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Abstract

Many biological systems can be modeled as a chemical reaction network with unknown parameters. Data
available to identify these parameters are often in the form of a stationary distribution, such as that obtained
from measurements of a cell population. In this work, we introduce a framework for analyzing the identifiability
of the reaction rate coefficients of chemical reaction networks from stationary distribution data. Working with
the linear noise approximation, which is a diffusive approximation to the chemical master equation, we give a
computational procedure to certify global identifiability based on Hilbert’s Nullstellensatz. We present a variety
of examples that show the applicability of our method to chemical reaction networks of interest in systems and
synthetic biology, including discrimination between possible molecular mechanisms for the interaction between
biochemical species.

Keywords: system identification, synthetic biology, chemical reaction network

1 Introduction

System identification is concerned with going from a model class for a system to a particular model in that class
based on experimental data. The basic property that guarantees that this is possible with sufficient data is structural
identifiability [5]. One practical use of identifiability analysis is to determine whether a particular experimental setup
is sufficient to uniquely estimate the parameters of interest. If a system is not identifiable, then an identification
algorithm may give incorrect parameter values without warning. Similarly, if one wishes to discriminate between
two possible models for a system, the property of discriminability is necessary to guarantee a priori that the true
model can be determined from data. If discriminability is not guaranteed then an algorithm that determines which
model generated data can select the wrong model. In the context of ordinary differential equation (ODE) models,
identifiability analysis often takes the form of determining which set of input signals are sufficient to identify the
parameters, while discriminability analysis takes the form of determining which input signals are sufficient to select
the true model.

Global a priori identifiability is the strongest type of structural identifiability, which guarantees that no matter
what the true parameter values are, one will be able to uniquely determine them from a given experiment as long as
sufficient data is gathered [27]. In general, proving that global identifiability holds is difficult [13, 23], and for ODE
models a variety of computational tools have been developed. Some exploit the differential algebraic structure of the
problem to analyze identifiability with Ritt’s Algorithm [27, 6, 3], while other methods are based on observability
analysis, with the parameters treated as states with trivial dynamics [41, 39, 40, 49, 12, 48].

Most work on identifiability for biological applications has focused on ODE models that describe the time evolution
of the mean values of the state variables, using the previously discussed algorithmic tools. However, in biological
applications, common data include single cell measurements from a population of cells, such as obtained from flow
cytometry [38] or from single cell RNAseq [28]. While these techniques can obtain measurements of population
distributions across many cells, they do not allow tracking individuals cells across time. Therefore, the data does not
take the form of (possibly noisy) measurements along a sample path of the system and thus the standard methods for
identifiability analysis of dynamical systems are not directly applicable. However, it has been observed in a variety
of studies that using information about the time evolution of the population distribution over the outputs can help
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identify more parameters than just the time evolution of the means of the outputs in specific cases [31, 30, 26, 43].
Despite this, no general framework for identifiability analysis exists in this setting. When the time evolution of the
population distribution can be described by a system of finitely many ODEs, methods of identifiability analysis for
ODE models such as those in [27] and [49] can be used. Cinquemani studied identifiability of chemical reaction
networks from a sequence of distributional data [13]. However, their results are only valid for local identifiability of
chemical reaction networks with propensities that are affine in the state, e.g., monomolecular reactions, and therefore
these results do not allow analysis of general chemical reaction networks or of global identifiability.

A special case of distributional data measures only the stationary distribution, i.e., just the equilibrium popu-
lation distribution. In this scenario, algorithms to identify chemical reaction network parameters from stationary
distributions have been developed [21, 32, 4]. However, none of these works considered the question of identifiability.
Therefore, generally applicable methods for identifiability analysis when only the stationary distribution is measured
have been lacking. In fact, to the best of the authors’ knowledge, the question of identifiability from only the station-
ary distribution has not been studied for general chemical reaction networks. Swaminathan and Murray considered
identifiability of linear time invariant systems from the stationary distribution over all states and additionally a
sample path of the underlying stochastic process for a subset of states [46], but they did not provide conditions for
identifiability in the case of only distributional data.

An additional source of noise in biological systems is extrinsic noise. Extrinsic noise arises from the variability of
cellular context across a population of cells [45]. In this work we additionally consider extrinsic noise that manifests
through parameter variation between cells in a population. Such noise can arise from a variety of sources, most
notably in synthetic genetic circuits from differences in copy number of the DNA on which the genetic circuit is
encoded, such as with lentiviral transduction in mammalian cells or with plasmid transfection in either bacterial or
mammalian cells [11, 37]. Such noise can, in principle, improve our ability to identify the reaction rate constants,
since we have data across a wider range of conditions. However, this is not clear a priori.

In this work, we consider global identifiability of linear noise approximation (LNA) models [47] of chemical
reaction networks with intrinsic and extrinsic noise from their stationary distributions, including a treatment of the
model discrimination case where one wishes to know if it is possible to determine which chemical reactions are present
in a system. Our solution is a generally applicable algebraic characterization of identifiability, which is amenable to
analysis using Hilbert’s Nullstellensatz [14], and thus allows the computation of certificates of identifiability.

This paper is organized as follows. In Section 2, we give mathematical background and a description of the
problem we consider. In Section 3, we give the main results of this paper, describing how to use algebraic tools to
certify global identifiability of chemical reaction networks from their stationary distributions. In particular, Section
3 describes a chemical reaction network modeled by the LNA where the goal is to identify the values of the reaction
rate constants. In Section 4, we show how to approach the model discriminability problem using our techniques.
In Section 5, we show how to certify global identifiability from the stationary distribution for chemical reaction
networks with extrinsic and intrinsic noise, and additionally show that the addition of extrinsic noise cannot make
an identifiable chemical reaction network non identifiable. Throughout this work we apply our methods to certify
identifiability of a wide range of chemical reaction networks.

2 Problem Setting

2.1 The linear noise approximation

A chemical reaction network (CRN) is a model of a system of chemical species interacting through reactions, each of
which is a discrete event that occurs stochastically. The exact model of the resulting stochastic kinetics is given by
the chemical master equation, an infinite set of ordinary differential equations that describes the time evolution of
the probability of having a particular number of molecules of each species in the system [18]. In this work, we use the
LNA as a model of the stochastic dynamics of CRNs. The LNA, also known as the system size expansion, is the first
order correction to the deterministic reaction rate equations in Ω−1/2, where Ω is the volume in which the chemical
species are contained [47]. Letting X represent the vector of molecular counts of each species, and x represent the
mean concentration of the molecular species, the LNA makes the approximation X = Ωx +

√
Ωξ. Here, x is the

deterministic mean, which is given by the reaction rate equations, an ODE model that describes the rate of change
of the molecular species concentrations, assuming mass action kinetics [18], and ξ is a random variable representing
the fluctuations of X about Ωx. For completeness, we give a brief description of the LNA here, a full derivation
is given in [47]. We remark that while the LNA gives distributions that are close to the distributions given by the
chemical master equation when the volume and molecular counts are large on a finite time interval [25], there are no
formal guarantees that the stationary distribution of the LNA is close to that of the chemical master equation. In
this work, we take the stationary distribution of the LNA as our model of the stationary distribution of a CRN.
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Consider a CRN consisting of r reactions among n species in a well mixed volume of size Ω. Reaction i, for

i ∈ {1, . . . , r}, is described by sTriX
ki−→ sTpiX, where X =

[

X1 X2 · · ·Xn

]T
with Xj the number of molecules of

species j, sri is the vector of number of molecules of reactant species consumed by reaction i, and spi is the vector
of number of molecules of product species created by reaction i. The reaction rate constant of reaction i is ki. Using
the approximation X(t) = Ωx(t) +

√
Ωξ(t), the dynamics of the system are given by

d

dt
x(t) =f(x(t);k), x0(0) = x0, (1a)

dξ(t) =
∂f

∂x
ξ(t)dt+ Γ(x(t);k)dw(t), ξ(0) = ξ0, (1b)

in which (1a) are the reaction rate equations (RRE) [18] and (1b) gives the evolution of ξ(t). Specifically, let
k = [k1, . . . , kr]

T . Then, f(x;k) is given by
f(x;k) = Sq(x;k) (2)

where q(x;k) =
[

q1(x; k1) q2(x; k2) · · · qr(x; kr)
]T

, where qi(x; ki) = ki
∏n

j=1 x
sjri
j is the macroscopic propensity

of reaction i, where sjri is the jth element of sri. The stoichiometry matrix S is defined as S =
[

s1 s2 · · · sr
]

,
with si = spi − sri representing the change in X when reaction i occurs. Here, w(t) is a Wiener process, and

Γ(x;k) = S diag
(

√

q(x;k)
)

. (3)

Throughout this work, we assume that (1a) has a unique, exponentially stable, equilibrium in Rn
≥0 for all k > 0.

We denote this equilibrium point by x∗(k). Let P ∈ Rn×n be the stationary covariance of ξ. Then, the following
equations characterize the stationary distribution of X(t) as a function of k:

0 =f(x;k), (4a)

0 =
∂f

∂x
P + P

∂f

∂x

T

+ Γ(x;k)Γ(x;k)T . (4b)

The stationary distribution of X(t)/Ω is N (x∗(k), 1
ΩP

∗(k)), i.e., a normal distribution with mean x∗(k) and covari-
ance 1

ΩP
∗(k), where x∗(k) and P ∗(k) are the solutions to (4). Our assumption that (1a) has a unique equilibrium

point in Rn
≥0 for all k > 0 ensures that (4) defines the unique stationary distribution under the LNA. For brevity,

we denote a CRN as a function R that maps reaction rate vectors to the corresponding stationary distribution
according to (4), i.e., R : Rr

>0 → Rn × Sn×n, where Sn×n is the space of symmetric n× n real matrices, defined by
R(k) =

(

x∗(k), 1
ΩP

∗(k
)

).

Example 1 (Illustrative Example 1). We first consider a simple CRN R1 with a single species (n = 1) and three
reactions (r = 3) given by

∅
k1

k2
X1

k3
2X1, (5)

where reaction i is labeled with its reaction rate constant, ki. The reaction rate equation (2) in this case given by

d

dt
x1 = f(x;k) = k1 − k2x1 − k3x

2
1, (6)

from which we see that there is a unique and asymptotically stable equilibrium point in the region x1 ≥ 0 as long as k >

0, and thus the LNA model has a unique equilibrium distribution. In this case we have q(x;k) =
[

k1 k2x1 k3x
2
1

]T

and the stoichiometry matrix is S =
[

1 −1 −1
]

. Therefore, from (3) we have

Γ(x;k)Γ(x;k)T = k1 + k2x1 + k3x
2
1. (7)

2.2 Identifiability

In this work, we study the following problem: Given π∗, a stationary distribution over the species concentrations,
and K ⊆ Rr

>0 a set of possible k values, can we uniquely identify the k which gave rise to π∗? To make this question
mathematically precise, we will consider the following definition of global identifiability for CRNs from the stationary
distribution.
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Definition 2.1. A CRN R(k) is stationary globally identifiable over K ⊆ Rr
>0 if for any k1,k2 ∈ K such that

R(k1) = R(k2), there exists a ∈ R such that k2 = ak1.

Remark 2.1. For any CRN, if one scales all of the reaction rate constants by the same value, a, the stationary
distribution does not change. This fundamental lack of identifiability is due to our inability to tell the ‘speed’ of a
continuous time Markov chain from its stationary distribution. Definition 2.1 reflects that fact that here we study
identifiability modulo this fundamental source of non-identifiability.

