
ar
X

iv
:2

20
8.

03
97

9v
2

 [
m

at
h.

O
C

]
 2

 N
ov

 2
02

3

A CORRELATIVELY SPARSE LAGRANGE MULTIPLIER

EXPRESSION RELAXATION FOR POLYNOMIAL OPTIMIZATION

ZHENG QU∗ AND XINDONG TANG†

Abstract. In this paper, we consider polynomial optimization with correlative sparsity. We
construct correlatively sparse Lagrange multiplier expressions (CS-LMEs) and propose CS-LME re-
formulations for polynomial optimization problems using the Karush–Kuhn–Tucker optimality con-
ditions. Correlatively sparse sum-of-squares (CS-SOS) relaxations are applied to solve the CS-LME
reformulation. We show that the CS-LME reformulation inherits the original correlative sparsity
pattern, and the CS-SOS relaxation provides sharper lower bounds when applied to the CS-LME
reformulation, compared with when it is applied to the original problem. Moreover, the convergence
of our approach is guaranteed under mild conditions. In numerical experiments, our new approach
usually finds the global optimal value (up to a negligible error) with a low relaxation order for cases
where directly solving the problem fails to get an accurate approximation. Also, by properly exploit-
ing the correlative sparsity, our CS-LME approach requires less computational time than the original
LME approach to reach the same accuracy level.

Key words. polynomial optimization, correlative sparsity, Lagrange multiplier expressions,
Moment-SOS relaxations

MSC codes. 90C23, 90C06, 90C22

1. Introduction. Let n be a positive integer, and let x := (x1, . . . , xn) be the
variable in the n-dimensional Euclidean space. Denote by R[x] be the ring of real
coefficient polynomials in n indeterminates. We consider the polynomial optimization
problem

(1.1)

{

min
x∈Rn

f(x)

s.t. g(x) ≥ 0, h(x) = 0.

In the above, f ∈ R[x] is a polynomial, and g ∈ R[x]m and h ∈ R[x]ℓ are tuples of
polynomial functions. In [10], Lasserre introduced a hierarchy of semidefinite pro-
gramming (SDP) relaxations to provide a sequence of lower bounds for (1.1), which
converges to the global optimal value of (1.1), under some compactness assumptions.
This approach is known as the Moment-SOS relaxations and has been intensively
explored in the last two decades for global solutions of polynomial optimization prob-
lems. For (1.1), Nie introduced the Lagrange multiplier expressions (LMEs) [23],
whose existence is guaranteed when g(x) and h(x) are given by generic polynomial
functions. LMEs can be applied to construct the LME reformulation of (1.1) using
the Karush–Kuhn–Tucker (KKT) optimality conditions, which guarantees the mo-
ment relaxation being exact when the relaxation order is big enough and the global
minimum for (1.1) is attainable. However, these approaches are usually computation-
ally expensive. Indeed, even for unconstrained polynomial optimization problems,
i.e., m = ℓ = 0, the moment relaxation for (1.1) is an SDP problem with matrices of
size up to

(

n+d
n

)

×
(

n+d
n

)

, where d ∈ N is the relaxation order such that 2d ≥ deg(f).
Given the polynomial optimization problem (1.1), let (I1, . . . , Is) be subsets of

[n] := {1, . . . , n} such that
⋃s

i=1 Ii = [n], and denote x(i) := (xj)j∈Ii
. Equation (1.1)

is said to follow the correlative sparsity pattern (csp) (I1, . . . , Is) if

∗Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong. (email:
zhengqu@hku.hk)

†Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom,
Kowloon, Hong Kong. (email: xdtang@hkbu.edu.hk)

1

http://arxiv.org/abs/2208.03979v2

(1) there exist f1, f2, . . . , fs such that every fi ∈ R[x(i)] and f(x) = f1(x
(1)) +

· · ·+ fs(x
(s));

(2) there exist partitions I = (I1, . . . , Is) of [m] and E = (E1, . . . , Es) of [ℓ], such
that for all i ∈ [s], we have gj1 ∈ R[x(i)] and hj2 ∈ R[x(i)] for every j1 ∈ Ii
and j2 ∈ Ei.

For convenience, we let mi := |Ii| and ℓi := |Ei|, and denote

g(i) := (gj : j ∈ Ii) , h(i) := (hj : j ∈ Ei) .

Then, both g(i) and h(i) are subsets of R[x(i)], and the polynomial optimization (1.1)
with csp (I1, . . . , Is) can be written in the following way:

(1.2)











min
x∈Rn

f1(x
(1)) + f2(x

(2)) + · · ·+ fs(x
(s))

s.t. g(1)(x(1)) ≥ 0, . . . , g(s)(x(s)) ≥ 0,

h(1)(x(1)) = 0, . . . , h(s)(x(s)) = 0.

In this paper, we are interested in problems with csp {I1, . . . , Is} that satisfies
the running intersection property (RIP), meaning that for each 1 ≤ i ≤ s− 1, Ii+1 ∩
(I1 ∪ · · · ∪ Ii) ⊂ It for some t ∈ {1, . . . , i}; see Definition 2.2. The Moment-SOS
relaxation with correlative sparsity is studied in [34], and the convergence results are
proved in [5, 9, 11, 25] for the case when the RIP holds. Recently, Magron and Wang
developed the software TSSOS [15] that implements correlative and term sparse SOS
relaxations for polynomial optimization (see also [16, 36, 37]), and it has been used
in many applications [17, 35].

Note that for any polynomial optimization problem, the trivial csp, i.e., s = 1
with I1 = [n], always exists. Our primary interests lie in the cases where n is much
bigger than maxi∈[s] |Ii|. For polynomial optimization (1.1) with the given csp, we
aim to construct reformulations similar to Nie’s LME reformulation introduced in
[23], while maintaining the correlative sparsity of (1.1). Our main contributions are
as follows:
• For polynomial optimization with the given csp, we provide a systematic way to
construct correlatively sparse LMEs (CS-LMEs), which are polynomial functions
in x and some auxiliary variables.
• Based on CS-LMEs, we proposed correlatively sparse reformulations using the
KKT optimality conditions. We show that under some general conditions, the
reformulation inherits the csp and the RIP from the original polynomial opti-
mization, and their optimal values are identical.
• We show that for a given relaxation order, correlatively sparse SOS (CS-SOS)
relaxations always provide tighter lower bounds for the optimal value of the
polynomial optimization problem when the CS-LME reformulation is applied.
The asymptotic convergence of our approach is proved under some standard
assumptions. Numerical experiments are given to show the superiority of our
CS-LME approach.
This paper is organized as follows. Some preliminaries for polynomial optimiza-

tion and Lagrange multiplier expressions are given in Section 2. In Section 3, CS-
LMEs are studied, and reformulations based on CS-LMEs are proposed. Section 4
studies the CS-SOS relaxations for solving CS-LME relaxations. Numerical experi-
ments are presented in Section 5, and we conclude our approach and discuss future
work in Section 6. In Appendix A, we briefly recall the general methodology for the
computation of LMEs and CS-LMEs.

2

2. Preliminaries.

2.1. Notation and definitions. Let r be a positive integer. Denote [r] :=
{1, . . . , r}, and let Ir be the r-by-r identity matrix. When the dimension is clear,
we use 0 (resp., 1) to denote the all-zero (resp., all-one) vector. Given two vectors
v, w ∈ Rr, we denote by v ◦ w the entrywise product of v and w, and v ⊥ w means
that v⊤w = 0. For v ∈ Rr and 1 ≤ i ≤ j ≤ r, we denote by vi:j the subvector formed

by the elements of v indexed from i to j, i.e., vi:j := [vi, · · · , vj]
⊤.

Let z = (z1, . . . , zr) be a tuple of variables. Denote by R[z] the ring of polynomials
in variables z1, . . . , zr with real coefficients, and let R[z]r×k (resp., R[z]r) be the set
of all r × k matrices (resp., r-dimensional vectors) whose entries are polynomials in
z. For a polynomial p ∈ R[z], denote by deg(p) the degree of p. For an integer d ∈ N,
let R[z]d be the R-vector space of real polynomials in r variables of degrees at most d.
A polynomial p ∈ R[z] is a sum-of-squares (SOS) if there exist σ1, . . . , σt ∈ R[z] such

that p = (σ1)
2 + · · ·+ (σt)

2. Denote by Σ[z] the set of SOS polynomials in z, and let
Σ[z]d := Σ[z]∩R[z]d. For p ∈ R[z] and R,S ⊆ R[z], we define p · R := {p · q : q ∈ R}
and R+ S := {r + s : r ∈ R, s ∈ S}.

Given a tuple g = (g1, . . . , gm) ⊆ R[z], the quadratic module of R[z] generated by
g is the set

(2.1) Qmod(g) := Σ[z] + g1 · Σ[z] + · · ·+ gm · Σ[z],

and the 2dth truncation of Qmod(g) is the set

(2.2) Qmod(g)2d := Σ[z]2d + g1 · Σ[z]2d−deg(g1) + · · ·+ gm · Σ[z]2d−deg(gm).

For a tuple h = (h1, . . . , hℓ) ⊂ R[z], the ideal of R[z] generated by h is the set

Ideal(h) := h1 · R[z] + · · ·+ hℓ · R[z],

and the 2dth truncation of Ideal(h) is the set

Ideal(h)2d := h1 · R[z]2d−deg(h1) + · · ·+ hℓ · R[z]2d−deg(hℓ).

For two polynomial tuples h and g, denote

(2.3) IQ(h, g) := Ideal(h) + Qmod(g), IQ(h, g)2d := Ideal(h)2d +Qmod(g)2d.

Then, it is clear that every polynomial p ∈ IQ(h, g) ⊆ R[z] is nonnegative over the set
K := {z ∈ Rr : h(z) = 0, g(z) ≥ 0}. Conversely, when IQ(h, g) is archimedean, i.e.,
when there exists p ∈ IQ(h, g) such that {z ∈ Rr : p(z) ≥ 0} is compact (see [12]),
all positive polynomials over K are in IQ(h, g). This result is referred to as Putinar’s
Positivstellensatz [32]. Moreover, when h = 0 has finitely many real roots, or when
some general optimality conditions hold, a polynomial f ∈ R[z] is nonnegative over
K if and only if f ∈ IQ(h, g)2d for all d that is sufficiently large (see [19, 21]).

Throughout this paper, x = (x1, . . . , xn) is the tuple of n variables. Given the csp
(I1, . . . , Is), for each i ∈ [s], we fix a certain ordering for elements in Ii and denote

by x(i) the tuple of variables (xk : k ∈ Ii). The jth variable of x(i), denoted by x
(i)
j ,

corresponds to the variable xk if j is the order of k in Ii. For example, if I1 is ordered

as (1, 3, 5, 6), then x
(1)
2 = x3. For polynomial p ∈ R[x], denote by ∇p ∈ R[x]n the

gradient of p and

(2.4) ∇ip :=
[

∂p

∂x
(i)
1

· · · ∂p

∂x
(i)
ni

]⊤

∈ R[x]ni .

3

When the dimension of the ambient space is clear, we use ei to denote the ith standard
basis vector whose ith entry is 1 while all other entries are zeros. For k ∈ Ii, denote

(2.5) e
(i)
k := ej ∈ R

ni ,

where j is the order of k in the tuple Ii. For instance, if I1 is ordered as (1, 3, 5, 6),

then e
(1)
3 = e2 ∈ R4.

2.2. Moment-SOS relaxation. Denote by fmin the optimal value of the poly-
nomial optimization problem (1.1). Denote by K the feasible set of (1.1), i.e., K :=
{x ∈ Rn : h(x) = 0, g(x) ≥ 0}. Then finding the global minimum of (1.1) is equivalent
to

(2.6)

{

max γ
s.t. f − γ ∈ Pd0(K).

In the above, d0 is the degree of f , and Pd0(K) is the cone of nonnegative polynomials
over K with degrees not greater than d0. A computationally tractable relaxation for
(2.6) is called the Moment-SOS relaxation. Given the relaxation order d ∈ N such that
2d ≥ max{deg(f), deg(g), deg(h)}, the dth order SOS relaxation of (2.6) (and (1.1))
is

(2.7)

{

max γ
s.t. f − γ ∈ IQ(h, g)2d.

Its dual problem corresponds to the so-called dth order moment relaxation of (1.1),
and this primal-dual pair is referred to as the Moment-SOS relaxation. Both (2.7)
and its dual problems can be written as SDP problems. We refer to [6, 10, 12, 13, 14,
20, 22, 24] for more references about polynomial optimization and moment problems.

For a relaxation order d, denote by θd the optimal value of (2.7). Clearly θd
provides a lower bound of fmin, i.e. θd ≤ fmin. Convergence of the Moment-SOS
relaxation relies on Putinar’s Positivestellenstaz [32].

Theorem 2.1 ([10]). If IQ(g, h) is archimedean, then limd→+∞ θd = fmin.

We would like to remark that under some conditions, the Moment-SOS relaxations
have finite convergence, i.e., θd = fmin for all d that is big enough. We refer to
[2, 3, 8, 19, 21] for more related work. The Moment-SOS relaxations have been
implemented in the software GloptiPoly 3 [7]. In this paper, we also call Moment-
SOS relaxations ”dense relaxations” or ”dense SOS relaxations” to distinguish them
from SOS relaxations exploiting the sparsity.

2.3. Correlatively sparse SOS relaxation. Let us consider the problem (1.2)
with csp (I1, . . . , Is). For polynomial tuples h(i), g(i) ∈ R[x(i)], we denote by

IQIi
(h(i), g(i))

the set given by (2.1)–(2.3) with z = x(i). To exploit the correlative sparsity of
problem (1.2), we consider the following relaxation for problem (1.2):

(2.8)

{

max γ

s.t. f − γ ∈ IQI1

(

h(1), g(1)
)

2d
+ · · ·+ IQIs

(

h(s), g(s)
)

2d
.

We refer to (2.8) as the dth order CS-SOS relaxation of (1.2) [11, 25, 16, 34], and
denote its optimal value by ρd. To demonstrate the convergence results for CS-SOS
relaxations, we need the following property of csps.

4

Definition 2.2. We say that the csp (I1, . . . , Is) satisfies the RIP if for every
i ∈ [s− 1], there exists t ≤ i such that

Ii+1

⋂

i
⋃

j=1

Ij ⊆ It.(2.9)

Convergence of the CS-SOS relaxation is derived from the following sparse version of
Putinar’s Positivestellenstaz.

