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ENHANCED DISSIPATION AND BLOW-UP SUPPRESSION IN A

CHEMOTAXIS-FLUID SYSTEM

SIMING HE

Abstract. In this paper, we investigate a coupled Patlak-Keller-Segel-Navier-Stokes (PKS-NS) system.
We show that globally regular solutions with arbitrary large cell populations exist. The primary blowup
suppression mechanism is the shear flow mixing induced enhanced dissipation phenomena.
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1. Introduction

We consider the coupled Patlak-Keller-Segel-Navier-Stokes (PKS-NS) system modeling the chemotaxis
phenomenon in a moving fluid:





∂tn + v · ∇n + κ∇ · (n∇c) = κ∆n, (1−∆)c = n,
∂tv + (v · ∇)v + ∇p = ν∆v + κn∇c, ∇ · v = 0,
n(t =0) = nin, v(t = 0) = vin, (x, y) ∈ T× R.

(1.1)

Here n denotes the cell density, and c is the chemoattractant density. The divergence-free vector field v indi-
cates the ambient fluid velocity. The first equation (Patlak-Keller-Segel equation) describes the time evolu-
tion of the cell density subject to transportation by ambient fluid flow v, aggregation trigged by chemotaxis,
and diffusion in the media. The aggregation and diffusion take effects on a time scale O(κ−1), κ ∈ (0,∞).
The cells move towards higher concentrations of the chemoattractants. In the meantime, they secrete the
chemoattractants to re-enhance this aggregation effect. By assuming that the secretion and redistribution of
chemoattractants happen at a fast timescale, we establish an elliptic-type partial differential relation between
the density distributions, n and c. The equation (Navier-Stokes equation) on the divergence-free vector field
v describes the fluid motion subject to force. The parameter ν is the inverse Reynold number, and the scalar
function p denotes the pressure that ensures the divergence-free condition. The fluid exerts friction force on
the moving cells to guarantee that they move without acceleration. Hence, Newton’s law predicts that there
exists a reaction force from the cells to the fluid. The coupling n∇c in the Navier-Stokes equation models
this interaction. The same forcing appears in the Nernst-Planck-Navier-Stokes system, see, e.g., [23].

If no ambient fluid flows are present, i.e., v ≡ 0, the coupled system (1.1) simplifies to a variant of the
classical parabolic-elliptic Patlak-Keller-Segel (PKS) equation

∂tn+ κ∇ · (n∇c) = κ∆n, −∆c = n.(1.2)
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2 SIMING HE

The equation (1.2) is derived by C. Patlak [60], and E. Keller and L. Segel [42]. Simplified models are
proposed by V. Nanjundiah, [58]. The literature on the PKS model is extensive, and we refer the interested
readers to the representative works, [2, 9, 12–14, 16, 17, 29, 38, 41, 56, 57], and the references therein. We
summarize the main results on the plane R2 as follows. Thanks to the divergence structure of the PKS
equations (1.2), the total cell population/mass is conserved over time, i.e., M := ‖n(t)‖L1 = ‖nin‖L1 . The
long-time behavior of the equation (1.2) hinges on the total mass M . Suppose the initial cell density has a
finite second moment and a total mass M strictly less than 8π. In that case, the unique solutions to (1.2)
become smooth instantly and exist for all time, see, e.g., [9, 14, 17, 29, 39, 67]. A key observation in deriving
sharp regularity results is that the Patlak-Keller-Segel equations have natural dissipative free energy

E :=

∫
n logn− 1

2
ncdV.

On the contrary, if the initial mass is strictly larger than 8π, the solutions with finite second moment
blow up in finite time, e.g., [14–16, 41]. The refined description of the singularities is provided in work
[21, 22, 37, 61, 64–66]. In the borderline case, M = 8π, the solutions with finite second moments form
Dirac-type singularities as the time approaches infinity, [13, 26, 31].

If there is ambient fluid flow, the long-time dynamics of the systems (1.1) are delicate. In the pioneering
work, [44], A. Kiselev and X. Xu show that if the fluid vector field v is relaxation enhancing in the sense
of [24], then by choosing a large enough amplitude (‖v‖∞), the chemotactic blowups are suppressed. Their
analysis is later generalized in [40] to a broader class of fluid vector fields. Furthermore, in work, [7, 33], the
authors show that strong shear flows can suppress the blowups through a fast dimension reduction process.
Last but not least, the authors of [35, 36] exploit the fast-spreading scenario of the hyperbolic and quenching
shear flows to reach the same goal. In work mentioned above, the ambient fluid velocity fields v are passive
because the dynamics of the cell density do not alter the fluid itself. If there is active coupling between the
cell dynamics and the fluid motion, the only known result is [76]. In this work, the authors prove that if the
underlying fluid flow is close to the Couette flow, strong enough shear suppresses the blowup of a specific
type of PKS-NS system.

One can regard the system (1.1) as one among many attempts to model the chemotaxis phenomena in
a fluid. The literature on coupled chemotaxis-fluid equations is vast, and we refer the interested readers to
the papers [19, 28, 30, 45, 50–52, 62, 63, 70, 74] and the references therein. Many of these works investigate
coupled systems involving fully parabolic Patlak-Keller-Segel and Navier-Stokes equations. The parabolic
nature of the chemical equations complicates the analysis. For example, I. Tuval et al. proposed the following
model [63],





∂tn+v · ∇n+∇ · (n∇c) = ∆n,
∂tc+v · ∇c = ∆c− nf(c),
∂tv+(v · ∇)v +∇p = ∆v + n∇φ, ∇ · v = 0.

Here a parabolic equation governs the dynamics of the chemicals (oxygen), and the coupling n∇φ in the fluid
equation models the buoyancy effect. The regularity and long-time behaviors of the system are explored in
[71–73, 75]. On the other hand, A. Lorz [52], and H. Kozono et al. [45] proposed models whose chemical
densities are determined through elliptic-type relations.

A new feature of the coupled system (1.1) is that it retains dissipative free energy

F =

∫
n logn− 1

2
nc+

1

2
|v|2dV.

The dissipative free energy, together with the logarithmic Hardy-Littlewood-Sobolev inequality, yields global
regularity of the solutions to a variant of (1.1) in the entire subcritical mass regime, i.e., M < 8π ([32]).
The critical mass case is analyzed in [46]. In the supercritical case M > 8π, there exists a solution with
finite-time blow-up ([32]).

We consider the system perturbed around the Couette flow v(x, y) = (y, 0), a stationary solution to the
Naver-Stokes equation. By decomposing the velocity field as v = y + u and writing the fluid equation in
vorticity form, we end up with the system:




∂tn+y∂xn+ u · ∇n+ κ∇ · (n∇c) = κ∆n, (1 −∆)c = n,

∂tω+y∂xω + u · ∇ω = ν∆ω + κ∇⊥ · (n∇c), u = ∇⊥∆−1ω,
n(t =0) = nin, ω(t = 0) = ωin, (x, y) ∈ T× R.

(1.3)
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Here ω = ∇⊥ · u = −∂yu
(1) + ∂xu

(2) and ∇⊥ = (−∂y, ∂x). In this formulation, we can view the coupled
system as a nonlinear perturbation of the Naver-Stokes solution (y, 0). The problem of suppressing the
chemotactic blow-up is now equivalent to a nonlinear stability problem of the Couette flow. The fundamental
question in the study of hydrodynamic stability is to determine the functional space X and the parameter
α ∈ [0,∞) such that

‖ωin‖X . να ⇒ Stability.

Here να is the stability threshold of the flow associated with the spaces X . The nonlinear stability threshold
of the Couette flow has attracted much attention in the last decade, see, e.g., [4–6, 10, 11, 20, 54, 55]. A
complete survey of the literature is out of the scope of this paper. Therefore, we highlight some of the work
focusing on a 2-dimensional setting. In [10], J. Bedrossian, N. Masmoudi, and V. Vicol showed that the
stability threshold of the 2D-Couette flow is O(1) in the Gevrey spaces. The stability thresholds associated
with the Sobolev spaces are shown to be O(ν1/2) on the cylinder T×R (J. Bedrossian, V. Vicol and F. Wang,
[11]) and in the channel (Q. Chen, T. Li, D. Wei, and Z. Zhang, [20]). Later, N. Masmoudi and W. Zhao
considered higher-order Sobolev norms (H49) and improved the threshold to O(ν1/3), [55]. The enhanced
dissipation phenomenon of the Couette flow plays an essential role in the above works. We also refer the
interested readers to the work [27, 49, 53, 78, 79] for the detailed stability analysis of Couette flow in MHD,
Boussinesq equations. For the enhanced dissipation phenomena associated with other shear flows, we refer
the interested readers to the work [1, 3, 25, 34, 47, 48, 68, 69], and the references therein.

Our main result is that global-in-time regular solutions with arbitrarily large mass M to the system (1.1)
exist.

Theorem 1.1. Consider the equation (1.3) subject to initial conditions nin ≥ 0, nin ∈ L1 ∩ Hs(T × R),
nin|y|2 ∈ L1(T× R), ωin ∈ Hs(T × R), 5 ≤ s ∈ N. Assume that the parameters κ, ν are in the regime
0 < κ ≤ ν ≤ 1. There exists a threshold ǫ0(‖nin‖L1∩Hs) ∈ (0, 1) such that if the following relations hold

‖ωin‖Hs ≤ ǫν1/2, κ = ǫν, 0 < ǫ ≤ ǫ0,(1.4)

the regular solutions to (1.3) exist for all time. Moreover, there exists a universal constant δ ∈ (0, 1) such
that the following enhanced dissipation estimate holds

∥∥∥∥eδκ
1/3|∂x|

2/3t

(
n− 1

|T|

∫

T

ndx

)∥∥∥∥
L2

+

∥∥∥∥eδκ
1/3|∂x|

2/3t

(
ω − 1

|T|

∫

T

ωdx

)∥∥∥∥
L2

≤ B(‖nin‖L1∩Hs), ∀t ∈ [0,∞).

(1.5)

Here the bound B only depends on the initial data.

Remark 1.1. We compare our result with that of [76]. In [76], the authors considered a similar system
with buoyancy force coupling between the fluid and cell-density equations and showed suppression of blowup
results. However, here our system (1.1) involves a nonlinear coupling in the fluid equation, which complicates
the analysis. Moreover, the methods we employ here are different from that of [76].

Remark 1.2. The stability threshold in Theorem 1.1 matches that of the paper [11]. However, we expect
that by using more complicated techniques developed in [55], one can improve the stability threshold to ǫν1/3.
We will leave the analysis in later work.