Remark 2.2. Whether or not a system is identifiable depends entirely on the model, which is given by the LNA
in our analysis. However, under certain conditions, the first and second moments of the LNA and chemical master
equation models are identical [20], and hence in those cases our results also imply identifiability of the chemical
master equation model.

2.3 Nullstellensatz

In this section, we briefly describe the algebraic tools that we use in this work [14]. Let z be an n′ dimensional vector
of variables. We denote the set of polynomials in z,with rational coefficients by Q[z]. Since p ∈ Q[z] is a function of
z, for any z′ ∈ Cn′

, p(z′) denotes p evaluated at z′ ∈ Cn′

. We say that p ∈ Q[z] is a monomial if p can be written as

p =
∏N

i=1 z
αi

i for some N ≥ 0 and α1, α2, . . . , αN ∈ N. Let “≺” be any total ordering [14] on the set of monomials in

Q[z] that additionally satisfies i) 1 ≺ p for any nonconstant monomial p ∈ Q[z] and ii)
∏N

i=1 x
αi

i ≺ ∏N
i=1 z

βi

i implies

that
∏N

i=1 z
αi+γi

i ≺ ∏N
i=1 z

βi+γi

i for all α1, . . . , αN , β1, . . . , βN , γ1, . . . , γN ∈ N. Such a total ordering ≺ is called a
term order on Q[z]. The ideal generated by a set of polynomials P ⊆ Q[z] is defined as all polynomial combinations
of the elements of P , i.e.,

〈P〉 =
{

g ∈ Q[z]

∣

∣

∣

∣

∣

g =

m
∑

i=1

λipi, p1, . . . , pm ∈ P , λ1, λ2, . . . , λm ∈ Q[z], for some m ∈ N

}

. (8)

Example 2 (Algebraic preliminaries). To illustrate the concepts we consider two different sets of polynomials,
P1 = {z2 − 1, z − 1} ⊂ Q[z] and P2 = {z2 − 1, z − 2} ⊂ Q[z]. We have that

〈P1〉 =
{

g ∈ Q[z]
∣

∣g = λ1

(

z2 − 1
)

+ λ2 (z − 1) , λ1, λ2 ∈ Q[z]
}

(9)

and
〈P2〉 =

{

g ∈ Q[z]|g = λ1

(

z2 − 1
)

+ λ2 (z − 2) , λ1, λ2 ∈ Q[z]
}

. (10)

For example, P1 contains 0 (with λ1 = 0, λ2 = 0), z2 − 1 (with λ1 = 1, λ2 = 0), z− 1 (with λ1 = 0, λ2 = 1), as well
as z3−1 (with λ1 = z, λ2 = 1), but does not contain 1, since no λ1, λ2 ∈ Q[z] results in 1 = λ1(z

2−1)+λ2(z−1). On
the other hand, P2 does contain 1, since λ1 = 2z/3− 1 and λ2 = −2z2/3− z/3 results in λ1(z

2 − 1)+λ2(z− 2) = 1.

Let p ∈ Q[z]. Then, in≺(p) denotes the largest monomial with respect to ≺ that appears in p with a nonzero
coefficient. Suppose I = 〈P〉, then G is a Gröbner basis of I if it is a finite subset of I that satisfies 〈in≺(p)|p ∈ I〉 =
〈in≺(g)|g ∈ G〉. G is a reduced Gröbner basis of I if additionally i) the coefficient of the largest monomial in g with
respect to ≺ is 1 for each g ∈ G and ii) for all g ∈ G, 〈in≺(g′)|g′ ∈ G \ {g}〉 does not contain any monomial term
of g. In Example 2 and for the rest of this work we use Buchberger’s algorithm, as implemented in Macaulay2, to
compute reduced Gröbner bases [9, 19].

Example 2 (Algebraic preliminaries continued). Continuing Example 2, we consider the reduced Gröbner bases of
P1 and P2. When n′ = 1, the only valid term order is 1 ≺ z ≺ z2 ≺ . . . . The reduced Gröbner basis of 〈P1〉 is
G1 = {z − 1} with respect to this term order, whereas with the same term order the reduced Gröbner basis of P2 is
{1}. The details of computing reduced Gröbner bases can be found in [14].

Given an ideal I = 〈P〉, there are many sets of polynomials that generate I. The reduced Gröbner basis is a
special choice of generating polynomials which reveals certain properties of I. In particular, let V(P) denote the
variety of P , defined by

V(P) = {z ∈ C|0 = p(z), ∀p ∈ P} . (11)

In other words if P = {p1, p2, . . . , pm}, V(P) is the set of solutions to the system of equations 0 = p1(z), 0 =
p2(z), . . . , 0 = pm(z). It is true that V(P) = V(F) for any F such that I = 〈F〉. In particular, if G is a reduced
Gröbner basis of I, then V(P) = V(G). Therefore, if we wish to study V(P), the set of common zeros of the
polynomials in P , we can study V(G) instead, which is advantageous since by examining the reduced Gröbner basis,
one can easily tell if V(P) is empty or not. This idea is formalized by Hilbert’s Nullstellensatz, one version of which
is given here.
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Theorem 2.1 (See e.g. [44]). Let p1, p2, . . . , pm ∈ Q[z] be polynomials in the n′ variables in z. Then

∅ =
{

z ∈ Cn′

∣

∣

∣
0 = p1(x), 0 = p2(x), . . . , 0 = pm(x)

}

(12)

if and only if the reduced Gröbner basis of 〈p1, p2, . . . , pm〉 is {1}.

Example 2 (Algebraic preliminaries continued). Since the reduced Gröbner basis of P1 is not {1}, from Theorem
2.1 we can conclude that there is a solution in C to

0 = z2 − 1, (13)

0 = z − 1. (14)

In fact, one can see that there is one solution, z = 1. On the other hand, the reduced Gröbner basis of P2 is {1} and
therefore, from Theorem 2.1, we can conclude that there are no solutions in C to

0 = z2 − 1, (15)

0 = z − 2, (16)

which is consistent with our ability in this simple case to deduce that the sets of solutions to (15) and (16) do not
intersect.

3 Certifying Identifiability of the LNA

We now present the main results of this work, which are methods to algorithmically test for stationary global
indentifiability. We begin by showing that the right-hand side of (4) is linear in k. Specifically, we can write (4a) as

f(x;k) =

r
∑

i=1

kisi

n
∏

j=1

x
sjri
j , (17)

and, given (3), (4b) can be written as

0 =
∂f

∂x
P + P

∂f

∂x

T

+ S diag q(x;k)ST , (18)

where we have used the fact that for all x ∈ Rn
≥0, it is true that q(x;k) ≥ 0. Therefore, the right-hand side of (4a)

is linear in k. Furthermore, since ∂f
∂x and q(x;k) are linear in k, the right-hand side of (4b) is also linear in k. Also,

(4) give n+ n2 equations for x ∈ Rn
≥ and P ∈ Sn×n. Since P is symmetric, there are only n2+n

2 unique equations in
(4b). Therefore, combining our observations about linearity and the number of unique equations, (4) can be written
in the form

0 = A(x, P )k, (19)

where A(x, P ) ∈ R
n2+n

2 ×r is a function of x and of the n2+n
2 entries of P that are on or above the diagonal.

Additionally, since f(x;k) and qi(x; ki) are polynomials in x, the elements of A(x, P ) are polynomials in x and in
the elements of P on or above the diagonal.

Example 1 (Illustrative example 1 continued). We ask if R1, given by (5), is stationary globally identifiable over
R3

>0. In this example, letting x = x1 and P = p11, writing out (4) explicitly using (6) and (7) yields

0 = k1 − k2x1 − k3x
2
1, (20a)

0 = 2(−k2 − 2k3x1)p11 + k1 + k2x1 + k3x
2
1. (20b)

We can write (20) as 0 = A(x, P )k where

A(x, P ) =

[

1 −x1 −x2
1

1 x1 − 2p11 x2
1 − 4p11x1

]

. (21)
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In general, proving that a given system is stationary globally identifiable is difficult, since it requires proving
that (19) has only one subspace of solutions in k for all (x, P ) that are feasible, that is, for all (x, P ) such that
there exists k ∈ K satisfying (x, P ) = R(k). These feasible (x, P ) are given by (4), which is a set of polynomial
equations in (x, P ), along with the constraint k ∈ K. To overcome this difficulty, we develop a method to certify
global stationary identifiability based on Theorem 2.1. To begin, associated with each CRN R, we define the sets

V =
{

(x, P,k) ∈ (Rn, Sn×n,Rr
>0)

∣

∣0 = A(x, P )k, rank(A(x, P )) < r − 1
}

. (22)

and
V ′ =

{

(x, P,k) ∈ (Rn
≥0, S

n×n,Rr
>0)

∣

∣0 = A(x, P )k, rank(A(x, P )) < r − 1
}

. (23)

The following theorem gives an algebraic characterization of stationary globally identifiable for a CRN.

Theorem 3.1. Consider a CRN R. The following hold:

i) If V = ∅, then R is stationary globally identifiable over Rr
>0.

ii) If R is stationary globally identifiable over Rr
>0, then V ′ = ∅.

Proof. First, to show i), suppose that R is not stationary globally identifiable over Rr
>0. Then there exists k1,k2 > 0,

with k2 and k1 linearly independent, such that 0 = A(x, P )k1 and 0 = A(x, P )k2. This immediately implies that
rankA(x, P ) < r − 1, and therefore (x, P,k1) ∈ V . Now, to show ii), suppose that there exists (x′, P ′,k′) ∈ V ′. By
the definition of V ′, rankA(x′, P ′) < r − 1, so there exists W , a subspace of dimension 2 containing k such that
0 = A(x′, P ′)W . It then follows from the fact that Rr

>0 is open that there exists k′′ > 0, linearly independent from
k′, such that 0 = A(x, P )k′′. By the uniqueness of the equilibrium point of (1a) in Rn

≥0, we know that (x′, P ′) is
the stationary distribution of R for all k ∈ W , and therefore R is not stationary globally identifiable.

Remark 3.1. While our assumption that (1a) has a unique, exponentially stable, equilibrium point in Rn
≥0 is required

for statement ii) of Theorem 3.1 to hold, this assumption is not required for statement i) of Theorem 3.1.

In the remainder of this section, we transform the rank condition on A into a polynomial condition so that the
question of the emptiness of V can be addressed by algebraic techniques. To this end, we require the following
Lemmas.

Lemma 3.1. (Determinant rank characterization) Let A ∈ Rn×m. Then, rankA = r′ if and only if every r′+1×r′+1
minor of A is zero, and there exists an r′ × r′ minor of A that is non-zero.

Proof. See [22, Section 0.4].

Lemma 3.2. Let A ∈ Rn×m. Then, rankA < r′ if and only if every r′ × r′ minor of A is zero.

Proof. First, we show that if rankA < r′, then every r′ × r′ minor of A is zero. Let rankA = r′′ < r′. Then, by
Lemma 3.1, every r′′ + 1 × r′′ + 1 minor of A is zero. Furthermore, by the Laplace expansion for the determinant
[22], for all r′′′ ≥ r′′ + 1, every r′′′ × r′′′ minor of A is zero. Specifically, since r′ ≥ r′′ + 1, every r′ × r′ minor of A is
zero. Second, we show that if rankA ≥ r′, then there exists a nonzero r′ × r′ minor of A. Let rankA = r′′ ≥ r′. By
Lemma 3.1 there exists an r′′ × r′′ nonzero minor of A. It follows from the Laplace expansion for the determinant
[22] that for all r′′′ ≤ r′′ there exists an r′′′ × r′′′ nonzero minor of A. Specifically, there exists an r′ × r′ nonzero
minor of A.

