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Abstract. We study an inverse problem for the wave equation, concerned with estimating the
wave speed, aka velocity, from data gathered by an array of sources and receivers that emit probing
signals and measure the resulting waves. The typical mathematical formulation of velocity estimation
is a nonlinear least squares minimization of the data misfit, over a search velocity space. There are
two main impediments to this approach, which manifest as multiple local minima of the objective
function: The nonlinearity of the mapping from the velocity to the data, which accounts for multiple
scattering effects, and poor knowledge of the kinematics (smooth part of the wave speed) which
causes cycle-skipping. We show that the nonlinearity can be mitigated using a data driven estimate
of the internal wave field. This leads to improved performance of the inversion for a reasonable initial
guess of the kinematics.
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1. Introduction. Inverse wave scattering is concerned with inferring properties
of an inaccessible medium using remote sensors that emit probing signals and mea-
sure the generated waves. It is an important technology in nondestructive evaluation
of materials, exploration geophysics, medical imaging with ultrasound, underwater
sonar, radar imaging, etc. We consider scalar (sound) waves in a medium with con-
stant mass density, so the unknown is the wave speed c(x), also called the velocity.
The data are gathered by an array of m co-located sources and receivers. The sources
probe the medium sequentially with a signal, and the receivers record the generated
wave. These recordings are organized in the time t dependent m×m array response
matrix M(t), the data for estimating the velocity c(x).

There is extensive literature on inverse wave scattering, especially for qualitative,
aka “imaging” methods, that seek to estimate the support of the rough part of the
wave speed, called the reflectivity, which causes wave back-scattering. The smooth
part of c(x), which determines the kinematics of the wave propagation, is assumed
known in imaging and, with few exceptions, it is taken as constant. The most popular
imaging methods, like reverse time migration [3, 27] and the related filtered back-
projection [14, 13], are based on the single scattering (Born) approximation, which
linearizes the forward mapping from the reflectivity to the array response matrix.
Approaches like the factorization method [23] and the linear sampling method [12],
which use the nonlinear forward mapping, are developed mostly for time-harmonic
waves and work best for large arrays that almost surround the imaging region.

The literature on quantitative estimation of both the smooth and the rough part
of c(x), called “waveform inversion” in this paper, consists of mainly two approaches:
(1) PDE driven nonlinear least squares minimization of the data misfit, known as full
waveform inversion (FWI) [30] in the geophysics literature. (2) Iterative methods that
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alternate between imaging the reflectivity and adjusting the kinematics [28, 27]. Both
approaches suffer from the nonlinearity of the forward mapping c(x) 7→M(t), which
accounts for multiple scattering effects. The mitigation of such effects remains an
active topic of research [31, 29]. Poor knowledge of the kinematics is also problematic,
because travel time errors that exceed half the period of the probing signal cause the
“cycle skipping” phenomenon [30]. The mitigation of cycle skipping is of great interest
in exploration geophysics. The growing literature on the topic consists of methods
that use lower frequency and wide-azymuth data, if available [10, 26], as well as
travel time tomography to improve the guess kinematics [25]. Alternative approaches
are to measure the data misfit using the optimal transport metric [32] or to add
systematically degrees of freedom in the optimization [21]. A very different inversion
method has emerged recently in [9], where cycle skipping is mitigated using a data
driven reduced order model (ROM) of the wave operator.

In this paper we also use tools from data driven reduced order modeling to mit-
igate multiple scattering effects in waveform inversion. The main idea is that the
forward mapping, given by the Lippmann-Schwinger integral equation for the scat-
tered field, can be linearized approximately with a data driven estimate of the internal
wave. The accuracy of this estimate relies on having a reasonable guess of the kine-
matics, and it can be improved iteratively during the inversion.