Remark 1.3. This paper focuses on the parameter regime where κ ≤ ν. The method does not seem applicable
in the parameter regime ν ≫ κ. If the viscosity ν is much greater than κ, the biological phenomena take
place on time scale O(κ−1), which can be much shorter than the fluid dynamics time scale. As a result,
the dynamics of the cell evolution have a nontrivial impact on the fluid motion. Thanks to this nontrivial
interaction, the fluid flow might no longer be stable. Hence it is a great problem to understand the long time
dynamics of the system in this regime.

The remaining part of the paper is organized as follows. In Section 2, we sketch the proof of Theorem
1.1. In Section 3, we provide estimates of the fluid equation. In Section 4, the estimates of the cell density
are derived. Finally, we collect technical lemmas in the appendix.
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2. Sketch of the Proof

In this section, we present the main idea of the proof of Theorem 1.1.
Similar to the works [8, 43, 59, 77], we first consider a new coordinate system

z = x− ty, y = y.

we have the following:

∂tN + U · ∇LN + κ∇L · (N∇LC) = κ∆LN, C = (1−∆L)
−1N ;(2.1)

∂tΩ + U · ∇LΩ = ν∆LΩ+ κ∇⊥
L · (N∇LC), U = −∇⊥

L (−∆L)
−1Ω.

Here the following notations are adopted:

∇L :=

(
∂z
∂t
y

)
:=

(
∂z

∂y − t∂z

)
, ∇⊥

L :=

(
−∂t

y

∂z

)
, ∆L = ∇L · ∇L = ∂zz + (∂y − t∂z)

2.

Since the enhanced dissipation phenomenon is heterogeneous, we consider the z-average f0 and the remainder
f 6= of functions on T× R:

f0(t, y) =
1

|T|

∫

T

f(t, z, y)dz, f 6=(t, z, y) = f(t, z, y)− f0(t, y).

We decompose the solutions N,Ω into the z-average and remainder:

∂tN 6= + (U · ∇LN)6= =κ∆LN 6= − κ(∇L · (N∇LC))6=;(2.2a)

∂tN0 + (U · ∇LN)0 =κ∂yyN0 − κ(∇L · (N∇LC))0;(2.2b)

∂tΩ 6= + (U · ∇LΩ)6= =ν∆LΩ 6= + κ(∇⊥
L · (N∇LC))6=,(2.2c)

∂tΩ0 + (U · ∇LΩ)0 =ν∂yyΩ0 + κ(∇⊥
L · (N∇LC))0.(2.2d)

To analyze the above equations, we apply the spacial Fourier transform f(t, z, y)
F−→ f̂(t, k, η). Next we

introduce the following multipliers Wκ, Wν , W , which are motivated by [11]:

Wκ(t, k, η) =π − arctan
(
κ1/3|k|2/3

(
t− η

k

))
10<|k|≤κ−1/2 ;(2.3)

Wν(t, k, η) =π − arctan
(
ν1/3|k|2/3

(
t− η

k

))
10<|k|≤ν−1/2 ;(2.4)

W(t, k, η) =π − arctan
(
t− η

k

)
1k 6=0.(2.5)

We observe that these multiplier functions take values in [π2 ,
3π
2 ]. Moreover, they are monotonically decreasing

in time. We further define the following multipliers associated with the cell density N and the vorticity Ω:

Mκ = WκW , Mν = WνW .(2.6)

Further define that

Aι(t, k, η) =Mι(t, k, η)e
δκ1/3|k|2/3t(1 + |k|2 + |η|2)s/2, ι ∈ {ν, κ}, s ≥ 0.(2.7)

Here 0 < δ < 1 is a universal constant. We note that the Aν-multiplier and Aκ-multiplier share the same

exponential factor eδκ
1/3|k|2/3t. The multipliers {Aκ,Mκ} will act on the cell density and chemical density

N, C and {Aν ,Mν} will act on the vorticity and velocity of the fluid Ω, U . The properties of these multipliers
are collected in the appendix.

Next, we present a local well-posedness result, which can be proven through standard argument.

Theorem 2.1. Consider solutions N,Ω to the equation (2.1) subject to initial data 0 ≤Nin ∈ L1∩Hs(T×R),
Nin|y|2 ∈ L1(T× R), Ωin ∈ Hs(T × R), 3 ≤ s ∈ N. There exists a small constant Tε(‖Nin‖L1∩Hs , ‖Ωin‖Hs)
such that the unique solution exists on the time interval [0, Tε]. Moreover, N ≥ 0 on [0, Tε].
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To prove Theorem 1.1, we use a bootstrap argument. Assume that [0, T⋆] is the largest time interval on
which the following Hypotheses hold:

‖AκN 6=(t)‖2L2 +

∫ t

0

∥∥∥∥∥

√
−∂τMκ

Mκ
AκN 6=

∥∥∥∥∥

2

L2

+ κ‖Aκ

√
−∆LN 6=‖2L2dτ ≤2B2

N 6=
;(2.8a)

‖N0(t)‖2Hs ≤2B2
N0

;(2.8b)

‖AνΩ 6=(t)‖2L2 +

∫ t

0

∥∥∥∥∥

√
−∂τMν

Mν
AνΩ 6=

∥∥∥∥∥

2

L2

+ ν‖Aν

√
−∆LΩ 6=‖2L2dτ ≤2B2

Ω6=
ǫ2ν;(2.8c)

‖Ω0(t)‖2Hs + ν

∫ t

0

‖∂yΩ0‖2Hsdτ ≤ 2B2
Ω0
ǫ2ν, ∀t ∈ [0, T⋆].(2.8d)

Without loss of generality, we set BN 6=
,BN0

,BΩ6=
,BΩ0

≥ 1. Moreover, they only depend on the initial data
‖Nin‖L1∩Hs and the regularity level s.

Proposition 2.1. Consider the system (2.1) subject to initial condition 0 ≤Nin ∈ L1∩Hs(T×R), Nin|y|2 ∈ L1(T× R),
Ωin ∈ Hs(T×R), 5 ≤ s ∈ N. Assume that 0 < κ ≤ ν ≤ 1. Let [0, T⋆] be the largest interval on which the hy-
potheses (2.8) hold. There exists a threshold ǫ0 = ǫ0(‖Nin‖L1∩Hs) such that if the condition (1.4) is satisfied,
the following stronger estimates hold

‖AκN 6=(t)‖2L2 +

∫ t

0

∥∥∥∥∥

√
−∂τMκ

Mκ
AκN 6=

∥∥∥∥∥

2

L2

+ κ‖Aκ

√
−∆LN 6=‖2L2dτ ≤B2

N 6=
;(2.9a)

‖N0(t)‖2Hs ≤B2
N0

;(2.9b)

‖AνΩ 6=(t)‖2L2 +

∫ t

0

∥∥∥∥∥

√
−∂τMν

Mν
AνΩ 6=

∥∥∥∥∥

2

L2

+ ν‖Aν

√
−∆LΩ 6=‖2L2dτ ≤B2

Ω6=
ǫ2ν;(2.9c)

‖Ω0(t)‖2Hs + ν

∫ t

0

‖∂yΩ0‖2Hsdτ ≤B2
Ω0

ǫ2ν, ∀t ∈ [0, T⋆].(2.9d)

Here the bounds BN 6=
, BN0

, BΩ6=
and BΩ0

depend only on the initial data ‖Nin‖L1∩Hs .

Remark 2.1. The explicit choice of the constants BN 6=
, BN0

, BΩ6=
and BΩ0

are listed in (4.25). The choice
of the threshold ǫ0 can be found in (4.26).

Now we can conclude the proof of Theorem 1.1.

Proof of Theorem 1.1. Combining Theorem 2.1 and Proposition 2.1, we see that [0, T⋆] is both open and
closed on [0,∞). Hence T⋆ = ∞ and the solutions with estimates (2.9) exist for all time. The enhanced
dissipation estimate (1.5) is a consequence of the bounds (2.9a), (2.9c),

∥∥∥∥eδκ
1/3|∂x|

2/3t

(
n− 1

|T|

∫

T

ndx

)∥∥∥∥
L2

x,y

+

∥∥∥∥eδκ
1/3|∂x|

2/3t

(
ω − 1

|T|

∫

T

ωdx

)∥∥∥∥
L2

x,y

≤ C‖AκN 6=(t)‖L2
z,y

+ C‖AνΩ 6=(t)‖L2
z,y

≤ CB2
N 6=

(‖Nin‖L1∩Hs) + CB2
Ω6=

(‖Nin‖L1∩Hs), ∀t ∈ [0,∞).

This concludes the proof. �

2.1. Notations. Throughout the paper, the constant C, which can only depend on the regularity level s,
will change from line to line. Constants with subscript, i.e., BN 6=

, will be fixed. For A,B ≥ 0, we use the
notation A ≈ B to highlight that there exists a strictly positive constant C such that B/C ≤ A ≤ CB. We
also use the notation A . B to represent that there exists a constant C > 0 such that A ≤ CB.
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Recall the classical Lp norms and Sobolev Hs, s ∈ N+ norms:

‖f‖Lp =‖f‖p =

(∫
|f |pdV

)1/p

; ‖f‖Lq
t([0,T ];Lp) =

(∫ T

0

‖f(t)‖qLpdt

)1/q

;

‖f‖Hs =


 ∑

i+j≤s

‖∂i
z∂

j
yf‖2L2




1/2

; ‖f‖Ḣs =


 ∑

i+j=s

‖∂i
z∂

j
yf‖2L2




1/2

.

Here dV = dzdy = dxdy is the volume element. If p or q is ∞, then we use the classical L∞-norm.

We use f̂ to denote Fourier transform of function f in the (z, y) variables. The frequency variables
corresponding z and y are denoted by {k, ℓ} and {η, ξ}, respectively. The Fourier multipliers are defined as
follows:

̂(M(∇)f)(k, η) = M(ik, iη)f̂(k, η).

Given a set S ∈ Z, we define the projection Pk∈S

P̂k∈Sf = 1k∈S f̂(k, η).

We apply the following notations

〈k〉 =
√
1 + k2, 〈k, η〉 = (1 + k2 + η2)1/2, |k, η| = |k|+ |η|.

We recall from classical literature that ‖f‖Hs ≈ ‖〈∂z, ∂y〉sf‖L2.

3. Vorticity Estimates

In this section, we derive the estimates associated with the fluid motion. We organize the proof into two
subsections. In Subsection 3.1, we prove the enhanced dissipation estimate of the vorticity remainder Ω 6=

(2.9c). In Subsection 3.2, we prove the z-average (Ω0) estimate (2.9d).

