∥Y kG((Y kG)⊤Y kG)−1 − Y kR((Y

k
R)

⊤Y kR)
−1∥∥Y kR∥∥b∥+ ∥Y kG((Y kG)⊤Y kG)−1∥∥Y kR − Y kG∥∥b∥

≤ 7
4L(k + 1)C2ck,5∥b∥2 +

√
c4ck,2∥b∥2 = ζk+1∥b∥2.

This shows ∥xkG − xkR∥ ≤ ζk∥b∥2 by induction. Mimicking (3.12), we now obtain:

∥x̃kG − x̃kR∥ ≤ ∥L−1(A−B)(x̄kG − x0)∥+ ∥(I − L−1B)(x̄kG − x̄kR)∥
≤ L−1C1C2∥b∥2 + ∥x̄kG − x̄kR∥ ≤ (L−1C1C2 + c1)∥b∥2.

Therefore, it suffices to choose C := max{maxk=0,...,m ζk, L
−1C1C2 + c1}.

14 W. OUYANG, Y. LIU, AND A. MILZAREK

3.5. Connecting CR and CG. In this subsection, we assume that the matrix
B is symmetric and positive definite. Suppose we apply CR to the linear system
B(x− x0) = b starting at x0. Then, by Proposition 3.10, we have:

xkR = argminx∈x0+Kk(B,b)∥B(x− x0)− b∥2 = argminx∈x0+Kk(B,b)∥B(x− x∗)∥,

where x∗ := B−1b + x0 is the optimal solution of the linear system B(x − x0) = b.
Next, for k = 0, . . . ,m, we set y∗ := B

1
2x∗, b̄ := B

1
2 b and yk := B

1
2xkR. Then, by

definition, we obtain:

yk = argminy∈y0+Kk(B,b̄) (y − y∗)⊤B(y − y∗).

According to [18, Theorem 2], this means that yk coincides with the k-th iteration of
CG applied to the linear system B(y−y∗) = 0 with initial value y0 = B

1
2x0. Moreover,

in this case, it follows (xkR − x∗)⊤B(xkR − x∗) = ∥yk − y∗∥2. Based on this observation
and connection between the CR- and CG-iterates, we now want to apply classical
techniques for CG, [20], to study the behavior of the distance ∥yk−y∗∥ as the iteration
k increases. Our goal is to then transfer the obtained results back to CR and AA-R.
As usual, we define the following terms: ȳk = yk − L−1B(yk − y∗),

ỹk = ȳk − L−1B(ȳk − y∗), and ψ(y) =
1

2
(y − y∗)⊤B(y − y∗).

Notice that the introduced linear transformations also preserve the latter gradient
descent steps, i.e., it holds that ȳk = B

1
2 x̄kR and ỹk = B

1
2 x̃kR. Here, the point ȳk is

obtained by applying one gradient step (for the objective function ψ) with stepsize L−1

on the CG-iteration yk and ỹk results from applying two gradient steps with stepsize
L−1 on yk. Next, we collect several results from [20] for convenience and to fix the
notations. The full CG algorithm is shown in Algorithm 3.1.

Algorithm 3.1 CG for the linear system B(y − y∗) = 0.
1: Choose an initial point y0 ∈ Rn and set p0 = r0 = −B(y0 − y∗).
2: for i = 0, 1, . . . , n do
3: if ∥ri∥ = 0 then Break; end if
4: ai =

∥ri∥2

⟨pi,Bpi⟩ .
5: yi+1 = yi + aip

i.
6: ri+1 = ri − aiBp

i.

7: bi =
∥ri+1∥2

∥ri∥2 .
8: pi+1 = ri+1 + bip

i.
9: end for

Proposition 3.13. Let the sequence {yk}k be generated by CG and let y(k) denote
the projection of y∗ onto the affine space Ak := y0 +span{y1 − y0, . . . , yk − y0}. Then,
the following properties are satisfied:

(i) ([20, Theorem 6.5]) y(k+1) = yk+1 + 2ψ(yk+1)
∥rk∥2 pk.

(ii) ([20, Equation (5:3a)]) For all i ̸= j: ⟨ri, rj⟩ = 0.
(iii) ([20, Equation (5:3c)]) For all i < j, we have ⟨pi, rj⟩ = 0 and for all i ≥ j, it

holds that ⟨pi, rj⟩ = ∥ri∥2.
(iv) ([20, Equation (5:6b)]) For all 0 ≤ i ≤ n: ∥pi∥2 = ∥ri∥4

∑i
j=0

1
∥rj∥2 .

DESCENT OF A RESTARTED ANDERSON ACCELERATED GRADIENT METHOD 15

(v) ([20, Equation (5:11)]) For all 0 ≤ i ≤ n − 1: ⟨ri+1, Bri⟩ = ⟨ri+1, Bpi⟩ =
−a−1

i ∥ri+1∥2.
(vi) ([20, Equation (5:6a)]) For all 0 ≤ i ≤ j ≤ n: ⟨pi, pj⟩ = ∥rj∥2∥pi∥2

∥ri∥2 .

(vii) ([20, Equation (5:4b)]) For all i ̸= j: ⟨pi, Bpj⟩ = 0.
(viii) ([20, Equation (5:3d)]) For all i ̸= j, i ̸= j + 1: ⟨ri, Bpj⟩ = 0.
(ix) ([20, Equation (5:12)]) We have a0 = ∥r0∥2

⟨r0,Br0⟩ and ∥pi∥2

⟨pi,Bpi⟩ > ai >
∥ri∥2

⟨ri,Bri⟩ for
all i > 0.

(x) ([20, Equation (5:8b)]) For all i ≥ 1: ri+1 = (1 + b′i−1)r
i − aiBr

i − b′i−1r
i−1,

where b′i−1 = ai
ai−1

bi−1 = ai
ai−1

∥ri∥2

∥ri−1∥2 .

The properties stated in Proposition 3.13 will be referred to as Property (i)–(x) in
the following. Before studying the convergence behavior of CG in terms of ∥ȳk − y∗∥
and ∥ỹk−1 − y∗∥, let us briefly discuss our underlying motivation.

Our final aim is to prove f(xk+1) ≤ f(g(xk)) (including some potential higher-
order error terms), where {xk}k is generated by AA-R. Applying Proposition 3.8,
the AA step xk+1 is equal to x̄kG, which is close to x̄kR. On the other hand, we have
g(xk) = ḡ(xk) = ḡ(x̄k−1

G) = x̃k−1
G , which is close to x̃k−1

R . Hence, up to certain error
terms, the descent condition “f(xk+1) ≤ f(g(xk))” can now be formulated as follows:

f(x̄kR) ≤ f(x̃k−1
R).

Expanding f at x0 (and again ignoring higher-order error terms), this can be further
rewritten as:

∇f(x0)⊤(x̄kR − x0) +
1

2
(x̄kR − x0)⊤∇2f(x0)(x̄kR − x0)

≤ ∇f(x0)⊤(x̃k−1
R − x0) +

1

2
(x̃k−1
R − x0)⊤∇f(x0)(x̃k−1

R − x0).

Noticing B = ∇2f(x0), b = −∇f(x0), and x∗ = B−1b+ x0, this is equivalent to

(x̄kR − x∗)⊤B(x̄kR − x∗) ≤ (x̃k−1
R − x∗)⊤B(x̃k−1

R − x∗),

which, by the previously introduced transformation, can be expressed as ∥ȳk − y∗∥2 ≤
∥ỹk−1 − y∗∥2. This is exactly what we want to show in Theorem 3.14. We note that
the proof of Theorem 3.14 would be significantly easier if the stepsize in the gradient
mapping g is sufficiently small (potentially much smaller than L−1). Here, we provide
a general result covering the core case g(x) = x− 1

L∇f(x).
theorem 3.14. Suppose that {yk}k is generated by CG applied to the linear system

B(y − y∗) = 0, where B ∈ Rn×n is symmetric, positive definite with ν := L
∥B∥ ≥ 1.