Our data driven approximation of the internal wave is rooted in the construction
of the ROM for the wave propagator operator, developed in [15, 16, 7]. This operator
controls the evolution of the wave field at discrete and equidistant time instants, and
its ROM analogue is a matrix with special algebraic structure, that can be computed
from the array response matrix. The propagator ROM has been used for imaging in
[16] and for the linearization of the mapping from the wave impedance to the array
response matrix, in a medium with known kinematics, in [5, 6]. Data driven approx-
imations of the internal wave in the spectral (Laplace) domain have been introduced
recently for estimating the scattering potential in diffusive equations [4, 17]. Time
domain approximations of the internal wave, of the kind used in this paper, have also
been used for imaging in the time domain in [8]. In this paper we extend the ideas
developed in these works to waveform inversion. We formulate and motivate a novel
inversion algorithm and assess its performance with numerical simulations.

The paper is organized as follows: We begin in section 2 with the formulation
of the problem, the data model and the integral equation that defines the forward
mapping. The nonlinearity in this equation is due to the internal wave, which we
estimate in section 3. The inversion algorithm is given in section 4 and the results of
the numerical simulations are in section 5. We end with a summary in section 6.

2. Formulation of the problem. Here we formulate mathematically the wave-
form inversion problem. We give first, in section 2.1, the model of the array response
matrix M(t). Then, we explain in section 2.2 that if the medium near the sensors is
known, which is typical in most applications, M(t) can be mapped to a new “data
matrix” D(t). This mapping can be computed and there is no loss of information
when working with D(t). The advantage is that we can get from D(t) an estimate of
the internal wave, as explained in section 3. This is used for linearizing approximately
the forward mapping c(x) 7→D(t) defined in section 2.3.

2.1. Mathematical model of the array response matrix. Suppose that the
sources and receivers are point-like, at locations xs, for s = 1, . . . ,m, and the probing
signal is f(t), with support in the interval (−tf , tf ). The wave field generated by the
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Fig. 2.1. Illustration of the setup: An array of co-located sources and receivers (indicated
with red crosses) probes a medium with incident waves and measures the backscattered waves. The
unknown medium is in the remote, inaccessible subdomain Ωin shown in blue.

sth excitation is denoted by p(s)(t,x). It is the solution of the wave equation[
∂2
t − c2(x)∆

]
p(s)(t,x) = f ′(t)δxs(x), t ∈ R, x ∈ Ω, (2.1)

with quiescent initial condition

p(s)(t,x) ≡ 0, t < −tf , x ∈ Ω. (2.2)

Here δxs(x) denotes the Dirac delta at xs and Ω is a bounded, simply connected
domain in Rd, for d ∈ {2, 3}. The methodology works the same for any homogeneous
boundary conditions at ∂Ω. We assume henceforth that ∂Ω is the union of a sound
soft boundary ∂ΩD and a sound hard boundary ∂ΩN i.e., for all t ∈ R we have

[1∂ΩD (x) + 1∂ΩN (x)∂n] p(s)(t,x) = 0, x ∈ ∂Ω = ∂ΩD ∪ ∂ΩN . (2.3)

Here ∂n denotes the normal derivative and 1Γ(x) is the indicator function of a set
Γ ⊂ Rd, equal to 1 when x ∈ Γ and zero otherwise.

Remark 2.1. The boundary ∂Ω may be physical or it can be introduced mathe-
matically using the hyperbolicity of the problem, the finite wave speed and the finite
duration T of the measurements. That is to say, if the distance between ∂Ω and the set
{xs, s = 1, . . . ,m} is larger than maxx∈Ω c(x)T , then the recorded waves will not feel
the boundary, and we can model it with whatever boundary conditions are most con-
venient for the computations. In our numerical simulations we use a physical sound
hard boundary near the array, but the methodology extends verbatim to other setups.

The measurements are organized in the m × m time dependent array response
matrix M(t), with entries defined by

M(r,s)(t) = f(−t) ?t p(s)(t,xr), s, r = 1, . . . ,m, t ∈ (0, T ). (2.4)

Here we convolve the wave with f(−t), as is common in radar, sonar and echography.
Mathematically, M(r,s)(t) is the same as the wave at xr, due to the probing signal
F (t) = f(−t) ?t f(t) emitted by the source at xs. Obviously, F (t) is an even signal,
with non-negative Fourier transform. This fact is used in the estimation of the internal
wave in section 3.