Theorem 2.3 ([5, 9, 11]). Suppose (I1, . . . , Is) satisfies the RIP property, and
IQIi

(g(i), h(i)) is archimedean for each i ∈ [s]. If f(x) := f1(x
(1)) + · · ·+ fs(x

(s)) is

positive on the semialgebraic set
⋂s

i=1{x ∈ Rn : g(i)(x) ≥ 0, h(i)(x) = 0}, then

f ∈ IQI1

(

h(1), g(1)
)

+ · · ·+ IQIs

(

h(s), g(s)
)

.

Therefore, under the same conditions as that in Theorem 2.3, we have

lim
d→+∞

ρd = fmin.(2.10)

Aside from the correlative sparsity, one can also exploit the term sparsity of
polynomial optimization problems, or combine both kinds of sparsity to obtain the
so-called correlative and term sparsity SOS relaxations (CS-TSSOS) of (1.2), whose
convergence is guaranteed with the term sparsity being given by the maximal chordal
extension when the CS-SOS relaxation is convergent [37]. Since this paper mainly
concerns correlative sparsity, we refer to [16, 36, 37] for more details on the exploitation
of term sparsity. The CS-TSSOS relaxations have been recently implemented in the
software TSSOS [15].

2.4. Optimality conditions and Lagrange multiplier expressions. For the
polynomial optimization problem (1.1), the KKT conditions can be described by the
following polynomial system in (x, λ) ∈ Rn+m+ℓ:











∇f(x) =
m
∑

j=1

λj∇gj(x) +
ℓ

∑

j=1

λm+j∇hj(x),

h(x) = 0, 0 ≤ λ1:m ⊥ g(x) ≥ 0.

(2.11)

The pair (x, λ) satisfying (2.11) is called a KKT pair, and the first component x
of a KKT pair is called a KKT point of (1.1). Under some constraint qualification
conditions, every minimizer of (1.1), if it exists, must be a KKT point. In this
case, minimizing f over the KKT system (2.11) returns the same optimal value and
optimal solutions as the original problem (1.1). Moreover, conditions guaranteeing
the convergence of the dense SOS relaxations are milder for the minimization over the
KKT ideal than that for the original problem (1.1). In particular, convergence can
still occur even when the semialgebraic set given by (2.11) is noncompact [4, 26].

A drawback, however, of working on the KKT system (2.11) rather than on the
original feasible region K ⊆ Rn is the augmentation of the number of variables from n
to n+m+ℓ, which causes a significant increase on the computational cost. To deal with
this undesired complexity growth, Nie [23] proposed polynomial Lagrange multipliers
expressions. For the polynomial optimization problem (1.1), let m̂ := m + ℓ, and let

5

c := (c1, . . . , cm̂) be an enumeration for the constraining pair (g, h). We denote

(2.12) G(x) :=















∇c1(x) ∇c2(x) · · · ∇cm̂(x)
c1(x) 0 · · · 0
0 c2(x) · · · 0
...

...
. . .

...
0 · · · 0 cm̂(x)















, f(x) :=











∇f(x)
0
...
0











.

Then, the following equation holds at every KKT pair (x, λ):

G(x) · λ = f(x).(2.13)

If there exists a matrix of polynomials L ∈ R[x]m̂×n and D ∈ R[x]m̂×m̂ such that

[

L(x) D(x)
]

G(x) = Im̂, ∀x ∈ R
n,(2.14)

then the Lagrange multipliers λ can be expressed as polynomials in x:

(2.15)







λ1
...
λm̂






=







p1(x)
...

pm̂(x)






:= L(x)∇f(x).

The polynomial vector p(x) := (p1(x), . . . , pm̂(x)) is called the Lagrange multiplier
expression (LME). Denote

ceq(x) :=











∇f(x)−
m
∑

j=1

pj(x)∇gj(x) −
ℓ

∑

j=1

pm+j(x)∇hj(x)

h(x)
p1:m(x) ◦ g(x)











,

and

cin(x) :=

[

p1:m(x)
g(x)

]

.

Then, x ∈ Rn is a KKT point if and only if x satisfies ceq(x) = 0, cin(x) ≥ 0. Based
on the LME (2.15), Nie [23] proposed the following reformulation of (1.1):

(2.16)

{

min
x∈Rn

f(x)

s.t. ceq(x) = 0, cin(x) ≥ 0

It is clear that when the minimum of (1.1) is attained at some KKT points, the optimal
values of (1.1) and (2.16) are identical. In fact, the existence of LMEs guarantees
that every minimizer of (1.1), if it exists, must be a KKT point [23, Proposition 5.1],
thus solving (1.1) is equivalent to solving the reformulation (2.16). When Moment-
SOS relaxations are applied, finite convergence is guaranteed under some generic
conditions:

Theorem 2.4. [23, Theorem 3.3] Suppose LMEs exist and (2.16) has a nonempty
feasible set. Denote by θd the optimal value of the dth order SOS relaxation (2.7) of
the polynomial optimization problem (2.16). Then, we have that fmin = θd holds for
all d big enough if IQ(ceq, cin) is archimedean and the minimum value of (1.1) is
attained at a KKT point.

6

Recently, LMEs have been widely used in various problems given by polynomial
functions, such as bilevel polynomial optimization, Nash equilibrium problems, tensor
computation, etc. We refer to [28, 27, 29, 30, 31] for applications of LMEs.

One wonders when LMEs exist, i.e., when there exist matrices L(x), D(x) such
that (2.14) holds. We say that the constraining tuple (g, h) is nonsingular if the matrix
G(x) given in (2.12) has a full column rank for all x ∈ Cn. For (1.1), LMEs exist
if and only if its constraining tuple is nonsingular [23, Proposition 5.1]. We would
like to remark that when the polynomials c1, . . . , cm̂ are generic1, the nonsingularity
condition holds. However, there are cases when LMEs do not exist; see Example 3.1
for a concrete example and also [23, 27] for more details. In the following example, we
give the matrices L(x) and D(x) for a special box-constrained problem. The general
methodology for formulating LMEs can be found in Appendix A.

Example 2.5. Consider the polynomial optimization problem with box constraints

(2.17)















min
x∈R4

f(x1, x2, x3, x4) := x41x
2
2 + x21x

4
2 + x63

−3x21x
2
2x

2
3 + x33 + x3x

2
4 − 2x23x4

s.t. x1 ≥ 0, 1− x1 ≥ 0, x2 ≥ 0, 1− x2 ≥ 0,
x3 ≥ 0, 1− x3 ≥ 0, x4 ≥ 0, 1− x4 ≥ 0.

Note that in this problem, since all variables are nonnegative, by the inequality of
arithmetic and geometric means, we have

x41x
2
2 + x21x

4
2 + x63 ≥ 3 3

√

x41x
2
2 · x

2
1x

4
2 · x

6
3 = 3x21x

2
2x

2
3,

x33 + x3x
2
4 ≥ 2

√

x33 · x3x
2
4 = 2x23x4,

where the equailities hold when x1 = x2 = · · · = x4. So the global minimum of (2.17)
is 0 with minimizers (t, t, t, t) for all t ∈ [0, 1]. Let g(x) := (g1(x), . . . , g8(x)) with

(2.18)
g1(x) = x1, g2(x) = 1− x1, g3(x) = x2, g4(x) = 1− x2,
g5(x) = x3, g6(x) = 1− x3, g7(x) = x4, g8(x) = 1− x4.

The constraining tuple g is nonsingular and (2.14) holds with

L(x) = diag(L1(x), L2(x), L3(x), L4(x)), D(x) = diag(D1(x), D2(x), D3(x), D4(x))

being block-diagonal matrices. The matrices in the diagonal of L are given by Li(x) =
[

1− xi
−xi

]

and the matrices in the diagonal of D are given by Di(x) =

[

1 1
1 1

]

for

each i ∈ [4]. Accordingly, the LMEs are

(2.19) p2i−1(x) = (1− xi) ·
∂f

∂xi
(x), p2i(x) = −xi ·

∂f

∂xi
(x), (i = 1, . . . , 4).

In particular, p5(x), p6(x) can be explicitly written as

(2.20)
p5(x) = 6(x21x

2
2x

2
3 − x

6
3 − x

2
1x

2
2x3 + x53)

−3x33 + 4x23x4 − x3x
2
4 + 3x23 − 4x3x4 + x24,

p6(x) = 6x21x
2
2x

2
3 − 6x63 − 3x33 + 4x23x4 − x3x

2
4,

which involve of the four variables x1, x2, x3, x4.

1We say a property holds generically if it holds for all points of input data but a set of Lebesgue
measure zero.

7

3. Correlatively sparse LMEs and reformulations. We consider the poly-
nomial optimization problem (1.2) with the csp (I1, . . . , Is) satisfying the RIP. For
i ∈ [s], we denote by G(i) the polynomial matrix G given in (2.12) associated with
(g(i), h(i)). That is, if we let c(i) = (g(i), h(i)), and m̂i := mi + ℓi, then

(3.1) G(i)(x(i)) :=

















∇ic
(i)
1 (x(i)) ∇ic

(i)
2 (x(i)) · · · ∇ic

(i)
m̂i

(x(i))

c
(i)
1 (x(i)) 0 · · · 0

0 c
(i)
2 (x(i)) · · · 0

...
...

. . .
...

0 · · · 0 c
(i)
m̂i

(x(i))

















.

As mentioned in Section 2.4, one can reformulate polynomial optimization prob-
lems with LMEs, from which the Moment-SOS relaxation gives a tighter lower bound
for the polynomial optimization. To apply LMEs, the KKT system of (1.2) corre-
sponds to the following semialgebraic set on x ∈ Rn, λ(1) ∈ Rm̂1 , . . . , λ(s) ∈ Rm̂s :

(3.2)























∇f1(x) + · · ·+∇fs(x) =
s

∑

i=1





mi
∑

j=1

λ
(i)
j ∇g

(i)
j (x) +

ℓi
∑

j=1

λ
(i)
mi+j∇h

(i)
j (x)



 ,

h(i)(x) = 0, i ∈ [s],

0 ≤ λ
(i)
1:mi
⊥ g(i)(x) ≥ 0, i ∈ [s].

Hereafter, we additionally assume that the nonsingularity condition holds for the
constraining pair (g(i), h(i)) within every Ii. That is:

Assumption 1. For each i ∈ [s], there exist polynomial matrices L(i)(x(i)) ∈
R[x(i)]m̂i×ni and D(i)(x(i)) ∈ R[x(i)]m̂i×m̂i such that

(3.3)
[

L(i)(x(i)) D(i)(x(i))
]

G(i)(x(i)) = Im̂i
.

By [23, Proposition 5.2], (3.3) holds if and only if the matrix G(i)(x(i)) have a full col-
umn rank for all x(i) ∈ C

ni . For such cases, we say the pair (g(i), h(i)) is nonsingular.
This is satisfied if all polynomials in g(i) and h(i) are generic polynomials in x(i).

3.1. Limitation of the original LME for exploiting correlative sparsity.

For the polynomial optimization (1.2) with correlative sparsity, LMEs exist if and
only if the constraining tuple of all the constraints is nonsingular, by [23, Proposi-
tion 5.1]. In general, Assumption 1 is a necessary but not sufficient condition of the
nonsingularity for the constraining tuple (g, h) of all constraints in (1.2). This can be
seen in the following example.

Example 3.1. Consider the following polynomial optimization problem with three
variables x = (x1, x2, x3) and two constraints

(3.4)











min
x∈R3

f1(x1, x2) + f2(x2, x3)

s.t. 1− x21 − x
2
2 ≥ 0

1− x22 − x
2
3 ≥ 0

Let I1 = {1, 2} and I2 = {2, 3}. Then (3.4) has the csp (I1, I2) with

(3.5) g(1) =
(

1− x21 − x
2
2

)

, g(2) =
(

1− x22 − x
2
3

)

, h(1) = h(2) = ∅.

8

The matrix G(x) associated to (3.4) is

G(x) =













−2x1 0
−2x2 −2x2
0 −2x3

1− x21 − x
2
2 0

0 1− x22 − x
2
3













,

whose rank is 1 at x = (0, 1, 0). Thus the constraining tuple of (3.4) is not nonsingular,
and LMEs do not exist. On the other hand, we have

G(1)(x1, x2) =





−2x1
−2x2

1− x21 − x
2
2



 , G(2)(x2, x3) =





−2x2
−2x3

1− x22 − x
2
3



 .

One may check that Assumption 1 holds with

(3.6) L(1)(x1, x2) =

[

−
1

2
x1 −

1

2
x2

]

, L(2)(x2, x3) =

[

−
1

2
x2 −

1

2
x3

]

,

and D(1) = D(2) = 1.

Remark 3.2. See also Example 5.1(ii), Example 5.2, Example 5.5 and Example 5.7
in Section 5 for cases which satisfy Assumption 1 but do not admit LMEs.

Another concern related to the original LME approach is that the LME refor-
mulation (2.16), if exists, usually cannot inherit the csp of (1.2). Indeed, the LME
reformulation (2.16) may have constraints that involve all the variables, as demon-
strated by the following example.

Example 3.3. Consider the polynomial optimization problem (2.17) with box con-
straints. Let I1 = {1, 2, 3} and I2 = {3, 4}. Then (2.17) has the csp (I1, I2) with
h(1) = h(2) = ∅ and

(3.7)
f1(x

(1)) = x41x
2
2 + x21x

4
2 + x63 − 3x21x

2
2x

2
3, f2(x

(2)) = x33 + x3x
2
4 − 2x23x4,

g(1)(x(1)) = (x1, 1− x1, x2, 1− x2), g(2)(x(2)) = (x3, 1− x3, x4, 1− x4).

In view of (2.20), the LME reformulation (2.16) of (2.17) does not have correla-
tive sparsity, as the nonnegativity conditions for Lagrange multipliers p5(x) ≥ 0 and
p6(x) ≥ 0 involve all variables.

In the next two subsections, we provide a systematic method to construct LMEs
for (1.2) which leverages the correlative sparsity pattern (I1, . . . , Is).

3.2. Correlatively sparse LMEs: two blocks. We begin with the case of
two blocks, i.e., s = 2. Before giving a formal presentation of our approach, we would
like to expose the underlying idea through the following example of three variables:

(3.8)







min f1(x1, x2) + f2(x2, x3)
s.t. g1(x1, x2) ≥ 0,

g2(x2, x3) ≥ 0.