Then, we have:

(3.14) ∥ȳk − y∗∥2 +
[
2ν +

1

ν2
− 3

]
∥rk∥2

L2
+

[
ν +

1

ν
− 2

]2 ∥rk−1∥2

L2
≤ ∥ỹk−1 − y∗∥2.

Proof. First, by [18, Equation (21)] and [26, Theorem 5.3], we have Ak = y0 +
Kk(B, r0) and yk ∈ y0 + Kk(B, r0). Hence, both ȳk and ỹk−1 belong to the affine
space y0 + Kk+1(B, r0) = Ak+1. Furthermore, by the definition of y(k+1), we can
derive the following decomposition properties:

(3.15)
∥ȳk − y∗∥2 = ∥y(k+1) − ȳk∥2 + ∥y(k+1) − y∗∥2,

∥ỹk−1 − y∗∥2 = ∥y(k+1) − ỹk−1∥2 + ∥y(k+1) − y∗∥2.

16 W. OUYANG, Y. LIU, AND A. MILZAREK

Therefore, it holds that:

∥ỹk−1 − y∗∥2 − ∥ȳk − y∗∥2 = ∥y(k+1) − ỹk−1∥2 − ∥y(k+1) − ȳk∥2

= ∥ỹk−1 − ȳk∥2 + 2⟨ỹk−1 − ȳk, ȳk − y(k+1)⟩.(3.16)

Using Property (i) and the definition of the CG-step, we have y(k+1) = yk+1+ 2ψ(yk+1)
∥rk∥2 pk

and yk+1 = yk + akp
k. Consequently, setting γk = 2ψ(yk+1)/∥rk∥2 + ak and applying

rk = −B(yk − y∗), we obtain

y(k+1) − ȳk =

[
2ψ(yk+1)

∥rk∥2
+ ak

]
pk + [yk − ȳk] = γkp

k − 1

L
rk.(3.17)

Moreover, we have yk − ȳk−1 = ak−1p
k−1 − 1

Lr
k−1 and

ȳk − ỹk−1 = (I − L−1B)(yk − ȳk−1) = (I − L−1B)(ak−1p
k−1 − L−1rk−1).(3.18)

We now consider the first term in (3.16):

∥ỹk−1 − ȳk∥2 = ∥(I − L−1B)(ak−1p
k−1 − L−1rk−1)∥2 = T1 − 2L−1T2 + L−2T3,

where T1 = a2k−1∥(I − L−1B)pk−1∥2, T2 = ⟨ak−1(I − L−1B)pk−1, (I − L−1B)rk−1⟩,
and T3 = ∥(I − L−1B)rk−1∥2. The update rule for rk yields

ak−1Bp
k−1 = rk−1 − rk.(3.19)

We first expand the term T1:

T1 = ∥ak−1p
k−1 − L−1(rk−1 − rk)∥2

= a2k−1∥pk−1∥2 − 2ak−1L
−1⟨pk−1, rk−1 − rk⟩+ L−2∥rk−1 − rk∥2.

Applying Property (ii) and (iii), it holds that:

∥rk−1 − rk∥2 = ∥rk−1∥2 + ∥rk∥2, ⟨pk−1, rk−1 − rk⟩ = ∥rk−1∥2,

and thus, it follows T1 = a2k−1∥pk−1∥2 − 2ak−1

L ∥rk−1∥2 + 1
L2 (∥rk−1∥2 + ∥rk∥2). Next,

we estimate the term T2:

T2 = ⟨ak−1p
k−1, rk−1⟩ − 2L−1⟨ak−1Bp

k−1, rk−1⟩+ L−2⟨ak−1Bp
k−1, Brk−1⟩.

By Property (iii), we have ⟨ak−1p
k−1, rk−1⟩ = ak−1∥rk−1∥2. Furthermore, applying

(3.19) and Property (ii), we obtain ⟨ak−1Bp
k−1, rk−1⟩ = ⟨rk−1 − rk, rk−1⟩ = ∥rk−1∥2

and ⟨ak−1Bp
k−1, Brk−1⟩ = ⟨rk−1 − rk, Brk−1⟩. Utilizing Property (v), we can infer:

⟨ak−1Bp
k−1, Brk−1⟩ = ⟨rk−1 − rk, Brk−1⟩ = ∥rk−1∥2B + a−1

k−1∥r
k∥2.

Substituting these expressions yields T2 = ak−1∥rk−1∥2 − 2
L∥r

k−1∥2 + 1
L2 ∥rk−1∥2B +

1
L2ak−1

∥rk∥2. Finally, let us consider the term T3; we have:

T3 = ∥rk−1∥2 − 2L−1∥rk−1∥2B + L−2∥Brk−1∥2.

DESCENT OF A RESTARTED ANDERSON ACCELERATED GRADIENT METHOD 17

Together, this establishes the following representation of ∥ỹk−1 − ȳk∥2:

∥ỹk−1 − ȳk∥2 = a2k−1∥pk−1∥2 +
[
6

L2
− 4ak−1

L

]
∥rk−1∥2(3.20)

− 4

L3
∥rk−1∥2B +

1

L4
∥Brk−1∥2 +

[
1

L2
− 2

L3ak−1

]
∥rk∥2.

We continue with the inner product term ⟨ỹk−1 − ȳk, ȳk − y(k+1)⟩. By (3.17) and
(3.18), we have:

⟨ỹk−1 − ȳk, ȳk − y(k+1)⟩ = ⟨(I − L−1B)(ak−1p
k−1 − L−1rk−1), γkpk − L−1rk⟩

= Q1 − L−1Q2,

where Q1 = ⟨ak−1p
k−1− 1

Lr
k−1, γkp

k− 1
Lr

k⟩ and Q2 = ⟨ak−1Bp
k−1− 1

LBr
k−1, γkp

k−
1
Lr

k⟩. Applying Property (vi), (ii) and (iii), it holds that:

⟨pk−1, pk⟩ = ∥rk∥2∥pk−1∥2

∥rk−1∥2
, ⟨rk−1, pk⟩ = ∥rk∥2, ⟨pk−1, rk⟩ = ⟨rk, rk−1⟩ = 0,

which implies Q1 = ak−1γk⟨pk−1, pk⟩− γk
L ⟨rk−1, pk⟩− ak−1

L ⟨pk−1, rk⟩+ 1
L2 ⟨rk, rk−1⟩ =

ak−1γk
∥rk∥2∥pk−1∥2

∥rk−1∥2 − γk
L ∥rk∥2. Similarly, we can expand Q2 as follows:

Q2 = ak−1γk⟨Bpk−1, pk⟩ − γk
L
⟨Brk−1, pk⟩ − ak−1

L
⟨Bpk−1, rk⟩+ 1

L2
⟨Brk, rk−1⟩.

Applying Property (vii), (viii), (ii), (iii), (v), and (3.19), we can infer ⟨Bpk−1, pk⟩ = 0,
⟨Brk−1, pk⟩ = 0, ⟨ak−1Bp

k−1, rk⟩ = ⟨rk−1 − rk, rk⟩ = −∥rk∥2, and ⟨Brk, rk−1⟩ =

−∥rk∥2

ak−1
, which yields Q2 = 1

L (1 − 1
Lak−1

)∥rk∥2. Therefore, the inner product term
⟨ỹk−1 − ȳk, ȳk − y(k+1)⟩ is given by:

⟨ỹk−1 − ȳk, ȳk − y(k+1)⟩ = ak−1γk
∥rk∥2∥pk−1∥2

∥rk−1∥2
−
[
γk
L

+
1

L2
− 1

L3ak−1

]
∥rk∥2.