3.1. Remainder Estimates. In this section, we consider the remainder of the vorticity, which solves the
equation (2.2c). We will prove the conclusion (2.9c).

Application of the energy estimate yields that

d

dt

1

2
‖AνΩ 6=‖2L2 =δκ1/3

∑

k 6=0

|k|2/3
∫

|Aν(t, k, η)Ω̂(t, k, η)|2dη −
∑

k 6=0

∫ −∂tMν

Mν
|Aν(t, k, η)Ω̂(t, k, η)|2dη

− ν
∑

k 6=0

∫
|Aν(t, k, η)(

√
|k|2 + |η − kt|2)Ω̂(t, k, η)|2dη

−
∫

Aν(U · ∇LΩ)6= AνΩ 6=dV + κ

∫
Aν(∇⊥

L · (N∇LC))6= AνΩ 6=dV.

The relation κ ≤ ν, together with the property of the multiplier Mν (A.4) yields that if δ ≤ 1
16π2 , then the

time evolution of the norm is bounded as follows:

d

dt

1

2
‖AνΩ 6=‖2L2 ≤− 1

2

∥∥∥∥∥

√
−∂tMν

Mν
AνΩ 6=

∥∥∥∥∥

2

L2

− 1

2
ν‖Aν

√
−∆LΩ 6=‖2L2

−
∫

Aν(U · ∇LΩ)6= AνΩ 6=dV + κ

∫
Aν(∇⊥

L · (N∇LC))6= AνΩ 6=dV.

Integration in time yields that

‖AνΩ 6=(t)‖2L2 +

∫ t

0

∥∥∥∥∥

√
−∂τMν

Mν
AνΩ 6=

∥∥∥∥∥

2

L2

dτ + ν

∫ t

0

‖Aν

√
−∆LΩ 6=‖2L2dτ

≤‖AνΩin; 6=‖2L2 + 2

∣∣∣∣
∫ t

0

∫
Aν(U · ∇LΩ)6= AνΩ 6=dV dτ

∣∣∣∣ + 2

∣∣∣∣κ
∫ t

0

∫
Aν(∇⊥

L · (N∇LC))6= AνΩ 6=dV dτ

∣∣∣∣
=:‖AνΩin; 6=‖2L2 + TΩ6=;1 + TΩ6=;2.(3.1)
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The estimates of the terms TΩ6=;1 and TΩ6=;2 are summarized in Lemma 3.1 and Lemma 3.2.

Lemma 3.1. Assume all the conditions in Proposition 2.1. The TΩ6=;1-term in (3.1) is bounded as follows

TΩ6=;1 ≤ C(BΩ6=
+ BΩ0

)B2
Ω6=

ǫ3ν.(3.2)

Here the constant C depends only on the regularity level s.

Lemma 3.2. Assume all the conditions in Proposition 2.1. There exists a constant C = C(s) such that the
following estimate of the TΩ6=;2-term holds

TΩ6=;2 ≤ 1

4
ν

∫ t

0

‖Aν

√
−∆LΩ 6=‖2L2dτ +

1

4

∫ t

0

∥∥∥∥∥Aν

√
−∂τMν

Mν
Ω 6=

∥∥∥∥∥

2

L2

dτ + C(B4
N 6=

+ B4
N0

)ǫ2ν.(3.3)

With these two lemmas, we are ready to prove the improved bound (2.9c).

Proof of the conclusion (2.9c). First, we recall the initial condition (1.4), which ensures that ‖AνΩin; 6=‖L2
z,y

≤
C‖Ωin; 6=‖Hs

x,y
≤ Cǫν1/2. Combining it with the relation (3.1) and the estimates (3.2), (3.3), we obtain that

‖AνΩ 6=(t)‖2L2 +

∫ t

0

∥∥∥∥∥

√
−∂τMν

Mν
Ω 6=(τ)

∥∥∥∥∥

2

L2

dτ + ν

∫ t

0

‖Aν

√
−∆LΩ 6=(τ)‖2L2dτ

≤ C‖Ωin; 6=‖2Hs + C
(
ǫ(BΩ6=

+ BΩ0
)B2

Ω6=
+ B4

N 6=
+ B4

N0

)
ǫ2ν ≤ C

(
ǫ(BΩ6=

+ BΩ0
)B2

Ω6=
+ 1 + B4

N 6=
+ B4

N0

)
ǫ2ν.

Here the constant C depends only on the regularity level s. As a result the following choices of constants
yields (2.9c)

1

2
B2
Ω6=

≥ C(1 + B4
N 6=

+ B4
N0

), ǫ ≤ 1

2C(BΩ6=
+ BΩ0

)
.(3.4)

This concludes the proof. �

In the remaining part of this subsection, we prove Lemma 3.1 and Lemma 3.2.

Proof of Lemma 3.1. The estimate of the TΩ6=;1-term is in the same vein as the one in [11]. We carry out

the details for the sake of completeness. We recall that the Biot-Savart law yields that U
(2)
0 = ∂z∆

−1
y Ω0 = 0.

Hence we can expand the TΩ6=;1 term as follows:

TΩ6=;1 ≤2

∣∣∣∣
∫ t

0

∫
Aν(U 6= · ∇LΩ) AνΩ 6=dV dτ

∣∣∣∣+ 2

∣∣∣∣
∫ t

0

∫
Aν(U

(1)
0 ∂zΩ) AνΩ 6=dV dτ

∣∣∣∣ =:
2∑

i=1

TΩ6=;1i.(3.5)

For the TΩ6=;11-term, we first invoke the Biot-Savart law to rewrite the velocity as U 6= = ∇⊥
L∆

−1
L Ω 6=, and

then apply the product estimate associated with the multiplier Aν (A.10) to obtain the following bound

TΩ6=;11 ≤C

∫ t

0

‖Aν(∇⊥
L∆

−1
L Ω 6= · ∇LΩ)‖L2‖AνΩ 6=‖L2dτ ≤ C

∫ t

0

‖Aν∇⊥
L∆

−1
L Ω 6=‖L2‖Aν∇LΩ‖L2dτ‖AνΩ 6=‖L∞

t L2 .

Next we observe that theMν-properties (A.3b), (A.3c) imply that ‖Aν∇⊥
L∆

−1
L Ω 6=‖L2 ≤ C‖Aν

√
−∂tMν

Mν
Ω 6=‖L2 .

Combining this with the bootstrap hypothesis (2.8c), (2.8d) yields that

TΩ6=;11 ≤ C√
ν

∥∥∥∥∥Aν

√
−∂tMν

Mν
Ω 6=

∥∥∥∥∥
L2

tL
2

(ν1/2‖Aν

√
−∆LΩ 6=‖L2

tL
2 + ν1/2‖∂yΩ0‖L2

tH
s)‖AνΩ 6=‖L∞

t L2

≤Cǫ(BΩ6=
+ BΩ0

)B2
Ω6=

ǫ2ν.(3.6)

This is consistent with the estimate (3.2).
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For the TΩ6=;12 term in (3.5), we first observe there is a cancellation relation

∫
∂y∆

−1
y Ω0 ∂zAνΩ 6= AνΩ 6=dV =

∫
∂y∆

−1
y Ω0∂z

(
AνΩ 6=

2

)2

dV = 0.

Hence we can rewrite the term TΩ6=;12 using the Biot-Savart law U
(1)
0 = −∂y∆

−1
y Ω0 as follows:

TΩ6=;12 = 2

∣∣∣∣
∫ t

0

∫ (
Aν(−∂y∆

−1
y Ω0 ∂zΩ 6=) + ∂y∆

−1
y Ω0 ∂zAνΩ 6=

)
AνΩ 6= dV dτ

∣∣∣∣

=C

∣∣∣∣
∑

k 6=0

∫ t

0

∫∫
(Mν(τ, k, η)〈k, η〉s −Mν(τ, k, ξ)〈k, ξ〉s)

i(η − ξ)

(η − ξ)2
Ω̂0(η − ξ)

×
(
keδκ

1/3|k|2/3τ Ω̂(τ, k, ξ)
)

AνΩ̂(τ, k, η) dηdξdτ

∣∣∣∣.(3.7)

Now we invoke the commutator estimate (A.11) and the Young’s convolution inequality to obtain that

TΩ6=;12

≤ C

∣∣∣∣
∫ t

0

∑

k 6=0

∫∫
(〈k, ξ〉s + 〈η − ξ〉s) |Ω̂0(η − ξ)|

∣∣∣eδκ1/3|k|2/3τ Ω̂(τ, k, ξ)
∣∣∣ |AνΩ̂(τ, k, η)| dηdξdτ

∣∣∣∣

≤ C

∣∣∣∣
∫ t

0

∑

k 6=0

‖AνΩ̂k(·)‖L2
η

(
‖〈·〉sΩ̂0(·)‖L2

η
‖eδκ1/3|k|2/3τ Ω̂k(·)‖L1

η
+ ‖Ω̂0(·)‖L1

η
‖eδκ1/3|k|2/3τ 〈k, ·〉sΩ̂k(·)‖L2

η

)
dτ

∣∣∣∣.

Combining the Mν-properties (A.3b), (A.4), the definition of Aν (2.7) and the inequality ‖f̂(·)‖L1
η

≤
C‖〈·〉sf̂(·)‖L2

η
, s ≥ 1 yields that

TΩ6=;12 ≤C

∫ t

0

∑

k 6=0

‖AνΩ̂k(·)‖2L2
η
dτ‖Ω0‖L∞

t Hs

≤Cν−1/3



∫ t

0

∥∥∥∥∥Aν

√
−∂τMν

Mν
Ω 6=

∥∥∥∥∥

2

L2

+ ν‖Aν

√
−∆LΩ 6=‖2L2dτ


 ‖Ω0‖L∞

t Hs .