The problem (3.8) has the csp (I1, I2) with I1 = {1, 2} and I2 = {2, 3}. Recall that
for each i ∈ [s], the partial gradient ∇i is defined as in (2.4). Under Assumption 1,

9

there exist polynomial matrices L(1) ∈ R[x1, x2]
2, D(1) ∈ R[x1, x2], L

(2) ∈ R[x2, x3]
2,

and D(2) ∈ R[x2, x3] such that for each i = 1, 2,

(3.9)
[

L(i)(x1, x2) D(i)(x1, x2)
]

[

∇igi(x1, x2)
gi(x1, x2)

]

= 1.

The KKT system of (3.8) is

(3.10)



















































∂f1
∂x1

(x1, x2) = λ1 ·
∂g1
∂x1

(x1, x2),

∂f1
∂x2

(x1, x2) +
∂f2
∂x2

(x2, x3) = λ1 ·
∂g1
∂x2

(x1, x2) + λ2 ·
∂g2
∂x2

(x2, x3),

∂f2
∂x3

(x2, x3) = λ2 ·
∂g2
∂x3

(x2, x3),

0 ≤ g1(x1, x2) ⊥ λ1 ≥ 0,

0 ≤ g2(x2, x3) ⊥ λ2 ≥ 0.

Clearly, the csp structure is broken when f1, f2, g1, g2 are dense polynomials, due to
the second equation above. Introducing an auxiliary variable ν, we rewrite (3.10) as

(3.11)







































∇1f1(x1, x2) +

[

0
ν

]

= λ1 · ∇1g1(x1, x2),

0 ≤ g1(x1, x2) ⊥ λ1 ≥ 0,

∇2f2(x2, x3)−

[

ν
0

]

= λ2 · ∇2g2(x2, x3),

0 ≤ g2(x2, x3) ⊥ λ2 ≥ 0,

Thus by (3.9), for any (x1, x2, λ1, λ2, ν) satisfying (3.11), we must have

(3.12)

λ1 = L(1)(x1, x2)

(

∇1f1(x1, x2) +

[

0
ν

])

,

λ2 = L(2)(x2, x3)

(

∇2f2(x2, x3)−

[

ν
0

])

.

Under some constraint qualification conditions, we arrive at a reformulation for (3.8)
which possess the csp with two blocks of variables

(x1, x2, ν), (x2, x3, ν)

by plugging (3.12) back into (3.11) to replace λ1 and λ2.

Example 3.4. Consider the polynomial optimization problem (3.4) as a special
case of (3.8). Recall that Assumption 1 holds with L(1) and L(2) given in (3.6). In
view of (3.12), we have

(3.13)

λ1 = p(1)(x1, x2, ν) := −
x1
2

∂f1
∂x1

(x1, x2)−
x2
2

∂f1
∂x2

(x1, x2)−
x2
2
ν,

λ2 = p(2)(x2, x3, ν) := −
x2
2

∂f2
∂x2

(x2, x3)−
x3
2

∂f2
∂x3

(x2, x3) +
x2
2
ν.

Suppose the minimum value of (3.4) is attained at a KKT point x∗. Then there exists
ν∗ ∈ R such that (3.11) holds at (x∗, ν∗) with λ1, λ2 given by (3.13). Taking (3.11)

10

as constraints with λi being substituted by p(i) for every i = 1, 2, we arrive at the
following optimization problem:

(3.14)



















































min
x,ν

f1(x1, x2) + f2(x2, x3)

s.t. ∇1f1(x1, x2) +

[

0
ν

]

= −2p(1)(x1, x2, ν) ·

[

x1
x2

]

,

0 ≤
(

1− x21 − x
2
2

)

⊥ p(1)(x1, x2, ν) ≥ 0,

∇2f2(x2, x3)−

[

ν
0

]

= −2p(2)(x2, x3, ν) ·

[

x2
x3

]

,

0 ≤
(

1− x22 − x
2
3

)

⊥ p(2)(x2, x3, ν) ≥ 0.

Then (x∗, ν∗) is a global minimizer for (3.14). As we will formally introduce later,
polynomials p(1), p(2) representing λ1, λ2 are called CS-LMEs, and (3.14) is called the
CS-LME reformulation for (3.4).

Recall from Example 3.1 that (3.4) does not admit LMEs, thus the LME reformu-
lation (2.16) is not available for (3.4). One may consider a reformulation of (3.4) using
the KKT system (3.10) by taking λ1, λ2 as new variables. Then the total number of
variables in this approach is 5 and there is no correlative sparsity anymore. Instead,
by appropriately adding extra variable ν, we obtained the CS-LME reformulation
(3.14) which maintains to a degree the original csp structure: we have three variables
in each of the two blocks.

Now we present formally the CS-LME approach for the polynomial optimization
problem (1.2) with two block csp structure. Given the csp (I1, I2), we introduce extra
variables ν := (νk)k∈I1∩I2 . Then, the gradient of the objective function ∇f1(x) +
∇f2(x) can be split into two terms such that one only involves (x(1), ν) and the other

one only has (x(2), ν). Recall that for i ∈ {1, 2} and k ∈ Ii, the vector e
(i)
k is defined

in (2.5). Let

(3.15)
F (1)(x(1), ν) := ∇1f1(x

(1)) +
∑

k∈I1∩I2
νke

(1)
k ∈ Rn1 ,

F (2)(x(2), ν) := ∇2f2(x
(2))−

∑

k∈I1∩I2
νke

(2)
k ∈ Rn2 .

Then, (x, λ(1), λ(2)) is a KKT tuple of (1.2) if and only if there exists ν = (νk)k∈I1∩I2

such that

(3.16)































F (1)(x(1), ν) =
∑m1

j=1
λ
(1)
j ∇1g

(1)
j (x(1)) +

∑ℓ1

j=1
λ
(1)
m1+j∇1h

(1)
j (x(1)),

F (2)(x(2), ν) =
∑m2

j=1
λ
(2)
j ∇2g

(2)
j (x(2)) +

∑ℓ2

j=1
λ
(2)
m2+j∇2h

(2)
j (x(2)),

h(1)(x(1)) = 0, h(2)(x(2)) = 0,

0 ≤ λ
(1)
1:m1

⊥ g(1)(x(1)) ≥ 0, 0 ≤ λ
(2)
1:m2

⊥ g(2)(x(2)) ≥ 0.

Under Assumption 1, if we let

p(1)(x(1), ν) := L(1)(x(1))F (1)(x(1), ν), p(2)(x(2), ν) := L(2)(x(2))F (2)(x(2), ν),

then by (3.3), for any (x, λ(1), λ(2), ν) satisfying (3.16), we have

λ(1) = p(1)(x(1), ν), λ(2) = p(2)(x(2), ν).

11

The polynomial vectors p(1), p(2) are called correlatively sparse Lagrange multiplier ex-
pression (CS-LME) for λ(1) and λ(2), respectively. Replacing λ(1), λ(2) by the polyno-
mial vectors p(1)(x(1), ν) and p(2)(x(2), ν), we get the following reformulation of (1.2):

(3.17)































min
x∈Rn

f1(x
(1)) + f2(x

(2))

s.t. F (i)(x(i), ν) =
∑mi

j=1
p
(i)
j (x(i), ν)∇ig

(i)
j (x(i))

+
∑ℓi

j=1
p
(i)
mi+j(x

(i), ν)∇ih
(i)
j (x(i)), (i = 1, 2)

h(i)(x(i)) = 0, 0 ≤ p
(i)
1:mi

(x(i), ν) ⊥ g(i)(x(i)) ≥ 0. (i = 1, 2)

The reformulation (3.14) in Example 3.4 is a special case of (3.17). One may check
the polynomial optimization problem (3.17) has the csp with two blocks of variables:

(x(1), ν), (x(2), ν).

Example 3.5. Consider the polynomial optimization problem with box constraints
(2.17) in Example 2.5. Its csp is given in Example 3.3, and we have I1 ∩I2 = {3}. So
we need to introduce a new variable ν ∈ R. The f1, f2, g

(1), g(2) are given as in (3.7),
and we let

F (1)(x(1), ν) = ∇1f1(x
(1)) + νe

(1)
3 , F (2)(x(2), ν) = ∇2f2(x

(2))− νe
(2)
3 .

Moreover, denoting by F
(i)
j the jth entry of F (i) for j ∈ {1, 2}, we get CS-LMEs:

(3.18)

p
(1)
2j−1(x

(1), ν) = (1 − xj)F
(1)
j (x(1), ν), p

(1)
2j (x

(1), ν) = −xjF
(1)
j (x(1), ν),

p
(2)
2j−1(x

(2), ν) = (1 − x2+j)F
(2)
j (x(2), ν), p

(2)
2j (x

(2), ν) = −x2+jF
(2)
j (x(2), ν).

Note that when CS-LMEs are given as above, the first equality constraints in (3.17) are

reduced to one single equation F
(1)
3 (x(1), ν) = 0, and the complementarity conditions

are reduced to

xj(1 − xj)F
(1)
j (x(1), ν) = 0, x2+j(1 − x2+j)F

(2)
j (x(2), ν) = 0, (j = 1, 2).

Consequently, the CS-LME reformulation to (2.17) is
(3.19)






























min
x∈R4

x41x
2
2 + x21x

4
2 + x63 − 3x21x

2
2x

2
3 + x33 + x3x

2
4 − 2x23x4

s.t. xj(1− xj)F
(1)
j (x(1), ν) = 0, x2+j(1− x2+j)F

(2)
j (x(2), ν) = 0, (j = 1, 2)

(1− xj)F
(1)
j (x(1), ν) ≥ 0, (1− x2+j)F

(2)
j (x(2), ν) ≥ 0, (j = 1, 2)

−xjF
(1)
j (x(1), ν) ≥ 0, −x2+jF

(2)
j (x(2), ν) ≥ 0, (j = 1, 2)

F
(1)
3 (x(1), ν) = 0, 0 ≤ x1, . . . , x4 ≤ 1.

Later in Section 5, we will compare the numerical performance of solving the CS-LME
reformulation (3.19) of (2.17) with solving it directly and solving its LME reformula-
tion (2.16), all using CS-TSSOS [37].

To summarize, the LME approach proposed by Nie [23] allows for tightening the
classical Moment-SOS relaxation by incorporating necessary polynomial constraints,
provided that certain nonsingularity conditions hold. However, usually this approach

12

cannot keep the csp from the original polynomial optimization problem. Moreover,
when the nonsingularity condition fails, LMEs do not exist. In contrast, one can
try to find the CS-LME instead by adding some new variables. In the above, we
demonstrate how to find CS-LMEs for the two-block cases. In the next subsection,
we provide a systematic way to construct CS-LMEs for an arbitrary number of blocks.

3.3. Correlatively sparse LME: multi-blocks. We introduce how to con-
struct CS-LMEs for an arbitrary number of blocks in this subsection. Hereafter, we
assume that the correlative sparsity pattern (I1, . . . , Is) satisfies the RIP. Without
loss of generality, we also assume the following conditions hold:

1. Ii is not included in Ij for any two distinct i, j ∈ [s];
2. Ii+1 ∩ ∪ij=1Ij 6= ∅ for any i ∈ [s− 1].

We remark that under the RIP condition, the second condition always holds unless
there exists a proper subset S of [s] such that (∪i∈SIi) ∩ (∪i/∈SIi) = ∅ for which we
can solve the polynomial optimization problems for variables within S and outside of
S separately.

To construct CS-LME coherent with the csp (I1, . . . , Is), we first build a directed
tree with nodes corresponding to the elements in the collection {I1, . . . , Is}.

Algorithm 3.1 Clique Tree Construction

Input: (I1, . . . , Is) satisfying the RIP.
1: V = {1, . . . , s} and A = ∅.
2: for i = 1, . . . , s− 1 do

3: if Ii+1

⋂⋃i
j=1 Ij 6= ∅ then

4: Find the largest t ≤ i such that Ii+1

⋂⋃i
j=1 Ij ⊆ It.

5: A = A
⋃

{(i+ 1, t)}.
6: end if

7: end for

Output: G(V,A)

The csp graph associated with (1.2) is the undirected graph Gcsp = G(W,E),
with nodes W = [n] and edges E satisfying {k1, k2} ∈ E if there exists i ∈ [s] such
that k1 ∈ Ii and k2 ∈ Ii. Since (I1, . . . , Is) satisfies the RIP, the corresponding csp
graph Gcsp is chordal2 and {I1, . . . , Is} is the list of maximal cliques of Gcsp, because
we assumed that Ii is not contained in Ij for any distinct i, j ∈ [s]. A clique tree of
the graph Gcsp is a tree on the set V = [s] such that for every pair of distinct nodes
i, j ∈ [s], we have Ii ∩ Ij ⊆ Ik for any k ∈ [s] on the path connecting i and j in the
tree. Clique tree exists because Gcsp is chordal; see [1, Theorem 3.1]. The output
G(V,A) of Algorithm 3.1 is a directed tree whose underlying undirected graph is a
clique tree of the graph Gcsp. This follows from [1, Theorem 3.4]. The directions
indicate the “parent-child” relation between cliques on the tree. We refer to [1] for
more details on chordal graphs and clique trees.

Given the clique tree G(V,A) produced by Algorithm 3.1, for each i ∈ [s], we
denote the indices of children of the node i by

(3.20) Di := {t : (t, i) ∈ A},

2A graph is chordal if all its cycles of length at least four have an edge that joins two noncon-
secutive nodes.

13

and the index of the parent of node i by

(3.21) Ai := {t : (i, t) ∈ A}.

For each i ∈ {2, . . . , s}, Di can be empty sets and Ai contains exactly one element.
When (i, t) ∈ A, we let

(3.22) Ci,t := Ii
⋂

It

be the indices of all variables shared by block i and block t. Then, we introduce a
group of auxiliary variables:

(3.23) {νi,t,k : (i, t) ∈ A, k ∈ Ci,t}.

In other words, for each arc (i, t) ∈ A, we need the same number of auxiliary variables
as the number of variables shared by the block i and block t. For every i ∈ [s], define

(3.24) Ji := {(i, t, k) : t ∈ Ai, k ∈ Ci,t} ∪ {(t, i, k) : t ∈ Di, k ∈ Ct,i} ,

and (recall that the vector e
(i)
k is defined in (2.5))

(3.25) ν(i) := −
∑

t∈Ai

∑

k∈Ci,t

νi,t,ke
(i)
k +

∑

t∈Di

∑

k∈Ct,i

νt,i,ke
(i)
k ∈ R

ni .

Clearly, the vector ν(i) only depends on variables in the group (3.23) indexed by Ji for
each i ∈ [s]. We illustrate how to construct new variables in the following example.