We now use Lemma 3.2 and Theorem 3.1 to give a computationally checkable sufficient condition for a CRN to
be stationary globally identifiable.

Theorem 3.2. Consider a CRN R. If the reduced Gröbner basis of

I =
〈

y2jkj − 1 ∀j ∈ {1, . . . , r}, Aq(x, P )k ∀q ∈ {1, . . . r},

M
(r−1)×(r−1)
i (x, P ) ∀i ∈ {1, . . . ,m}

〉 (24)

is {1}, then R is stationary globally identifiable over Rr
>0. Here, Aq(x, P ) is the qth row of A(x, P ) and M

(r−1)×(r−1)
i (x, P )

is all of the size (r − 1)× (r − 1) minors of A(x, P ), indexed by i = 1, . . . ,m.

Remark 3.2. The ideal I defined in (24) is a subset of Q[(x,y,k)].
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Proof. Let

V̄ =
{

(x, P,k,y) ∈ (Rn, Sn×n,Rr,Rr)
∣

∣

∣
0 = A(x, P )k,

0 = M
(r−1)×(r−1)
i (x, P ) ∀i ∈ {1, . . . ,m}, 0 = y2jkj − 1 ∀j ∈ {1, . . . , r}

}

. (25)

Recall V defined in (22). We first show that V = ∅ if and only if V̄ = ∅. First, suppose V 6= ∅. Then, there exists
(x, P,k) ∈ V . It follows that 0 = A(x, P )k. Let y be such that yj =

√

1/kj. Therefore, for all j, y2jkj − 1 = 0.

By Lemma 3.2, rank(A(x, P )) < r − 1 guarantees that 0 = M
(r−1)×(r−1)
i (x, P ) for all i = 1, . . . ,m, and hence

(x, P,k,y) ∈ V̄ . Now suppose that V̄ 6= ∅. Then, there exists (x, P,k,y) ∈ V̄ . It follows that 0 = A(x, P )k. Then,

we have that 0 = M
(r−1)×(r−1)
i (x, P ) for all i = 1, . . . ,m, and hence by Lemma 3.2 it is true that rankA(x, P ) < r−1.

Therefore (x, P,k) ∈ V , and hence V 6= ∅. To complete the proof, observe that V̄ is the variety of I defined by
(24). If the reduced Gröbner basis of I is {1} then by Theorem 2.1 V̄ = ∅. This implies by our above argument that
V = ∅, and therefore by Theorem 3.1 R is stationary globally identifiable over Rr

>0.

Since the computation of reduced Gröbner bases can be done algorithmically, Theorem 3.2 allows us to check if
a CRN is stationary globally identifiable automatically.

Remark 3.3. Even though in this work we focus on using Hilbert’s Nullstellensatz to certify identifiability, alterna-
tively Positivstellensatz can be used to search for a certificate that V = ∅ [42].

Example 1 (Illustrative example 1 continued). We continue with Example 1. We ask if R1, given by (5), is
stationary globally identifiable over R3

>0. In this case, r = 3, n = 1, x = x1, and P = p11. Using (21), (24) becomes
〈

k1y
2
1 − 1, k2y

2
2 − 1, k3y

2
3 − 1, k1 − k2x1 − k3x

2
1,

k1 − k3(4p11x1 − x2
1)− k2(2p11 − x1), 2x1 − 2p11, 2x

2
1 − 4p11x1, 2p11x

2
1

〉

.
(26)

Computing the reduced Gröbner basis of (26) using the built in implementation of Buchberger’s algorithm in Macaulay2
[19], we find that it is {1} [19]. Therefore, by Theorem 3.2, R1 is stationary globally identifiable over R3

>0.

3.1 Examples

In this section, we present several examples of using the mathematical tools of Section 3 to certify that a given CRN
is stationary globally identifiable. For all of the examples in this section, we compute reduced Gröbner bases with
Macaulay2, a software system for algebraic geometry [19].

Example 3 (Two species illustrative example). We now consider CRN R3 shown in (27):

∅

k
1

X1

k 3

X2
k2

(27)

R3 has two species, X1 an X2. X1 is produced with rate constant k1 and spontaneously transforms into X2 with rate
constant k2, which is degraded with rate constant k3. We wish to understand if it is possible to estimate the rate
vector k up to a scaling factor from the stationary distribution. For this example, f(x;k) defined in (2) is

f(x;k) =

[

k1 − k2x1

k2x1 − k3x2

]

, (28)

and Γ(x;k) defined in (3) is

Γ(x;k)Γ(x;k)T =

[

k1 + k2x1 −k2x1

−k2x1 k2x1 + k3x2

]

. (29)

Writing (1) in the form (19) yields

0 = A(x, P )k =













1 −x1 0 0 0
0 0 1 −x2 x1

1 x1 − 2p11 0 0 0
0 −p12 0 −p12 p11
0 0 1 x2 − 2p22 2p12 + x1













k. (30)
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Computing the reduced Gröbner basis G of the ideal defined by (24) with A given in (30), we find that G = {1}, and
hence by Theorem 3.2 R3 is stationary globally identifiable over R3

>0.

Example 4 (Sequestration rate). Consider a CRN R4 consisting of two species X1 and X2 as shown in (31):

∅

k
2

k
1

X1

k
3

k
4

X2

k 5

X1 +X2

(31)

Each species is produced and degraded at some unknown rate, and additionally X1 and X2 mutually degrade through

the reaction X1 +X2
k5 ∅. Such a system of chemical reactions is referred to as the antithetic motif, and

can be used to realize an integral controller [35, 24, 2]. Controllers constructed using the antithetic motif only
approximately implement an integrator [35]. Based on [35], we can establish a heuristic to compare two possible
biological implementations of the antithetic motif with parameter vectors kA and kB respectively with respect to the
steady state error generated in a feedback system. To do this, we define the following dimensionless parameters:

σ1

(

kA,kB
)

=
kB
2 kA

5

kB
5 kA

2
, σ2

(

kA,kB
)

=
kB
2 kA

1

kB
1 kA

2
, (32)

σ3

(

kA,kB
)

=
kB
4 kA

5

kB
5 kA

4
, σ4

(

kA,kB
)

=
kB
4 kA

3

kB
3 kA

4
. (33)

If σi(k
A,kB) << 1 for i ∈ {1, 2, 3, 4}, then kB is expected to perform better than kA. We observe that for all

αA, αB > 0 we have σi

(

αAkA, αBkB
)

= σi

(

kA,kB
)

for i ∈ {1, 2, 3, 4}. Therefore, stationary global identifiability

ensures that one can estimate σi

(

kA,kB
)

for i = 1, 2, 3, 4 from the stationary distribution of R4. Motivated by this
we study whether R4 is stationary globally identifiable. For R4 we have that

f(x;k) =

[

k1 − k2x1 − k5x1x2

k3 − k4x2 − k5x1x2

]

(34)

and

Γ(x;k)Γ(x;k)T =

[

k1 + k2x1 + k5x1x2 k5x1x2

k5x1x2 k3 + k4x2 + k5x1x2

]

. (35)

Therefore, writing (1) in the form (19) yields

0 = A(x, P )k =













1 −x1 0 0 −x1x2

0 0 1 −x2 −x1x2

1 x1 − 2p11 0 0 x1x2 − 2p12x1 − 2p11x2

0 −p12 0 −p12 x1x2 − p12x1 − p12x2 − p22x1 − p11x2

0 0 1 x2 − 2p22 x1x2 − 2p22x1 − 2p12x2













k. (36)

Computing the reduced Gröbner basis G of the ideal defined by (24) with A in (36) we find that G = {1}, and
therefore by Theorem 3.2 R4 is stationary globally identifiable.We have shown that measurements of the stationary
distributions are sufficient to infer which of two biological implementations of R4 is better for implementing antithetic
feedback control.

Example 5 (Cooperative enzymatic degradation). We now consider R5 shown in (37).

∅

k
2

k
1

X1

k
3

k
4

X2 2X1 +X2

k
5

2X1

(37)

Note that R5 is similar to R4 considered in Example 4, but the mutual degradation of X1 and X2 has been replaced by

X1 enzymatically degrading X2 via the reaction 2X1 +X2
k5

2X1. Such an enzymatic reaction, where two copies
of X1 bind with and degrade one copy of X2 is encountered when an mRNA molecule has two target sites for a
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complementary microRNA to bind to, both of which must be bound for degradation of the mRNA to occur [17]. For
R5 we have that f(x;k) defined in (2) is given by

f(x;k) =

[

k1 − k2x1

−k5x2x
2
1 + k3 − k4x2

]

(38)

and Γ(x;k) defined in (3) is given by

Γ(x;k)Γ(x;k)T =

[

k1 + k2x1 0
0 k5x2x

2
1 + k3 + k4x2

]

. (39)

Therefore, writing (1) in the form (19) yields

0 = A(x, P )k =













1 −x1 0 0 0
0 0 1 −x2 −x2

1x2

1 x1 − 2p11 0 0 0
0 −p12 0 −p12 −p12x

2
1 − 2p11x2x1

0 0 1 x2 − 2p22 x2
1x2 − 2p22x

2
1 − 4p12x1x2













k. (40)

Computing the Gröbner basis G of the ideal defined by (24) with A in (40), we find that G = {1}, and therefore by
Theorem 3.2 R5 is stationary globally identifiable over R5

>0.

We now apply the results of Section 3 to two different CRNs with three species.

Example 6 (Activation cascade). We consider a simplified model of an activation cascade R6, as shown in (41):

∅
k1

k2
X1

k
3

k
4

X2

k5

k6
X3

k
7

X1 +X2
k8

X2 +X3

(41)

In our simplified model R6, we have three species, X1, X2, and X3, each of which is a protein species. X1 activates

the production of X2, which we model by the reaction X1
k7

X1 +X2. Similarly, X2 activates the production of X3

as modeled by the reaction X2
k7

X2 +X3. Reactions 1 through 6 model each species degrading as well as being
produced at some basal rate. For R6, f(x;k) defined in (2) is given by

f(x;k) =





k1 − k2x1

k3 − k4x2 + k7x1

k5 − k6x3 + k8x2



 (42)

and Γ(x;k)Γ(x;k)T with Γ(x;k) defined in (3) is given by

Γ(x;k)Γ(x;k)T =





k1 + k2x1 0 0
0 k3 + k4x2 + k7x1 0
0 0 k5 + k6x3 + k8x2



 . (43)

Therefore, writing (1) in the form (19) yields

0 = A(x, P )k =





























1 −x1 0 0 0 0 0 0
0 0 1 −x2 0 0 x1 0
0 0 0 0 1 −x3 0 x2

1 x1 − 2p11 0 0 0 0 0 0
0 −p12 0 −p12 0 0 p11 0
0 −p13 0 0 0 −p13 0 p12
0 0 1 x2 − 2p22 0 0 2p12 + x1 0
0 0 0 −p23 0 −p23 p13 p22
0 0 0 0 1 x3 − 2p33 0 2p23 + x2





























k. (44)

Computing the reduced Gröbner basis G of the ideal (24) with A given in (44), we find that G = {1}, and therefore
by Theorem 3.2 R6 is stationary globally identifiable over R8

>0.
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Example 7 (Coupled sequestration reactions). We now consider a biological system with three species X1, X2, and
X3 where X2 binds to and mutually degrades with both X1 and X3. We model this system by the CRN shown in (45):

∅

k
2

k
1

X1

k
3

X2

k 4

X3

k5
X1 +X2

k6
X2 +X3 (45)