Summing (3.20) and the previous expression, we obtain:

∥ỹk−1 − ȳk∥2 + 2⟨ỹk−1 − ȳk, ȳk − y(k+1)⟩

= a2k−1∥pk−1∥2 +
[
6

L2
− 4ak−1

L

]
∥rk−1∥2 − 4

L3
∥rk−1∥2B +

1

L4
∥Brk−1∥2

+

[
2ak−1γk

∥rk∥2∥pk−1∥2

∥rk−1∥2
− 2γk

L
∥rk∥2 − 1

L2
∥rk∥2

]
.(3.21)

We continue with two sub-cases.
Case 1: k = 1. Using the fact r0 = p0, Property (ii), and (3.19), it follows

∥Br0∥2 = ∥Bp0∥2 = a−2
0 ∥r0 − r1∥2 = a−2

0 (∥r0∥2 + ∥r1∥2) and ⟨r0, Br0⟩ = ⟨r0, Bp0⟩ =
a−1
0 ⟨r0, r0 − r1⟩ = a−1

0 ∥r0∥2. Using these two equalities, we can simplify (3.21) to:

∥ỹ0 − ȳ1∥2 + 2⟨ỹ0 − ȳ1, ȳ1 − y(2)⟩

= a20∥r0∥2 +
[
6

L2
− 4a0

L

]
∥r0∥2 − 4

L3a0
∥r0∥2 + 1

L4a20
(∥r0∥2 + ∥r1∥2)

+
[
2a0γ1∥r1∥2 − 2γ1L

−1∥r1∥2 − L−2∥r1∥2
]

= L−2(Q3∥r0∥2 +Q4∥r1∥2),

18 W. OUYANG, Y. LIU, AND A. MILZAREK

where Q3 and Q4 are defined as Q3 = a20L
2 + 6 − 4a0L − 4(a0L)

−1 + (a0L)
−2 and

Q4 = 2a0γ1L
2−2γ1L−1+(a0L)

−2. By Property (ix), we have a0 = ∥r0∥2/⟨r0, Br0⟩ ≥
1

∥B∥ ≥ 1
L and a1 > ∥r1∥2/⟨r1, Br1⟩ ≥ 1

∥B∥ ≥ 1
L . Hence, by the definition of γ1, we can

infer γ1L ≥ a1L > L∥B∥−1 = ν ≥ 1 and a0L ≥ ν ≥ 1. Therefore, it holds that:

Q4 = 2γ1L(a0L− 1)− 1 + (a0L)
−2 ≥ 2a0L+ (a0L)

−2 − 3 ≥ 2ν + ν−2 − 3 ≥ 0,

where – in the last equality – we used the fact that the function x 7→ 2x + x−2 is
monotonically increasing for x ≥ 1. Concerning Q3, we notice:

Q3 = (a0L+ (a0L)
−1 − 2)2 ≥ 0.

Since x 7→ x+ 1
x − 2 is monotonically increasing and nonnegative for x ∈ [1,∞), we

can further infer Q3 = (a0L+ (a0L)
−1 − 2)2 ≥ (ν + ν−1 − 2)2, Together, we obtain

∥ȳ1 − y∗∥2 + (ν + ν−1 − 2)2 ∥r0∥2

L2 + (2ν + ν−2 − 3)∥r
1∥2

L2 ≤ ∥ỹ0 − y∗∥2.
Case 2: k ≥ 2. We first utilize Property (x): ak−1Br

k−1 = (1+ b′k−2)r
k−1 − rk −

b′k−2r
k−2. Along with Property (ii), this allows to calculate ∥rk−1∥2B and ∥Brk∥2:

⟨rk−1, Brk−1⟩ = 1

ak−1
⟨rk−1, (1 + b′k−2)r

k−1 − rk − b′k−2r
k−2⟩ =

1 + b′k−2

ak−1
∥rk−1∥2,

∥Brk−1∥2 = ⟨Brk−1, Brk−1⟩ =
(1 + b′k−2)

2

a2k−1

∥rk−1∥2 + 1

a2k−1

∥rk∥2 +
(b′k−2)

2

a2k−1

∥rk−2∥2.

Therefore, the term (3.21) can be decomposed as follows: ∥ỹk−1 − ȳk∥2 + 2⟨ỹk−1 −
ȳk, ȳk − y(k+1)⟩ = Q5 +Q6, where

Q5 = a2k−1∥pk−1∥2 +
[

6
L2 − 4ak−1

L − 4(1+b′k−2)

L3ak−1
+

(1+b′k−2)
2

L4a2k−1

]
∥rk−1∥2 + (b′k−2)

2

a2k−1L
4 ∥rk−2∥2

Q6 = 2ak−1γk
∥rk∥2∥pk−1∥2

∥rk−1∥2 − 2γk
L ∥rk∥2 − 1

L2 ∥rk∥2 + 1
L4a2k−1

∥rk∥2.

We start with bounding Q6. First, by Property (iv), it holds that:

2ak−1γk
∥rk∥2∥pk−1∥2

∥rk−1∥2
≥ 2ak−1γk

∥rk∥2∥rk−1∥2

∥rk−1∥2
= 2ak−1γk∥rk∥2.

Thus, we have Q6 ≥ 1
L2 [2ak−1γkL

2 − 2γkL− 1 + (ak−1L)
−2]∥rk∥2. The coefficient in

the parentheses can be shown to be larger or equal than 2ν + ν−2 − 3 by using the
same strategy as in Case 1 for Q4. This yields Q6 ≥ (2ν + ν−2 − 3)L−2∥rk∥2. Next,
recalling the definition of b′k−2 (see Property (x)), we obtain:

b′k−2 =
ak−1

ak−2

∥rk−1∥2

∥rk−2∥2
=⇒

(b′k−2)
2

a2k−1L
4
∥rk−2∥2 =

∥rk−1∥2

a2k−2L
4∥rk−2∥2

∥rk−1∥2.

In addition, by Property (iv), it follows:

a2k−1∥pk−1∥2 = a2k−1∥rk−1∥4
∑k−1

j=0

1

∥rj∥2
≥ a2k−1∥rk−1∥2 + a2k−1

∥rk−1∥2

∥rk−2∥2
∥rk−1∥2.

Setting Q7 = a2k−1L
2+6−4ak−1L−4(ak−1L)

−1+(ak−1L)
−2 = (ak−1L+(ak−1L)

−1−
2)2 and using the previous inequalities, we can lower bound Q5 by:

Q5 ≥
[
Q7 −

4b′k−2

ak−1L
+

(1+b′k−2)
2−1

a2k−1L
2 +

[
a2k−1L

2 + 1
a2k−2L

2

]
∥rk−1∥2

∥rk−2∥2

] ∥rk−1∥2

L2
.

DESCENT OF A RESTARTED ANDERSON ACCELERATED GRADIENT METHOD 19

Let us denote the term in parentheses by Q8. It suffices to show that Q8 is nonnegative.
In particular, it holds that:

Q8 ≥ Q7 +

[
ak−1L− 1

ak−2L

]2 ∥rk−1∥2

∥rk−2∥2
+

2ak−1

ak−2

∥rk−1∥2

∥rk−2∥2
−

4b′k−2

ak−1L
+

2b′k−2

a2k−1L
2

≥ Q7 + 2b′k−2 −
4b′k−2

ak−1L
+

2b′k−2

a2k−1L
2
≥

[
ν + ν−1 − 2

]2
+ 2b′k−2

[
1− (ak−1L)

−1
]2
,

where we again used ak−1L ≥ ν. This finally establishes (3.14), which concludes the
proof of Theorem 3.14.

The previous result shows that performing two gradient steps on yk−1 achieves less
progress in terms of the distance to the optimal solution compared to performing one
gradient step on yk. In fact, we are able to prove a similar result for CG, which is
of independent interest. More precisely, CG can decrease the distance to the optimal
solution no slower than the gradient method with stepsize 1

L . Hence, yk can provide
more progress than ȳk−1. The proof is much easier and is deferred to Appendix B.

theorem 3.15. Let {yk}k be generated by CG applied to the system B(y−y∗) = 0,
where B ∈ Rn×n is symmetric, positive definite with ∥B∥ ≤ L. Then, we have:

∥yk+1 − y∗∥2 ≤ ∥ȳk − y∗∥2.