Example 3.6. Consider the following csp pattern:

(3.26)
I1 = {1, 2, 3, 4}, I2 = {1, 2, 5, 6}, I3 = {1, 2, 7, 8},

I4 = {1, 2, 9, 10}, I5 = {1, 2, 11, 12}.

Then the set of edges A in the clique tree G(V,A) produced by Algorithm 3.1 is

A = {(2, 1), (3, 2), (4, 3), (5, 4)},

and Di = {i+ 1} for each i = 1, . . . , 4, Ai = {i− 1} for each i = 2, . . . , 5. Thus

J1 = {(2, 1, 1), (2, 1, 2)},

J2 = {(2, 1, 1), (2, 1, 2)} ∪ {(3, 2, 1), (3, 2, 2)},

J3 = {(3, 2, 1), (3, 2, 2)} ∪ {(4, 3, 1), (4, 3, 2)},

J4 = {(4, 3, 1), (4, 3, 2)} ∪ {(5, 4, 1), (5, 4, 2)},

J5 = {(5, 4, 1), (5, 4, 2)}.

An illustration of the directed tree obtained from Algorithm 3.1 and auxiliary variables
are given in Figure 1. For this clique tree, we have |J1| = |J5| = 2 and |J2| = |J3| =
|J4| = 4.

With new variables νi,t,k and vectors ν(i) given by (3.25), we rewrite the KKT
system (3.2). For each i ∈ [s], consider the following system on (x(i), λ(i), ν(i)) ∈
Rni+mi+ℓi+|Ji|:

(3.27)























∇ifi(x
(i)) + ν(i) =

mi
∑

j=1

λ
(i)
j ∇ig

(i)
j (x(i)) +

ℓi
∑

j=1

λ
(i)
mi+j∇ih

(i)
j (x(i)),

h(i)(x(i)) = 0,

0 ≤ λ
(i)
1:mi
⊥ g(i)(x(i)) ≥ 0.

14

I1 I2 I3 I4 I5
ν2,1,1 ν3,2,1 ν4,3,1 ν5,4,1

ν5,4,2ν2,1,2 ν3,2,2 ν4,3,2

Fig. 1. Clique tree returned by Algorithm 3.1 and auxiliary variables for the csp pattern (3.26).

Proposition 3.7. Let x := (x1, . . . , xn) ∈ Rn and λ := (λ(1), . . . , λ(s)) ∈ Rm+ℓ.
The pair (x, λ) is a KKT pair of (1.2) if and only if there exists a group of auxiliary
variables {νi,t,k : (i, t) ∈ A, k ∈ Ci,t} such that (3.27) holds for all i ∈ [s].

Proof. By lifting all the vectors into Rn (i.e., filling in 0 to the coordinates that
are not in Ii), we can rewrite the first equation in (3.27) as

(3.28) ∇fi(x)+ν̂
(i) =

mi
∑

j=1

λ
(i)
j ∇g

(i)
j (x) +

ℓi
∑

j=1

λ
(i)
mi+j∇h

(i)
j (x),

where ν̂(i) ∈ Rn is obtained by lifting ν(i) into Rn:

ν̂(i) := −
∑

t∈Ai

∑

k∈Ci,t

νi,t,kek +
∑

t∈Di

∑

k∈Ct,i

νt,i,kek.

If there exists (x, λ) and {νi,t,k : (i, t) ∈ A, k ∈ Ci,t} such that (3.27) holds for all
i ∈ [s], then

∇f(x) =

s
∑

i=1

∇fi(x)

(3.28)
=

s
∑

i=1





mi
∑

j=1

λ
(i)
j ∇g

(i)
j (x) +

ℓi
∑

j=1

λ
(i)
mi+j∇h

(i)
j (x) − ν̂(i)





=

s
∑

i=1





mi
∑

j=1

λ
(i)
j ∇g

(i)
j (x) +

ℓi
∑

j=1

λ
(i)
mi+j∇h

(i)
j (x)



 −
s

∑

i=1

ν̂(i)

=

s
∑

i=1





mi
∑

j=1

λ
(i)
j ∇g

(i)
j (x) +

ℓi
∑

j=1

λ
(i)
mi+j∇h

(i)
j (x)



 .

Therefore, (x, λ) is a KKT pair of (1.2). In the following, we show the other direction.
Let (x, λ) be a KKT pair of (1.2). For each fixed k ∈ [n], denote

Pk := {(i, t) ∈ A : k ∈ Ci,t}, Qk := {i : k ∈ Ii}.

In other words, Qk corresponds to the set of cliques that contain k and G(Qk,Pk)
is the subgraph of G(V,A) induced by the nodes Qk. Then by [1, Theorem 3.2], for
each k ∈ [n], the underlying undirected graph of G(Qk,Pk) is a tree.

This allows us to deduce the solvability of the following system of linear equations
for each fixed k ∈ [n]:

(3.29)

∑

t∈Pk(i)

νi,t,k −
∑

t∈P′

k(i)

νt,i,k

=
∂fi
∂xk

(x)−





mi
∑

j=1

λ
(i)
j

∂g
(i)
j

∂xk
(x) +

ℓi
∑

j=1

λ
(i)
mi+j

∂h
(i)
j

∂xk
(x)



 , ∀i ∈ Qk.

15

In the above,

(3.30) Pk(i) := {t : (i, t) ∈ Pk}, P ′
k(i) := {t : (t, i) ∈ Pk}.

Indeed, the linear system (3.29) can be written as

Bv = b,(3.31)

where B ∈ R
|Qk|×|Pk| is the incidence matrix of (Qk,Pk) and b ∈ R

|Qk| is a vector
satisfying 1⊤b = 0. Since the underlying undirected graph of G(Qk,Pk) is a tree, we
have rank(B) = |Pk| = |Qk| − 1 and 1⊤B = 0. Therefore (3.31), and thus (3.29) for
each k ∈ [n], are solvable. In other words, there exist {νi,t,k : (i, t) ∈ A, k ∈ Ci,t} such
that (3.29) holds for all k ∈ [n]. So the following equations hold at (x, λ):

(3.32)

∑

k∈Ii

∑

t∈Pk(i)

νi,t,kek −
∑

k∈Ii

∑

t∈P′

k(i)

νt,i,kek

=
∑

k∈Ii





∂fi
∂xk

(x)−
mi
∑

j=1

λ
(i)
j

∂g
(i)
j

∂xk
(x) −

ℓi
∑

j=1

λ
(i)
mi+j

∂h
(i)
j

∂xk
(x)



 ek, ∀i ∈ [s].

Note that for any k /∈ Ii, we have

∂fi
∂xk

(x) ≡
∂g

(i)
1

∂xk
(x) ≡ · · · ≡

∂g
(i)
mi

∂xk
(x) ≡

∂h
(i)
1

∂xk
(x) ≡ · · · ≡

∂h
(i)
ℓi

∂xk
(x) ≡ 0.

Therefore, (3.32) yields that for each i ∈ [s],

(3.33)

∑

k∈Ii





∑

t∈Pk(i)

νi,t,k −
∑

t∈P′

k(i)

νt,i,k



 ek

=
∑

k∈[n]





∂fi
∂xk

(x)−
mi
∑

j=1

λ
(i)
j

∂g
(i)
j

∂xk
(x)−

ℓi
∑

j=1

λ
(i)
mi+j

∂h
(i)
j

∂xk
(x)



 ek

= ∇fi(x)−
mi
∑

j=1

λ
(i)
j ∇g

(i)
j (x) −

ℓi
∑

j=1

λ
(i)
mi+j∇h

(i)
j (x).

In light of (3.20)–(3.21), for each fixed i ∈ [s], we have

{(t, k) : k ∈ Ii, t ∈ Pk(i)} = {(t, k) : t ∈ Ai, k ∈ Ci,t}.

We then obtain

∑

k∈Ii





∑

t∈Pk(i)

νi,t,k −
∑

t∈P′

k(i)

νt,i,k



 ek

=
∑

t∈Ai

∑

k∈Ci,t

νi,t,kek −
∑

t∈Di

∑

k∈Ct,i

νt,i,kek

= − ν̂(i).

Therefore, (3.28) holds, and the first equation in (3.27) is satisfied.

16

Remark 3.8. In Algorithm 3.1, even if we replace line 4 by

(3.34) Find an arbitrary t ≤ i such that Ii+1

⋂

i
⋃

j=1

Ij ⊆ It,

the resulting tree is still a clique tree, and the induced subtree property still holds for
G(V,A). Hence, Proposition 3.7, as well as all the results that will follow, still hold if
line 4 of Algorithm 3.1 is replaced with (3.34). This is because the only key property
of G(V,A) needed in the proof of Proposition 3.7 is the induced subtree property (see
[1, Theorem 3.2]) satisfied by the clique tree. However, using an arbitrary t as in
(3.34) may create a large number of children for some nodes (see Example 3.9 below),
which will increase the number of variables in ν(i) (hence the size of blocks and the
computational cost). In other words, one would prefer a tree with a large depth and
small breadth. That is why we propose choosing the largest t in Algorithm 3.1.

Example 3.9. Consider the csp pattern (3.26) again. If we use (3.34) to replace
line 4 in Algorithm 3.1, then another possible directed clique tree and auxiliary vari-
ables is shown in Figure 2. For this clique tree, we have |J1| = 8, |J2| = |J3| = |J4| =
|J5| = 2.

I2 I1 I3

I4 I5

ν2,1,1 ν3,1,1

ν4,1,1
ν5,1,1

ν5,1,2

ν2,1,2 ν3,1,2

ν4,1,2

Fig. 2. Another possible clique tree and auxiliary variables for the csp pattern (3.26).

Under Assumption 1, (3.27) implies that the ith group of Lagrange multipliers
can be expressed by a tuple of polynomials which only depends on variables indexed
by Ii and Ji, say, x(i) and ν(i) (by abuse of notation, here ν(i) means the tuple of all
variables involved in the vector ν(i)). We let

(3.35) z(i) := (x(i), ν(i)), F (i)(z(i)) := ∇ifi(x
(i)) + ν(i).

Theorem 3.10. Under Assumption 1, a vector x ∈ Rn is a KKT point of (1.2)
if and only if the following system (3.36) holds for each i ∈ [s]:
(3.36)

{

F (i)(z(i)) =
∑mi

j=1 p
(i)
j

(

z(i)
)

∇ig
(i)
j (x(i)) +

∑ℓi
j=1 p

(i)
mi+j

(

z(i)
)

∇ih
(i)
j (x(i)),

0 ≤ p
(i)
1:mi

(z(i)) ⊥ g(i)(x(i)) ≥ 0, h(i)(x(i)) ≥ 0,

where

(3.37) p(i)(z(i)) := L(i)(x(i)) · F (i)(z(i)),

and z(i) and F (i) are defined in (3.35).

Proof. Recall the matrix of polynomials G(i)(x(i)) defined in (3.1). The sys-
tem (3.27) is equivalent to

{

G(i)(x(i))λ(i) =
[

F (i)(z(i))⊤ 0 · · · 0
]⊤
,

λ
(i)
1 , . . . , λ

(i)
mi ≥ 0, g

(i)
1 , . . . , g

(i)
mi ≥ 0, h

(i)
1 , . . . , h

(i)
ℓi
≥ 0,

(3.38)

17

By Assumption 1, the first equation in (3.38) holds if and only if

λ(i) = L(i)(x(i)) · F (i)(z(i)).

Thus, it remains to replace λ(i) with p(i)(z(i)) in (3.27) and apply Proposition 3.7.

Remark 3.11. For the polynomial optimization problem (1.2) with general csp
(I1, . . . , Is), we call the vector of polynomials p(i)(z(i)) defined in (3.37) the CS-LMEs
of λ(i). By Proposition 3.7 and Theorem 3.10, CS-LMEs exist when Assumption 1 is
satisfied.

3.4. A CS-LME reformulation. In the rest of this paper, we give a CS-LME
reformulation for the polynomial optimization problem (1.2) under Assumption 1. For
each i ∈ [s], denote

φ(i)(z(i)) :=













F (i)(z(i))−
mi
∑

j=1

p
(i)
j (z(i))∇ig

(i)
j (x(i))−

ℓi
∑

j=1

p
(i)
mi+j(z

(i))∇ih
(i)
j (x(i))

h(i)(x(i))

p
(i)
1:m(z(i)) ◦ g(i)(x(i))













,

and

ψ(i)(z(i)) :=

[

p
(i)
1:m(z(i))

g(i)(x(i))

]

.

Here, the polynomial p
(i)
j ∈ R[z(i)] is the jth entry of the CS-LME p(i) defined

in (3.37). Based on Theorem 3.10, we propose the following CS-LME typed refor-
mulation of (1.2):

(3.39)











fc := min
z(1),...,z(s)

f1(x
(1)) + · · ·+ fs(x

(s))

s.t. ψ(i)(z(i)) ≥ 0, i ∈ [s]
φ(i)(z(i)) = 0, i ∈ [s]

The previous reformulation (3.17) for the case s = 2 is a special case of (3.39). If we
let

(3.40) Îi := Ii
⋃

Ji,

then (3.39) has the csp (Î1, . . . , Îs). Suppose the global minimum fmin of (1.2) is
attained at some KKT point, then at least one minimizer of (1.2) is feasible for
(3.39), thus fmin ≥ fc. Since the feasible set of (3.39) is contained in the feasible set
of (1.2), we have fmin ≤ fc. So, we conclude the following from the statement above.

Theorem 3.12. If the minimum fmin of (1.2) is attained at a KKT point, then
the minimal value (1.2) and (3.39) are identical, i.e., fmin = fc.

Remark 3.13. Suppose the minimum value fmin is attainable. If the nonsingu-
larity condition holds for (1.2), then fmin is attained at KKT points, since the non-
singlarity implies the linear independence constraint qualification conditions (LICQ)
hold on Cn. However, this is not necessarily true if we replace the nonsingularity
condition of (g, h) by that of every (g(i), h(i)), i.e., Assumption 1, since Assumption 1
does not guarantee the LICQ to hold at every feasible point. For such cases, fc may
or may not equal fmin. Nevertheless, it does not mean the KKT conditions must fail
at minimizers of (1.2) if the nonsingularity condition does not hold. Indeed, it may
happen that the constraining tuple is singular, but the LICQ condition holds at a
minimizer, thus fc = fmin; see Example 5.1(ii), Example 5.5 and Example 5.7.