We assume that all three species are produced at some rate, but only X1 spontaneously degrades. This CRN is a coarse
model of two RNA species (X1 and X3), which are degraded by the same microRNA species (X2). Such systems are
common in biology, as some microRNA species are known to regulate multiple genes by targeting the corresponding
mRNA species [36]. For R7 the definition of f(x;k) in (2) gives

f(x;k) =





k1 − k2x1 − k5x1x2

k3 − k5x1x2 − k6x2x3

k4 − k6x2x3



 (46)

and using the definition of Γ(x;k) given in (3) we obtain that

Γ(x;k)Γ(x;k)T =





k1 + k2x1 + k5x1x2 k5x1x2 0
k5x1x2 k3 + k5x1x2 + k6x2x3 k6x2x3

0 k6x2x3 k4 + k6x2x3



 . (47)

Therefore, writing (1) in the form (19) yields 0 = A(x, P )k, where

A(x, P ) =


























1 −x1 0 0 −x1x2 0
0 0 1 0 −x1x2 −x2x3

0 0 0 1 0 −x2x3

1 x1 − 2p11 0 0 x1x2 − 2p12x1 − 2p11x2 0
0 −p12 0 0 x1x2 − p12x1 − p12x2 − p22x1 − p11x2 −p12x3 − p13x2

0 −p13 0 0 −p13x2 − p23x1 −p12x3 − p13x2

0 0 1 0 x1x2 − 2p22x1 − 2p12x2 x2x3 − 2p23x2 − 2p22x3

0 0 0 0 −p13x2 − p23x1 x2x3 − p23x2 − p23x3 − p33x2 − p22x3

0 0 0 1 0 x2x3 − 2p33x2 − 2p23x3



























.
(48)

Computing the reduced Gröbner basis G of the ideal (24) with A given in (48), we find that G = {1}, and therefore
by Theorem 3.2 R7 is stationary globally identifiable over R6

>0.

An example of a non-identifiable CRN is provided in Example 11, which is deferred until Section 5.

4 Model discrimination

An application of the results of Section 3 is to certifying a type of identifiability where instead of asking if it is
possible to uniquely determine the value of k, we ask if it is possible to determine whether the rate constant vector k
is in K1 ⊆ Rr

≥0 or in K2 ⊆ Rr
≥0. For example, we may be interested in determining which of two reactions is present

in our system, with the knowledge that at most one of the two reactions is present. This notion is formalized in the
following definition.

Definition 4.1. A CRN R is stationary model discriminable between K1 and K2 if there does not exist k1 ∈ K1,k2 ∈
K2 such that R(k1) = R(k2).

In this work, we do not give a complete characterization of stationary model discriminability in our problem
setting, however we do present the following result, which allows us to directly apply the framework developed in this
work to certify stationary model discriminability for CRNs. We first consider how to certify that a CRN is stationary
globally identifiable over a general set K defined in terms of polynomial equations. To do this, we consider a set

K̄ =
{

(k,y) ∈ Rr+l
∣

∣hi(k,y) = 0, i = 1, 2, . . . , p
}

(49)

where hi(k,y) are polynomials such that the orthogonal projection of K̄ onto the k space is equal to K. We call such
a K̄ a lifted representation of K. If K is a semialgebraic set, that is, a finite union of sets described by polynomial

10



equalities and inequalities, then it is always possible to construct a lifted representation as in (49) with l = 1 [29]. A
simple way to convert a strict inequality of the form p(x) > 0, to an equality is by adding a variable y, and using the
constraint p(x)y2 − 1 = 0. Similarly, an inequality of the form p(x) ≥ 0 can be converted to an equality by adding
a variable y and using the constraint p(x)− y2 = 0 [8, 7].

Theorem 4.1. Consider a CRN R and a set K such that K̄ defined in (49) is a lifted representation of K. If the
reduced Gröbner basis of

〈

hj(k,y), j = 1, . . . , p, Aq(x, P )k q = 1, . . . , r, M
(r−1)×(r−1)
i (x, P ) i = 1, . . . ,m

〉

(50)

is {1}, then R is stationary globally identifiable over K.

Proof. The proof follows that of Theorem 3.2, however we replace the polynomials kiy
2
i −1 with hj(k,y), and instead

of Theorem 3.1 we have only a sufficient semialgebraic condition for stationary global identifiability, since here we do
not assume that K is open. Suppose R is not stationary globally identifiable over K. Then there exist k1,k2 ∈ K,
x0 ∈ Rn

>0, and P ∈ Sn×n such that k1 and k2 are linearly independent and (x0, P0) = R(k1) = R(k2). The fact that
k1 ∈ K implies that there exists y1 such that (k1,y1) ∈ K̄. By the fact that k1 and k2 are linearly independent,

rankA(x0, P0) < r − 1, and hence M
(r−1)×(r−1)
i (x0, P0) for all i = 1, . . . ,m. Since additionally 0 = Aq(x0, P0)k1,

we have that k = k1, y = y1, x = x0, P = P0 is a solution to

0 =hj(k,y), ∀j = 1, . . . , p (51)

0 =Aq(x, P )k, ∀q = 1, . . . , r (52)

0 =M
(r−1)×(r−1)
i (x, P ), ∀i = 1, . . . ,m. (53)

Therefore, by Theorem 2.1, the reduced Gröbner basis of (50) must not be {1}. We have thus shown the contrapositive
of the theorem statement.

Example 1 (Example 1 with a different set K). We return to Example 1, however instead of asking if R1 given
by (5) is stationary globally identifiable over R3

>0, we are interested in investigating whether it is stationary globally
identifiable over

K =
{

k ∈ R3
∣

∣k1 > 0, k2 > 0, k3 ≥ 0
}

. (54)

One way to represent this set as the projection of a set K̄ in the form (49) is by choosing K̄ as:

K̄ =
{

(k,y) ∈ R6
∣

∣y21k1 − 1 = 0, y22k2 − 1 = 0, k3 − y23 = 0
}

. (55)

Indeed, it can be checked that the orthogonal projection of K̄ onto x is K. In fact, if y2i ki−1 = 0 then k1 = 1/y2i > 0.
Similarly, if k2 − y22 = 0, then k2 = y22 ≥ 0. To apply Theorem 4.1 we must compute the reduced Gröbner basis of
(50), which from (21) is given by

〈

k1 − k2x1 − k3x
2
1, k1 − k3(4p11x1 − x2

1)− k2(2p11 − x1), k1y
2
1 − 1,

k2y
2
2 − 1, k3 − y23 , 2x1 − 2p11, 2x

2
1 − 4p11x1, 2p11x

2
1

〉

.
(56)

Using Macaulay2 [19] we find that the reduced Gröbner basis of (56) is {1}, and hence by Theorem 4.1 R1 is
stationary globally identifiable over K given by (54).

We are now ready to study the model discriminability problem. Our approach is to attempt to certify global
stationary identifiability of R over the set K1 ∪K2, which is formalized in the following theorem.

Theorem 4.2. Consider a CRN R. Let K1,K2 ⊂ Rr
≥0 be such that cone (K1)∩K2 = ∅1. If R is stationary globally

identifiable over K = K1 ∪K2, then R is stationary model discriminable between K1 and K2.

Proof. We prove Theorem 4.2 by contraposition. Suppose that R is not stationary model discriminable between K1

and K2. Then there exists k1 ∈ K1 and k2 ∈ K2 such that R(k1) = R(k2). The assumption that span (K1)∩K2 = ∅
ensures that there does not exist α such that k1 = αk2, and hence R is not stationary globally identifiable over
K1 ∪K2.

Remark 4.1. The converse of Theorem 4.2 is not true. However, Theorem 4.2 provides a sufficient condition to
conclude that R is stationary model identifiable between K1 and K2.

1For a set K ⊆ Rv, cone(K) = {z ∈ Rv|z = λk, k ∈ K, λ ≥ 0}.
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As an illustration, suppose that for some CRN R with r reactions, we know that exactly one between the rth and
r − 1th reactions is present. If we want to determine if it is possible to discriminate from the stationary distribution
of R between reaction r being present and reaction r−1 being present, we ask if R is stationary model discriminable
between K1 and K2 where, letting k1:r−2 be the vector of the first r − 2 elements of k,

K1 =
{

k ∈ Rr
≥0

∣

∣k1:r−2 > 0, kr−1 > 0 and kr = 0
}

(57)

and
K2 =

{

k ∈ Rr
≥0

∣

∣k1:r−2 > 0, kr−1 = 0 and kr > 0
}

. (58)

Let K = K1 ∪K2. We need a representation of K as in equation (49). One such representation of K is

K̄ =
{

(k,y) ∈ R2r+1
∣

∣0 = kiy
2
i − 1, i = 1, 2, . . . , r − 2, 0 = kr−1 − y2r−1,

0 = kr − y2r , 0 = kr−1kr, 0 = (kr−1 + kr)y
2
r+1 − 1

}

.
(59)

Remark 4.2. We can choose K̄ to be any lifted representation of K1 ∪K2 of the form (49), however, it is possible
for the reduced Gröbner basis of (50) to be {1} for some choices of K̄ and not {1} for other choices of K̄. Such a
possibility is a consequence of using Nullstellensatz to prove identifiability, and using Positivstellensatz as discussed
in Remark 3.3 would prevent this issue.

Example 1 (1-dimensional model discriminability). Let us again consider R1 given by (5). Suppose we know that
either k2 > 0 and k3 = 0, or k2 = 0 and k3 > 0. If we are interested in whether we can discriminate between these
two models, we use the framework of this section as follows. Let

K1 =
{

k ∈ R3
∣

∣k1 > 0, k2 > 0, k3 = 0
}

(60)

and
K2 =

{

k ∈ R3
∣

∣k1 > 0, k2 = 0; k3 > 0
}

. (61)

Then, to check if R1 is stationary model discriminable between K1 and K2 we let K = K1 ∪ K2, which has lifted
representation

K̄ =
{

(k,y) ∈ R7
∣

∣0 = k1y
2
1 − 1, 0 = k2 − y22 , 0 = k3 − y23 , 0 = k2k3, 0 = (k2 + k3)y

2
4 − 1

}

. (62)

In this case, using (21) and hj(k,y) defined in (59), the ideal given by (50) is

〈

k1 − k2x1 − k3x
2
1, k1 − k3(4p11x1 − x2

1)− k2(2p11 − x1),

k1y
2
1 − 1, k2 − y22 , k3 − y23 , k2k3, (k2 + k3)y

2
4 − 1 2x1 − 2p11, 2x

2
1 − 4p11x1, 2p11x

2
1

〉

.
(63)

Using Macaulay2 [19], we find that the reduced Gröbner basis of (63) is {1}, and hence by Theorems 4.2 and 4.1 the
CRN R1 is stationary model discriminable between K1 and K2 given by (60) and (61), respectively.

4.1 Examples

We now use (59) to certify stationary model discriminability of several biologically relevant systems via Theorem 4.2.

Example 8 (Determining the direction of an activation (model discrimination)). In this example we consider whether
it is possible to determine from only measurements of the joint stationary distribution of two genes X1 and X2 whether
X1 activates X2 or X2 activates X1. Such a question is of practical importance in systems biology because it asks
whether one can deduce causality in a biological system without observing how the system evolves over time, or how
it reacts to applied perturbations. This question is conceptually related to the study of causal inference, though here
we ask whether we can distinguish between two a prior given stochastic process models, instead of deciding between
graphical models [34]. Such a system is conceptually modeled by CRN R8 shown in (64).