Remark 2.2. In practice, the balance between the limited power of sensors and
the need for high signal to noise ratios may require using long probing signals f(t),
like linear frequency modulated chirps, instead of pulses. The convolution with f(−t)
is used in such cases as a pulse compression method [14], because the resulting F (t)
is a short duration signal. This is beneficial for improved resolution of imaging.

Let henceforth supp(F ) ⊂ (−tF , tF ), and assume that the medium is known and
homogeneous near the array, with constant wave speed c̄. This assumption holds in
most applications and by near we mean within a distance of order c̄tF from the array.
The unknown variations of c(x) are supported in the inaccessible subdomain Ωin ⊂ Ω,
as illustrated in Fig. 2.1. We suppose that Ωin does not intersect ∂ΩN .
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2.2. The new data matrix. From the mathematical point of view, it is conve-
nient to work with a wave operator that is symmetric with respect to the L2(Ω) inner
product. Thus, we define the new wave field

P (s)(t,x) =
c̄

c(x)
f(−t) ?t p(s)(t,x), (2.5)

which satisfies the initial boundary value problem[
∂2
t +A(c)

]
P (s)(t,x) = F ′(t)δxs(x), t ∈ R, x ∈ Ω, (2.6)

P (s)(t,x) ≡ 0, t < −tF , x ∈ Ω, (2.7)

[1∂ΩD (x) + 1∂ΩN (x)∂n]P (s)(t,x) = 0, t ∈ R, x ∈ ∂Ω, (2.8)

with operator

A(c) = −c(x)∆[c(x)·], (2.9)

that is self-adjoint and positive definite.
For our purpose, it is useful to have a homogeneous wave equation, so we map

the source term in (2.6) to an initial condition. We can think of this mapping as a
Duhamel principle, although it is not in the usual form [22]. It amounts to working
with the even in time wave field

W (s)(t,x) = P (s)(t,x) + P (s)(−t,x), (2.10)

which, as shown in appendix A, solves the initial boundary value problem[
∂2
t +A(c)

]
W (s)(t,x) = 0, t > 0,x ∈ Ω, (2.11)

W (s)(0,x) = ϕ(s)(x), x ∈ Ω, (2.12)

∂tW
(s)(0,x) = 0, x ∈ Ω, (2.13)

[1∂ΩD (x) + 1∂ΩN (x)∂n]W (s)(t,x) = 0, t ≥ 0, x ∈ ∂Ω. (2.14)

The source term in (2.6) is mapped to the initial condition in (2.12), given by

ϕ(s)(x) = F̂
[√

A(c)
]
δxs(x), (2.15)

where the hat denotes the Fourier transform and functions of the operator A(c) are
defined using its spectral decomposition: If {θj}j≥1 are the eigenvalues of A(c) and
{yj(x)}j≥1 are the eigenfunctions, which form an orthonormal basis of L2(Ω) with
the homogeneous boundary conditions, then a function ψ of A(c) is the operator with
eigenvalues {ψ(θj)}j≥1 and eigenfunctions {yj(x)}j≥1.

It is important to point out that there is no loss of information when working
with W (s)(t,x). Indeed, due to the initial condition (2.7), we have

W (s)(t,x) = P (s)(t,x), t ≥ tF . (2.16)

Moreover, by the hyperbolicity of the wave equation, the wave W (s)(t,x) is supported
near the array at |t| < tF , and it can be computed using the constant wave speed c̄
there. Thus, we can define the “data matrix” D(t), with entries

D(r,s)(t) = W (s)(t,xr) =M(r,s)(t) +M(r,s)(−t), t > 0, r, s = 1, . . . ,m, (2.17)
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where the last term contributes only at 0 ≤ t < tF and can be computed.
The advantage of working with the formulation (2.11)–(2.14) is that we can use

operator calculus to write the solution as

W (s)(t,x) = cos
[
t
√
A(c)

]
ϕ(s)(x). (2.18)

Moreover, we can use the trigonometric identity

cos[(t+ ∆t)α] + cos[(t−∆t)α] = 2 cos(∆tα) cos(tα), ∀α ∈ R,

and the definition of cos
(
t
√
A(c)

)
to obtain the exact time stepping relation

W (s)(t+ ∆t,x) = 2 cos
[
∆t
√
A(c)

]
W (s)(t,x)−W (s)(t−∆t,x), (2.19)

for any t and ∆t > 0. This is an important tool for the ROM construction and the
estimation of the internal wave in section 3.