18

4. Correlatively sparse LME based SOS relaxation. This section studies
the correlatively sparse SOS relaxations for solving the CS-LME reformulation (3.39).

4.1. RIP of the CS-LME reformulation. First, we establish the RIP for
(3.39). Recall that for each i ∈ [s], the set of indices of variables Îi is given in (3.40).

Lemma 4.1. The csp (Î1, . . . , Îs) satisfies the RIP in Definition 2.2.

Proof. Note that

Ji+1

⋂

i
⋃

j=1

Jj

=
(

{(i+ 1, t, k) : t ∈ Ai+1, k ∈ Ci+1,t}
⋃

{(t, i + 1, k) : t ∈ Di+1, k ∈ Ct,i+1}
)

⋂

i
⋃

j=1

(

{(j, t, k) : t ∈ Aj , k ∈ Cj,t}
⋃

{(t, j, k) : t ∈ Dj , k ∈ Ct,j}
)

.

Since t ∈ Di+1 implies t > i+ 1, and t ∈ Aj implies t < j, we have

Ji+1

⋂

i
⋃

j=1

Jj = {(i+ 1, t, k) : t ∈ Ai+1, k ∈ Ci+1,t}
⋂

i
⋃

j=1

(

{(j, t, k) : t ∈ Aj , k ∈ Cj,t}
⋃

{(t, j, k) : t ∈ Dj , k ∈ Ct,j}
)

⊆ {(i+ 1, t, k) : t ∈ Ai+1, k ∈ Ci+1,t}.

Let Ai+1 = {t} for some t ∈ [s]. Then i+ 1 ∈ Dt and so

Jt = {(t, i, k) : i ∈ At, k ∈ Ct,i} ∪ {(i, t, k) : i ∈ Dt, k ∈ Ci,t}

⊇ {(i + 1, t, k) : k ∈ Ci+1,t} .

Note that Ii is the set of indices of variables x(i) and Ji is the set of indices of the
auxiliary variables ν(i). Hence Ii ∩ Jj = ∅ for each pair of i, j ∈ [s]. In particular,

Îi+1

⋂

i
⋃

j=1

Îj

=
{

Ii+1

⋃

Ji+1

}

⋂







i
⋃

j=1

(

Ij
⋃

Jj
)







=







Ii+1

⋂







i
⋃

j=1

(

Ij
⋃

Jj
)













⋃







Ji+1

⋂







i
⋃

j=1

(

Ij
⋃

Jj
)













=







Ii+1

⋂

i
⋃

j=1

Ij







⋃







Ji+1

⋂

i
⋃

j=1

Jj







.

Therefore, we have

Îi+1

⋂

i
⋃

j=1

Îj =







Ii+1

⋂

i
⋃

j=1

Ij







⋃







Ji+1

⋂

i
⋃

j=1

Jj







⊆ It ∪ Jt = Ît.

19

4.2. Convergence of the CS-LME based SOS relaxation. For the polyno-
mial optimization problem (3.39) with the csp (Î1, . . . , Îs), the dth order correlatively
sparse SOS relaxation is

(4.1)











ϑd := max γ

s.t.

s
∑

i=1

fi − γ ∈
s

∑

i=1

IQÎi

(

φ(i), ψ(i)
)

2d
.

Note that for each i ∈ [s], h(i) is contained in φ(i), g(i) is contained in ψ(i), and
Ii ⊆ Îi. It follows that

s
∑

i=1

IQÎi

(

h(i), g(i)
)

2d
⊆

s
∑

i=1

IQÎi

(

φ(i), ψ(i)
)

2d
.

Therefore, (4.1) is a tighter relaxation than (2.8). In particular, we have

ϑd ≥ ρd, ∀d ≥ d0.(4.2)

Theorem 4.2. Assume the following
1. at least one minimizer of (1.2) is a KKT point, and
2. for each i ∈ [s], IQIi

(

h(i), g(i)
)

is archimedean.
Then

(4.3) lim
d→+∞

ϑd = fmin.

Proof. By the definition of CS-SOS relaxation, we have

ϑd ≤ fc, ∀d ∈ N.

The first condition, together with Theorem 3.10, implies that fc = fmin. Then we
have ϑd ≤ fmin, and the convergence follows directly by (2.10) and (4.2).

Remark 4.3. In Theorem 4.2, if we substitute the condition that IQIi

(

h(i), g(i)
)

is archimedean by the archimedeanness of IQÎi

(

φ(i), ψ(i)
)

, then the conclusion still

holds. However, IQÎi

(

φ(i), ψ(i)
)

is not archimedean in general, even if IQIi

(

h(i), g(i)
)

is archimedean. To see this, consider the CS-LME reformulation (3.14) for the op-
timization problem in Example 2.5. In (3.14), tuples h(1), g(1), h(2), g(2) are given
by (3.5), and it is clear that both IQI1

(

h(1), g(1)
)

and IQI2

(

h(2), g(2)
)

are archi-

medean. Moreover, (φ(1), ψ(1)) corresponds to the first two constraints in (3.14), and
(φ(2), ψ(2)) is given by the last two constraints in (3.14). For any fixed ν ∈ R, consider
the following polynomial optimization problem in variables (x1, x2):

(4.4)

{

min f1(x1, x2) + νx2
s.t. 1− x21 − x

2
2 ≥ 0.

Then one may check that (x1, x2, ν) ∈
{

z(1) ∈ R3 : φ(1)(z(1)) = 0, ψ(1)(z(1)) ≥ 0
}

if
and only if (x1, x2) is a KKT point for (4.4). Since (4.4) has a compact feasible set,
and the constraint qualification condition holds at all feasible points, (4.4) has a
KKT point for any ν ∈ R. This implies that the semialgebraic set

{

z(1) ∈ R
3 : φ(1)(z(1)) = 0, ψ(1)(z(1)) ≥ 0

}

20

is unbounded, and thus IQÎ1

(

φ(1), ψ(1)
)

is not archimedean. Similarly, one can also

show that IQÎ2

(

φ(2), ψ(2)
)

is not archimedean neither.

Remark 4.4. The archimedean condition of IQIi

(

h(i), g(i)
)

for each i ∈ [s] is also
required in Theorem 2.3 to ensure the convergence of the CS-SOS relaxation. We
wish to point out that this archimedean condition is not required for obtaining the
CS-LMEs (3.37) and the CS-LME reformulation (3.39). There may exist polynomial
optimization problems with compact feasible sets, for which, however, IQIi

(

h(i), g(i)
)

is not archimedean for some i ∈ [s] (e.g., Example 2.5 and Example 5.3). For such
cases, one may add redundant constraints to g(i) to obtain the archimedeanness. Such
a redundant constraint can either be a replication of existing constraints, or be the
ball constraint asM−‖x(i)‖2 ≥ 0 if an a priori boundM is known.3 However, adding
redundant constraints is inconvenient and usually unnecessary in practice. Indeed,
even if the archimedean conditions fail to hold (or, further, if the feasible set of (1.2)
is unbounded), we can still formulate and solve the CS-LME reformulations with CS-
SOS relaxations. In practical computation, finite convergence is observed numerically
with a low relaxation order for solving CS-LME reformulations, regardless of whether
the archimedean condition for IQIi

(

h(i), g(i)
)

holds or not. We refer to Section 5 for
examples where the archimedean condition is not satisfied, while our approach can
still find global minimum successfully.

4.3. Comparison of the SDP problem scale. In this section, we compare
the scale of the corresponding SDP problems in different relaxation approaches. We
assume that the functions f1 ∈ R[x(1)], . . . , fs ∈ R[xs] are all dense polynomials
and both LMEs and CS-LMEs exist for (1.2). For the convenience of reference, we
nominate the four approaches for solving (1.2) as follows:
(SOS): Applying the dense SOS relaxation to (1.2);
(CS-SOS): Applying the CS-SOS relaxation to (1.2);
(LME): Applying the CS-SOS relaxation to the LME reformulation (2.16);
(CS-LME): Applying the CS-SOS relaxation to the CS-LME reformula-

tion (3.39).
We first consider the two-block cases. Denote by k := |C1,2| the number of

overlapping elements in I1 and I2. Then |I1 ∪ I2| = n1 + n2 − k is the total number
of variables. The CS-LME reformulation (3.17) has the csp (Î1, Î2) such that |Î1| =
n1 + k and |Î2| = n2 + k. In Table 1, we compare the maximal size of the positive
semidefinite (PSD) matrices appearing in the SDP formulation of the four relaxation
methods. In Table 2, we display the values of the binomial numbers in Table 1 for
some examples of n1, n2, k, d.

From Table 1 and Table 2, we conclude that for the same order of relaxation,
the smallest scale SDP problem is given by CS-SOS. On the other hand, CS-SOS
may need higher relaxation order d to converge than the other three methods. When
s = 2, the complexity growth of the LME approach is the same as that of the SOS
approach. Thus, despite its potentially faster convergence speed, the LME approach

3It is important to note that there are two ways to replicate existing constraints. For the con-
straint gj ∈ R[x(i)] that is not assigned to g(i), we may add its replication to g(i) and obtain a new

constraining tuple ĝ(i), then consider the KKT system and construct CS-LMEs for ĝ(i), as long as
the new constraining tuple ĝ(i) is also nonsingular. On the other hand, one may add gj to ψ(i) in
the CS-LME reformulation. These two ways produce different CS-LME reformulations with identical
optimal values, since the former may get different CS-LMEs from the original problem. However, if
we add a redundant ball constraint M −‖x(i)‖2 ≥ 0 which can never be active (e.g., let M := ni · M̂

with M̂ > ‖x(i)‖∞, thus its Lagrange multiplier must be 0), then these two ways are equivalent.

21

Table 1

The maximal PSD matrix size in the dth order relaxation of the four methods when s = 2.

Relaxation approach Maximal PSD matrix size in dth order relaxation

SOS
(

n1+n2−k+d
d

)

×
(

n1+n2−k+d
d

)

CS-SOS
(

max{n1,n2}+d
d

)

×
(

max{n1,n2}+d
d

)

LME
(

n1+n2−k+d
d

)

×
(

n1+n2−k+d
d

)

CS-LME
(

max{n1,n2}+k+d
d

)

×
(

max{n1,n2}+k+d
d

)

Table 2

For each n1, n2, k, and d, we display sequentially the four binomial values appearing in Table 1:
(

n1+n2−k+d

d

)

for SOS,
(max{n1,n2}+d

d

)

for CS-SOS,
(

n1+n2−k+d

d

)

for LME, and
(max{n1,n2}+k+d

d

)

for CS-LME.

(n1, n2, k) d = 2 d = 3 d = 4
(4, 3, 1) (28, 15, 28, 21) (84, 35, 84, 56) (210, 70, 210, 126)

(5, 5, 2) (45, 21, 45, 36) (165, 56, 165, 120) (495, 126, 495, 330)

(10, 10, 2) (190, 66, 190, 91) (1330, 286, 1330, 455) (7315, 1001, 7315, 1820)

(15, 15, 3) (406, 136, 406, 190) (4060, 816, 4060, 1330) (31465, 3876, 31465, 7315)

(20, 20, 5) (666, 231, 666, 351) (8436, 1771, 8436, 3276) (82251, 10626, 82251, 23751)

suffers from the same rapid complexity growth just as the dense SOS approach. In
contrast, our CS-LME approach leads to SDP problems of a scale comparable with
that of CS-SOS, and thus enjoys a less aggressive complexity growth. Meanwhile, it is
expected to converge faster than CS-SOS as it incorporates the first-order optimality
condition in the relaxation just as the LME approach, as shown in Section 5.

In the above, we compared the maximal PSD matrix size in the SDP problems
arising from different relaxation approaches when s = 2. To examine the number and
size of all the PSD matrices in the SDP problems, one needs, in addition, the structure
information of the functions (f, g, h). The next example compares the SDP problem
scale in detail for a box-constrained problem with a quadratic objective function.

Example 4.5. Let N and k be positive integers and

I1 = {1, . . . , N} , I2 = {N + 1− k, . . . , 2N − k} .

Note that this is a special two-block case with n1 = n2 = N . Consider problem (1.2)
with this csp (I1, I2) and box constraints

(4.5)
g(1) = (x1, 1− x1, . . . , xN−k, 1− xN−k),

g(2) = (xN+1−k, 1− xN+1−k, . . . , x2N−k, 1− x2N−k).

The LMEs and CS-LMEs can be similarly given as in (2.19) and (3.18), respectively,
and we omit explicit expressions of them for the cleanness of this paper. Let f1 and
f2 be quadratic functions. We present in Table 3 the number and size of all the PSD
matrices in the four different approaches. Table 4 is an instantiation of the numbers
in Table 3 for the special case when N = 10 and k = 2.

Now we consider general multiblock cases. If there exists a common variable in
all the blocks, i.e., if there is some j ∈ [n] such that j ∈ Ii for all i ∈ [s] (e.g., s = 2
or Example 5.2), then the LME reformulation does not have correlative sparsity. In
this case, the SDP problem scale of the LME approach grows similarly to that of the

22

Table 3

Size and number of PSD matrices in the dth order relaxation of the four methods for the box
constrained problem (4.5) with quadratic objective functions.

Relaxation Size and number of PSD matrices size
approach in the dth order relaxation

SOS
one PSD matrix of size

(

2N−k+d
d

)

×
(

2N−k+d
d

)

,

4N − 2k PSD matrices of size
(

2N−k+d−1
d−1

)

×
(

2N−k+d−1
d−1

)

.

CS-SOS
two PSD matrices of size

(

N+d
d

)

×
(

N+d
d

)

,

4N − 2k PSD matrices of size
(

N+d−1
d−1

)

×
(

N+d−1
d−1

)

.

LME
one PSD matrix of size

(

2N−k+d
d

)

×
(

2N−k+d
d

)

,

8N − 4k PSD matrices of size
(

2N−k+d−1
d−1

)

×
(

2N−k+d
d

)

.

CS-LME
two PSD matrices of size

(

N+k+d
d

)

×
(

N+k+d
d

)

,

8N − 4k PSD matrices of size
(

N+k+d−1
d−1

)

×
(

N+k+d−1
d−1

)

.

Table 4

Instantiation of Table 3 when N = 10 and k = 2. For example, the bottom-right block reads as
follows: the 4th order relaxation of the CS-LME approach corresponds to an SDP problem with two
1820-by-1820 PSD matrices and seventy-two 455-by-455 PSD matrices.