∅
k2

k1
X1

k3

k4
X2

k
6

X1 +X2

k
5

X1 +X2

(64)
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We note that in order to simplify the system we have modeled gene expression as a one step process, and model

activation of X2 by X1 with the reactions ∅
k3

X2 and X1
k6

X1 +X2, i.e., an affine activation function of the
form k3 + k6x1. The activation of X1 by X2 is modeled analogously via the 1st and 5th reactions. For R8 f(x;k)
defined in (2) is given by

f(x;k) =

[

k1 − k2x1 + k5x2

k3 − k4x2 + k6x1

]

(65)

and Γ(x;k) as defined in (3) is given by

Γ(x;k)Γ(x;k)T =

[

k1 + k2x1 + k5x2 0
0 k3 + k4x2 + k6x1

]

. (66)

Therefore, writing (1) in the form (19) yields

0 = A(x, P )k =













1 −x1 0 0 0 x2

0 0 1 −x2 x1 0
1 x1 − 2p11 0 0 0 2p12 + x2

0 −p12 0 −p12 p11 p22
0 0 1 x2 − 2p22 2p12 + x1 0













k. (67)

The two models we wish to decide between are

1. X1 is constitutively expressed (k1 > 0) and activates X2 (k3, k6 > 0),

2. X2 is constitutively expressed (k3 > 0) and activates X1 (k1, k5 > 0).

In both models we assume X1 and X2 degrade at a nonzero rate (k2, k4 > 0). Using the framework of Section 4 we
represent model 1 as the reaction rate vector being in

K1 =
{

k ∈ R6
≥0

∣

∣k1:4 > 0, k5 > 0 and k6 = 0
}

(68)

and model 2 by the reaction rate vector being in

K2 =
{

k ∈ R6
≥0

∣

∣k1:4 > 0, k5 = 0 and k6 > 0
}

. (69)

In this case (59) becomes

K̄ =
{

(k,y) ∈ R2r+1
∣

∣0 = kiy
2
i − 1, i = 1, 2, . . . , 4,

0 = k5 − y25 , 0 = k6 − y26 , 0 = k5k6, 0 = (k5 + k6)y
2
7 − 1

}

,
(70)

which we use as our representation of K = K1∪K2. Computing the Gröbner basis G of the ideal defined by (24) with
A in (67), we find that G = {1}, and therefore by Theorem 3.2 R8 is stationary globally identifiable over K1∪K2.We
can therefore conclude by Theorem 4.2 that R8 is stationary model discriminable between K1 and K2. This result
conflicts with the intuition that correlation between the concentrations of X1 and X2 is insufficient to infer whether X1

“causes” X2 or vice versa. However, examining the joint distribution allows us to tell which direction the activation
acts because the noise on x1 will contribute to the variance of x2 when X1 activates X2, whereas the noise on x2

will contribute to the variance of x1 when X2 activates X1. The fact that noise from “upstream” genes contributes
to a higher variance in “downstream” genes is well understood [33], though to the authors’ knowledge the use of this
principle for model discrimination has not been explored.

Remark 4.3. In Example 8 we showed that in CRN R8 it is possible to determine whether reaction 5 or 6 is present.
Given sufficient data, the inference can be carried out by solving

c1 = min
k∈K1

‖A(x̂, P̂ )k‖22 (71)

and
c2 = min

k∈K2

‖A(x̂, P̂ )k‖22, (72)

where x̂ is the sample mean and P̂ is Ω times the sample covariance. This procedure is very similar to standard
model selection methods [1], expect that the fitting of the parameters is not done via maximum likelihood estimation,
and we do not worry about the Occam factor present in the Akaike information criterion, since given infinite data,
exactly one of c1 and c2 will be zero. In this case, if c1 = 0 then X1 is constitutively expressed (k1 > 0) and activates
X2 (k3, k6 > 0), whereas if c2 = 0 then X2 is constitutively expressed (k3 > 0) and activates X1 (k1, k5 > 0).

13



Example 9 (Sequestration vs enzymatic degradation). As discussed in Example 4, the antithetic motif where X1 and
X2 mutually degrade is important to constructing integral biomolecular feedback controllers. When searching for pairs
of species that can be used to implement such a controller, it is common that it is not know a priori whether X1 and
X2 mutually degrade, or whether one enzymatically degrades the other. Since integral controllers using an antithetic
motif are designed assuming that X1 and X2 mutually degrade, it is important to be able to distinguish between these
two models [35, 10]. Typically, detailed kinetic studies need to be done to determine which model is accurate for the
interaction between two given species [51]. Here, we investigate if an alternative experimental approach where only
the stationary distribution of a system of X1 and X2 is measured can be used to answer this model discrimination
question. Consider the CRN R9 shown in (73):

∅

k
2

k
1

X1 k
3

k
4

X2

k5
X1 +X2

k
6

(73)

For R9 we have from (2) that

f(x;k) =

[

k1 − k2x1 − k5x1x2 − k6x1x2

k3 − k4x2 − k5x1x2

]

, (74)

and from (3) that

Γ(x;k)Γ(x;k)T =

[

k1 + k2x1 + k5x1x2 + k6x1x2 k5x1x2

k5x1x2 k3 + k4x2 + k5x1x2

]

. (75)

Therefore, writing (1) in the form (19) yields 0 = A(x, P )k where

A(x, P ) =












1 −x1 0 0 −x1x2 −x1x2

0 0 1 −x2 −x1x2 0
1 x1 − 2p11 0 0 x1x2 − 2p12x1 − 2p11x2 x1x2 − 2p12x1 − 2p11x2

0 −p12 0 −p12 x1x2 − p12x1 − p12x2 − p22x1 − p11x2 −p12x2 − p22x1

0 0 1 x2 − 2p22 x1x2 − 2p22x1 − 2p12x2 0













.
(76)

Here we consider the additional assumption that exactly one of the two degradation reactions involving X1 and X2

is present with a nonzero rate. Asking if we can discriminate between these two cases is asking if R9 is model
discriminable between

1. X1 and X2 mutually degrade (k5 > 0),

2. X2 enzymatically degrades X1 (k6 > 0).

In both models we assume X1 and X2 are constitutively produced (k1, k3 > 0) and dilute/spontaneously degrade
(k2, k4 > 0). The model discrimination problem is then as in Example 8 between k being in K1 given by (68) and
K2 given by (69). As in Example 8, we construct a lifted representation of K = K1 ∪K2 as (70). We perform the
same procedure as in Example 8, computing the Gröbner basis G of the ideal (24) with A given in (44).In this case
we find that G = {1}, and therefore by Theorem 3.2 R9 is stationary globally identifiable over K1∪K2. We therefore
conclude by Theorem 4.2 that R9 is stationary model discriminable between K1 and K2.

Remark 4.4. Given data drawn from the stationary distribution of x1 and x2 in R9, the same technique described
in Remark 4.3 can be used to determine which model for the interaction of X1 and X2 is present in the system.

5 Gaining identifiability with extrinsic noise

We now extend our methods to handle CRNs with extrinsic noise. Our motivation is models of genetic circuits on
plasmids, where the plasmid copy number, and therefore certain reaction rate constants in the CRN, vary among
cells in the population [16]. To this end, we consider systems where this variation across cells, or extrinsic noise,
denoted by u = [u1, u2, . . . , us]

T , is an element of the set U ⊂ Rs, with known distribution ρ(u), and the reaction
rate constants are given by g(ui)⊙ k, where k is the nominal reaction rate constants and g : U → Rr

≥0 is a known
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function representing how u ∈ U perturbs k. Here “⊙” denotes elementwise multiplication. Our assumption that
g(u) is known requires a mechanistic model of how the extrinsic noise enters the system. For simplicity, in this
work we assume |U | < ∞ as well as that within each cell the value of u is constant. In this case, the population
distribution after all cells have reached their stationary distribution is given by a Gaussian mixture model of the
form

fX(x;k) =
∑

u∈U

ρ(u)v(x;R (g(u)⊙ k)) (77)

where v(x;R) denotes the Gaussian probability density function with parameters R = (x′, P ′), where the mean is
x′ and the covariance is P ′.

Example 10 (1-dimensional extrinsic noise). We consider a variation on R1, where extrinsic noise affects the rate
of reaction 1. This corresponds to a system where X1 is a protein species produced at a rate proportional to the DNA
copy number in a given cell [16]. For simplicity, we assume that in each cell there is either zero copies, one copy, or
two copies of the gene coding for X, with probability 1/2, 1/4, and 1/4 respectively. The modified CRN R1 is:

∅
u1k1

k2
X1

k3
2X1 (78)

where in this example u = u1 ∈ U = {0, 1, 2}. Here, g(u) =
[

u1 1 1
]T

since the copy number directly scales the
rate constant of the production reaction, but does not change the rate constants of the degradation reactions. ρ(u)
takes values of 1/2, 1/4, and 1/4 when u is 0, 1, and 2 respectively, which reflects the probabilities of the different
copy numbers. The stationary distribution of (R1, g(u), ρ(u), U) is then given by the mixture model

fX(x;k) =
1

2
v(x;R1((0, k2, k3))) +

1

4
v(x;R1((k1, k2, k3))) +

1

4
v(x;R1((2k1, k2, k3))). (79)

We now formally define our notion of identifiability for CRNs with extrinsic noise.

Definition 5.1. A CRN with extrinsic noise (R, g(u), ρ(u), U) is stationary globally identifiable over K ⊆ Rr
>0 if

for any k1,k2 ∈ K such that the stationary distribution given by (77) is identical for k = k1 and k = k2, there exists
a ∈ R such that k2 = ak1.

Remark 5.1. Definition 5.1 is the same as Definition 2.1 with the exception that Definition 5.1 applies to the
tuple (R, g(u), ρ(u), U) that defines a CRN with extrinsic noise. We explicitly give Definition 5.1 to emphasize the
point that g(u), ρ(u) and U play a role in determining whether a CRN with extrinsic noise is stationary globally
identifiable.

We now develop a characterization of identifiability in the sense of Definition 5.1. To do this we must deal
with the fact that from an observed Gaussian mixture, e.g. of the form (77), one can only determine the mixture
components. This implies that to estimate k from the observed distribution we must deal with the problem of not
knowing a priori which component in the mixture distribution corresponds to each value of u ∈ U . Additionally, if
R (g(u)⊙ k) is the same for two values of u ∈ U , there will be fewer that |U | components identified in the mixture.
We begin by formalizing the mapping from a distribution of the form (77) to the set of mixture components. Let
U = {u1,u2, . . . ,u|U|}. Consider any distribution f(x) = f(x;k) of the form (77). Here our notation reinforces the
fact that every distribution of this form is generated by some k ∈ K, but when solving the identification problem,
the value of k ∈ K is initially unknown. We define C = C(f(·)) = {(w1,x1, P1) , (w2,x2, P2) , . . . , (ws,xs, Ps)} as the
smallest set such that

∀x ∈ Rn, f(x) =

|U|
∑

i=1

ρ(ui)v(x; (xi,
1
ΩPi)) =

∑m
i=1 wiv(x; (xi,

1
ΩPi)). (80)

Such a function C exists by the uniqueness of representation property of finite mixtures of Gaussian distributions [50].
Conversely, given C = C(f(·)), it is clear that f(·) can be determined uniquely. We note that our use of f(·) as the
argument of C reinforces the fact that C = C(f(·)) is a function of the whole distribution.

Remark 5.2. Technically, [50] tells us that C̄(f(·)) defined as the smallest set

C̄ = C̄(f(·)) =
{(

w1,x1,
1

Ω
P1

)

,

(

w2,x2,
1

Ω
P2

)

, . . . ,

(

ws,xs,
1

Ω
Ps

)}

(81)
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such that

∀x ∈ Rn, f(x;k) =

|U|
∑

i=1

ρ(ui)v(x; (xi,
1
ΩPi)) (82)

exists, i.e. from the population distribution we can uniquely identify the mixture components. However, since the
mapping between C̄ and C is bijective, C exists and is invertible.