Hence the bootstrap hypotheses (2.8c), (2.8d) implies that

TΩ6=;12 ≤ Cǫ3νB2
Ω6=

BΩ0
.(3.8)

Combining the decomposition (3.5) and the estimates (3.6), (3.8), we have obtained the result (3.2). �

Proof of Lemma 3.2. We further decompose the TΩ6=;2 term in (3.1) as follows:

TΩ6=;2 ≤2κ

∣∣∣∣
∫ t

0

∫
Aν(∂z(N 6=∂yC0)) AνΩ 6=dV dτ

∣∣∣∣+ 2κ

∣∣∣∣
∫ t

0

∫
Aν(∇⊥

L · (N∇LC6=)) AνΩ 6=dV dτ

∣∣∣∣
=:TΩ6=;21 + TΩ6=;22.(3.9)

Before analyzing the terms, we make a comment about the multipliers. Thanks to the {Mν ,Mκ}-property
(A.3b) and the definitions of {Aν , Aκ} (2.7), we have that the Aν , Aκ multipliers are comparable, i.e.,

1

16π4
Aκ(t, k, η) ≤ Aν(t, k, η) ≤ 16π4Aκ(t, k, η).(3.10)

As a result, we have the freedom to adjust the multipliers {Aι}ι∈{κ,ν} when considering different objects.
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With the multiplier properties explained, we start the estimate. To estimate the TΩ6=;21-term, we apply
the relation (1− ∂yy)C0 = N0, the definition (2.7), and the ∂tMκ-estmate (A.3c) to get the following

TΩ6=;21 ≤Cκ
∑

k 6=0

∫ t

0

∫∫ ∣∣∣∣
√
|k|2 + |η − kτ |2AνΩ̂(τ, k, η)

∣∣∣∣

×
∣∣∣∣Aκ(τ, k, η)

√
|k|2

|k|2 + |η − kτ |2
(
|N̂(τ, k, ξ)| |η − ξ|

1 + |η − ξ|2 |N̂0(τ, η − ξ)|
) ∣∣∣∣dηdξdτ

≤Cκ
∑

k 6=0

∫ t

0

∫∫ ∣∣∣∣
√
|k|2 + |η − kτ |2AνΩ̂(τ, k, η)

∣∣∣∣

×
∣∣∣∣Mκ(τ, k, η)〈k, η〉s

√
−∂τMκ(τ, k, η)

(
eδκ

1/3|k|2/3τ |N̂(τ, k, ξ)| |η − ξ|
1 + |η − ξ|2 |N̂0(τ, η − ξ)|

) ∣∣∣∣dηdξdτ.

Now we invoke the Mκ properties (A.3b), (A.3e) to obtain

TΩ6=;21

≤ Cκ
∑

k 6=0

∫ t

0

∫∫ ∣∣∣∣
√
|k|2 + |η − kτ |2AνΩ̂(τ, k, η)

∣∣∣∣

× (Mκ(τ, k, ξ)〈k, ξ〉s + 〈η − ξ〉s)eδκ1/3|k|2/3τ
√
−∂τMκ(τ, k, ξ)|N̂(τ, k, ξ)| |η − ξ|〈η − ξ〉

1 + |η − ξ|2 |N̂0(τ, η − ξ)|dηdξdτ.

Now we apply similar argument as in (3.8) to estimate the term. Application of Young’s convolution

inequality, the Mκ-bound (A.3b), the Aκ-definition (2.7), and the fact that ‖f̂(·)‖L1
η
≤ C‖〈·〉sf̂(·)‖L2

η
, s ≥ 1

yields that

TΩ6=;21 ≤1

8
ν

∫ t

0

∥∥∥Aν

√
−∆LΩ 6=

∥∥∥
2

L2
dτ + Cǫ2ν

∫ t

0

∥∥∥∥∥Aκ

√
−∂τMκ

Mκ
N 6=

∥∥∥∥∥

2

L2

‖N0‖2Hsdτ

≤1

8
ν

∫ t

0

∥∥∥Aν

√
−∆LΩ 6=

∥∥∥
2

L2
dτ + Cǫ2νB2

N 6=
B2
N0

.(3.11)

Here in the last line, the hypotheses (2.8a) and (2.8b) are employed.
For the TΩ6=;22 term in (3.9), we apply integration by parts, and then estimate it with the product estimate

(A.10), the elliptic estimate (A.8), and the bootstrap hypotheses (2.8a), (2.8b) as follows

TΩ6=;22 ≤κ

∫ t

0

‖Aν∇⊥
LΩ 6=‖L2(‖N0‖Hs + ‖AκN 6=‖L2)‖Aκ∇LC6=‖L2dτ

≤ 1

16
ν

∫ t

0

‖Aν

√
−∆LΩ 6=‖2L2dτ + Cǫ2ν(‖N0‖2L∞

t Hs + ‖AκN 6=‖2L∞
t L2)‖Aκ∇L(1−∆L)

−1N 6=‖2L2
tL

2

≤ 1

16
ν

∫ t

0

‖Aν

√
−∆LΩ 6=‖2L2dτ + Cǫ2ν(‖N0‖2L∞

t Hs + ‖AκN 6=‖2L∞
t L2)

∥∥∥∥∥Aκ

√
−∂tMκ

Mκ
N 6=

∥∥∥∥∥

2

L2
tL

2

≤ 1

16
ν

∫ t

0

‖Aν

√
−∆LΩ 6=‖2L2dτ + Cǫ2ν(B2

N0
+ B2

N 6=
)B2

N 6=
.

Combining this with the decomposition (3.9) and the bound (3.11) yields the estimate (3.3).
�
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3.2. The z-average Estimates. In this subsection, we prove the estimate (2.9d). First of all, we recall the
equation (2.2d), and decompose the nonlinearity as follows

∂tΩ0 + (U 6= · ∇LΩ 6=)0 + (U0 · ∇Ω0)0 = ν∆Ω0 + κ
(
∇⊥

L · (N0∇LC0)
)
0
+ κ

(
∇⊥

L · (N 6=∇LC6=)
)
0
.

Here we observe two null-structures which lead to simplification. First, we observe that by the Biot-Savart

law, the vertical velocity field U
(2)
0 = ∂z∆

−1
y Ω0 = 0. Hence,

(U0 · ∇Ω0)0 = (U
(1)
0 ∂zΩ0)0 = 0.

On the other hand, the following term vanishes,

κ
(
∇⊥

L · (N0∇LC0)
)
0
= −κ ((∂y − t∂z)(N0∂zC0))0 + κ (∂z(N0∂yC0))0 = 0.

Hence the Ω0-equation can be simplified to the following,

∂tΩ0 − ν∆Ω0 = −(U 6= · ∇LΩ 6=)0 + κ
(
∇⊥

L · (N 6=∇LC6=)
)
0
.

Recalling that Aν(t, k = 0, η) = π2〈η〉s, we calculate the time evolution of the ‖AνΩ0‖2L2 as follows:

d

dt

1

2
‖AνΩ0‖2L2 = −ν‖Aν∂yΩ0‖2L2 −

∫
Aν((U 6= · ∇LΩ 6=)0) AνΩ0dV + κ

∫
Aν

(
∇⊥

L · (N 6=∇LC6=)
)
0
AνΩ0dV.

Now integration in time yields

‖AνΩ0(t)‖2L2 + 2ν

∫ t

0

‖Aν∂yΩ0‖2L2dτ

(3.12)

≤‖AνΩin;0‖2L2 + 2

∣∣∣∣
∫ t

0

∫
Aν((U 6= · ∇LΩ 6=)0) AνΩ0dV dτ

∣∣∣∣+ 2κ

∣∣∣∣
∫ t

0

∫
Aν

(
∇⊥

L · (N 6=∇LC6=)
)
0
AνΩ0dV dτ

∣∣∣∣

=:‖AνΩin;0‖2L2 + TΩ0;1 + TΩ0;2.

We rewrite the TΩ0;1-term in (3.12) with the Biot-Savart law, and then estimate it with the product estimate
(A.10), the Mν-bound (A.3b), the elliptic estimate (A.8), and the hypotheses (2.8c), (2.8d) as follows

TΩ0;1 =

∫ t

0

∫
Aν(∇⊥

L∆
−1
L Ω 6= · ∇LΩ 6=)0 AνΩ0dV ≤ C

∫ t

0

‖Aν∇⊥
L∆

−1
L Ω 6=‖L2‖Aν∇LΩ 6=‖L2‖AνΩ0‖L2dτ

≤C

∥∥∥∥∥Aν

√
−∂tMν

Mν
Ω 6=

∥∥∥∥∥
L2

tL
2

‖Aν∇LΩ 6=‖L2
tL

2‖Ω0‖L∞
t Hs

y
≤ ǫ2ν

(
ǫCBΩ0

B2
Ω6=

)
.(3.13)

Next we estimate TΩ0;2-term in (3.12). By observing (∂zF )0 ≡ 0 and integration by parts, we rewrite the
term as follows,

TΩ0;2 =2

∣∣∣∣κ
∫ t

0

∫
AνΩ0Aν((∂y − t∂z)(N 6=∂zC6=))0dV dτ

∣∣∣∣ = 2

∣∣∣∣κ
∫ t

0

∫
Aν∂yΩ0 Aν(N 6=∂zC6=)0dV dτ

∣∣∣∣.

Application of the product estimate (A.10) and the fact that Aν ≈ Aκ (3.10) yields that

TΩ0;2 ≤1

2
ν‖Aν∂yΩ0‖2L2

tL
2 + Cǫ2ν‖AκN 6=‖2L∞

t L2‖Aκ∂zC6=‖2L2
tL

2 .

After invoking the relation ∂zC6= = ∂z(1−∆L)
−1N 6=, the Mκ-estimate (A.3b) and the elliptic estimate (A.8),

we estimate the TΩ0;2-term with the hypotheses (2.9a) as follows

TΩ0;2 ≤1

2
ν‖Aν∂yΩ0‖2L2

tL
2 + Cǫ2ν‖AκN 6=‖2L∞

t L2‖Aκ∂z(1−∆L)
−1N 6=‖2L2

tL
2

≤1

2
ν‖Aν∂yΩ0‖2L2

tL
2 + Cǫ2ν‖AκN 6=‖2L∞

t L2

∥∥∥∥∥Aκ

√
−∂tMκ

Mκ
N 6=

∥∥∥∥∥

2

L2
tL

2

≤ 1

2
ν‖Aν∂yΩ0‖2L2

tL
2 + CB4

N 6=
ǫ2ν.(3.14)
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Combining the decomposition (3.12), the estimates (3.13), (3.14), and the initial constraint (1.4), we have
that

‖AνΩ0(t)‖2L2 + ν‖Aν∂yΩ0‖2L2
tL

2 ≤C‖Ωin;0‖2Hs + ǫ2νC(ǫBΩ0
B2
Ω6=

+ B4
N 6=

) ≤ ǫ2νC(1 + ǫBΩ0
B2
Ω6=

+ B4
N 6=

).