2.3. The forward mapping. The next proposition defines the forward mapping
c(x) 7→ D(t) using a Lippmann-Schwinger type integral equation for the scattered
wave field. This field is given by the difference between the wave W (s)(t,x) in the
unknown medium and the reference wave

W (s)(t,x; cref) = cos
[
t
√
A(cref)

]
ϕ(s)(x), (2.20)

calculated with the wave speed cref(x), our guess of c(x).
Note that we use henceforth the following notation convention: To distinguish the

fields calculated with an incorrect wave speed, like cref(x), from the fields in the true
medium, we introduce the extra argument cref . Thus, W (s)(t,x) and D(t) denote the
wave and data in the true medium and W (s)(t,x; cref) and D(t; cref) are the analogues
in the reference medium.

Proposition 2.3. Let G(t,x,x′; cref) denote the causal Green’s function in the
reference medium, the solution of the initial boundary value problem[

∂2
t +A(cref)

]
G(t,x,x′; cref) = δ′(t)δx′(x), t ∈ R, x ∈ Ω, (2.21)

G(t,x,x′; cref) ≡ 0, t < 0, x ∈ Ω, (2.22)

[1∂ΩD (x) + 1∂ΩN (x)∂n]G(t,x,x′; cref) = 0, t ∈ R, x ∈ ∂Ω. (2.23)

The mapping c(x) 7→D(t) is defined component-wise by

D(r,s)(t) = D(r,s)(t; cref) +

∫ t

0

dt′
∫

Ω

dx ρ(x)∂t′W
(s)(t′,x)G(t− t′,x,xr; cref), (2.24)

for r, s = 1, . . . ,m and t > 0, where D(r,s)(t; cref) = W (s)(t,xr; cref) and

ρ(x) =
c2(x)− c2ref(x)

c(x)cref(x)
. (2.25)

The proof of this proposition is in appendix B. Note that the forward map is
nonlinear, not only because of the definition of ρ(x) in terms of c(x), but also because
the right hand side involves the “internal wave” W (s)(t,x). This depends on the
unknown c(x) in a complicated way, as seen from equation (2.18). Our goal is to
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obtain an estimate of this internal wave, called W̃ (s)(t,x; cref), and use it to define
the linear mapping ρ(x) 7→ L[ρ](t; cref), defined componentwise by

L(r,s)[ρ](t; cref) =

∫ t

0

dt′
∫

Ω

dx ρ(x)∂t′W̃
(s)(t′,x; cref)G(t− t′,x,xr; cref). (2.26)

The inversion can then be carried out via the linear least squares minimization

ρ̃(x) = argmin
ρR

∫ T

0

dt ‖D(t)−D(t; cref)−L[ρR ](t; cref)‖2F + regularization, (2.27)

where ρR(x) lies in some search space R and ‖ · ‖F denotes the Frobenius norm. The
estimated wave speed is determined by the minimizer (2.27), according to (2.25), as
follows

c̃(x) =
cref(x)

2

[
ρ̃(x) +

√
4 + ρ̃2(x)

]
. (2.28)

Remark 2.4. While the internal wave W (s)(t,x) depends on the true and un-

known c(x), its estimate W̃ (s)(t,x; cref) depends both on c(x), because it is calculated
from the c(x) dependent data, and on cref(x). According to our notation convention,
we indicate the latter dependence by adding cref to its arguments. The dependence of
W̃ (s)(t,x; cref) on cref is different than that of the wave W (s)(t,x; cref) in the refer-
ence medium, as we explain in the next section and we illustrate later with numerical
simulations. It is mostly the smooth part of cref that affects W̃ (s)(t,x; cref), whereas
W (s)(t,x; cref) is sensitive to both the smooth and rough parts of cref .