We now formalize the notion of an assignment of the elements of C = C(f(·)) to the elements of U . In general,
for identifiability we need to determine the “correct” assignment as well as the true value of k from C = C(f(·)).
Given a CRN with extrinsic noise (R, g(u), ρ(u), U), for any f(·) of the form (77) with k ∈ K we define σ :
{1, 2, . . . , |U |} → C(f(·)), i.e. a mapping from the indices of the elements of U to the mixture components. We
denote σ(i) = (σρ(i), σx(i), σP (i)) where for each i ∈ {1, 2, . . . , |U |}, (σρ(i), σx(i), σP (i)) = (wj ,xj , Pj) ∈ C(f(·)) for
some j. Given f(·), only some mappings σ are “consistent” with C in the sense that

∀x ∈ Rn,

|U|
∑

i=1

σρ(i)v(x; (σx(i), σP (i))) = f(x). (83)

The set of consistent σ’s is given by

Σf = {σ : {1, 2, . . . , |U |} → C(f(·)) surjective|σρ(i) =
∑

j:(σx(j),σP (j))=(σx(i),σP (i))

ρ(uj)}. (84)

Given a CRN with extrinsic noise (R, g(u), ρ(u), U), for any f(x) = fX(x;k) of the form (77) and σ ∈ ΣfX (·;k),
we define

Ā(f(·),σ) =











A(σx(1), σP (1)) diag(g(u
1))

A(σx(2), σP (2)) diag(g(u
2))

...
A(σx(|U |), σP (|U |)) diag(g(u|U|))











. (85)

We then have that ∀k ∈ K, fX(·;k) satisfies

0 = Ā(fX(·;k),σ∗)k (86)

where σ∗ ∈ ΣfX (·;k) satisfies

∀i = 1, 2, . . . , |U |, (σx(i), σP (i)) = R(g(ui)⊙ k) (87)

Lemma 5.1. A CRN with extrinsic noise (R, g(u), ρ(u), U), is stationary globally identifiable if for all f(x) =
f(x;k) of the form (77), there exists ξ ∈ Rr such that for all (σ,k) ∈ (Σf ,K) satisfying 0 = Ā(f(·),σ)k, k = aξ
for some a ∈ R.

Proof. We prove the contrapositive. To begin, suppose that (R, g(u), ρ(u), U) is not stationary globally identifiable.
Then, there exists f(·) and k′,k′′ ∈ K with k′ 6= αk′′ for any α such that

f(·) =
|U|
∑

i=1

ρ(ui)v(·;R(g(ui)⊙ k′)) (88)

and

f(·) =
|U|
∑

i=1

ρ(ui)v(·;R(g(ui)⊙ k′′)). (89)

Let us define σ′ by σ′(i) = (σ′
ρ(i), σ

′
x(i), σ

′
P (i)) where (σ′

x(i), σ
′
P (i)) = R(g(ui)⊙ k′) and

σ′
ρ(i) =

∑

j:R(g(uj)⊙k)=R(g(ui)⊙k)

ρ(uj). (90)

Similarly, we define σ′′ by σ′′(i) = (σ′′
ρ (i), σ

′′
x(i), σ

′′
P (i)) where (σ′′

x(i), σ
′′
P (i)) = R(g(ui)⊙ k′′) and

σ′′
ρ (i) =

∑

j:R(g(uj)⊙k′′)=R(g(ui)⊙k′′)

ρ(uj). (91)
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Observe that σ′,σ′′ ∈ Σf . We have

Ā(f(·),σ′) =











A(σ′
x(1), σ

′
P (1)) diag(g(u

1))
A(σ′

x(2), σ
′
P (2)) diag(g(u

2))
...

A(σ′
x(|U |), σ′

P (|U |)) diag(g(u|U|))











, (92)

and furthermore, for all i ∈ {1, 2, . . . , |U |}, since

(σ′
x(i), σ

′
P (i)) = R(g(ui ⊙ k′), (93)

we have that 0 = A(σ′
x(i), σ

′
P (i)) diag(g(u

i))k′. Therefore, 0 = Ā(f(·),σ′)k′. Similarly, 0 = Ā(f(·),σ′′)k′′. There-
fore, it is not the case that for all (σ,k) ∈ (Σf ,K) satisfying 0 = Ā(f(·),σ)k, k = aξ for some a ∈ R, which
completes our proof.

Condition 1. The CRN with extrinsic noise (R, g(u), ρ(u), U) is such that for all f(x) = f(x;k) of the form (77),
there exists a unique σf ∈ Σf such that 0 = Ā(f(·),σf )k for some k ∈ K.

Lemma 5.2. A CRN with extrinsic noise (R, g(u), ρ(u), U), is identifiable if it satisfies Condition 1, and further-
more, for all f(·) of the form (77),

rank Ā(f(·),σf ) = r − 1. (94)

Here σf is the unique σ ∈ Σf such that 0 = Ā(f(·),σ)k for some k ∈ K.

Proof. The result follows from Lemma 5.1. For any f(·) of the form (77), assumption 1) ensures that all solutions
(σ,k) to 0 = Ā(f(·),σ)k are of the form (σf ,k) for some k. Assumption 2) then ensures that the dimension of the
nullspace of Ā(f(·),σf ) is one, and hence ∃v ∈ K such that 0 = Ā(f(·),σf )k if and only if k = αv for some α.

We now develop a criteria for identifiability that is amenable to analysis using algebraic tools of Section 2.3.

Given a CRN with extrinsic noise (R, g(u, ρ(u), U), we define Ā : (Rn × Sn×n)
|U| → R|U|(n2+3n)

2 ×r by

Ā((x1, P1), (x2, P2), . . . , (x|U|, P|U|)) =











A(x1, P1) diag(g(u
1))

A(x2, P2) diag(g(u
2))

...

A(x|U|, P|U|) diag(g(u
|U|))











. (95)

Theorem 5.1. Consider a CRN with extrinsic noise (R, g(u), ρ(u), U). If Condition 1 holds and for all

(

(x1, P1), (x2, P2), . . . , (x|U|, P|U|)
)

∈
(

Rn
≥0 × Sn×n

)|U|
(96)

such that there exists k ∈ K satisfying 0 = Ā((x1, P1), (x2, P2), . . . , (x|U|, P|U|))k, we have

rank Ā((x1, P1), (x2, P2), . . . , (x|U|, P|U|)) ≥ r − 1, (97)

then (R, g(u), ρ(u), U) is stationary globally identifiable over K.

Proof. To apply Lemma 5.2 we must show that the rank condition (97) implies assumption (97) of Lemma 5.2. Let
f(·) be of the form (77). We have that

Ā(f(·),σf ) =











A(σf
x(1), σ

f
P (1)) diag(g(u

1))

A(σf
x(2), σ

f
P (2)) diag(g(u

2))
...

A(σf
x(|U |), σf

P (|U |)) diag(g(u|U|))











. (98)

Observe that for all i ∈ {1, 2, . . . , |U |}, (σf
x(i), σ

f
P (i)) ∈

(

Rn
≥0 × Sn×n

)

. Therefore,

Ā(f(·),σf ) = Ā((σf
x(1), σ

f
P (1)), (σ

f
x(2), σ

f
P (2)), . . . , (σ

f
x(|U |), σf

P (|U |))). (99)

Hence, by (97), rank Ā(f(·),σf ) ≥ r−1. Furthermore, the fact that Condition 1 holds ensures that rank Ā(f(·),σf ) ≤
r − 1, and so rank Ā(f(·),σf ) = r − 1. By applying Lemma 5.2 we then obtain the desired result.
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Theorem 5.1 can be turned into an algebraic condition for identifiability that can be checked computationally.
However, in general, it is hard to check that Condition 1 holds. Therefore, we now focus on a special case which
occurs frequently in synthetic biology where Condition 1 is guaranteed to hold. To begin this investigation we define
the augmented CRN of a CRN with extrinsic noise as follows.

Definition 5.2. Given a CRN with extrinsic noise, (R, g(u), ρ(u), U) and α ∈ Rs
>0, γ > 0, we define the augmented

version of the CRN Raug , as the CRN with species X1, . . . ,Xn from R along with species Z1, . . . ,Zs, and all reactions
from R along with

∅
uiαi

γ Zi, i = 1, . . . , s.

Here we recall that s is the dimension of u. We denote the augmented version of a CRN (R, g(u), ρ(u), U) with
parameters α and γ by (Raug, gaug(u), ρ(u), U,α, γ).

Remark 5.3. The ideas we have developed for CRNs with extrinsic noise apply to augmented CRNs as well. In
fact, for a fixed value of α and γ, Definition 5.1 can be applied to an augmented CRN with extrinsic noise, since
(Raug , gaug(u), ρ(u), U,α, γ) defines a map from k to a Gaussian mixture model. Theorem 5.1 can be used for an
augmented CRN (R, g(u), ρ(u), U). In this case the Ā used in Theorem 5.1, and the Ā(f(·),σ) used in Lemma 5.2
are the same as Ā and Ā defined for the non-augmented CRN (R, g(u), ρ(u), U). This is due to the fact that the
only reactions involving the Z species have rate constants α or γ, which are known constants, and thus do not need
to be inferred from the stationary distribution.

Remark 5.4. In applications in synthetic biology it is often the case that one has an augmented CRN in the sense
of Definition 5.2. One example is when a biomolecular circuit is constructed on one or more plasmids which are
transformed in the cells and each plasmid has a constitutive reporter. Each constitutive reporter is a fluorescent
protein whose amount is proportional to the copy number of the plasmid. Additionally, it is possible to estimate α

and γ in a separate experiment where the copy number is well controlled [15]. Note that the reaction rate constant
vector of (Raug, gaug(u), ρ(u), U) is the same as that of (R, g(u), ρ(u), U), and we treat α and γ as known constants.

The following continuation of Example 10 illustrates Definition 5.2.

Example 10 (1-dimensional extrinsic noise). Continuing with Example 10, we now consider the case where there is
a constitutive reporter in the circuit. The augmented CRN (R1aug, gaug(u), ρ(u), U,α, γ) is given by

Z1

γ
u1α1

∅
u1k1

k2
X1

k3
2X1. (100)

Here Z1 is the constitutive reporter. Its production rate is proportional to the copy number, u = u1, which takes a,
constant, value drawn from ρ(u) in each cell.

The augmented version of any CRN will satisfy Condition 1, and thus we can readily construct an algebraic
condition that is sufficient for identifiability of augmented CRNs. We formalize this fact in the following theorem.

Theorem 5.2. Consider a CRN with extrinsic noise (R, g(u), ρ(u), U). Let α0 ∈ Rs
>0, and let

K̄ =
{

(k,y) ∈ Rr+m
∣

∣hi(k,y) = 0, i = 1, 2, . . . , p
}

(101)

be a lifted representation of K. Let {u1, u2, . . . , ul} ⊆ U and denote row q of Ā by
Āq(x1, . . . ,xl, P1, . . . , Pl,u

1, . . . ,ul). If the reduced Gröbner basis of

〈

hi(k,y), ∀i ∈ {1, . . . , p}, Āq(x1, . . . ,xl, P1, . . . , Pl,u
1, . . . ,ul)k, ∀q ∈ {1, . . . , un

2 + 3n

2
},

M̄
(r−1)×(r−1)
i (x1, . . . ,xl, P1, . . . , Pl,u

1, . . . ,ul)k, ∀i ∈ {1, . . . ,m}
〉

(102)

is {1}, then the augmented CRN (Raug , gaug(u), ρ(u), U,α
0, 1), given in Definition 5.2, is stationary globally iden-

tifiable over K.