As discussed at the beginning of this section, the sequences {xkR}k and {yk}k are
equivalent up to a linear transformation, i.e., it holds that yk = B

1
2xkR. This allows to

transfer our obtained results back to the CR method. We summarize our observations
for CR in the following corollary.

Corollary 3.16. Let B ∈ Rn×n be a symmetric, positive definite matrix with
∥B∥ ≤ L and let x0 ∈ Rn be given. Suppose that {xkR}k is generated by the CR method
to solve the linear system B(x− x0) = b. Then, we have:

φ(x̄kR) ≤ φ(x̃k−1
R) and φ(xkR) ≤ φ(x̄k−1

R),

where x̄kR and x̃kR are defined in (3.9) and φ(x) := 1
2 (x− x0)⊤B(x− x0)− b⊤(x− x0).

3.6. Proof of Theorem 3.6. In this subsection, we combine our obtained results
and show that AA-R locally decreases the objective function no slower than a gradient
descent step with stepsize 1

L (up to a certain higher-order error term).
Throughout this section, we will work with the following choices B = ∇2f(x0),

b = −∇f(x0), and A = B + Em, where Em is defined in (3.7).

Proof of Theorem 3.6. Clearly, (3.6) holds for k = 0. Furthermore, we only need
to verify (3.6) for one cycle of AA-R as all assumptions and results will also hold
for subsequent cycles, since all the subsequent iterations would also belong to U by
Proposition 3.5. Let U = Sϵ be the neighborhood defined in Proposition 3.5. Then,
for all k ∈ N, we have:

∥h(xk+1)∥ ≤ (1− (2κr)
−1)∥h(xk)∥.

Proposition 3.2 establishes κ(H⊤
k Hk) ≤M2

H for some MH > 0 and by Lemma 3.4, we
can infer ∥ĝk−x0∥ = O(∥b∥). Due to xk+1 = ĝk, this just means ∥xk+1−x0∥ = O(∥b∥).
Notice that this estimate holds for every k = 0, 1, . . . ,m and therefore, it follows
Mm
x = O(∥b∥). Furthermore, using (3.2), we obtain ∥Em∥ = O(∥b∥). Reducing ϵ if

20 W. OUYANG, Y. LIU, AND A. MILZAREK

necessary, we may assume that ∥A−B∥ = ∥Em∥ < µ, which ensures the invertibility
of A as shown in the proof of Lemma 3.11. Now, let {xkG}k and {xkR}k be generated
by GMRES and CR applied to the linear systems A(x − x0) = b and B(x − x0) = b
with x0G = x0R = x0, respectively. By Proposition 3.8, we have x̄kG = xk+1 for all
k = 0, . . . ,m and κ((X̄k

G)
⊤X̄k

G) ≤M2 for all k ∈ [m]. Moreover, since the perturbed
gradient mapping ḡ is exact at each xk, k = 0, . . . ,m, it holds that

g(xk) = ḡ(xk) = ḡ(x̄k−1
G) = x̃k−1

G ∀ k = 1, . . . ,m.

In addition, we have ∥x̄kG − x0∥ = ∥xk+1 − x0∥ = O(∥b∥). Reducing ϵ — if necessary
— we may assume ϵ ≤ ϵ♯, where ϵ♯ was introduced in the proof of Theorem 3.12. Thus,
all conditions in Theorem 3.12 are satisfied and it follows

∥x̄kG − x̄kR∥ = O(∥b∥2) and ∥x̃kG − x̃kR∥ = O(∥b∥2) ∀ k = 0, . . . ,m.(3.22)

Moreover, since g is a contraction on Br(x⋆) and due to ∥xk − x0∥ = O(∥b∥), we have
∥g(xk)− x0∥ ≤ ∥g(xk)− g(x0)∥+ ∥g(x0)− x0∥ = O(∥b∥). Reusing the notation from
Corollary 3.16, the Lipschitz continuity of the Hessian ∇2f then implies
(3.23)

f(xk+1) = f(x0) + φ(xk+1) +O(∥xk+1 − x0∥3) = f(x0) + φ(x̄kG) +O(∥b∥3),
f(g(xk)) = f(x0) + φ(g(xk)) +O(∥g(xk)− x0∥3) = f(x0) + φ(x̃k−1

G) +O(∥b∥3),

see, e.g., [25, Lemma 4.1.1]. Since the mapping φ is quadratic, we can further write:

φ(x̄kG) = φ(x̄kR) +∇φ(x̄kR)⊤(x̄kG − x̄kR) +
1
2 (x̄

k
G − x̄kR)

⊤B(x̄kG − x̄kR),

φ(x̃k−1
G) = φ(x̃k−1

R) +∇φ(x̃k−1
R)⊤(x̃k−1

G − x̃k−1
R) + 1

2 (x̃
k−1
G − x̃k−1

R)⊤B(x̃k−1
G − x̃k−1

R).

Next, applying Lemma 3.11 for the case A = B, it holds that:

∥∇φ(x̄kR)∥ = ∥B(x̄kR − x0)− b∥ ≤ ∥B(xkR − x0)− b∥ ≤ ∥B(x0 − x0)− b∥ = ∥b∥,

where we used Proposition 3.10 in the last step. Similarly, we can show ∥∇φ(x̃k−1
R)∥ ≤

∥b∥. Thus, combining (3.22) and the representations of φ(x̄kG) and φ(x̃k−1
G), we obtain

|φ(x̄kG)− φ(x̄kR)| ≤ ∥∇φ(x̄kR)∥∥x̄kG − x̄kR∥+ L
2 ∥x̄

k
G − x̄kR∥2 = O(∥b∥3),

|φ(x̃k−1
G)− φ(x̃k−1

R)| ≤ ∥∇φ(x̃k−1
R)∥∥x̃k−1

G − x̃k−1
R ∥+ L

2 ∥x̃
k−1
G − x̃k−1

R ∥2 = O(∥b∥3),

Using these estimates in (3.23), we can infer

f(xk+1) = f(x0) + φ(x̄kR) +O(∥b∥3), f(g(xk)) = f(x0) + φ(x̃k−1
R) +O(∥b∥3).

The conclusion then follows immediately from Corollary 3.16.

4. A Function Value-Based Globalization for AA-R. Based on the local
descent properties established in the last section, we now propose a globalization
mechanism for AA-R. We prove global convergence and provide simple global-to-local
transition results for the globalized AA-R algorithm. To the best of our knowledge,
this is the first function value-based globalization of AA-R that achieves both global
and local convergence. Previously, only heuristic strategies seem to be available, see
[31, 27, 42].

The full procedure is presented in Algorithm 4.1. Our core idea is to check whether
the AA step xkAA satisfies a sufficient decrease condition

(4.1) f(xkAA) ≤ f(xk)− γ∥∇f(xk)∥2 +min{c1∥∇f(xk−m̂)∥ν , c2∥∇f(xk−m̂)∥2, c3},

DESCENT OF A RESTARTED ANDERSON ACCELERATED GRADIENT METHOD 21

Algorithm 4.1 A Globalized AA Scheme with Restarting
1: Choose an initial point x0 ∈ Rn, the memory parameter m, and constants
γ, ν, c1, c2, c3 > 0. Set m̂ = 0.

2: for k = 0, 1, . . . do
3: Set m̂ = mod(k,m+ 1).
4: if m̂ = 0 then
5: Set xk+1 = g(xk).
6: else
7: Calculate the coefficient αk based on the sequence {h(xk), . . . , h(xk−m̂)} by

solving (1.3) and set xkAA = gk−m̂ +Gkα
k.