(3.15)

Here C ≥ 1 is a constant depending only on the regularity level s. Hence the following choice of constants
guarantees the conclusion (2.9d)

B2
Ω0

≥ 4C(1 + B2
Ω6=

+ B4
N 6=

), ǫ ≤ 1

1 + BΩ0

.(3.16)

Here the constant C is the one in (3.15).

4. Cell Density Estimates

In this section, we derive the estimates associated with the cell dynamics. We organize the proof into two
subsections. In Subsection 4.1, we prove the enhanced dissipation estimate of the cell density’s remainder
N 6= (2.9a). In Subsection 4.2, we prove the z-average (N0) estimate (2.9b).

4.1. The Remainder of the Cell Density. In this section, we prove the estimate (2.9a). First we calculate
the time evolution of ‖AκN 6=‖2L2 using the equation (2.2a):

1

2
‖AκN 6=(t)‖2L2 =

1

2
‖AκNin; 6=‖2L2 + δκ1/3

∫ t

0

‖|∂x|1/3AκN 6=‖2L2dτ −
∫ t

0

∥∥∥∥∥

√
−∂tMκ

Mκ
AκN 6=

∥∥∥∥∥

2

L2

dτ

− κ

∫ t

0

‖Aκ

√
−∆LN 6=‖2L2dτ −

∫ t

0

∫
AκN 6= Aκ(U · ∇LN)6=dV dτ

− κ

∫ t

0

∫
AκN 6= Aκ(∇L · (N∇LC))6=dV dτ.

Recalling the relation (A.4) and the null condition U
(2)
0 = ∂z∆

−1
y Ω0 = 0, we have that if δ ≤ 1

16π2 , then

1

2
‖AκN 6=(t)‖2L2 ≤1

2
‖AκNin; 6=‖2L2 − 1

2

∫ t

0

∥∥∥∥∥

√
−∂τMκ

Mκ
AκN 6=

∥∥∥∥∥

2

L2

dτ − κ

2
‖Aκ

√
−∆LN 6=‖2L2

tL
2

+

∣∣∣∣
∫ t

0

∫
Aκ(U

(1)
0 ∂zN 6=) AκN 6=dV dτ

∣∣∣∣ +
∣∣∣∣
∫ t

0

∫
AκN 6= Aκ∇L · (N ∇⊥

L∆
−1
L Ω 6=)dV dτ

∣∣∣∣

+

∣∣∣∣κ
∫ t

0

∫
Aκ∂

τ
y (N 6=∂yC0) AκN 6=dV dτ

∣∣∣∣+
∣∣∣∣κ
∫ t

0

∫
Aκ∇L · (N∇LC6=) AκN 6=dV dτ

∣∣∣∣

=:
1

2
‖AκNin; 6=‖2L2 − 1

2

∫ t

0

∥∥∥∥∥

√
−∂τMκ

Mκ
AκN 6=

∥∥∥∥∥

2

L2

dτ − κ

2
‖Aκ

√
−∆LN 6=‖2L2

tL
2

+ TN 6=;11 + TN 6=;12 + TN 6=;21 + TN 6=;22.(4.1)

The estimates of the terms in (4.1) are collected in the following lemmas.

Lemma 4.1. The TN 6=;11, TN 6=;12 terms in (4.1) are bounded as follows

TN 6=;11 + TN 6=;12 ≤ Cǫ1/2(B2
Ω6=

+ B2
Ω0

+ B2
N 6=

+ B2
N0

)BN 6=
.(4.2)

Here C is a constant depending only on the regularity level s.

Lemma 4.2. The TN 6=;21 and TN 6=;22 terms are bounded as follows

TN 6=;21 + TN 6=;22 ≤ κ

8

∫ t

0

‖Aκ

√
−∆LN 6=‖2L2dτ + Cκ2/3(B2

N 6=
+ B2

N0
)B2

N 6=
.(4.3)

Here C is a constant depending only on the regularity level s.

Now we complete the proof of (2.9a).
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Proof of (2.9a). Combining the decomposition (4.1), Lemma 4.1, Lemma 4.2 and the choice of parameters
0 < κ ≤ ǫ = κ

ν ≤ 1, we obtain

‖AκN 6=(t)‖2L2 +

∥∥∥∥∥

√
−∂tMκ

Mκ
AκN 6=

∥∥∥∥∥

2

L2
tL

2

+ κ‖Aκ

√
−∆LN 6=‖2L2

tL
2

≤C‖Nin; 6=‖2Hs + Cǫ1/2(B2
Ω6=

+ B2
Ω0

+ B2
N 6=

+ B2
N0

)BN 6=
+ Cǫ1/2(B2

N 6=
+ B2

N0
)B2

N 6=
.

Here C is universal constant depending only on s. The following choices of parameters yields (2.9a):

B2
N 6=

≥ 4C‖Nin; 6=‖2Hs , ǫ ≤ 1

16C2(B2
Ω6=

+ B2
Ω0

+ B2
N 6=

+ B2
N0

)2
.(4.4)

�

The remaining part of the subsection is devoted to the proof of Lemma 4.1 and Lemma 4.2.

Proof of Lemma 4.1. The estimate of TN 6=;11 is similar to the estimate of TΩ6=;12 in (3.5). Hence we will only
sketch the estimate. First we note that by the velocity law and the null condition,

∫
∂y∆

−1
y Ω0∂zAκN 6= AκN 6=dV =

1

2

∫
∂y∆

−1
y Ω0 ∂z (AκN 6=)

2
dV = 0,

the TN 6=;11-term can be rewritten as follows

TN 6=;11 =

∣∣∣∣
∫ t

0

∫ (
−Aκ(∂y∆

−1
y Ω0 ∂zN 6=) + ∂y∆

−1
y Ω0 ∂zAκN 6=

)
AκN 6=dV dτ

∣∣∣∣

=C

∣∣∣∣
∑

k 6=0

∫ t

0

∫∫
(Mκ(τ, k, η)〈k, η〉s −Mκ(τ, k, ξ)〈k, ξ〉s)

i(η − ξ)

(η − ξ)2
Ω̂(τ, 0, η − ξ)

× (ikeδκ
1/3|k|2/3τ N̂(τ, k, ξ)) AκN̂(τ, k, η)dξdηdτ

∣∣∣∣.

Now we observe that this is in the same form as (3.7). Hence combining the application of an identical
argument as in (3.8), the enhanced dissipation relation (A.7) and the bootstrap hypotheses (2.8a), (2.8d)
yields that

TN 6=;11 ≤ C‖AνΩ0‖L∞
t L2‖AκN 6=‖2L2

tL
2 ≤ CBΩ0

B2
N 6=

ǫ1/2κ1/6.

We note that this is consistent with (4.2).
For the TN 6=;12 term in (4.1), we apply integration by parts, the Biot-Savart law, and Hölder inequality

to obtain the following:

TN 6=;12 =

∣∣∣∣
∫ t

0

∫
∇LAκN 6= · Aκ(∇⊥

L∆
−1
L Ω 6=N)dV dτ

∣∣∣∣ ≤ C‖Aκ

√
−∆LN 6=‖L2

tL
2‖Aκ(∇⊥

L∆
−1
L Ω 6=N)‖L2

tL
2 .

Now we invoke the product estimate (A.10), and then the Mκ-estimate (A.3b) and the elliptic estimate (A.8)
to derive the following bound

TN 6=;12 ≤‖Aκ

√
−∆LN 6=‖L2

tL
2‖Aν∇⊥

L∆
−1
L Ω 6=‖L2

tL
2‖AκN‖L∞

t L2

≤‖Aκ

√
−∆LN 6=‖L2

tL
2

∥∥∥∥∥Aν

√
−∂tMν

Mν
Ω 6=

∥∥∥∥∥
L2

tL
2

(‖AκN0‖L∞
t L2 + ‖AκN 6=‖L∞

t L2).

Now the bootstrap hypotheses (2.8a), (2.8b), (2.8c) yields

TN 6=;12 ≤Cκ−1/2BN 6=
BΩ6=

ǫν1/2(BN0
+ BN 6=

) ≤ CBN 6=
(B2

Ω6=
+ B2

N0
+ B2

N 6=
)
√
ǫ.

Combining the above estimates of TN 6=;11 and TN 6=;12 yields the result (4.2). �
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Proof of Lemma 4.2. First we estimate the TN 6=;21-term with integration by parts and the product estimate
(A.10) as follows:

TN 6=;21 =

∣∣∣∣κ
∫ t

0

∫
Aκ∇LN 6= · Aκ(N 6=∂yC0)dV dτ

∣∣∣∣ ≤
κ

16
‖Aκ

√
−∆LN 6=‖2L2

tL
2 + Cκ‖AκN 6=‖2L2

tL
2‖Aκ∂yC0‖2L∞

t L2 .

Now we invoke the chemical gradient estimate (A.2), the enhanced dissipation relation (A.7) and the hy-
potheses (2.8a), (2.8b) to get

TN 6=;21 ≤ κ

16

∫ t

0

‖Aκ

√
−∆LN 6=‖22dτ + Cκ2/3B2

N 6=
B2
N0

.

To estimate the TN 6=;22-term, we use the integration by parts and the product estimate (A.10) to obtain that

TN 6=;22 =

∣∣∣∣κ
∫ t

0

∫
Aκ∇LN 6= · Aκ(N∇LC6=)dV dτ

∣∣∣∣ ≤
κ

16
‖Aκ

√
−∆LN 6=‖2L2

tL
2 + Cκ‖AκN‖2L∞

t L2‖Aκ∇LC6=‖2L2
tL

2 .

We use the Mκ-estimate (A.3b), (A.3c) and the hypotheses (2.8a), (2.8b) to obtain the following

TN 6=;22 ≤ κ

16
‖Aκ

√
−∆LN 6=‖2L2

tL
2 + Cκ‖AκN‖2L∞

t L2‖Aκ∇L(1−∆L)
−1N 6=‖2L2

tL
2

≤ κ

16
‖Aκ

√
−∆LN 6=‖2L2

tL
2 + Cκ‖AκN‖2L∞

t L2

∥∥∥∥∥Aκ

√
−∂tMκ

Mκ
N 6=

∥∥∥∥∥

2

L2
tL

2

≤ κ

16
‖Aκ

√
−∆LN 6=‖2L2

tL
2 + Cκ(B2

N 6=
+ B2

N0
)B2

N 6=
.

Combining the above estimates of TN 6=;21 and TN 6=;22 yields the result (4.3). �

4.2. The z-average of Cell Density. In this section, we prove (2.9b). The strategy we adopt is to derive
an estimate of the L2-norm of N0, and inductively derive higher Sobolev norm bound.