3. Estimation of the internal wave. Before explaining how we compute
W̃ (s)(t,x; cref) for a given cref(x), let us write the internal wave as the time con-
volution (see appendix C)

W (s)(t,x) = f(t) ?t u
(s)(t,x) (3.1)

of the even pulse

f(t) =

∫ ∞
−∞

dω

2π

√
F̂ (ω) cos(ωt), (3.2)

with Fourier transform∗ f̂(ω) =

√
F̂ (ω), and the wave field

u(s)(t,x) = cos
[
t
√
A(c)

]
u

(s)
0 (x), (3.3)

that satisfies the same homogeneous wave equation as W (s)(t,x), but has the initial
state

u(s)(0,x) = u
(s)
0 (x) = f̂

[√
A(c)

]
δxs(x). (3.4)

The advantage of expression (3.1) is two-fold: First, we have

∂tW
(s)(t,x) = f′(t) ?t u

(s)(t,x), (3.5)

∗Recall from section 2.1 that the Fourier transform F̂ (ω) of F (t) is non-negative.
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where the time derivative is shifted to the known pulse f(t) i.e., we do not need to
estimate the time derivative of the internal wave (3.3), just the wave itself. Second,
from discrete, equidistant time samples of the data, at interval†τ ,

Dj = D(jτ), j = 0, . . . , 2(n− 1), (3.6)

we can estimate u(s)(t,x) at time t ∈ (0, T ), with T = (n− 1)τ .

Remark 3.1. To estimate the internal wave at t ∈ (0, T ), as needed in (2.27),
we use measurements up to 2T . This is due to the back-scattering data acquisition
set-up: The waves make a round-trip from the sources in the array to points inside
the medium, where they scatter, and then travel back to the array, where they are
measured. Thus, data (3.6) carry information about the parts of the medium reached
by the waves up to travel time T .

Our estimate of the internal wave is based on a reduced order model (ROM) for
the evolution equation satisfied by the snapshots

uj(x) =
(
u(1)(jτ,x), . . . , u(m)(jτ,x)

)
, j ≥ 0. (3.7)

These are m dimensional row vector fields with components given by the waves (3.3)
evaluated at the instants t = jτ , for all the sources in the array. They evolve from
one instant to the next according to the time stepping scheme

uj+1(x) = 2Puj(x)− u|j−1|(x), j ≥ 0, x ∈ Ω, (3.8)

with initial condition

u0(x) = f̂
[√

A(c)
]

(δx1
(x), . . . , δxm(x)) , x ∈ Ω. (3.9)

The evolution is driven by the propagator operator P = cos
[
τ
√
A(c)

]
, and the time

stepping scheme is exact i.e., it does not stem from a finite difference approximation
of ∂2

t . It is derived from equation (2.19) evaluated at t = jτ and ∆t = τ .
The ROM introduced and analyzed in [15, 5, 7] can be understood as the Galerkin

projection of (3.8)–(3.9) on the space S spanned by the first n snapshots. We review
it briefly in section 3.1, and then use it in section 3.2 to estimate the internal wave.

3.1. Data driven ROM. Let us assume that S has dimension nm, which is
typically the case if the step size τ is chosen properly. Otherwise, the construction
below requires regularization (see section 4).

If we gather the first n snapshots (3.7) in the nm dimensional row vector field

U(x) = (u0(x), . . . ,un−1(x)) , (3.10)

we have, in linear algebra notation, S = range[U(x)]. To write the Galerkin pro-
jection of equations (3.8)–(3.9) we use an orthonormal basis of S , stored in the nm
dimensional row vector field V (x) and defined by the Gram-Schmidt orthogonaliza-
tion procedure

V (x) = (v0(x), . . . ,vn−1(x)) = U(x)R−1. (3.11)

†The interval τ should be chosen close to the Nyquist sampling rate for the highest frequency
in the essential support of F̂ (ω), defined for example using a 6dB power drop from the peak value.
This ensures a stable and more accurate estimation of the internal wave. A smaller τ requires
regularization, as we explain later, and a larger τ gives a worse estimate of the wave.
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This procedure is causal, meaning that

vj(x) ∈ span{u0(x), . . . ,uj(x)}, j = 0, . . . , n− 1, (3.12)

so the nm×nm matrix R−1, and therefore R, are block upper triangular, with m×m
blocks. The orthonormality of the basis means that∫