8: if f(xkAA) > f(xk)−γ∥∇f(xk)∥2+min{c1∥∇f(xk−m̂)∥ν , c2∥∇f(xk−m̂)∥2, c3}
then

9: Set xk+1 = g(xk).
10: else
11: Set xk+1 = xkAA.
12: end if
13: end if
14: end for

where γ, ν, and ci, i = 1, 2, 3, are given parameters. We accept the AA step as new
iterate xk+1 = xkAA if condition (4.1) holds. Otherwise, a gradient step xk+1 = g(xk)
is performed (which ensures decrease of the objective function values). We summarize
several basic convergence properties of Algorithm 4.1 in the following theorem.

theorem 4.1. Suppose that (A.1) holds and let f be bounded from below. Let
the sequence {xk}k be generated by Algorithm 4.1 with γ, c1, c3 > 0, c2 < 1

2mL , and
ν ∈ (2, 3). Then, we have∑∞

k=0
∥∇f(xk)∥2 <∞ and lim

k→∞
∥∇f(xk)∥ = 0.

In addition, if γ < 1
2L and if the conditions (A.2)–(A.4) are satisfied with x⋆ being

an accumulation point of {xk(m+1)}k, then we have xk → x⋆ and all AA steps will be
eventually accepted, i.e., Algorithm 4.1 locally turns into Algorithm 2.1.

Proof. Notice that the k-th cycle starts at iteration (k − 1)(m + 1) and ends
at iteration k(m + 1) (with xk(m+1) serving as initial point for the next cycle). In
order to keep the notation simple, we concentrate on the first cycle. Since the first
iteration within each cycle is a gradient descent step, i.e., x1 = g(x0), we can deduce
f(x1) ≤ f(x0) − 1

2L∥∇f(x
0)∥2. For all k = 1, . . . ,m, the iterate xk+1 either results

from a gradient descent step or an AA step satisfying the acceptance criterion:

f(xk+1) ≤ f(xk)− γ∥∇f(xk)∥2 + c2∥∇f(x0)∥2.

Hence, each update k = 1, . . . ,m satisfies f(xk+1) ≤ f(xk)−min{ 1
2L , γ}∥∇f(x

k)∥2 +
c2∥∇f(x0)∥2. Summing these estimates from 1 to m, we obtain

f(xm+1) ≤ f(x0)−min
{

1
2L , γ

}∑m

k=1
∥∇f(xk)∥2 −

[
1
2L −mc2

]
∥∇f(x0)∥2.

Defining σ := min{ 1
2L , γ,

1
2L − mc2} > 0, this result holds for every cycle of Algo-

rithm 4.1, i.e., we have

f(x(k+1)(m+1)) ≤ f(xk(m+1))− σ
∑k(m+1)+m

i=k(m+1)
∥∇f(xi)∥2 ∀ k ∈ N.

22 W. OUYANG, Y. LIU, AND A. MILZAREK

Summing this inequality for all k ∈ N and noticing that f is bounded from below, it
follows

∑∞
i=0 ∥∇f(xi)∥2 <∞ which readily implies ∥∇f(xi)∥ → 0. Next, let x⋆ be an

accumulation point of {xk(m+1)}k satisfying (A.2)–(A.4). By Theorem 3.6, there is
a neighborhood U of x⋆ such that if y0 ∈ U , then the sequence {yk}k generated by
Algorithm 2.1 satisfies

f(yk+1) ≤ f(g(yk)) +O(∥∇f(yk−m̂)∥3) ≤ f(yk)− 1
2L∥∇f(y

k)∥2 +O(∥∇f(yk−m̂)∥3).

Thus, by shrinking U if necessary and using γ < 1
2L , we can assume

(4.2) f(yk+1) ≤ f(yk)− γ∥∇f(yk)∥2 + c1∥∇f(yk−m̂)∥ν ∀ k.

Since x⋆ is an accumulation point of {xk(m+1)}k, there exists s with xs(m+1) ∈ U . We
now set yk := xk+s(m+1). Due to y0 ∈ U , ∥∇f(xi)∥ → 0, and since the conditions
(A.1)–(A.4) are satisfied, we can inductively infer that every AA step fulfills (4.2) and
is accepted as new iterate, i.e., we have yk+1 = xs(m+1)+k+1 = x

s(m+1)+k
AA , k ≥ 1.

Convergence of {xk}k then follows from Proposition 3.5 and (A.2).

5. Numerical Experiments. In this section, we conduct preliminary numerical
experiments to illustrate the performance and convergence behavior of AA-R and to
empirically verify the descent properties of Algorithm 4.11.

5.1. Nonconvex Classification. We consider two nonconvex classification prob-
lems, namely a nonlinear least-squares problem and a student’s-t problem. A detailed
introduction of the tested problems is deferred to the subsequent paragraphs. We will
compare Algorithm 4.1 with four different methods:

(1) The gradient descent method (GD) with fixed step size 1
L . This is the original

Picard iteration (1.2) and serves as a baseline.
(2) Pure AA with and without restarting [47]. Pure AA does not use any global-

ization strategy, i.e., in each step, we perform an AA iteration.
(3) AA with residual-based globalization. Our implementation is based on A2DR

[14, Algorithm 3] and we consider two variants with and without restarting.
A2DR uses a residual-based acceptance mechanism and we apply the method
with the default parameters as suggested in [14].

(4) L-BFGS. We implement L-BFGS with Wolfe conditions as in [26, Algorithm
7.5]. The line-search parameter is set to 10−4 and the parameter in Wolfe’s
condition is set to 0.9 as suggested in [26]. The maximum number of line-search
iterations is set to 1, 000.

We note that the line search procedure in L-BFGS can contain many function and
gradient evaluations per iteration. Therefore, it is improper to give comparisons solely
based on the number of iterations. In our plots, the x-axis is typically set as the
number of oracle calls, which appears to be a more appropriate and fair measure when
comparing AA algorithms and L-BFGS. Specifically, the computation of each function
value is counted as one oracle call and every gradient evaluation contributes as an
additional oracle call. The y-axis is set as (f(xk) − f⋆)/max{f⋆, 1} or ∥∇f(xk)∥,
respectively, where f⋆ denotes the best objective function value among all algorithms
over the maximum oracle calls. In the figures, we will add a special mark “⋆” once the
current AA step is rejected and a gradient step is performed in Algorithm 4.1.

We continue with the description of the utilized training datasets and several
universal implementational details. We use the CIFAR10 dataset [21], which contains

1Code available under https://github.com/yangliu-op/AndersonAcceleration

https://github.com/yangliu-op/AndersonAcceleration

DESCENT OF A RESTARTED ANDERSON ACCELERATED GRADIENT METHOD 23

AA-R (Alg. 4.1) AA pure AA pure (restr) L-BFGS

GD AA residual AA residual (restr)

(a) ST & CIFAR10 (b) ST & STL10 (c) NLS & CIFAR10 (d) NLS & STL10

m
=

5
m

=
1
0

m
=

1
5

m
=

2
0

m
=

3
0

Fig. 1. Relative error (f(xk)− f∗)/max{f∗, 1} vs. Oracle calls for the student’s t (ST) and
nonlinear least-squares (NLS) problem and the datasets CIFAR10 and STL10. The plots in each column
are generated using the identical initial point x0 ∼ N d(0, 1). In each row, the different AA methods
and L-BFGS are executed using the same memory parameter m ∈ {5, 10, 15, 20, 30}. The x-axes of
each plot have the same scaling 0 – 3, 000 (as shown in the bottom row).