Relaxation
d = 2 d = 3 d = 4

approach
SOS (1, 190), (36, 19) (1, 1330), (36, 190) (1, 7315), (36, 1330)

CS-SOS (2, 66), (36, 11) (2, 286), (36, 66) (2, 1001), (36, 286)
LME (1, 190), (72, 19) (1, 1330), (72, 190) (1, 7315), (72, 1330)

CS-LME (2, 91), (72, 13) (2, 455), (72, 91) (2, 1820), (72, 455)

dense SOS relaxations. However, in general, though the LME reformulation usually
breaks the csp of the original problem, it may have a weaker correlative sparsity. The
following example is such an exposition.

Example 4.6. Let N > k be two positive integers. Consider the following csp

(4.6) Ii = {(N − k)(i− 1) + 1, . . . , (N − k)(i − 1) +N} , ∀i = 1, . . . , s.

When N = 3 and k = 2, it corresponds to the csp of the Broyden tridiagonal func-
tion [11, Example 3.4]. The directed clique tree (V,A) associated to the sparsity
pattern (4.6) is given by

A = {(i, i− 1) : i = 2, . . . , s}.

For each arc (i, i− 1) ∈ A, the set of joint indices is

Ci,i−1 = Ii ∩ Ii−1 = {(N − k)(i − 1) + 1, . . . , (N − k)(i− 2) +N}.

Note that |Ii| = N and |Ci,i−1| = k for each i ∈ [s]. The auxiliary variables are

(4.7)
s
⋃

i=2

k
⋃

j=1

{

νi,i−1,(N−k)(i−1)+j

}

.

For the sparsity pattern (4.6), the maximal clique size in the csp graph of the
CS-LME reformulation (3.39) is

N + 2k.

23

Table 5

The maximal PSD matrix size in dth order relaxation of the four methods when the csp is given
by (4.6).

Relaxation
Maximal PSD matrix size in dth order relaxation

approach

SOS
(

(N−k)(s−1)+N+d
d

)

×
(

(N−k)(s−1)+N+d
d

)

CS-SOS
(

N+d
d

)

×
(

N+d
d

)

LME
((N−k)⌊N−1

N−k⌋+N+d

d

)

×
((N−k)⌊N−1

N−k⌋+N+d

d

)

CS-LME
(

2k+N+d
d

)

×
(

2k+N+d
d

)

In contrast, the maximal clique size in the original LME reformulation (2.16) is

(N − k)

⌊

N − 1

N − k

⌋

+N.

We give in Table 5 the maximal PSD matrix size of the four methods for solving (1.2)
with csp given by (4.6). Table 5 shows that the SDP problem scale of CS-LME is
significantly smaller than SOS and LME when N ≫ k. Recall that N is the size of the
blocks while k is the number of overlapping variables between two successive blocks.
Thus N/k can be seen as a measure of the partial separability of the problem. We
speculate that the larger N/k is, the more efficient the CS-LME approach is compared
with the other three approaches4. See Example 5.6 for a numerical evidence with
N = 15, k = 2, and s = 10.

Remark 4.7. To end this section, we would like to point out that for small-scale
problems, the LME approach has outstanding performance, especially when the SOS
approach cannot find the global minimum with a low relaxation order; see [23]. For
small-scale problems with csp, the LME approach may still be faster than the CS-
LME approach because the latter needs to add auxiliary variables to maintain the
csp. See Example 5.1 for a numerical example of a small-scale problem.

In general, we expect CS-LME to perform better than the other three approaches
when the cliques in the csp graph of the CS-LME reformulation are not much larger
than that of the LME reformulation. Since |Îi| = |Ii|+ |Ji|, this occurs when

1. the number of overlapping variables between any two blocks Ii and Ij is
small;

2. each node in the directed clique tree G(V,A) returned by Algorithm 3.1 has
a small number of children.

These two conditions ensure that only a small number of auxiliary variables |Ji| must
be added to each block.

5. Numerical experiments. In this section, we present numerical experiments
that apply CS-LMEs to solve polynomial optimization problems with a given csp.
We directly call the software TSSOS 5 [36, 37] to solve the CS-TSSOS relaxation of
the CS-LME reformulation (3.39). Note that CS-TSSOS relaxation exploits both
correlative and term sparsity in the polynomial optimization problem. As recalled in
Section 2.3, the convergence of CS-TSSOS is guaranteed when the CS-SOS relaxation
is convergent (with option TS="block"). The software Mosek is applied to solve the

4The overall performance depends on both the SDP problem scale and the convergence rate with
respect to the relaxation order d.

5https://github.com/wangjie212/TSSOS

24

https://github.com/wangjie212/TSSOS

SDPs with default settings. The computation was implemented on a Lenovo x1 Yoga
laptop, with an Intel Core i7-1185G7 CPU at 3.00GHz×4 cores and 16GB of RAM,
on the Windows 11 operating system.

For all polynomial optimization problems in this section, we compare the per-
formance of several approaches. First, we solve the problem directly by CS-TSSOS

with options TS="block" and TS="MD", respectively (see [36] for more details). Then,
we solve the LME reformulation (2.16) introduced in [23] when it exists. Note that
when original LMEs are applied, correlative sparsity for the reformulation is usually
corrupted. Last, we solve the CS-LME reformulation (3.39). For both LME refor-
mulation (2.16) and CS-LME reformulation (3.39), the CS-TSSOS is called with the
option TS="MD". Besides that, we use MATLAB software Gloptipoly 3 [7] to im-
plement dense relaxations with Mosek being applied to solve the SDPs. We say a
relaxation “fail to solve” when we cannot get a sensible optimal value for it. This is
the case when we suspect SDP is unbounded as Mosek reaches a negative objective
value with a huge absolute value (< −106).

Example 5.1. (i) Consider the polynomial optimization problem (2.17) in Exam-
ple 2.5. As mentioned in Example 2.5, its global minimum equals 0. The CS-LMEs
for this problem are given by (3.18), and the CS-LME reformulation is (3.19). One
may check that the archimedean condition is not satisfied by IQI1

(h(1), g(1)). Besides
that, the LME is given by (2.19). Numerical results for solving this problem are pre-
sented in Table 6. In the table, “d” means the relaxation order, “l” represents the
term sparsity level. The columns “no LME+block” and “no LME+MD” are numerical
results of applying CS-TSSOS directly to the polynomial optimization problem with
TS="block" and TS="MD" respectively, the column “LME” corresponds to solving the
LME reformulation, and the column “CS-LME” represents the relaxation results of
the CS-LME reformulation. The “error” is the absolute value of the difference of
optimal value for this polynomial optimization problem and the approximation com-
puted by the semidefinite relaxation, and “time” is the time consumption in seconds
for computing this approximation. When a superscript ∗ is marked, it means this
lower bound was computed with the highest level of term sparsity within the current
relaxation order.

From the table, one can see that when there were no LMEs exploited, CS-TSSOS
could not get an approximation for the global minimum of this problem with high
accuracy (say, the error is less than 10−6). Particularly, when d = 3, the computed
optimal values for both “no LME+block” and “no LME+MD” are less than −1013,
and we marked “fail to solve” in the table. Besides that, when d = 3, Gloptipoly 3

failed to solve the problem (unboundedness suspected), and obtained an approximated
value with error equaling 3 · 10−9 in 0.50 second when d = 4. In contrast, the LME
approach took around 0.23 second to get the approximated global minimum, and the
CS-LME approach obtained the approximated minimum in 0.53 second.

(ii) For the polynomial optimization problem in Example 3.3, if we keep the
objective function and the csp, but change the constraints to

g(1)(x(1)) =
(

1− x(1)
T
x(1), x

(1)
1 , x

(1)
2

)

, g(2)(x(2)) =
(

1− x(2)
T
x(2), x

(2)
1 , x

(2)
2

)

,

then the CS-LME becomes

λ
(1)
1 = −

1

2
x(1)

⊤
F (1), λ

(1)
2 = F

(1)
1 + 2x

(1)
1 λ

(1)
1 , λ

(1)
3 = F

(1)
2 + 2x

(1)
2 λ

(1)
1 ,

λ
(2)
1 = −

1

2
x(2)

⊤
F (2), λ

(2)
2 = F

(2)
1 + 2x

(2)
1 λ

(2)
1 , λ

(2)
3 = F

(2)
2 + 2x

(2)
2 λ

(2)
1 .25

However, one may check this problem does not have LMEs.

Table 6

Numerical results for Example 5.1(i)

d l
no LME+block no LME+MD LME CS-LME

error time error time error time error time

3 1 fail to solve fail to solve not defined not defined

3 2 ∗fail to solve fail to solve

3 3 fail to solve

3 4 ∗fail to solve

4 1 0.0134 0.06s 0.0437 0.03s 2 · 10−8 0.23s 0.0014 0.36s

4 2 ∗0.0134 0.07s 0.0437 0.03s 1 · 10
−7

0.53s

4 3 0.0140 0.13s

...
...

...
...

...
...

10 1 0.0038 25.76s 0.0337 8.26s

10 2 0.0038 74.82s 0.0152 11.18s

With the new constraints, one can similarly check that the global minimum is still
0. Numerical results for solving this problem are presented in Table 7, where symbols
and notation are similarly defined as in Table 6. From the table, one can see that
without CS-LMEs, CS-TSSOS cannot find the global minimum with satisfying error
in 61 seconds for the option TS="block", and in 78 seconds for the option TS="MD".
Besides that, Gloptipoly got the lower bound −2 ·10−5 in 0.30 second for d = 3, and
got −5 · 10−9 in 0.52 second for d = 4. For the CS-LME approach, we obtained an
approximation −9 · 10−7 for the global minimum in 1.69 seconds.

Table 7

Numerical results for Example 5.1(ii)

d l
no LME+block no LME+MD CS-LME

error time error time error time

3 1 0.0146 0.02s 0.0531 0.01s not defined

3 2 ∗0.0140 0.02s 0.0480 0.01s

4 1 0.0074 0.04s 0.0495 0.04s 0.0018 0.41s

4 2 ∗0.0070 0.06s 0.0450 0.04s 0.0016 0.42s

5 1 0.0045 0.15s 0.0492 0.14s 2 · 10−5 0.98s

5 2 ∗0.0044 0.28s 0.0448 0.16s 9 · 10
−7

1.69s

10 1 0.0049 6.45s 0.0437 13.82s

10 2 ∗0.0034 61.41s 0.0245 12.99s

10 3 0.0035 59.52s

...
...

...
...

10 8 ∗0.0034 78.16s

For all remaining examples in this section, symbols and notation in tables are
similarly defined as in Table 6, and we shall not repeat explaining them, for the
neatness of this paper.

Example 5.2. Consider the csp given in Example 3.6. For each i = 1, . . . , 5, we
let fi(x

(i)) be the Choi-Lam’s form

fi(x
(i)) = (x

(i)
1 x

(i)
2)2 + (x

(i)
1 x

(i)
3)2 + (x

(i)
2 x

(i)
3)2 + x

(i)
4

4
− 4x

(i)
1 x

(i)
2 x

(i)
3 x

(i)
4 ,

26

and let
g(i) = (1− x(i)

⊤
x(i)), h(i) = ∅.

Again, by the inequality of arithmetic and geometric means, all fi are nonnegative,

and fi(x
(i)) = 0 when x

(i)
1 = · · · = x

(i)
4 . Thus we know the optimal value for mini-

mizing f1(x
(1)) + · · ·+ f5(x

(5)) over the set given by g(i)(x(i)) ≥ 0 for all i = 1, . . . , 5
is 0. For this problem, the CS-LMEs can be given as

λ(i) = −
x(i)

⊤
F (i)

2
.

However, there do not exist LMEs, which can be similarly shown as in Example 3.1.
Numerical results of solving this problem using CS-TSSOS directly, the LME ap-
proach, and the CS-LME approach are presented in Table 8.

From the table, one can see that without CS-LMEs, CS-TSSOS cannot find the
global minimum with the option TS="MD" (interestingly, it returned the same lower
bound −0.1709 for all d = 2, . . . , 15), and cannot get an approximation for the global
minimum with an error less than 0.0001 in 6807 seconds with TS="block". Moreover,
Gloptipoly 3 obtained the lower bound −0.1709 when d = 2 using 0.99 second, and
obtained the lower bound −0.0135 in 346.42 seconds when d = 3. In contrast, the
CS-LME approach took 11.35 seconds to obtain an approximated minimum with an
error equal to 6 · 10−6, and took 107.62 seconds to obtain an approximated minimum
with an error equal to 3 · 10−8.

Table 8

Numerical results for Example 5.2

d l
no LME+block no LME+MD CS-LME

error time error time error time

2 1 ∗0.0531 0.01s ∗0.1709 0.01s not defined

3 1 ∗0.0480 0.01s ∗0.1709 0.02s 0.0080 5.82s

4 1 ∗0.0495 0.04s ∗0.1709 0.05s 1 · 10−5 6.55s

4 2 6 · 10−6 11.35s

5 1 ∗0.0450 0.04s ∗0.1709 0.16s 3 · 10
−8

107.62s

...
...

...
...

...
...

15 1 ∗0.0001 6807.45s ∗0.1709 554.09s

Example 5.3. Consider the box-constrained problem in Example 4.5. Let n1 =
n2 = 10, k = 2, and let (i = 1, 2)

fi(x
(i)) =

(

∑10

j=1
x
(i)
j + 1

)2

− 4

(

∑9

j=1
x
(i)
j x

(i)
j+1 + x

(i)
1 + x

(i)
10

)

.

The LMEs and CS-LMEs can be similarly given by (2.19) and (3.18), respectively.
One may check that the archimedean condition is not satisfied by IQI1

(h(1), g(1)).
Furthermore, for d = 2, . . . , 3, the structure of SDPs obtained by the dense relaxation,
CS-SOS relaxations, the LME approach, and the CS-LME approach are given in
Table 4.

The minimum for this problem is achieved at the KKT point (1, 0, . . . , 0, 1), which
equals 0 (see also [23]). This can also be numerically certified by Gloptipoly 3 via
the flat truncation [18]. Indeed, Gloptipoly 3 got an approximation to the global

27

minimum −3 · 10−8 in 26.25 seconds. Numerical results of solving this problem using
CS-TSSOS directly, the LME approach and the CS-LME approach are presented in
Table 9. From the table, one can see that without LMEs, CS-TSSOS could not find an
approximation for the global minimum with a desired accuracy when TS = “MD” within
11.51 seconds, and took 36.67 seconds to get the minimum when TS = “block”. The
LME approach took 15.79 seconds to get the approximation with the desired accuracy.
In contrast, the CS-LME approach only took 2.46 seconds to get an approximated
global minimum with the error equal to 4 · 10−7.