Proof. For notational clarity we use Ā(f(·),σ) refer to the matrix defined by (85) for the CRN (R, g(u), ρ(u), U),
and Āaug(f(·),σ) refer to the matrix defined by (85) for the augmented CRN (Raug , gaug(u), ρ(u), U,α, γ). Observe
that Āaug(f(·),σ) is used to determine if the augmented CRN satisfies Condition 1, whereas Ā(f(·),σ) determines
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identifiability of the augmented CRN. This is due to α and γ being known constants instead of parameters that must
be estimated. We partition P as

P =

[

Px Px,z

PT
x,z Pz

]

. (103)

Observe that Āaug(f(·),σ) takes the form

Āaug(f(·),σ) =





































A(σ′
x
(1), σ′

Px
(1)) diag(g(u1)) 0 0
0 diag(u1) −σz(u

1)
0 2 diag(σPz

(u1))− diag(u1) −σz(u
1)

A(σ′
x
(2), σ′

Px
(2)) diag(g(u2)) 0 0
0 diag(u2) −σz(u

2)
0 2 diag(σPz

(u2))− diag(u2) −σz(u
2)

...
...

...

A(σ′
x
(|U |), σ′

Px
(|U |)) diag(g(u|U|)) 0 0

0 diag(u|U|) −σz(u
|U|)

0 2 diag(σPz
(u|U|))− diag(u|U|) −σz(u

|U|)





































. (104)

We use Theorem 5.1 to prove the desired result. To do so we must show that Condition 1 holds for (Raug, gaug(u), ρ(u), U).
Suppose that there exists σ1,σ2 ∈ Σf such that σ1 6= σ2 and

0 = Āaug(f(·),σ1)





k1

α0

γ



 (105a)

0 = Āaug(f(·),σ2)





k2

α0

γ



 (105b)

with k1,k2 ∈ K, α0 ∈ Rs
>0, and γ = 1. Then, from (104) we have that for all i = 1, 2, . . . , |U |,

0 = α0 ⊙ ui − σ1
z(i), (106a)

0 = α0 ⊙ ui − σ2
z(i). (106b)

This implies that for all i = 1, 2, . . . , |U |, we have that σ1
z(i) = σ2

z(i). Therefore, |C(f(·))| ≥ |U |. Additionally, we
know that it always holds that |C(f(·))| ≤ |U |. Therefore, we can then infer that |C(f(·))| = |U |. Thus, σ1

z(i) = σ2
z(i)

for i = 1, 2, . . . , |U | implies that σ1(i) = σ2(i) for i = 1, 2, . . . , |U |. This shows that only one σ ∈ Σf has a k ∈ K
such that 0 = Ā(f(·),σ)k for some k ∈ K, and therefore Condition 1 is satisfied by (Raug , gaug(u), ρ(u), U,α, γ).
To complete the proof, observe that (102) being equal to {1} ensures that Theorem 5.1 can be applied, and so
(Raug , gaug(u), ρ(u), U,α

0, 1), is stationary globally identifiable over K.

Remark 5.5. We note that Condition 1 is needed for the emptiness of the ideal defined by (102) to be a sufficient
condition for stationary global identifiability of (R, g(u), ρ(u), U). This is because without Condition 1 there are
two ways for a CRN with extrinsic noise to lose identifiability: a) There is exactly one σ consistent with f(·) and
(R, g(u), ρ(u), U), but rank Ā(f(·),σ) < r − 1, which is analogous to the loss of identifiability for CRNs without
extrinsic noise, or b) There are multiple σ’s consistent with f(·) and (R, g(u), ρ(u), U), and each corresponds to a
different 1-dimensional subspace of for k. In Theorem 5.2 we use the fact that the augmented CRN is considered to
ensure that Condition 1 holds.

Remark 5.6. We note that identifiability in sense that Theorem 5.2 certifies assumes that both α and γ are known,
with γ = 1. However, since this work studies only stationary distributions, as long as α/γ is known we can always
take γ = 1 and use the value of α/γ in place of α.

Example 10 (1-dimensional extrinsic noise). Here we continue Example 10. Let α > 0. We wish to certify
identifiability of (Raug , gaug(u), U,α, 1) over R2

>0. Theorem 5.2 states that we can consider the ideal (102), and if
the reduced Gröbner basis is {1}, we can conclude that stationary global identifiability holds. For this example, (102)
is defined by 54 polynomials.

We observe that if we want to use Theorem 5.2 to certify stationary global identifiability we must compute the

reduced Gröbner basis of an ideal over Q[[xT ,yT ,kT ]T ]. If for example K = Rr
>0, then [xT ,yT ,kT ]T ∈ Rln

2+3n
2 +r,
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and hence as |U | grows our computational problem becomes harder very quickly, since we may need to use l = |U |
in the worst case. An alternative is to use only the reaction rate equations (1a), which conceptually equates to using
only the means of each mixture component in the estimation of the parameters. Let Arre(x) be the first n rows of
A(x, P ), and for any l ≤ |U |, define

Ārre(x1, . . . ,xl,u
1, . . . ,ul) =











Arre(x1) diag(g(u
1))

Arre(x2) diag(g(u
2))

...
Arre(xl) diag(g(u

l))











. (107)

Since the first n rows of A(x, P ) correspond to the reaction rate equations (4a) they are not a function of P , and
therefore neither is Ārre. Therefore, we can eliminate all the covariance variables from (102) which results in a check
for stationary parametric identifiability involving an ideal over a lower dimensional ring.

Theorem 5.3. Consider a CRN with extrinsic noise (R, g(u), ρ(u), U). Let α0 ∈ Rs
>0, and let

K̄ =
{

(k,y) ∈ Rr+m
∣

∣hi(k,y) = 0, i = 1, 2, . . . , p
}

(108)

be a lifted representation of K. Let {u1, u2, . . . , ul} ⊆ U . Denote by Ārre
q row q of Ārre, and denote by

M̄
rre,(r−1)×(r−1)
i (x1, . . . ,xl,u

1, . . . ,ul) (109)

the (r − 1)× (r − 1) minors of Ārre, indexed by i. If the reduced Gröbner basis of

〈

hi(k,y), ∀i ∈ {1, . . . , p}, Ārre
q (x1, . . . ,xl,u

1, . . . ,ul)k, ∀q ∈ {1, . . . , un}

M̄
rre,(r−1)×(r−1)
i (x1, . . . ,xl,u

1, . . . ,ul)k, ∀i ∈ {1, . . . ,m}
〉 (110)

is {1}, then the augmented CRN defined in Definition 5.2 (Raug , gaug(u), ρ(u), U,α
0, 1), is stationary globally iden-

tifiable over K.

Proof. We observe that rank Ārre ≤ rank Ā, and therefore if the reduced Gröbner basis of the ideal (110) is {1}, the
rank of Ā cannot drop below r − 1 for any admissible x1, . . . ,xl, P1, . . . , Pl and hence the ideal (102) has reduced
Gröbner basis {1}. Therefore, (Raug , gaug(u), ρ(u), U,α

0, 1) is stationary globally identifiable over K by Theorem
5.2.

Example 10 (1-dimensional extrinsic noise). We now return to Example 10. Suppose we want to certify that
(R1, g(u), ρ(u), U, α, 1) is stationary globally identifiable over R3

>0, while using fewer variables. For this example,
Ārre is given by

Ārre(x1,x2,x3) =





0 −x11 −x2
11

1 −x12 −x2
12

2 −x13 −x2
13



 . (111)

Theorem 5.3 states that we can consider the ideal (110), and if the reduced Gröbner basis is {1}, we can conclude
that stationary global identifiability holds.

We now present an important example where Theorem 5.3 can be used to certify stationary global identifiability.

Example 11 (gaining identifiability by adding extrinsic noise). We consider a feedback loop consisting of two species,
X1 and X2 where as shown in Figure 1 X1 and X2 mutually degrade, and X2 activates the production of X1. As
in Example 8 we model the activation of X1 by X2 as the production rate of X1being an affine function, k1 + k6x2.
This system forms a conceptual model of a feedback loop with only two species, where as we will see the system is not
stationary globally identifiable without extrinsic noise, but is stationary globally identifiable with extrinsic noise. To
start, we note that without the extrinsic noise the CRN is not stationary globally identifiable since for the CRN

∅

k
2

k
1

X1 k
3

k
4

X2

k5
X1 +X2

k
6

(112)
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we have from the definition of f(x;k) in (2) that

f(x;k) =

[

k1 − k2x1 − k5x1x2 + k6x2

k3 − k4x2 − k5x1x2

]

(113)

and from (3) that

Γ(x;k)Γ(x;k)T =

[

k1 + k2x1 + k6x2 + k5x1x2 k5x1x2

k5x1x2 k3 + k4x2 + k5x1x2

]

. (114)

Therefore we have that (19) is given by 0 = A(x, P )k where

A(x, P ) =













1 −x1 0 0 −x1x2 x2

0 0 1 −x2 −x1x2 0
1 x1 − 2p11 0 0 x1x2 − 2p12x1 − 2p11x2 2p12 + x2

0 −p12 0 −p12 x1x2 − p12x1 − p12x2 − p22x1 − p11x2 p22
0 0 1 x2 − 2p22 x1x2 − 2p22x1 − 2p12x2 0













. (115)

One can verify that when k =
[

10 1 10 1 1 10
]T

the solution to (115) is x =
[

10 10
11

]T
and

P =

[

10 0
0 10/11

]

. (116)

Evaluating the rank of A in (115) with these values of x and P gives rankA = 4 < r − 1 and so the CRN without
extrinsic noise is not stationary globally identifiable.

We now consider extrinsic noise, where the genes for X1 and X2 are on separate plasmids, each with its own
constitutive reporter, X3 and X4 respectively. In a cell with extrinsic noise value ui = (ui

1, u
i
2)

T , the production rate
of X1 is ui

1k1 and the production rate of X2 is u2
i k3. To model the constitutive reporters we define the augmented

CRN (Raug , gaug(u), U,α, γ) in Figure 1(b) which includes the reporter species Y1 and Y2. Therefore, we can use
Theorem 5.3. Considering U ⊇ {[0, 1], [1, 0], [1, 1], [2, 1], [2, 2], [1, 2]} we find that for mixture component i the reaction
rate equations defined in (2) are

0 = f(xi;k), (117)

0 =

[

ui
1k1 − k2x1i − k5x1ix2i + k6x2i

ui
2k3 − k4x2i − k5x1ix2i

]

. (118)

Where we use the notation xi = [x1i, x2i]
T . Forming Ārre(x1, . . . ,xl,u

1, . . . ,ul) we find that (95) is given by

0 = Ārre(x1, . . . ,xl,u
1, . . . ,ul)k =









































1 −x11 0 0 −x11x21 x21

0 0 0 −x21 −x11x21 0
0 −x12 0 0 −x12x22 x22

0 0 1 −x22 −x12x22 0
1 −x13 0 0 −x13x23 x23

0 0 1 −x23 −x13x23 0
1 −x14 0 0 −x14x24 x24

0 0 2 −x24 −x14x24 0
2 −x15 0 0 −x15x25 x25

0 0 1 −x25 −x15x25 0
2 −x16 0 0 −x16x26 x26

0 0 2 −x26 −x16x26 0









































k. (119)

The reduced Gröbner basis of (102) with Ārre(x1, . . . ,xl,u
1, . . . ,ul) given by (119) is {1}, and hence, by Theorem

5.3, (Raug , gaug(u), U,α, 1) is stationary globally identifiable over R6
>0.