60, 000 images with 32× 32 colored pixels and the STL10 dataset [8], which consists
of 5, 000 colored images of size 96× 96. Given that both datasets contain 10 classes,
we split the data into even and odd classes to allow binary classification. We use
{ui, vi}ni=1 to denote the training samples, where ui ∈ Rd represents the training
image and vi ∈ {0, 1} is the associated label. We set U = {u1, u2, . . . , un}⊤ ∈ Rn×d.
We terminate the algorithms once ∥∇f(xk)∥ ≤ 10−7 or the number of oracle calls
exceeds 3, 000. The memory parameter m is chosen from m ∈ {5, 10, 15, 20, 30} for
all AA-based methods and L-BFGS. The regularization parameter λ in (5.1) and (5.2)
is set to 10−2 for CIFAR10 and to 10−1 for STL10. The initial points x0 ∼ N d(0, 1)
are generated following a normal distribution. Finally, in Algorithm 4.1, we utilize
the default parameters: γ = 0.01

2L , c1 = c3 = 1, c2 = 0.99
2mL , and ν = 2.1. Let us briefly

motivate this default choice. In order to promote acceptance of AA steps (and to ensure
potential acceleration), the descent condition (4.1) should not be too strict. This can
be achieved when γ is small and when the min-term in (4.1) is large. Hence, we set
γ fairly small, c2 close to the theoretical threshold, and ν close to 2. Furthermore,
we have found that the simple choice c1 = c3 = 1 works well enforcing sufficient
progress during the first iterations. An additional ablation study for c1, c2, c3, and γ is

24 W. OUYANG, Y. LIU, AND A. MILZAREK

AA-R (Alg. 4.1) AA pure AA pure (restr) L-BFGS

GD AA residual AA residual (restr)

(a) ST & CIFAR10 (b) ST & STL10 (c) NLS & CIFAR10 (d) NLS & STL10

m
=

5
m

=
1
0

m
=

1
5

m
=

2
0

m
=

3
0

Fig. 2. ∥∇f(xk)∥ vs. Oracle calls for the student’s t (ST) and nonlinear least-squares (NLS)
problem and the datasets CIFAR10 and STL10. The plots in each column are generated using the
identical initial point x0 ∼ N d(0, 1). In each row, the different AA methods and L-BFGS are executed
using the same memory parameter m ∈ {5, 10, 15, 20, 30}. The x-axes of each plot have the same
scaling 0 – 3, 000 (as shown in the bottom row).

discussed in subsection 5.3. We use the LSQR method [29] to solve the AA subproblem
(1.3) and to compute αk = −H†

kh
k−m̂ = −(H⊤

k Hk)
−1H⊤

k h
k−m̂. (Here, H†

k represents
the Moore-Penrose pseudo-inverse of Hk). The termination condition of LSQR is set to
∥H⊤

k (Hkα+ hk−m̂)∥ < 10−16.
Next, we present the classification models used in our numerical comparison:
• Student’s-t Loss with ℓ2-Regularization (ST). We consider the following

classification problem with student’s-t loss, [3, 2],

f(x) =
1

n

∑n

i=1
log

(
1 + (u⊤i x− vi)

2/µ
)
+
λ

2
∥x∥2.(5.1)

The Lipschitz constant of ∇f is given by L = 2
µn∥U∥2 + λ and we set µ = 20.

• Nonlinear Least-Squares Problem with ℓ2-Regularization (NLS). As
a second example, we consider a nonlinear least-squares problem, [50],

f(x) =
1

n

∑n

i=1
(ψ(u⊤i x)− vi)

2 +
λ

2
∥x∥2,(5.2)

where ψ(z) = 1/(1 + e−z) is the sigmoid function. The Lipschitz constant of

DESCENT OF A RESTARTED ANDERSON ACCELERATED GRADIENT METHOD 25

∇f is given by L = 1
6n∥U∥2 + λ.

The initial points for all algorithms and m ∈ {5, 10, 15, 20, 30} are identical for
each tested dataset and classification model. Figures 1 and 2 illustrate that AA-R
with function value-based globalization (4.1) is a competitive solver. Specifically,
Algorithm 4.1 requires the least amount of oracle calls to satisfy the stopping criterion
when m ∈ {10, 15, 20, 30}. However, in the low memory case m = 5, Algorithm 4.1 and
the restarting strategy seem less effective (especially for the nonlinear least-squares
problem). The plots in Figures 1–2 generally underline the potential of function value-
and descent-based globalization mechanisms for AA schemes. Rejections predominantly
occur in the early stage of the iterative process to ensure global convergence and
progress of Algorithm 4.1. In addition, transition to a pure AA-R phase with accelerated
convergence is maintained — as indicated by our theoretical results.

As the applications tested in this section are nonconvex, we have recorded the
smallest eigenvalues of the respective Hessians in the last iterations of AA-R for each
of the problems and datasets. We have observed that that these eigenvalues are all
approximately equal to λ > 0 and hence, assumption (A.2) is locally satisfied.

5.2. Descent Properties. In Figure 3, we plot the measure

ρk := max{f(xkAA)− f(g(xk)), 0}/∥∇f(xk−m̂)∥3

versus the number of iterations k to further visualize and verify the descent properties
derived in Theorem 3.6. If the AA step achieves descent, f(xkAA) ≤ f(g(xk)), then we
have ρk = 0 and we locally expect ρk ≈ 0 for all k sufficiently large. The special marks
“⋆” in Figure 3 again indicate that an AA step did not pass the descent condition (4.1).
Figure 3 illustrates that ρk indeed stays zero eventually and that no AA steps are
rejected locally. This observation is slightly less pronounced on CIFAR10 when m = 30.

5.3. Ablation Study. Finally, we provide an additional ablation study for the
parameters c1, c2, c3, and γ used in Algorithm 4.1 and in the definition of the descent
condition (4.1). Based on Theorem 4.1, c1, c2, c3, and γ need to satisfy the conditions
0 < γ < 1

2L , c1, c3 > 0, and 0 < c2 <
1

2mL . We compare our default choice with the
following extreme sets of parameters:

(5.3) γ =
1

2L
, c1 = c2 = c3 = 0, and γ = 0, c1 = c3 = 1010, c2 =

1

2mL
.

These two choices correspond to highly strict and loose acceptance criteria for the AA
step xkAA. Since ν ∈ (2, 3) has only limited influence, we omit an explicit ablation study
for ν and use the default value ν = 2.1. Figure 4 demonstrates that Algorithm 4.1 is
robust with respect to the choice of c1, c2, c3, and γ. In particular, performance is
only affected marginally when using the more extreme parameters (5.3).

6. Conclusion. In this work, we study descent properties of an Anderson accel-
erated gradient method with restarting. We first show that the iterates generated by
AA-R are equivalent to the iterates generated by GMRES after an additional gradient
step within each restarting cycle. Based on the symmetry of the underlying system
matrix, we then analyze the error between the iterates generated by GMRES and CR
and verify that this error is controllable and related to some higher-order perturbation
terms. After connecting CR and CG, the desired descent property for AA-R can be
expressed in terms of distances to the respective optimal solution for the iterates
generated by CG. We establish such a convergence result for CG utilizing classical
techniques. Combining these different observations, we prove that AA-R can decrease

26 W. OUYANG, Y. LIU, AND A. MILZAREK

(a) ST & CIFAR10 (b) ST & STL10 (c) NLS & CIFAR10 (d) NLS & STL10

m
=

5
m

=
1
0

m
=

1
5

m
=

2
0

m
=

3
0

Fig. 3. Plot of ρk = max{f(xk
AA)−f(g(xk)), 0}/∥∇f(xk−m̂)∥3 vs. Oracle calls for Algorithm 4.1.

The marks “⋆” indicate rejected AA steps. After the last rejected AA step (red dashed vertical line),
ρk mostly stays 0, which verifies and illustrates Theorem 3.6. The x-axes of each plot in the rows
m ∈ {10, 15, 20, 30} have the same scaling 0 – 700. For m = 5, the scaling is 0 – 3, 000.

the objective function f locally. These novel findings can be used in the design of
effective, function value-based globalization mechanisms for AA-R approaches. We
propose one such possible AA-R globalization and conduct numerical experiments on
two large-scale learning problems that illustrate our theoretical results.

Acknowledgments. We would like to thank the Associate Editor and three
anonymous reviewers for their detailed and constructive comments, which have helped
greatly to improve the quality and presentation of the manuscript.