Table 9

Numerical results for Example 5.3

d l
no LME+block no LME+MD LME CS-LME

error time error time error time error time

2 1 ∗0.0067 1.08s 0.0739 0.10s ∗1 · 10−7 15.79s ∗
4 · 10

−7
2.46s

3 1 9 · 10−9 36.67s ∗0.0558 0.78s

4 1 ∗0.0105 11.51s

Example 5.4. Let s = 2 and

I1 = {1, 2, 3, 7}, I2 = {4, 5, 6, 7}.

Consider the polynomial optimization problem (1.2) with csp {I1, I2}, where

f1(x
(1)) = x41x

2
2 + x42x

2
3 + x43x

2
1 − 3(x1x2x3)

2 + x22 + x27(x
2
1 + x22 + x23),

f2(x
(2)) = x4x5(10− x6) + x27(x4 + 2x5 + 3x6);

g
(1)
1 (x(1)) = x1 − x2x3, g

(1)
2 (x(1)) = −x2 + x23,

g
(2)
1 (x(2)) = 1− x4 − x5 − x6, g

(2)
2 (x(2)) = x4, g

(2)
3 (x(2)) = x5, g

(2)
4 (x(2)) = x6.

Since x41x
2
2 +x42x

2
3 +x43x

2
1 ≥ 3(x1x2x3)

2 by the inequality of arithmetic and geometric
means, we have f1(x

(1)) ≥ 0 with the equality holds when x1 = x2 = x3 = x7 = 0.
On the other hand, f2 is nonnegative on the feasible set given by g(2)(x(2)) ≥ 0, and
f2(x

(2)) = 0 when x4x5 = 0 and x7 = 0. So, the global minimum for this problem is
0, which is attain at (0, 0, 0, t, 0, 0, 0) and (0, 0, 0, 0, t, 0, 0) for all t ∈ [0, 1]. Also, one
may check that this problem has an unbounded feasible set. For this problem, let

F (1) = ∇1f1 + ν2,1,7e4, F (2) = ∇2f2 + ν2,1,7e4,

then the CS-LMEs are

λ
(1)
1 = F

(1)
1 , λ

(1)
2 = [−x3,−1, 0, 0] · F

(1),

λ
(2)
1 = −x⊤4:6F

(2)
1:3 , λ

(2)
2 = F

(2)
1 + λ

(2)
1 , λ

(2)
3 = F

(2)
2 + λ

(2)
1 , λ

(2)
4 = F

(2)
3 + λ

(2)
1 .

The numerical results for solving this problem are presented in Table 10. From the
table, one can see that when there were no LMEs exploited, CS-TSSOS could not get an
approximation for the global minimum of this problem with an error less than 0.0001
within 271.95 seconds, while the original LME approach took around 84.13 seconds
to get the approximated value with an error equaling 2 · 10−7. Moreover, when d = 3
and 4, Gloptipoly 3 failed to solve the problem (unboundedness suspected), and it
took 2264 seconds to get the lower bound −120.82 when d = 5. In contrast, the
CS-LME approach obtained an approximated minimum whose error was 9 · 10−8 in
18.54 seconds.

28

Table 10

Numerical results for Example 5.4

d l
no LME+block no LME+MD LME CS-LME

error time error time error time error time

3 1 fail to solve fail to solve not defined not defined

3 2 ∗
> 108 0.18s fail to solve not defined not defined

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

3 5 ∗fail to solve not defined not defined

4 1 > 107 0.47s fail to solve 1519.49 4.95s 645.71 0.77s

4 2 ∗
> 105 0.59s > 106 0.45s 35.36 5.28s 23.62 0.94s

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

5 2 ∗265.61 2.60s > 105 1.44s 2 · 10−7 84.13s 0.0324 5.42s

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

6 1 18.19 6.28 102.78 5.59s 9 · 10
−8

18.54s

.

..
.
..

.

..
.
..

.

..
.
..

8 2 ∗0.0001 224.77s 0.0079 75.64s

...
...

...
...

8 5 ∗0.0002 322.68s

Example 5.5. Let s = 5 and

I1 = {1, 2, 3, 4, 17, 18, 19}, I2 = {5, 6, 7, 8, 18, 19, 20},
I3 = {9, 10, 18, 19, 20}, I4 = {11, 12, 17, 18}, I5 = {13, 14, 15, 16, 17}.

Consider the polynomial optimization problem (1.2) with csp (I1, I2, . . . , I5), where

f1(x
(1)) = (x1 − x17)

2 + (x2 − x18)
2 + (x3 − x19)

2 + x24x17,

f2(x
(2)) = x218 + x219 + x220 − x5(x6 + x7 + x8),

f3(x
(3)) = x9x10(20− x18 − x19 − x20),

f4(x
(4)) = (x11 − x17)

2 + (x12 + x18 − 1)2,

f5(x
(5)) = (x17 − x13 + x14)

2 + x15x16,

g(1)(x(1)) =
(

17 − x
(1), x

(1)
1:4 + 17

)

,

g(2)(x(2)) =

(

3− x
(2)
1 − 2

∑4

j=2
x
(2)
j −

∑7

j=5
x
(2)
j , x

(2)
1 , . . . , x

(2)
7

)

,

g(3)(x(3)) =

(

1−
∑5

j=1
x
(3)
j , x

(3)
1 , x

(3)
2

)

,

g(4)(x(4)) = 1− x(4)
⊤
x(4), g(5)(x(5)) = x(5).

It is clear that except f (2), all other f (i) are nonnegative over the set given by
(g(1), g(2), . . . , g(5)). For f (2), its minimum − 9

8 is attained at the KKT point x(2) =
(

3
4 , 0, 0,

3
2 , 0, 0, 0

)

. Indeed, one may check that the global minimum for this problem
is − 9

8 . For this problem, the set of edges is

A = {(2, 1), (3, 2), (4, 1), (5, 4)}.

29

The auxiliary variables are

ν2,1,18, ν2,1,19, ν3,2,18, ν3,2,19, ν3,2,20, ν4,1,17, ν4,1,18, ν5,4,17.

If we let F (i) be given as in (3.35), then CS-LMEs are

λ
(1)
1:4 = −

1

2
· F

(1)
1:4 ◦ (1+ x1:4), λ

(1)
5:7 = −F

(1)
5:7 , λ

(1)
8:11 = F

(1)
1:4 + λ

(1)
1:4;

λ
(2)
1 = − 1

3F
(2)⊤x(2), λ

(2)
2:4 = 2λ

(2)
1 + F

(2)
1:3 , λ

(2)
5:8 = 2λ

(2)
1 + F

(2)
4:7 ;

λ
(3)
1 = −F (3)⊤x(3), λ

(3)
2:3 = λ

(3)
1 + F

(3)
1:2 ; λ(4) = − 1

2F
(4)⊤x(4); λ(5) = F (5).

We would like to remark that the tuple (g(1), g(2), . . . , g(5)) is singular, so original
LMEs do not exist. The numerical results for solving this problem are presented
in Table 11. From the table, one can see that when there were no LMEs exploited,
CS-TSSOS could not get an approximation for the global minimum with an error less
than 0.001 in 7697.33 seconds. Moreover, Gloptipoly 3 suspected unboundedness
when d = 3, and the 4th order dense relaxation cannot be solved due to the memory
limit. In contrast, the CS-LME approach obtained an approximated minimum whose
error was 1 · 10−7 in 53.73 seconds.

Table 11

Numerical results for Example 5.5

d l
no LME+block no LME+MD CS-LME

error time error time error time

2 1 fail to solve ∗
> 106 0.28s 9.5731 1.32s

2 2 ∗
> 106 0.37 0.3085 1.50s

...
...

...
...

2 5 ∗0.1417 10.05s

3 1 1.6047 3.59s 1295.25 0.71s 4 · 10
−7

60.41s

3 2 ∗fail to solve 1276.92 0.76s

...
...

...
...

...
...

5 2 ∗0.0069 16663.91s 9.3531 252.95s

5 3 0.0862 7697.33s

For the following two examples, we do not run Gloptipoly 3 for solving them,
since the problem scales are too large for dense SOS relaxations.

Example 5.6. Consider the correlative sparsity pattern given in Example 4.6. Let
s = 10, N = 15, and k = 2. For each i ∈ [10], let

fi(x) =
(

x(i)
T
x(i)

)2

− 4
(

(x
(i)
1 x

(i)
2)2 + · · ·+ (x

(i)
4 x

(i)
5)2 + (x

(i)
5 x

(i)
1)2

)

+
(

x
(i)
1 + · · ·+ x

(i)
5 − (x

(i)
6:10)

⊤x
(i)
11:15

)2

.

Consider the unconstrained polynomial optimization problem

(5.1) min
x

f1(x
(1)) + · · ·+ f10(x

(10)).

For each i ∈ [10], the
(

x(i)
T
x(i)

)2

− 4
(

(x
(i)
1 x

(i)
2)2 + · · ·+ (x

(i)
4 x

(i)
5)2 + (x

(i)
5 x

(i)
1)2

)

is

the Horn’s form [33], which is a nonnegative homogeneous polynomial. Thus the

30

global minimum of (5.1) is 0. For unconstrained problems, the system

φ(i)(x(i), ν(i)) = 0, ψ(i)(x(i), ν(i)) ≥ 0, ∀i ∈ [10]

reduces to

F (1)(x(1), ν(1)) = F (2)(x(2), ν(2)) = · · · = F (10)(x(10), ν(10)) = 0,

where every F (i) is given in (3.35) with auxiliary variables given in (4.7). Thus, the
CS-LME typed reformulation (3.39) becomes

(5.2)
min f1(x

(1)) + · · ·+ f10(x
(10))

s.t. F (1)(x(1), ν(1)) = F (2)(x(2), ν(2)) = · · · = F (10)(x(10), ν(10)) = 0

Similarly, the original LME reformulation (3.39) for (5.7) becomes

(5.3)
min f1(x

(1)) + · · ·+ f10(x
(10))

s.t. ∇(f1 + f2 + · · ·+ f10)(x) = 0

The numerical results for solving this problem are presented in Table 12. From
the table, one can see that when there were no LMEs exploited, CS-TSSOS could
not get a sensible approximation for the global minimum of this problem within
487.31 seconds, while the original LME approach took around 270.40 seconds to get
an approximated global minimum. In contrast, the CS-LME approach obtained an
approximated minimum whose error was 7 · 10−10 in 20.48 seconds.

Table 12

Numerical results for Example 5.6

d l
no LME+block no LME+MD LME CS-LME

error time error time error time error time

2 1 ∗fail to solve ∗fail to solve fail to solve fail to solve

2 2 ∗fail to solve ∗fail to solve

3 1 ∗
> 108 78.43s ∗

> 108 7.26s 6 · 10−11 270.40s 7 · 10
−10

20.48s

4 1 ∗out of memory ∗
> 106 487.31s

5 1 ∗out of memory

Example 5.7. In this example, we present numerical results by varying the number
of blocks s. For each i ∈ [s], let Ii := {9i−8, 9i−7, . . . , 9i+1}. Consider the following
optimization problem

(5.4)

{

min
x

f1(x
(1)) + f2(x

(2)) + · · ·+ fs(x
(s))

s .t . x
(1)
1 ≥ 0, x

(i)
1 + x

(i)
2 + · · ·+ x

(i)
10 ≤ 1, x

(i)
2:10 ≥ 0, i ∈ [s]

In the above,

fi(x
(i)) =

∑3

j=1
x
(i)
2j x

(i)
2j+1 +

(

∑9

j=7
(x

(i)
j)3 − 3x

(i)
7 x

(i)
8 x

(i)
9

)

x
(i)
10 , i ∈ [s].

Since all variables are nonnegative, by the inequality of arithmetic and geometric
means, each fi(x

(i)) is nonnegative and reaches 0 at x(i) = 0, and it is clear that
(5.4) has the csp (I1, . . . , Is) and its minimum value equals 0. Moreover, because for
all s ≥ 2, the matrix G(x) given as in (2.12) does not have full column rank at e10.

31

So (5.4) does not have LMEs. For each i ∈ [s − 1], we have the auxiliary variable
νi+1,i,9i+1. Let F

(i) be given in (3.35), then CS-LMEs are

λ
(1)
1 = −F (1)⊤x(1), λ

(1)
2:11 = F (1) + λ

(1)
1 ;

λ
(i)
1 = −F (i)⊤x(i), λ

(i)
2:10 = F

(i)
2:10 + λ

(i)
1 , (i = 2, . . . , s).

The numerical results for solving this problem with s = 2, . . . , 7 are presented
in Table 13. In the table, “s” represents the quantity s in (5.4), and all other symbols
and notations are similarly defined as in Table 6 (see Example 5.1). When s = 2,
one can see that when there were no CS-LMEs exploited, CS-TSSOS could not get an
approximation for the global minimum of this problem with an error less than 0.01
in 11366.94 seconds. In contrast, the CS-LME approach obtained an approximated
minimum whose error was 5 · 10−9 in 1192.89 seconds. Moreover, when s = 3, . . . , 7,
we do not present numerical results with relaxation order d = 3 since we cannot get
lower bounds that are close to 0. Also, results of approaches without CS-LMEs are
not presented for s ≥ 3 and d = 4, because close lower bounds cannot be computed
by these approaches with reasonable time consumption.

Table 13

Numerical results for Example 5.7

s d l
no LME+block no LME+MD CS-LME

error time error time error time

2

3 1 0.0735 71.54s 5369.40 2.88s 3.6067 16.85s

3 2 ∗0.0230 196.25s 624.22 4.25s 0.0680 35.02s

3 3 0.0238 78.46s 0.0091 353.71s

3 4 ∗0.0230 216.41s 0.0071 834.23s

4 1 0.0205 11366.94s 23.77 682.21 5 · 10
−9

1192.89s

4 2 0.0104 71235.47 -

3 4 1 7 · 10
−8

1965.19s

4 4 1 2 · 10
−7

2432.45s

5 4 1 3 · 10
−7

2868.47s

6 4 1 3 · 10
−7

4136.36s

7 4 1 3 · 10
−7

4567.80s

6. Conclusions and discussions. We consider correlatively sparse polynomial
optimization problems. We introduce CS-LMEs to construct CS-LME reformations
for polynomial optimization problems. Under some general assumptions, we show that
correlative SOS relaxations can get tighter lower bounds when solving the CS-LME
reformulation instead of the original optimization problem. Moreover, asymptotic
convergence is guaranteed if the sequel of CS-SOS relaxations for the original poly-
nomial optimization is convergent. Numerical examples are presented to show the
superiority of our new approach.