First we write down the time evolution of the L2 andHs energy. We consider multiplierM ∈ {1, 〈∂y〉, ..., 〈∂y〉s}.
Recalling the equation (2.2b), we have that

1

2

d

dt
‖MN0‖22 =− κ‖∂yMN0‖22 − κ

∫
M(∇L · (N∇LC))0 MN0dV −

∫
M
(
∇L · (N∇⊥

L∆
−1
L Ω)

)
0
MN0dV

=− κ‖∂yMN0‖22 − κ

∫
M(∂y(N0∂yC0)) MN0dV

− κ

∫
M(∇L · (N 6=∇LC6=))0 MN0dV −

∫
M
(
∇L · (N∇⊥

L∆
−1
L Ω)

)
0
MN0dV.

Next we observe the following relations

(∇L · (N 6=∇LC6=))0 =(∂t
y(N 6=∂

t
yC6=))0 = ∂y(N 6=∂

t
yC6=)0,(

∇L · (N∇⊥
L∆

−1
L Ω)

)
0
=(∂t

y(N∂z∆
−1
L Ω))0 = ∂y

(
N 6=∂z∆

−1
L Ω 6=

)
0
.

With these, we can rewrite the time evolution of ‖MN0‖22 as follows

1

2

d

dt
‖MN0‖22 =− κ‖∂yMN0‖22 + κ

∫
M∂yN0 M(N0∂yC0)dV

+ κ

∫
M∂yN0 M(N 6=∂

t
yC6=)0dV +

∫
M∂yN0 M

(
N 6=∂z∆

−1
L Ω 6=

)
0
dV

=:− κ‖∂yMN0‖22 + TN0;0 + TN0;1 + TN0;2(4.5)

The remaining part of the proof is subdivided into several lemmas. The first lemma provides estimates for
the contributions from the non-zero modes.
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Lemma 4.3. There exists a constant C, which only depends on the regularity level s, such that the following
estimates hold

∫ t

0

‖(N 6=∂
τ
yC6=)0‖2Hs

y
dτ ≤CB4

N 6=
;(4.6)

∫ t

0

‖(N 6=∂z∆
−1
L Ω 6=)0‖2Hs

y
dτ ≤CB2

N 6=
B2
Ω6=

ǫ2ν.(4.7)

Proof. To prove (4.6), we use Lemma A.1, the Mκ-multiplier bound (A.3b), the definition of Aκ (2.7), the
product estimate (A.10), the elliptic estimate (A.8), and the bootstrap hypothesis (2.8a) as follows

∫ t

0

‖(N 6=∂
τ
yC6=)0‖2Hs

y
dτ ≤C‖〈∂z, ∂y〉s(∂t

yC6=N 6=)‖2L2
tL

2 ≤ C‖Aκ(∂
t
yC6=N 6=)‖2L2

tL
2

≤C
∥∥Aκ∂

t
y∆

−1
L N 6=

∥∥2
L2

tL
2
‖AκN 6=‖2L∞

t L2

≤C

∥∥∥∥∥Aκ

√
−∂tMκ

Mκ
N 6=

∥∥∥∥∥

2

L2
tL

2

‖AκN 6=‖2L∞
t L2 ≤ CB4

N 6=
.(4.8)

This concludes the proof of (4.6). Next we prove the estimate (4.7). The idea is identical to the proof (4.8).
The adjustment is that we apply the fact Aκ ≈ Aν (3.10), the bootstrap hypotheses (2.8a) and (2.8c) during
the estimate
∫ t

0

‖(N 6=∂z∆
−1
L Ω 6=)0‖2Hs

y
dτ ≤C‖〈∂z, ∂y〉s(N 6=∂z∆

−1
L Ω 6=)‖2L2

tL
2 ≤ C‖Aκ(N 6=∂z∆

−1
L Ω 6=)‖2L2

tL
2

≤C‖AκN 6=‖2L2
tL

2‖Aκ∂z∆
−1
L Ω 6=‖2L∞

t L2 ≤ C‖AκN 6=‖2L∞
t L2‖Aν∂z∆

−1
L Ω 6=‖2L2

tL
2

≤C‖AκN 6=‖2L∞
t L2

∥∥∥∥∥Aν

√
−∂tMν

Mν
Ω 6=

∥∥∥∥∥

2

L2
tL

2

≤ CB2
N 6=

B2
Ω6=

ǫ2ν.

This concludes the proof of (4.7).
�

Next, we prove the following L2 estimate for N0.

Lemma 4.4. If the hypotheses (2.8a), (2.8b) hold on [0, T⋆], then the solution N0 is bounded uniformly in
L2

‖N0‖L2
y(R)

≤ CL2 := ‖Nin;0‖2 + CM3/2 + C(B2
N 6=

+ BN 6=
BΩ6=

ǫ1/2), ∀t ∈ [0, T⋆].(4.9)

Here M = ‖n‖L1 = |T|
∫
R
Nin;0(y)dy is the conserved total mass of the cell density.

Proof. Before estimating the norm ‖N0‖2, we collect the L1(R) bound of N0. Since the solution N(t, z, y)
to the equation (2.1) is positive by Theorem 2.1, we have that the function N0(y) =

1
2π

∫
T
N(t, z, y)dz is

positive. Moreover, the total integral of N0 is preserved due to the divergence form of the equation (2.2b),
∫

N0(t)dy =

∫
N0(0, y)dy,

which, together with the positivity of N0, implies that

‖N0(t)‖L1(R) ≡
M

2π
, ∀t ∈ [0, T⋆].(4.10)

Next we estimate each component in (4.5)
M=1, which describes the time evolution of ‖N0(t)‖22. Combining

the information (4.10), (A.1), the TN0;0-term in (4.5) can be estimated as follows

TN0;0 ≤κ

∫
|∂yN0| |∂yC0N0|dy ≤ 1

4
κ‖∂yN0‖22 + κ‖∂yC0‖2∞‖N0‖22 ≤ 1

4
κ‖∂yN0‖22 + CκM2‖N0‖22.(4.11)
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The TN0;1, TN0;2 terms can be estimated as follows

TN0;1(t) + TN0;2(t) ≤
1

2
κ‖∂yN0‖2L2

y
(t) + C

(
κ‖N 6=∂

t
yC6=‖2L2

z,y
(t) +

1

κ
‖N 6=∂z∆

−1
L Ω 6=‖2L2

z,y
(t)

)

=:
1

2
κ‖∂yN0‖2L2

y
(t) +

d

dt
GL2(t), GL2(0) = 0.

By Lemma 4.3,

GL2(t) ≤ CB4
N 6=

+ CB2
N 6=

B2
Ω6=

ǫ, ∀t ∈ [0, T⋆].(4.12)

Combining the above estimates (4.11), (4.12) and the relation (4.5), we have

1

2

d

dt

∫

R

N2
0dy ≤ −1

4
κ‖∂yN0‖22 + CκM2‖N0‖22 +

d

dt
GL2(t).(4.13)

Now we try to get an estimate on the L2 norm from (4.13). Applying the following Nash inequality

‖f‖3L2(R) ≤ C‖f‖2L1(R)‖∂yf‖L2(R)

yields

−‖∂yf‖22 ≤ − ‖f‖62
C‖f‖41

.

Combining this with the estimate (4.13), we have that

d

dt

(
‖N0‖22 −GL2(t)

)
≤− 1

2C
κ‖∂yN0‖22 + κCM2‖N0‖22 ≤ −κ

‖N0‖62
CM4

+ κCM2‖N0‖22

≤− 1

CM4
κ‖N0‖22

(
‖N0‖42 − CM6

)

≤− 1

CM4
κ‖N0‖22

(
‖N0‖22 −GL2(t)− CM3

)(
‖N0‖22 + CM3

)
.(4.14)

We can see that the ‖N0‖2 is bounded uniformly in [0, T⋆] in the sense that

‖N0(t)‖2 ≤ CL2 = ‖Nin;0‖2 + CM3/2 + C(B2
N 6=

+ BN 6=
BΩ6=

ǫ1/2), ∀t ∈ [0, T⋆],

which is (4.9). �

Next we try to use the information on ‖N0‖2 to get the bound on higher Hs norm.

Lemma 4.5. Assuming the hypotheses (2.8a), (2.8c) hold on [0, T⋆], then the Hs norm of the solution N0

to (2.2b) is bounded:

‖N0(t)‖Hs ≤ CHs (‖Nin‖Hs ,M,BN 6=
,
√
ǫBΩ6=

), ∀t ∈ [0, T⋆].

Here M = ‖n‖L1 = |T|
∫
R
Nin;0(y)dy is the conserved total mass of the cell density. Moreover, if

ǫ ≤ 1

B2
Ω6=

,(4.15)

then

‖N0‖Hs ≤ CHs(‖Nin‖Hs ,M,BN 6=
).(4.16)

Proof. We estimate the Hi-norms (i ∈ {1, 2, ..., s}) in the inductive fashion. Assume that we have the
following estimate for some 1 ≤ i ≤ s,

‖N0‖Hi−1 ≤ CHi−1 (‖Nin;0‖Hs ,M,BN 6=
,
√
ǫBΩ6=

).