Appendix A. Proof of Proposition 3.3.

Proof. We show that Proposition 3.3 is a direct application of [33, Theorem 5.1].
Due to (2.1), the constant κg in [33] reduces to 1− 1

κr
and we have θk ≤ 1 and βk = 1.

Moreover, all the points of interest lie in Br(x⋆), so all the expansions of the residuals
in [33, Section 3] are legitimate. The core estimate (5.18) in [33, Theorem 5.1] then
reduces to (3.4). The proof is complete if all assumptions in [33, Theorem 5.1] hold.

Using xi ∈ Br(x⋆), i = k − m̂, . . . , k and (2.1), it follows

∥hi−hi−1∥ ≥ ∥xi−xi−1∥−∥g(xi)−g(xi−1)∥ ≥ κ−1
r ∥xi−xi−1∥ ∀ i = k−m̂+1, . . . , k.

This is exactly Assumption 2.3 in [33] (see also [33, Remark 2.1]). Next, we verify
the sufficient linear independence condition introduced in [33, Lemma 5.2]. Let us

DESCENT OF A RESTARTED ANDERSON ACCELERATED GRADIENT METHOD 27

Default parameters γ = 1
2L , c1 = c2 = c3 = 0 γ = 0, c1 = c3 = 1010, c2 = 1

2mL

(a) ST & CIFAR10 (b) ST & STL10 (c) NLS & CIFAR10 (d) NLS & STL10

m
=

5
m

=
1
0

m
=

1
5

m
=

2
0

m
=

3
0

Fig. 4. Ablation study of Algorithm 4.1 using different c1, c2, c3, and γ. Each plot depicts
(f(xk)− f∗)/max{f∗, 1} vs. Oracle calls for three different runs of Algorithm 4.1. We compare the
default parameters with the extreme choices γ = 1

2L
, c1 = c2 = c3 = 0 and γ = 0, c1 = c3 = 1010,

c2 = 1
2mL

. The x-axes of each plot in the rows m ∈ {10, 15, 20, 30} have the same scaling 0 – 700.
For m = 5, the scaling is 0 – 3, 000.

define H̃k = [hk − hk−1, . . . , hk−m̂+1 − hk−m̂] =: [v1, . . . , vm̂]. We note that there
is a fixed nonsingular matrix P ∈ Rm̂×m̂ such that H̃k = HkP and κ(H̃⊤

k H̃k) ≤
κ(H⊤

k Hk)κ(P
⊤P). Therefore, by Proposition 3.2 and using xi ∈ U1, i = k − m̂, . . . , k,

(A.4) implies that the condition number of H̃⊤
k H̃k is bounded by some M̃2. Let

Vi = span{v1, . . . , vi} denote the linear subspace spanned by the first i columns of
H̃k and let H̃k = QkRk be the QR decomposition of H̃k. We then have κ(R⊤

k Rk) =

κ(H̃⊤
k H̃k) ≤ M̃2. Furthermore, let {rii}1≤i≤m̂ denote the diagonal entries of Rk.

By [33, Proposition 5.2], it follows r211 = ∥v1∥2 and r2ii = ∥vi∥2 sin2(vi,Vi−1) for all
2 ≤ i ≤ m̂. Since Rk is upper triangular, the diagonal entries rii, i = 1, . . . , m̂, are
exactly the eigenvalues of Rk. Consequently, we obtain

(∥vi∥2/∥v1∥2) · sin2(vi,Vi−1) = r2ii/r
2
11 ≥ σmin(Rk)

2/σmax(Rk)
2 ≥ 1/M̃2.

In addition, we have ∥vi∥2/∥v1∥2 ≤ σmax(H̃k)
2/σmin(H̃k)

2 ≤ M̃2. Combining these
inequalities, this yields | sin(vi,Vi−1)| ≥ M̃−2 which verifies the last remaining assump-
tion in [33, Lemma 5.2 and Theorem 5.1]. This concludes the proof.

Appendix B. Proof of Theorem 3.15.

28 W. OUYANG, Y. LIU, AND A. MILZAREK

Proof. Similar to (3.15) and utilizing the projection y(k+1), we have:

∥ȳk − y∗∥2 − ∥yk+1 − y∗∥ = ∥ȳk − y(k+1)∥2 − ∥yk+1 − y(k+1)∥2

= ∥ȳk − yk+1∥2 + 2⟨ȳk − yk+1, yk+1 − y(k+1)⟩
= ∥akpk − L−1rk∥2 + 2⟨akpk − L−1rk, γkp

k⟩
= a2k∥pk∥2 − 2akL

−1⟨pk, rk⟩+ L−2∥rk∥2 + 2akγk∥pk∥2 − 2γkL
−1⟨pk, rk⟩

= (a2k + 2akγk)∥pk∥2 + 1
L [L

−1 − 2γk − 2ak]∥rk∥2

≥
[
a2k + 2akγk − 2γkL

−1 − 2akL
−1 + L−2

]
∥rk∥2

=
[
2γk(ak − L−1) + (ak − L−1)2

]
∥rk∥2 ≥ 0,

where we have used Property (iii) to show that ⟨pk, rk⟩ = ∥rk∥2, Property (iv) to show
that ∥pk∥2 ≥ ∥rk∥2, and Property (ix) to show that γk ≥ ak ≥ 1/L.

REFERENCES

[1] D. G. Anderson, Iterative procedures for nonlinear integral equations, J. ACM, 12 (1965),
pp. 547–560.

[2] A. Aravkin, M. P. Friedlander, F. J. Herrmann, and T. Van Leeuwen, Robust
inversion, dimensionality reduction, and randomized sampling, Math. Program., 134 (2012),
pp. 101–125.

[3] A. Aravkin, T. Van Leeuwen, and F. Herrmann, Robust full-waveform inversion using the
student’s t-distribution, in SEG Tech. Program Expanded Abstracts, 2011, pp. 2669–2673.

[4] E. Artacho, E. Anglada, O. Diéguez, J. D. Gale, A. García, J. Junquera, R. M.
Martin, P. Ordejón, J. M. Pruneda, D. Sánchez-Portal, and J. M. Soler, The
SIESTA method; developments and applicability, J. Phys.-Condes. Matter, 20 (2008).

[5] Z. Bai, D. Hu, and L. Reichel, A Newton basis GMRES implementation, IMA J. Numer.
Anal., 14 (1994), pp. 563–581.

[6] W. Bian, X. Chen, and C. Kelley, Anderson acceleration for a class of nonsmooth fixed-point
problems, SIAM J. Sci. Comput., (2021), pp. S1–S20.

[7] M. Chupin, M.-S. Dupuy, G. Legendre, and E. Séré, Convergence analysis of adaptive
DIIS algorithms with application to electronic ground state calculations, ESAIM Math.
Model. Numer. Anal., 55 (2021), pp. 2785–2825.

[8] A. Coates, A. Ng, and H. Lee, An analysis of single-layer networks in unsupervised feature
learning, in Proc. Int. Conf. Artif. Intell. Stat. (AISTATS), 2011, pp. 215–223.

[9] M. Ermis and I. Yang, A3DQN: Adaptive Anderson acceleration for deep Q-networks, in 2020
IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, 2020, pp. 250–257.

[10] C. Evans, S. Pollock, L. G. Rebholz, and M. Xiao, A proof that Anderson acceleration
improves the convergence rate in linearly converging fixed-point methods (but not in those
converging quadratically), SIAM J. Numer. Anal., 58 (2020), pp. 788–810.

[11] V. Eyert, A comparative study on methods for convergence acceleration of iterative vector
sequences, Journal of Computational Physics, 124 (1996), pp. 271–285.

[12] H.-r. Fang and Y. Saad, Two classes of multisecant methods for nonlinear acceleration,
Numer. Linear Algebra Appl., 16 (2009), pp. 197–221.