Ω

dxV T (x)V (x) = I, (3.13)

where I is the nm× nm identity matrix.
The projection of (3.8)–(3.9) gives the algebraic (ROM) time stepping scheme

[15, 5, 7],

uROM

j+1 = 2PROMuROM

j − uROM

|j−1|, j ≥ 0, (3.14)

where PROM is the nm× nm ROM propagator matrix, defined by

PROM =

∫
Ω

dxV T (x)PV (x) = R−1T
[∫

Ω

dxUT (x)PU(x)

]
R−1, (3.15)

and the ROM snapshots are nm×m matrices, given by

uROM

j =

∫
Ω

dxV T (x)uGal
j (x), j ≥ 0. (3.16)

Here uGal
j (x) is the Galerkin approximation of the snapshots (3.7), defined in the

standard way, as the linear combination of the components of U(x), which span S ,

uGal
j (x) = U(x)gj , (3.17)

with coefficient matrices gj ∈ Rnm×m calculated so that the residual

uGal
j+1(x) + uGal

j−1(x)− 2PuGal
j (x) = U(x)(gj+1 + gj−1)− 2PU(x)gj , (3.18)

is orthogonal to S . This gives

M(gj+1 + gj−1)− 2Sgj = 0, j ≥ 0, (3.19)

where M and S are the Galerkin “mass” and “stiffness” matrices

M =

∫
Ω

dxUT (x)U(x), S =

∫
Ω

dxUT (x)PU(x). (3.20)

Substituting (3.17) in (3.16) and using that (3.11) is equivalent to

U(x) = V (x)R, (3.21)

we get that the ROM snapshots are

uROM

j =

∫
Ω

dxV T (x)V (x)Rgj = Rgj , j ≥ 0. (3.22)

What we have described so far follows the standard procedure for computing
model driven Galerkin projection ROMs [2, 11, 20]. However, there are two essential
points to make:
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1. The snapshots stored in U(x) are unknown in inverse scattering, so the ROM
cannot be computed as above. In fact, as explained below, our ROM is data
driven i.e., it can be computed from the data matrices {Dj}2n−1

j=0 .

2. Because the time stepping scheme (3.8) is exact, our ROM has better approx-
imation properties than the usual ROMs for the wave equation [19, 24, 20],
which use either the derivative ∂2

t or a finite difference approximation of it.
This is important for the estimation of the internal wave.

We begin the explanation of these two points with the following observation:
The definition of the approximation space S and equations (3.8)–(3.9) imply that
the residual (3.18) vanishes for the first n time instants. Consequently, the Galerkin
approximation at these instants is exact

uGal
j (x) = U(x)gj = uj(x), j = 0, . . . , n− 1, (3.23)

or, equivalently, the first n Galerkin coefficient matrices are trivial,

gj = ej , j = 0, . . . , n− 1. (3.24)

Here ej are the nm×m block columns of the nm× nm identity matrix I i.e.,

I = (e0, . . . , en−1).

Next, we note that the Galerkin mass matrix defined in (3.20) can be computed
as follows: Let M be organized in m × m blocks Mi,j , indexed by the pair (i, j),

with i, j = 0, . . . , n− 1. The entries in the (i, j)th block are denoted by M
(r,s)
i,j , with

r, s = 1, . . . ,m, and are determined by the data matrices (3.6) as follows

M
(r,s)
i,j =

∫
Ω

dxu(r)(iτ,x)u(s)(jτ,x)

=

∫
Ω

dx cos
[
iτ
√
A(c)

]̂
f
[√

A(c)
]
δxr (x) cos

[
jτ
√
A(c)

]̂
f
[√

A(c)
]
δxs(x)

=

∫
Ω

dx δxr (x) cos
[
iτ
√
A(c)

]
cos
[
jτ
√
A(c)

] (̂
f
[√

A(c)
])2

δxs(x)

=
1

2

∫
Ω

dx δxr (x)
{

cos
[
(i+ j)τ

√
A(c)

]
+ cos

[
(i− j)τ

√
A(c)

]}
ϕ(s)(x)

=
1

2

[
W (s)

(
(i+ j)τ,xr

)
+W (s)

(
|i− j|τ,xr

)]
=

1

2

[
D

(r,s)
i+j +D

(r,s)
|i−j|

]
. (3.25)

The first equality in this equation is by definition (3.20), the second equality is by
definitions (3.3)–(3.4), the third equality is because A(c) is self-adjoint and functions
of A(c) commute, the fourth equality uses definitions (2.15), (3.2) and equation (2.19)
evaluated at t = iτ and ∆t = jτ , the fifth equality uses definition (2.18), and the last
equality is by definition (2.17).