We would like to prove that

‖N0‖Hi ≤ CHi (‖Nin;0‖Hs ,M,BN 6=
,
√
ǫBΩ6=

).(4.17)

Similar to the L2 case, we estimate each term in (4.5)
M=〈∂y〉i

.
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The TN0;1, TN0;2 terms can be estimated as follows

TN0;1(t) + TN0;2(t) ≤
1

2
κ‖∂y〈∂y〉iN0‖2L2(t) + C

(
κ‖N 6=∂

t
yC6=‖2Hi(t) +

1

κ
‖N 6=∂z∆

−1
L Ω 6=‖2Hi(t)

)

=:
1

2
κ‖∂y〈∂y〉iN0‖2L2(t) +

d

dt
GHi (t), GHi (0) = 0.(4.18)

By Lemma 4.3,

GHi(t) ≤ CB4
N 6=

+ CB2
N 6=

B2
Ω6=

ǫ, ∀t ∈ [0, T⋆].(4.19)

The TN0;0 term can be estimated using Hölder’s inequality, product estimate of Sobolev functions f, g ∈
Hi(R), i ≥ 1, Gagliardo-Nirenberg inequality, and the chemical gradient estimates (A.1), (A.2), as follows,

TN0;0 ≤κC‖∂y〈∂y〉iN0‖L2‖〈∂y〉i(N0∂yC0)‖L2 ≤ κC‖∂y〈∂y〉iN0‖L2‖〈∂y〉i∂yC0‖L2‖〈∂y〉iN0‖L2

≤1

4
κ‖∂y〈∂y〉iN0‖2L2 + Cκ‖〈∂y〉i−1N0‖2L2‖〈∂y〉iN0‖2L2 ≤ 1

4
κ‖∂y〈∂y〉iN0‖2L2 + CκC2

Hi−1‖〈∂y〉iN0‖2L2 .(4.20)

Applying the following Gagliardo-Nirenberg inequality

‖∂i
yf‖2 ≤ C‖f‖

1
i+1

2 ‖∂i+1
y f‖

i
i+1

2

yields that

−‖∂i+1
y N0‖22 ≤ −

‖∂i
yN0‖

2i+2

i
2

C‖N0‖
2
i
2

≤ −
‖∂i

yN0‖
2i+2

i
2

CCL2(M,BN 6=
,
√
ǫBΩ6=

)
2
i

.(4.21)

Combining (4.18), (4.20) and (4.21) yields

d

dt
‖〈∂y〉iN0‖22 ≤ −κ

‖∂i
yN0‖2+

2
i

2

4CC
2
i

L2

+ κCC2
Hi−1‖〈∂y〉iN0‖22 +

d

dt
GHi(t).(4.22)

Here CL2 and CHi−1 only depend on ‖Nin‖Hs , M, BN 6=
and

√
ǫBΩ6=

. Now we apply an ODE argument similar
to the one in (4.14) to derive that the quantity ‖N0‖Hi is uniformly bounded on the time interval [0, T⋆], i.e.,
(4.17). We first recall the relation C−1

i (‖∂i
yN0‖2L2 + ‖N0‖2Hi−1) ≤ ‖〈∂y〉iN0‖2L2 ≤ Ci(‖∂i

yN0‖2L2 + ‖N0‖2Hi−1)
with Ci ≥ 1, and the GHi -estimate (4.19). Then we distinguish between two scenarios:

a) ‖∂i
yN0(t)‖2L2 < 4Ci(GHi(t) + C2

Hi−1 ); b) ‖∂i
yN0(t)‖2L2 ≥ 4Ci(GHi (t) + C2

Hi−1 ).(4.23)

In the first scenario, the estimate (4.17) is direct. Assume that on some open time intervals, the estimate b)
in (4.23) holds. Then the time evolution (4.22) implies that there exists a constant C such that

d

dt
(‖〈∂y〉iN0(t)‖22 −GHi (t)) ≤ −κ

(‖〈∂y〉iN0(t)‖22 −GHi (t))
i+1

i

CC
2/i
L2

+ κCC2
Hi−1 (‖〈∂y〉iN0(t)‖22 −GHi (t)).

Hence by (4.19), we have that

‖〈∂y〉iN0(t)‖2L2 ≤ C(‖Nin‖Hs ,M,CL2 , CHi−1 ,BN 6=
,
√
ǫBΩ6=

).

This is consistent with (4.17). Hence, the induction estimate (4.17) is established. Since i ranges in
{1, ..., s}, we end up with the following

‖N0(t)‖Hs ≤ CHs (‖Nin‖Hs ,M,BN 6=
,
√
ǫBΩ6=

), ∀t ∈ [0, T⋆].

This concludes the proof. �

Proof of (2.9b). To prove (2.9b), we choose (4.15), and

BN0
≥ 4CHs(‖Nin‖Hs ,M,BN 6=

).(4.24)

Here CHs is defined in (4.16). �
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Proof of Proposition 2.1. It is enough to show that the choice of parameters (3.4), (3.16), (4.4), (4.15), and
(4.24) are consistent. We choose the parameters

B2
N 6=

:=C1‖Nin‖2Hs , B2
N0

:= C2C
2
Hs(‖Nin‖L1∩Hs ,BN 6=

),

B2
Ω6=

:=C3(B4
N 6=

+ B4
N0

), B2
Ω0

:= C4(B2
Ω6=

+ B4
N 6=

).(4.25)

Here C1, C2, C3, C4 are constants depending only on the universal constants appeared in (3.4), (3.16), (4.4),
(4.15), and (4.24). Now we summarize the choice of ǫ = κ/ν:

ǫ ≤ ǫ0 :=
1

C5(B4
Ω6=

+ B4
Ω0

+ B4
N 6=

+ B4
N0

)
.(4.26)

Here C5 is a constant depending only on the universal constants appeared in (3.4), (3.16), (4.4), (4.15). This
concludes the proof of Proposition 2.1. �

Appendix A.

A.1. Miscellaneous.

Lemma A.1. Let F ∈ Lp(T×R), G ∈ Hs(T×R), and F0(y) :=
1
|T|

∫
T
F (z, y)dz, G0(y) :=

1
|T|

∫
T
G(z, y)dz.

The following estimates hold:

‖F0‖Lp(R) ≤‖F‖Lp(T×R), 1 ≤ p ≤ ∞,

‖〈∂y〉sG0‖L2(R) ≤C‖〈∂z, ∂y〉sG‖L2(T×R).

Proof. Applying the Hölder’s inequality yields that for p ∈ (1,∞),

‖F0‖Lp(R) =

(∫

R

∣∣∣∣
1

2π

∫

T

Fdz

∣∣∣∣
p

dy

)1/p

≤
(∫

R

((∫

T

|F |pdz
)1/p(∫

T

(2π)−p′

dz

)1/p′)p

dy

)1/p

≤
(∫

R

∫

T

|F |pdzdy
)1/p

= ‖F‖Lp(T×R).

The proof in the p = 1,∞ cases are variants of the argument above. Applying the Fourier transform and
the Plancherel equality yields

‖〈∂y〉sF0‖2L2(R) = C

∫

R

〈η〉2s|F̂0|2(η)dη ≤ C
∑

k

∫

R

〈k, η〉2s|F̂ |2(k, η)dη = C‖〈∂z , ∂y〉sF‖2L2(T×R).

This finishes the proof of the lemma. �

Lemma A.2 (Chemical gradient estimates). Consider solution C0 to the equation (1 − ∂yy)C0 = N0. The
following estimates hold

‖∂yC0‖L∞
y

≤‖N0‖L1
y
;(A.1)

‖∂yC0‖Hs
y
≤‖N0‖Hs−1

y
, s ∈ N+.(A.2)

Proof. To prove the (A.1), we use the explicit solution formula to get

‖∂yC0‖L∞
y

= C

∥∥∥∥
∫

R

y − y′

|y − y′|e
−|y−y′|N0(y

′)dy′
∥∥∥∥
L∞

y

≤ C‖N0‖L1
y
.

To prove the (A.2), we use the Fourier transform and the Plancherel equality

‖∂yC0‖2Hs = C

∫
〈η〉2s

∣∣∣∣
iη

1 + |η|2 N̂0

∣∣∣∣
2

dη ≤ C

∫
〈η〉2(s−1)|N̂0|2dη ≤ C‖N0‖2Hs−1 .

�

Next we provide a sketch of the proof of Theorem 2.1.
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Proof of Theorem 2.1. Standard energy argument yields the local-in-time ‖N‖Hs
z,y

, ‖Ω‖Hs
z,y

-estimates. We
omit further details for the sake of brevity.

The justification of the positivity of the cell density, i.e., N ≥ 0, is as follows. We use the technique
from [18]. The explicit argument is as follows. We consider the family of convex positive functions jǫ
which approximates j(s) = max{−s, 0}. We can choose the jǫ’s to be monotonically increasing to j. These
functions j′ǫ = j′ in [−ǫ, 0]c and 0 ≤ j′′ǫ ≤ 2ǫ−1 in [−ǫ, 0]. So Jǫ(s) :=

∫ s

0
j′′ǫ (σ)σdσ satisfies |Jǫ(s)| ≤ 2|s| for

ǫ ∈ (0, 1), and limǫ→0+ Jǫ(s) = 0 for all s. Now we have that

d

dt

∫

T×R

jǫ(N(t, z, y))dV =

∫

T×R

j′ǫ(N)(κ∆LN − U · ∇LN − κ∇L · (N∇LC))dV

=− κ

∫

T×R

j′′ǫ (N)(|∂zN |2 + |∂t
yN |2)dV −

∫

T×R

U · ∇L(jǫ(N))dV

+ κ

∫

T×R

j′′ǫ (N)(N∂zN∂zC +N∂t
yN∂t

yC)dV

≤κ

∫

T×R

∂z

(∫ N

0

j′′ǫ (s)sds

)
∂zCdV + κ

∫

T×R

∂t
y

(∫ N

0

j′′ǫ (s)sds

)
∂t
yCdV

=κ

∫

T×R

(∫ N

0

j′′ǫ (s)sds

)
(−∆LC)dV =

∫

T×R

(∫ N

0

j′′ǫ (s)sds

)
(N − C)dV.

Therefore,

∫

T×R

jǫ(N(t))dV −
∫

T×R

jǫ(N(0))dV =

∫ t

0

∫

T×R

(∫ N(τ)

0

j′′ǫ (s)sds

)
(N − C)dV dτ.

Since |Jǫ(s)| ≤ 2|s|, we can use 4(N2+C2) as the dominator and invoke the Dominated convergence theorem
and Monotone convergence theorem to get for all [0, t] on which L2 is bounded,

‖N−(t)‖L1
z,y

=

∫

T×R

j(N(t))dV = lim
ǫ→0+

∫

R2

jǫ(N(t))dV = lim
ǫ→0+

∫ t

0

∫

T×R

(∫ N(τ)

0

j′′ǫ (s)sds

)
(N − C)dV dτ

=

∫ t

0

∫

T×R

lim
ǫ→0+

(∫ N(τ,X)

0

j′′ǫ (s)sds

)
(N − C)dV dτ = 0.

As a result, N ≥ 0. �

A.2. Fourier Multipliers. In this section, we summarize the properties of the Fourier multipliers that we
employ. First, we collect some basic properties of the multipliers Mκ,Mν defined in (2.6).