[13] D. C.-L. Fong and M. Saunders, CG versus MINRES: An empirical comparison, Sultan
Qaboos University Journal for Science [SQUJS], 17 (2012), pp. 44–62.

[14] A. Fu, J. Zhang, and S. Boyd, Anderson accelerated Douglas–Rachford splitting, SIAM J.
Sci. Comput., 42 (2020), pp. A3560–A3583.

[15] M. Geist and B. Scherrer, Anderson acceleration for reinforcement learning, arXiv preprint
arXiv:1809.09501, (2018).

[16] G. H. Golub and C. F. Van Loan, Matrix computations, JHU Press, Baltimore, MD, 2013.
[17] X. Guo, A. Hu, R. Xu, and J. Zhang, Consistency and computation of regularized mles for

multivariate hawkes processes, arXiv preprint arXiv:1810.02955, (2018).
[18] M. H. Gutknecht, A brief introduction to Krylov space methods for solving linear systems, in

Front. Comput. Sci., Springer, 2007, pp. 53–62.
[19] N. C. Henderson and R. Varadhan, Damped Anderson acceleration with restarts and

monotonicity control for accelerating EM and EM-like algorithms, J. Comput. Graph. Stat.,
28 (2019), pp. 834–846.

DESCENT OF A RESTARTED ANDERSON ACCELERATED GRADIENT METHOD 29

[20] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems,
J. Res. Natl. Bur. Stand., 49 (1952), pp. 409–435.

[21] A. Krizhevsky, Learning multiple layers of features from tiny images, Master’s thesis, Univer-
sity of Tront, (2009).

[22] J. Loffeld and C. S. Woodward, Considerations on the implementation and use of Anderson
acceleration on distributed memory and GPU-based parallel computers, in Adv. Math. Sci.,
Springer, 2016, pp. 417–436.

[23] V. Mai and M. Johansson, Anderson acceleration of proximal gradient methods, in Int. Conf.
Mach. Learn., PMLR, 2020, pp. 6620–6629.

[24] R. Meyer, On the convergence of algorithms with restart, SIAM J. Numer. Anal., 13 (1976),
pp. 696–704.

[25] Y. Nesterov, Lectures on convex optimization, vol. 137, Springer, 2018.
[26] J. Nocedal and S. J. Wright, Numerical optimization, Springer Series in Operations Research

and Financial Engineering, Springer, New York, second ed., 2006.
[27] W. Ouyang, Y. Peng, Y. Yao, J. Zhang, and B. Deng, Anderson acceleration for

nonconvex ADMM based on Douglas-Rachford splitting, Comput. Graph. Forum, 39 (2020),
pp. 221–239.

[28] W. Ouyang, J. Tao, A. Milzarek, and B. Deng, Nonmonotone globalization for Anderson
acceleration using adaptive regularization, arXiv preprint arXiv:2006.02559, (2020).

[29] C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and
sparse least squares, ACM transactions on mathematical software, 8 (1982), pp. 43–71.

[30] A. L. Pavlov, G. W. Ovchinnikov, D. Y. Derbyshev, D. Tsetserukou, and I. V.
Oseledets, AA-ICP: Iterative closest point with Anderson acceleration, in IEEE Int. Conf.
Robot. Autom. (ICRA), IEEE, 2018, pp. 1–6.

[31] Y. Peng, B. Deng, J. Zhang, F. Geng, W. Qin, and L. Liu, Anderson acceleration for
geometry optimization and physics simulation, ACM Trans. Graph., 37 (2018), p. 42.

[32] X.-H. Pham, M. Alamir, F. Bonne, and P. Bonnay, On the use of Anderson acceleration
in hierarchical control, arXiv preprint arXiv:2112.04299, (2021).

[33] S. Pollock and L. G. Rebholz, Anderson acceleration for contractive and noncontractive
operators, IMA J. Numer. Anal., 41 (2021), pp. 2841–2872.

[34] S. Pollock, L. G. Rebholz, and M. Xiao, Anderson-accelerated convergence of Picard
iterations for incompressible Navier–Stokes equations, SIAM J. Numer. Anal., 57 (2019),
pp. 615–637.

[35] F. A. Potra and H. Engler, A characterization of the behavior of the Anderson acceleration
on linear problems, Linear Alg. Appl., 438 (2013), pp. 1002–1011.

[36] M. J. D. Powell, Restart procedures for the conjugate gradient method, Math. Program., 12
(1977), pp. 241–254.

[37] P. P. Pratapa and P. Suryanarayana, Restarted Pulay mixing for efficient and robust
acceleration of fixed-point iterations, Chem. Phys. Lett., 635 (2015), pp. 69–74.

[38] T. Rohwedder and R. Schneider, An analysis for the DIIS acceleration method used in
quantum chemistry calculations, J. Math. Chem., 49 (2011), pp. 1889–1914.

[39] Y. Saad, Iterative methods for sparse linear systems, SIAM, 2003.
[40] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Comput., 7 (1986), pp. 856–869.
[41] D. Scieur, A. d’Aspremont, and F. Bach, Regularized nonlinear acceleration, in Adv.

Neural Inf. Process. Syst., 2016, pp. 712–720.
[42] D. Scieur, A. d’Aspremont, and F. Bach, Nonlinear acceleration of stochastic algorithms,

arXiv preprint arXiv:1706.07270, (2017).
[43] W. Shi, S. Song, H. Wu, Y.-C. Hsu, C. Wu, and G. Huang, Regularized Anderson

acceleration for off-policy deep reinforcement learning, preprint arXiv:1909.03245, (2019).
[44] E. Stiefel, Relaxationsmethoden bester Strategie zur Lösung linearer Gleichungssysteme,

Commentarii Mathematici Helvetici, 29 (1955), pp. 157–179.
[45] W. Tang and P. Daoutidis, Fast and stable nonconvex constrained distributed optimization:

the ellada algorithm, Optimization and Engineering, 23 (2022), pp. 259–301.
[46] A. Toth and C. Kelley, Convergence analysis for Anderson acceleration, SIAM J. Numer.

Anal., 53 (2015), pp. 805–819.
[47] H. F. Walker and P. Ni, Anderson acceleration for fixed-point iterations, SIAM J. Numer.

Anal., 49 (2011), pp. 1715–1735.
[48] D. Wang, Y. He, and H. De Sterck, On the asymptotic linear convergence speed of Anderson

acceleration applied to ADMM, J. Sci. Comput., 88 (2021), pp. 1–35.
[49] F. Wei, C. Bao, and Y. Liu, Stochastic Anderson mixing for nonconvex stochastic optimiza-

tion, in Adv. Neural Inf. Process. Syst., vol. 34, 2021, pp. 22995–23008.

30 W. OUYANG, Y. LIU, AND A. MILZAREK

[50] P. Xu, F. Roosta, and M. W. Mahoney, Second-order optimization for non-convex machine
learning: An empirical study, Proc. SIAM Int. Conf. Data Min., (2020), pp. 199–207.

[51] J. Zhang, B. O’Donoghue, and S. Boyd, Globally convergent type-I Anderson acceleration
for nonsmooth fixed-point iterations, SIAM J. Optim., 30 (2020), pp. 3170–3197.

[52] J. Zhang, Y. Peng, W. Ouyang, and B. Deng, Accelerating ADMM for efficient simulation
and optimization, ACM Trans. Graph., 38 (2019), pp. 1–21.

	Introduction
	Related Work and Literature
	Contributions
	Organization
	Notation

	Anderson Acceleration with Restarting
	Convergence and Descent Properties of AA-R
	Q-Linear Convergence of AA-R
	Local Descent Properties of AA-R
	Connecting AA-R and GMRES
	Connecting GMRES and CR
	Connecting CR and CG
	Proof of thm3-18

	A Function Value-Based Globalization for AA-R
	Numerical Experiments
	Nonconvex Classification
	Descent Properties
	Ablation Study

	Conclusion
	Appendix A. Proof of qlinearconv
	Appendix B. Proof of thm4-10
	References