In this way the techniques of this paper help guide experimental design, since as shown in this example one can
estimate all of the rate constants in this CRN from the stationary population distribution by placing the genes for
X1 and X2 on separate plasmids, but not if the genes were e.g. genomically integrated in a single copy, or otherwise
placed into the population of cells without copy number variation.

In this section we have studied the problem of checking if a CRN that is not necessarily stationary globally
identifiable becomes identifiable when extrinsic noise is added. We now consider the converse problem, can the
addition of extrinsic noise make an identifiable CRN become non identifiable? Here we give the following corollary,
which formalizes the intuition that if a chemical reaction network without extrinsic noise is stationary globally
identifiable, then adding extrinsic noise preserves identifiability as long as Condition 1 is met.
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Figure 1: The CRN with extrinsic noise (R, g(u), ρ(u), U) introduced in Example 11. (a) Shows (R, g(u), U)
and (b) shows (Raug , gaug(u), ρ(u), U,α, γ), the version augmented with constitutive reporters. Augmented CRN
(Raug , gaug(u), ρ(u), U,α, 1) is stationary globally identifiable over R6

>0 if U ⊇ {[0, 1], [1, 0], [1, 1], [2, 1], [2, 2], [1, 2]}
and there is a constitutive promoter for u1 and u2.

Theorem 5.4. Consider an augmented CRN with extrinsic noise (R, g(u), ρ(u), U,α, 1). Assume that ∀u ∈
U, g(u) > 0. If the corresponding CRN without extrinsic noise R is stationary globally identifiable over Rr

>0, then
(R, g(u), ρ(u), U,α, 1) is stationary globally identifiable over Rr

>0.

Proof. Consider an arbitrary x1, P1 that satisfies 0 = A(x1, P1)g(u
1)⊙ k for some k ∈ Rr

>0. Letting k′ = g(u1)⊙ k

we have that 0 = A(x1, P1)k
′ and k′ ∈ Rr

>0. Therefore rankA(x1, P1) = r − 1 by our assumption that R is
stationary globally identifiable over Rr

>0. Since rankA(x1, P1) diag g(u
1) = rankA(x1, P1), we have that Ā is rank

r− 1 for all x1, . . . ,xl, P1, . . . , Pl that satisfy Ā(x1, . . . ,xl, P1, . . . , Pl,u
1, . . . ,ul)k for some k ∈ Rr

>0. Therefore, the
reduced Gröbner basis of (102) is {1} and so by Theorem 5.2, (R, g(u), U,α, 1) is stationary globally identifiable
over Rr

>0.

Example 10 (1-dimensional extrinsic noise). Returning to Example 10, we now ask if we can conclude that
(R1, g(u), ρ(u), U, α, 1) with α > 0 is stationary globally identifiable simply by exploiting our results in Example
1. If we consider (R1, g(u), ρ(u), U

′, α, 1), where U ′ = {1, 2}, we can apply Theorem 5.4 to conclude that since R1 is
identifiable, the augmented CRN with extrinsic noise (R1, g(u), ρ(u), U

′, α, 1) is also stationary globally identifiable.
We note that if we used U = {0, 1, 2} instead of U ′, the condition g(u) > 0 would not be satisfied and so we would
not be able to apply Theorem 5.4.

We conclude with section by noting that while in general it is unclear how to verify Condition 1 for a non-
augmented CRN with extrinsic noise, for the case n = 1 and s = 1, it is sometimes possible, as in the following
example.

Example 10 (1-dimensional extrinsic noise). Here we continue Example 10 and certify global stationary identifiability
of (R1, g(u), ρ(u), U). Theorem 5.2 requires us to have an augmented network. However, if we can verify Condition
1 directly we can check identifiability by considering ideal (102) directly. Here we consider u1 = u ∈ U ⊂ R, and so
we can write (2) as

ẋ1 = u1k1 − k2x1 − k3x
2
1. (120)

If u1 = 0, then the equilibrium value of x1 is 0. Furthermore, letting x∗
1 denote the equilibrium of (120) we

have that
∂x∗

1

∂u = k1

k2+2k3x∗

1
> 0. Therefore, the means of each mixture component in fX(x;k) are ordered such

that if ui
1 < uj

1 then xi < xj . It follows that Condition 1 is satisfied, since given any f(·) of the form (77),
C(f(·)) = {(w1, x1, p1), (w2, x2, p2), (w3, x3, p3)}, where x1 < x2 < x3, the only possible σ ∈ Σf consistent with
(R, g(u), ρ(u), U) is given by σ(0) = (w1, x1, p1), σ(1) = (w2, x2, p2), and σ(2) = (w3, x3, p3). From (3) we have
that for any value of u1 = u ∈ U

Γ(x;k)Γ(x;k)T = u1k1 + k2x1 + k3x
2
1, (121)

and so, letting xi = xi, Pi = pi, u
1 = u1

1 = 0, u2 = u2
1 = 1, and u3 = u3

1 = 2, (95) is given by

Ā(x1,x2,x3, P1, P2, P3) =

















0 −x1 −x2
1

0 x1 − 2p1 x2
1 − 4p1x1

1 −x2 −x2
2

1 x2 − 2p2 x2
12 − 4p2x2

2 −x3 −x2
3

2 x3 − 2p3 x2
3 − 4p3x3

















. (122)

We have established Condition 1 for this example, and hence we can establish global stationary identifiability by
computing the reduced Gröbner basis of the ideal (102), since in the proof of Theorem 5.2 the only place the augmented
species are considered is in the verification of Condition 1.
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6 Conclusion

In this work we studied the identifiability of LNA models of chemical reaction networks with intrinsic and extrinsic
noise from stationary distributions. We gave algebraic characterizations of identifiability and model discriminability
which can be used to algorithmically prove identifiability or model discriminability holds for a given model. Our tools
are therefore well suited to be used by practicing synthetic biologists and systems biologists to establish identifiability
prior to running costly experiments, as well as to provide confidence that fitted parameters and inferred models are
accurate. We applied our methods to many examples of biological relevance, those of which do not have extrinsic noise
are summarized in Table 1. Since our results for chemical reaction networks with extrinsic noise require Condition
1, which is in general difficult to verify unless the extrinsic noise arises from copy number variation and constitutive
reporters are included in the CRN, future work includes algorithmic methods for checking Condition 1.
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Ex. CRN K
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k2
X1

k3
2X1 R3

>0

3 ∅

k
1

X1

k 3

X2
k2

R3
>0

4 ∅

k
2

k
1

X1

k
3

k
4

X2

k 5

X1 +X2

R5
>0

5 ∅
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1

X1
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3
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X2 2X1 +X2

k
5

2X1 R5
>0

6 ∅
k1
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X1
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3

k
4
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k5

k6
X3

k
7

X1 +X2
k8

X2 +X3

R8
>0

7 ∅

k
2

k
1

X1

k
3

X2

k 4

X3

k5
X1 +X2

k6
X2 +X3 R6

>0

8 ∅
k2

k1
X1

k3

k4
X2

k
6

X1 +X2

k
5

X1 +X2

{k ∈ R6
≥0|k1:4 > 0, k5 > 0 and k6 = 0

or k5 = 0 and k6 > 0}

9 ∅

k
2

k
1

X1 k
3

k
4

X2

k5
X1 +X2

k
6

{k ∈ R6
≥0|k1:4 > 0, k5 > 0 and k6 = 0

or k5 = 0 and k6 > 0}

Table 1: Chemical reaction networks and the associated set K over which stationary parametric identifiability has
been certified using the techniques of Section 3.

24



References

[1] H. Akaike, Information theory and an extension of the maximum likelihood principle, in 2nd International
Symposium on Information Theory, Akadémiai Kiadó Location Budapest, Hungary, 1973, pp. 267–281.
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Rädler, Predictive modeling of non-viral gene transfer, Biotechnology and bioengineering, 105 (2010), pp. 805–
813.

[38] H. M. Shapiro, Practical flow cytometry, John Wiley & Sons, 2005.

[39] E. D. Sontag, On the observability of polynomial systems, i: Finite-time problems, SIAM Journal on Control
and Optimization, 17 (1979), pp. 139–151.

[40] E. D. Sontag, Mathematical control theory: deterministic finite dimensional systems, vol. 6, Springer Science
& Business Media, 2013.

[41] E. D. Sontag, Dynamic compensation, parameter identifiability, and equivariances, PLoS computational biol-
ogy, 13 (2017), p. e1005447.

[42] G. Stengle, A nullstellensatz and a positivstellensatz in semialgebraic geometry, Mathematische Annalen, 207
(1974), pp. 87–97, https://doi.org/10.1007/BF01362149, https://doi.org/10.1007/BF01362149.

[43] R. Steuer, J. Kurths, O. Fiehn, and W. Weckwerth, Observing and interpreting correlations in
metabolomic networks, Bioinformatics, 19 (2003), pp. 1019–1026.

[44] B. Sturmfels, What is... a grobner basis?, Notices-American Mathematical Society, 52 (2005), p. 1199.

[45] P. S. Swain, M. B. Elowitz, and E. D. Siggia, Intrinsic and extrinsic contributions to stochas-
ticity in gene expression, Proceedings of the National Academy of Sciences, 99 (2002), p. 12795,
https://doi.org/10.1073/pnas.162041399, http://www.pnas.org/content/99/20/12795.abstract.

[46] A. Swaminathan and R. M. Murray, Linear system identifiability from distributional and time series data,
in 2016 American Control Conference (ACC), IEEE, 2016, pp. 392–399.

[47] N. G. Van Kampen, Stochastic processes in physics and chemistry, vol. 1, Elsevier, 1992.

[48] A. F. Villaverde and A. Barreiro, Identifiability of large nonlinear biochemical networks, MATCH Com-
mun. Math. Comput. Chem., 76 (2016), pp. 259–296.

[49] A. F. Villaverde, A. Barreiro, and A. Papachristodoulou, Structural identifiability
of dynamic systems biology models, PLOS Computational Biology, 12 (2016), pp. e1005153–,
https://doi.org/10.1371/journal.pcbi.1005153.

[50] S. J. Yakowitz and J. D. Spragins, On the identifiability of finite mixtures, The Annals of Mathematical
Statistics, 39 (1968), pp. 209–214.

[51] X. Zheng, C. Bi, Z. Li, M. Podariu, and D. S. Hage, Analytical methods for kinetic studies of bio-
logical interactions: A review, Journal of pharmaceutical and biomedical analysis, 113 (2015), pp. 163–180,
https://doi.org/10.1016/j.jpba.2015.01.042, https://pubmed.ncbi.nlm.nih.gov/25700721.

27

https://doi.org/10.1128/MCB.02005-06
https://doi.org/10.1128/MCB.02005-06
https://doi.org/10.1007/BF01362149
https://doi.org/10.1007/BF01362149
https://doi.org/10.1073/pnas.162041399
http://www.pnas.org/content/99/20/12795.abstract
https://doi.org/10.1371/journal.pcbi.1005153
https://doi.org/10.1016/j.jpba.2015.01.042
https://pubmed.ncbi.nlm.nih.gov/25700721

	1 Introduction
	2 Problem Setting
	2.1 The linear noise approximation
	2.2 Identifiability
	2.3 Nullstellensatz

	3 Certifying Identifiability of the LNA
	3.1 Examples

	4 Model discrimination
	4.1 Examples

	5 Gaining identifiability with extrinsic noise
	6 Conclusion