Lemma A.3. For ι ∈ {κ, ν}, the following properties for Mι hold

Mι(t, k, η) = π2, |k| /∈ (0, ι−1/2];(A.3a)

9

4
π2 ≥Mι(t, k, η) ≥

π2

4
;(A.3b)

−∂tMι(t, k, η) ≥
π

2

|k|2
|k|2 + |η − kt|2 , k 6= 0;(A.3c)

|∂ηMι(t, k, η)| ≤
4π

|k| , k 6= 0,(A.3d)

√
−∂tMι(t, k, η)√
−∂tMι(t, k, ξ)

≤2(1 + |η − ξ|2) 1
2 , |k| ∈ (0, ι−1/2].(A.3e)

Moreover, the multipliers Mκ,Mν have the enhanced dissipation properties

1

3π
ι1/3|k|2/3 ≤− ∂tMι

Mι
(t, k, η) + ι(|k|2 + |η − kt|2), ι ∈ {κ, ν}.(A.4)
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Proof. First of all, the first two inequalities (A.3a), (A.3b) are consequences of the definitions (2.3), (2.4),
(2.5) and the boundedness of the arctan-function. The time derivative of the multiplier W reads as follows

∂tW(t, k, η) =− |k|2
|k|2 + |η − kt|2 , k 6= 0.(A.5)

Hence combining this expression, and the bounds Wι ≥ π/2, ∂tWι ≤ 0, we have that

−∂tMι = −W∂tWι −Wι∂tW ≥ π

2

|k|2
|k|2 + |η − kt|2 , k 6= 0.

This completes the proof of (A.3c).
To prove (A.3d), we observe that

|∂ηMι(t, k, η)| ≤|W∂ηWι|+ |Wι∂ηW| ≤ 2π 10<|k|≤ι−1/2

1

|k|
ι1/3|k|2/3

1 + ι2/3|k|4/3|t− η
k |2

+ 2π 1k 6=0
1

|k|
|k|2

|k|2 + |η − kt|2

≤4π

|k|1k 6=0.

This concludes the proof of (A.3d).
Next, we prove (A.3e). Direct computation yields that

∂tWι(t, k, η) =− ι1/3|k|2/3
1 + ι2/3|k|4/3|t− η

k |2
1|k|∈(0,ι−1/2], ι ∈ {κ, ν}.(A.6)

For the wave number ranging in |k| ∈ (0, ι−1/2], we invoke the expressions (A.5), (A.6) to obtain the following
estimates of the quotient

−∂tMι(t, k, η)

−∂tMι(t, k, ξ)
≤1 + |t− ξ

k |2
1 + |t− η

k |2
+

1 + ι2/3|k|4/3|t− ξ
k |2

1 + ι2/3|k|4/3|t− η
k |2

≤1 + 2|t− η
k |2 + 2|η−ξ

k |2
1 + |t− η

k |2
+

1 + 2ι2/3|k|4/3|t− η
k |2 + 2ι2/3|k|4/3|η−ξ

k |2
1 + ι2/3|k|4/3|t− η

k |2

≤4 + 4
|η − ξ|2
|k|2 .

This yields (A.3e).
Finally, we prove (A.4). We recall the expressions (A.5), (A.6) and the boundWι ∈ [π/2, 3π/2]. Combining

these ingredients yields that

−∂tMι

Mι
+ ι(|k|2 + |η − kt|2) ≥−W∂tWι

Mι
+ ι(|k|2 + |η − kt|2)

≥10<|k|≤ι−1/2

ι1/3|k|2/3
1 + ι2/3|k|4/3|t− η

k |2
2

3π
+ ι|k|2

(
1 +

∣∣∣∣t−
η

k

∣∣∣∣
2
)
.

There are two regimes for the wave number k: |k| ∈ (0, ι−1/2] or |k| /∈ (0, ι−1/2]. If |k| /∈ (0, ι−1/2], then it can
be checked that ι|k|2 ≥ ι1/3|k|2/3. Hence the result (A.4) is ensured. On the other hand, if |k| ∈ (0, ι−1/2],
we estimate the above expression as follows

−∂tMι

Mι
+ ι(|k|2 + |η − kt|2)

≥1|t−η
k |≤ι−1/3|k|−2/3

ι1/3|k|2/3
1 + ι2/3|k|4/3|t− η

k |2
2

3π
+ 1|t−η

k |>ι−1/3|k|−2/3 ι|k|2
(
1 +

∣∣∣∣t−
η

k

∣∣∣∣
2
)

≥ 1

3π
ι1/3|k|2/3.

This concludes the proof of the lemma. �

The following lemma is a natural consequence of Lemma A.3.
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Lemma A.4. For any function f 6= ∈ Hs with vanishing mean 1
|T|

∫
T
f 6=dz ≡ 0, the following estimates hold

for ι ∈ {κ, ν},
∫ t

0

‖Aιf 6=‖2L2dτ ≤Cι−1/3

∫ t

0

∥∥∥∥∥Aι

√
−∂τMι

Mι
f 6=

∥∥∥∥∥

2

L2

+ ι‖Aι

√
−∆Lf 6=‖2L2dτ ;(A.7)

‖Aι∇L∆
−1
L f 6=‖L2 + ‖Aι∇L(1−∆L)

−1f 6=‖L2 ≤ C

∥∥∥∥∥Aι
1

|∂z|

√
−∂tMι

Mι
f 6=

∥∥∥∥∥
L2

.(A.8)

Here the constant C is universal.

Proof. The inequality (A.7) follows from the property (A.4) and the Plancherel equality. The inequality
(A.8) follows from the properties (A.3b), (A.3c) and the Plancherel equality. �

The product rule for the multiplier Mι is contained in the next lemma:

Lemma A.5. Consider the multipliers Mι, ι ∈ {κ, ν}. For two functions f, g ∈ Hs(T× R), s > 1, we have
the following product rule

‖Mι(fg)‖Hs ≤C‖Mιf‖Hs‖Mιg‖Hs .(A.9)

Similarly, we have the following product rule for Aι, ι ∈ {κ, ν}, s > 1,

‖Aι(fg)‖L2 ≤ C‖Aιf‖L2‖Aιg‖L2.(A.10)

Proof. First recall the product rule for the usual Sobolev functions on T× R:

‖fg‖Hs ≤ C‖f‖Hs‖g‖Hs , s > 1.

On the other hand, we recall that the bound (A.3b) yields that

‖f‖Hs ≈ ‖Mιf‖Hs , ‖g‖Hs ≈ ‖Mιg‖Hs , ι ∈ {κ, ν}.
Combining these estimates yields the result (A.9).

To prove the product estimate (A.10), we observe the following relation for x, y ≥ 0,

|x+ y|2/3 ≤ |x|2/3 + |y|2/3.
As a result, we have that

eδκ
1/3|k|2/3t ≤ eδκ

1/3|k−ℓ|2/3teδκ
1/3|ℓ|2/3t, ∀k, ℓ ∈ Z.

Next we combine the above relation and the bounds of Mι (A.3b) to derive the following,

‖Aι(fg)‖2L2

≤
∑

k∈Z

∫
e2δκ

1/3|k|2/3tM2
ι (k, η)

∣∣∣∣(1 + |k|2 + |η|2) s
2

∑

ℓ∈Z

∫
|f̂(k − ℓ, η − ξ)| |ĝ(ℓ, ξ)|dξ

∣∣∣∣
2

dη

≤C
∑

k∈Z

∫ ∣∣∣∣
∑

ℓ∈Z

∫ (
eδκ

1/3|k−ℓ|2/3tMι(k − ℓ, η − ξ)(1 + |k − ℓ|2 + |η − ξ|2) s
2 |f̂(k − ℓ, η − ξ)|

)

×
(
eδκ

1/3|ℓ|2/3t|ĝ(ℓ, ξ)|
)
dξ

∣∣∣∣
2

dη

+ C
∑

k∈Z

∫ ∣∣∣∣
∑

ℓ∈Z

∫ (
eδκ

1/3|ℓ|2/3tMι(ℓ, ξ)(1 + |ℓ|2 + |ξ|2) s
2 |ĝ(ℓ, ξ)|

)(
eδκ

1/3|k−ℓ|2/3t|f̂(k − ℓ, η − ξ)|
)
dξ

∣∣∣∣
2

dη.

Now we apply the Young’s convolution inequality, Hölder’s inequality and the inequality
∑

k∈Z
‖F̂k(·)‖L1

η
≤

C(
∑

k∈Z
‖〈·〉sF̂k(·)‖2L2

η
)1/2, s > 1 to derive that

‖Aι(fg)‖L2 ≤C

(
‖Aιf‖L2

∑

k∈Z

∥∥∥eδκ1/3|k|2/3tĝk(·)
∥∥∥
L1

η

+ ‖Aιg‖L2

∑

k∈Z

∥∥∥eδκ1/3|k|2/3tf̂k(·)
∥∥∥
L1

η

)

≤C‖Aιf‖L2 ‖Aιg‖L2.

This concludes the proof of the estimate (A.10) and completes the proof of the lemma. �
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In the proof, the following commutator estimate is needed:

Lemma A.6 (Commutator estimates). The following commutator estimate concerning Mι is satisfied

|Mι(t, k, η)〈k, η〉s −Mι(t, k, ξ)〈k, ξ〉s| ≤ C
|η − ξ|
|k| (〈η − ξ〉s + 〈k, ξ〉s), k 6=0.(A.11)

Proof. Here the difference |Mι(t, k, η)〈k, η〉s −Mι(t, k, ξ)〈k, ξ〉s| can be decomposed as follows:

Mι(t, k, η)〈k, η〉s −Mι(t, k, ξ)〈k, ξ〉s(A.12)

=Mι(t, k, η)
(
(1 + k2 + η2)s/2 − (1 + k2 + ξ2)s/2

)
+ (Mι(t, k, η)−Mι(t, k, ξ))(1 + k2 + ξ2)s/21k 6=0

=:T1 + T2.
For the first term in (A.12), one applies the mean value theorem to obtain that there exists θ ∈ [0, 1], such
that the following estimate holds

|T1| =
∣∣∣∣Mι(k, η)

s

2
(1 + k2 + ((1 − θ)η + θξ)2)

s
2
−1)2((1− θ)η + θξ)(η − ξ)

∣∣∣∣

≤C

(
(1 + k2 + ξ2)

s−1

2 + (1 + k2 + η2)
s−1

2

)
|η − ξ|≤ C

|η − ξ|
|k| (〈k, ξ〉s + 〈η − ξ〉s).

To estimate the T2 term in (A.12), we apply the property (A.3d) and the mean value theorem to obtain that

|T2| ≤
C|η − ξ|

|k| (1 + k2 + ξ2)
s
21k 6=0.

Combining the two estimates and (A.12), we obtain (A.11). The proof of the lemma is finished. �
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[61] P. Raphaël and R. Schweyer. On the stability of critical chemotactic aggregation. Math. Ann., 359(1-2):267–377, 2014.
[62] Y. Tao and M. Winkler. Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear
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