For future work, one wonders if the CS-SOS relaxation has finite convergence
for solving CS-LME reformulations. Indeed, finite convergence for the original LME
reformulation in [23] is guaranteed under mild conditions. As demonstrated in Sec-
tion 5, the CS-LME approach usually finds the global minimum (up to a negligible
numerical error) for polynomial optimization problems with a low relaxation order.
However, it is still open that if the finite convergence is guaranteed theoretically or
not, even for generic cases. Moreover, when the correlatively sparse polynomial op-
timization (1.2) is given by generic polynomials, its KKT ideal is zero-dimensional.

32

Thus the real variety given by equality constraints in (3.39) is a finite set. For the
classical Moment-SOS relaxations, finite convergence is theoretically guaranteed when
equality constraints of the polynomial optimization give a zero-dimensional real va-
riety, as shown in [19]. So, it is interesting to ask whether the analogous is true
for CS-SOS relaxations. Besides that, our numerical experiments indicate that the
CS-LME approach can usually find the global minimum for polynomial optimization
problems even if some IQI(i)(h(i), g(i)) is not archimedean. Therefore, an interest-
ing question is whether the CS-LME approach has guaranteed asymptotic or finite
convergence without the archimedean condition for every IQI(i)(h(i), g(i)).

At last, we would like to remark that LMEs have broad applications in many
polynomial-defined problems. Therefore, a natural question is how to apply CS-
LMEs to these applications. For example, when a saddle point problem is given by
polynomials with correlative sparsity, can we apply CS-LMEs to construct polynomial
optimization reformulation similar to the one in [31] for finding saddle points?

Appendix A. Computing LMEs and CS-LMEs. We introduce how to find
LMEs and CS-LMEs for practical implementation. As mentioned in Subsection 2.4
and Section 3, finding LMEs (resp., CS-LMEs) is equivalent to finding matrices of
polynomials L(x), D(x) (resp., L(i)(x), D(i)(x)) such that (2.14) (resp., (3.3)) holds.
Note that the matrices G(x) and G(i)(x) only depend on constraints, and LMEs can
be viewed as special cases of CS-LMEs that there only exists one block, i.e., s = 1.
Here we only introduce how to get CS-LMEs, and the methodology for finding LMEs
is similar.

Suppose the matrix of polynomial G(i)(x(i)) has full column rank over Cni . In
general, (3.3) gives a linear equation system. Denote m̂i := mi + ℓi, and

L(i)(x(i)) :=







L1,1(x
(i)) L1,2(x

(i)) . . . L1,ni
(x(i))

...
...

...
...

Lm̂i,1(x
(i)) Lm̂i,2(x

(i)) . . . Lm̂i,ni
(x(i))






,

D(i)(x(i)) :=







D1,1(x
(i)) D1,2(x

(i)) . . . D1,m̂i
(x(i))

...
...

...
...

Dm̂i,1(x
(i)) Dm̂i,2(x

(i)) . . . Dm̂i,m̂i
(x(i))






.

Suppose all entries in L(i)(x(i)) and D(i)(x(i)) are polynomials whose degrees are not
greater than d. For each j, k, let (here for the α = (α1, . . . , αni

) ∈ N
ni

d , we denote

x(i)
α
:= x

(i)
1

α1

x
(i)
2

α2

. . . x
(i)
ni

αni
)

(A.1) Lj,k(x
(i)) =

∑

α∈N
ni
d

Lj,k,α · x
(i)α, Dj,k(x

(i)) =
∑

α∈N
ni
d

Dj,k,α · x
(i)α.

Then (3.3) can be written as the following linear equation system in variables Lj,k,α

and Dj,k,α:

(A.2)

ni
∑

l=1





∑

α∈N
ni
d

Lj,l,α · x
(i)α



 ·
∂c

(i)
k

∂x
(i)
l

(x(i)) +





∑

α∈N
ni
d

Dj,k,α · x
(i)α



 c
(i)
k (x(i))

=

{

1 if j = k,
0 if j 6= k,

(j ∈ [m̂i], k ∈ [m̂i]).
33

We remark that in (A.2), the equality means that the polynomials on both sides are
identically equaled. By [23, Proposition 5.2], since G(i)(x) has full column rank over
Cni , the system (A.2) must have solutions when d is large enough. Therefore, for
each i ∈ [s], we solve the linear system (A.2) for solutions with a given degree d. If we
get a solution to (A.2), then we recover polynomial matrices L(i)(x(i)) and D(i)(x(i))
(hence CS-LMEs) using this solution; otherwise, we let d ← d + 1 and solve (A.2)
with the updated degree d, until a solution is obtained.

Sometimes, one may get CS-LMEs without actually computing polynomial ma-
trices L(i)(x(i)) and D(i)(x(i)). Instead, CS-LMEs can be directly obtained using the
“multiplication-cancellation” trick 6. This is shown in the following example.

Example A.1. Consider the case that

g(i)(x(i)) =
(

1− x(i)
⊤
x(i), x

(i)
1 , . . . , x(i)ni

)

.

Then the KKT-typed system (3.27) for the ith block implies that

F (i)(z(i)) = −2λ
(i)
1 · x

(i) +
∑ni

j=1
λ
(i)
j+1 · ej,(A.3)

λ
(i)
1 ⊥ 1− x(i)

⊤
x(i), λ

(i)
j+1 ⊥ x

(i)
j (j ∈ [ni]).(A.4)

By multiplying x(i)
⊤

on both sides of (A.3), we get

x(i)
⊤
F (i)(z(i)) = −2λ

(i)
1 · x

(i)⊤x(i) +
∑ni

j=1
λ
(i)
j+1 · x

(i)
j .

Note that (A.4) implies that λ
(i)
1 · x

(i)⊤x(i) = λ
(i)
1 and λ

(i)
j+1 · x

(i)
j = 0. So we further

have

x(i)
⊤
F (i)(z(i)) = −2λ

(i)
1 .

Therefore, again by (A.3), we get CS-LMEs that

λ
(i)
1 = −x(i)

⊤
F (i)(z(i))/2, λ

(i)
j+1 = F

(i)
j (z(i)) + 2λ

(i)
1 · x

(i)
j (j ∈ [ni]).

We remark that though we do not get explicit expressions for L(i)(x(i)) and D(i)(x(i)),
essentially, this trick is equivalent to finding solutions for (3.3). For instance, the step

of multiplying x(i)
⊤

on both sides of (A.3) means that the first row of L(i)(x(i)) is

x(i)
⊤
. Besides that, for some commonly used constraints (e.g., box, ball, simplex,

etc.), LMEs are explicitly given in [23], and they can be similarly applied to the
construction of CS-LMEs.

Acknowledgments. The authors would like to thank the editor and anonymous
reviewers for all their valuable comments and suggestions, which led to an improve-
ment of the manuscript. We also thank Jiawang Nie and Jie Wang for their inspiring
and helpful comments. Zheng Qu was partially supported by NSFC Young Scien-
tist Fund grant 12001458 and Hong Kong Research Grants Council General Research
Fund grant 17317122. Xindong Tang was partially supported by the Start-up Fund
P0038976/BD7L from The Hong Kong Polytechnic University.

6This trick was introduced by Professor Jiawang Nie in his research group discussions. It is also
mentioned in Section 6.3 of his new book Moment and Polynomial Optimization [24].

34

REFERENCES

[1] J. R. S. Blair and B. Peyton, An introduction to chordal graphs and clique trees, in Graph
Theory and Sparse Matrix Computation, A. George, J. R. Gilbert, and J. W. H. Liu, eds.,
New York, NY, 1993, Springer New York, pp. 1–29.

[2] D. Cifuentes, C. Harris, and B. Sturmfels, The geometry of SDP-exactness in quadratic
optimization, Mathematical programming, 182 (2020), pp. 399–428.

[3] E. De Klerk and M. Laurent, On the Lasserre hierarchy of semidefinite programming re-
laxations of convex polynomial optimization problems, SIAM Journal on Optimization, 21
(2011), pp. 824–832.

[4] J. Demmel, J. Nie, and V. Powers, Representations of positive polynomials on noncompact
semialgebraic sets via KKT ideals, Journal of Pure and Applied Algebra, 209 (2007),
pp. 189–200.

[5] D. Grimm, T. Netzer, and M. Schweighofer, A note on the representation of positive
polynomials with structured sparsity, Archiv der Mathematik, 89 (2007), pp. 399–403.

[6] D. Henrion and J.-B. Lasserre, Detecting global optimality and extracting solutions in
GloptiPoly, in Positive polynomials in control, Springer, 2005, pp. 293–310.

[7] D. Henrion, J.-B. Lasserre, and J. Löfberg, GloptiPoly 3: moments, optimization and
semidefinite programming, Optimization Methods & Software, 24 (2009), pp. 761–779.

[8] Z. Hua and Z. Qu, On the exactness of Lasserre’s relaxation for polynomial optimization with
equality constraints, arXiv preprint arXiv:2110.13766, (2021).

[9] M. Kojima and M. Muramatsu, A note on sparse SOS and SDP relaxations for polynomial
optimization problems over symmetric cones, Computational Optimization and Applica-
tions, 42 (2009), pp. 31–41.

[10] J. B. Lasserre, Global optimization with polynomials and the problem of moments, SIAM
Journal on Optimization, 11 (2001), pp. 796–817.

[11] , Convergent SDP-relaxations in polynomial optimization with sparsity, SIAM Journal
on Optimization, 17 (2006), pp. 822–843.

[12] J. B. Lasserre, An introduction to polynomial and semi-algebraic optimization, vol. 52, Cam-
bridge University Press, 2015.

[13] J. B. Lasserre, The moment-SOS hierarchy, in Proceedings of the International Congress of
Mathematicians: Rio de Janeiro 2018, World Scientific, 2018, pp. 3773–3794.

[14] M. Laurent, Sums of squares, moment matrices and optimization over polynomials, in Emerg-
ing applications of algebraic geometry, Springer, 2009, pp. 157–270.

[15] V. Magron and J. Wang, TSSOS: a Julia library to exploit sparsity for large-scale polynomial
optimization, arXiv preprint arXiv:2103.00915, (2021).

[16] , Sparse polynomial optimization: theory and practice, World Scientific, 2023.
[17] M. Newton and A. Papachristodoulou, Sparse polynomial optimisation for neural network

verification, arXiv preprint arXiv:2202.02241, (2022).
[18] J. Nie, Certifying convergence of lasserre’s hierarchy via flat truncation, Mathematical Pro-

gramming, 142 (2013), pp. 485–510.
[19] , Polynomial optimization with real varieties, SIAM Journal on Optimization, 23 (2013),

pp. 1634–1646.
[20] , The A truncated K-moment problem, Foundations of Computational Mathematics, 14

(2014), pp. 1243–1276.
[21] , Optimality conditions and finite convergence of Lasserre’s hierarchy, Mathematical

Programming, 146 (2014), pp. 97–121.
[22] , Linear optimization with cones of moments and nonnegative polynomials, Mathematical

Programming, 153 (2015), pp. 247–274.
[23] , Tight relaxations for polynomial optimization and Lagrange multiplier expressions,

Mathematical Programming, 178 (2019), pp. 1–37.
[24] , Moment and Polynomial Optimization, SIAM, 2023.
[25] J. Nie and J. Demmel, Sparse sos relaxations for minimizing functions that are summations

of small polynomials, SIAM Journal on Optimization, 19 (2009), pp. 1534–1558.
[26] J. Nie, J. Demmel, and B. Sturmfels, Minimizing polynomials via sum of squares over the

gradient ideal, Mathematical Programming, 106 (2006), pp. 587–606.
[27] J. Nie and X. Tang, Convex generalized nash equilibrium problems and polynomial optimiza-

tion, Mathematical Programming, 198 (2023), pp. 1485–1518.
[28] , Nash equilibrium problems of polynomials, Mathematics of Operations Research, (2023).
[29] J. Nie, L. Wang, J. J. Ye, and S. Zhong, A Lagrange multiplier expression method for bilevel

polynomial optimization, SIAM Journal on Optimization, 31 (2021), pp. 2368–2395.
[30] J. Nie, Z. Yang, and X. Zhang, A complete semidefinite algorithm for detecting copositive

35

matrices and tensors, SIAM Journal on Optimization, 28 (2018), pp. 2902–2921.
[31] J. Nie, Z. Yang, and G. Zhou, The saddle point problem of polynomials, Foundations of

Computational Mathematics, (2021), pp. 1–37.
[32] M. Putinar, Positive polynomials on compact semi-algebraic sets, Indiana University Mathe-

matics Journal, 42 (1993), pp. 969–984.
[33] B. Reznick, Some concrete aspects of Hilbert’s 17th problem, Contemporary mathematics, 253

(2000), pp. 251–272.
[34] H. Waki, S. Kim, M. Kojima, and M. Muramatsu, Sums of squares and semidefinite program

relaxations for polynomial optimization problems with structured sparsity, SIAM Journal
on Optimization, 17 (2006), pp. 218–242.

[35] J. Wang and V. Magron, Certifying global optimality of AC-OPF solutions via the CS-TSSOS
hierarchy, arXiv preprint arXiv:2109.10005, (2021).

[36] J. Wang, V. Magron, and J.-B. Lasserre, TSSOS: A Moment-SOS hierarchy that exploits
term sparsity, SIAM Journal on Optimization, 31 (2021), pp. 30–58.

[37] J. Wang, V. Magron, J. B. Lasserre, and N. H. A. Mai, CS-TSSOS: Correlative and
term sparsity for large-scale polynomial optimization, ACM Transactions on Mathematical
Software, 48 (2022), pp. 1–26.

36

	Introduction
	Preliminaries
	Notation and definitions
	Moment-SOS relaxation
	Correlatively sparse SOS relaxation
	Optimality conditions and Lagrange multiplier expressions

	Correlatively sparse LMEs and reformulations
	Limitation of the original LME for exploiting correlative sparsity
	Correlatively sparse LMEs: two blocks
	Correlatively sparse LME: multi-blocks
	A CS-LME reformulation

	Correlatively sparse LME based SOS relaxation
	RIP of the CS-LME reformulation
	Convergence of the CS-LME based SOS relaxation
	Comparison of the SDP problem scale

	Numerical experiments
	Conclusions and discussions
	Appendix A. Computing LMEs and CS-LMEs
	Acknowledgments
	References