Similarly, the entries of the stiffness matrix are, for block indexes i, j = 0, . . . , n−1
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and for entry indexes r, s = 1, . . . ,m in the blocks,

S
(r,s)
i,j =

∫
Ω

dxu(r)(iτ,x)Pu(s)(jτ,x)

=
1

2

∫
Ω

dxu(r)(iτ,x)
{
u(r)[(j + 1)τ,x] + u(r)[|j − 1|τ,x]

}
=

1

4

[
D

(r,s)
i+j+1 +D

(r,s)
|i−j−1| +D

(r,s)
|i+j−1| +D

(r,s)
|i−j+1|

]
, (3.26)

where the first equality is by definition (3.20), the second equality uses equation (3.8),
and the last equality follows as in (3.25).

Note that the calculation of the mass matrix uses the data matrices {Dj}2n−2
j=0 ,

while the calculation of the stiffness matrix requires the extra matrix D2n−1. Once
we compute M and S, we can obtain from (3.19) all the Galerkin coefficient matrices
gj , for j ≥ n, starting with the trivial ones given in (3.24). Next, substituting the
Gram-Schmidt orthogonalization equation (3.21) in the definition (3.20) of the mass
matrix, and recalling the orthonormality equation (3.13), we get

M = RT

∫
Ω

dxV T (x)V (x)R = RTR. (3.27)

Thus, R can be computed from the data as the block Cholesky square root of M .
This gives the ROM snapshots (3.22). The ROM propagator is also data driven, by
definitions (3.15) and (3.20),

PROM = R−1TSR−1. (3.28)

3.2. Data driven estimate of the internal wave. Ideally, the internal wave
u(s)(t,x) would be given by the interpolation in t of the snapshots

u(s)(jτ,x) = [V (x)Rej ]s =

j∑
q=0

[
vq(x)Rq,j

]
s
, (3.29)

at indexes j and j + 1 corresponding to the ends of the interval [jτ, (j + 1)τ ] that
contains t. Here [·]s denotes the sth component and the right hand side is due to
the Gram-Schmidt orthogonalization equations (3.11), (3.21) and the block upper
triangular structure of R, with non-zero m ×m blocks denoted by Rq,j for indexes
0 ≤ q ≤ j ≤ n− 1.

Unfortunately, we only know the matrix R in equation (3.29), the square root
of the mass matrix M computed from {Dj}2n−2

j=0 as in equation (3.25). We do not
know V (x), whose orthonormal components span the unknown space S . To estimate
the internal wave, we replace V (x) by V (x; cref), the row vector field that stores the
orthonormal basis of the space S (cref), spanned by the snapshots in the reference
medium with known wave speed cref(x). This basis can be computed by solving the
wave equation to get the nm dimensional row vector U(x; cref), the reference mass
matrix M(cref) and its block Cholesky square root R(cref). Then, we have

V (x; cref) = U(x; cref)R
−1
ref , (3.30)

and we estimate (3.29) by

ũ(s)(jτ,x; cref) = [V (x; cref)Rej ]s =

j∑
q=0

[
vq(x; cref)Rq,j

]
s
, (3.31)
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for j = 0, . . . , n− 1 and s = 1, . . . ,m.
Why is this estimate of the internal wave a good choice? The next proposition

states that it fits the data {Dj}2n−2
j=0 . Thus, it must be a better approximation of

the internal wave than the reference wave used by the standard iterative algorithms,
which does not fit the data. In our context, this reference wave is given by

u(s)(jτ,x; cref) = [V (x; cref)R(cref)ej ]s , j = 0, . . . , n− 1, s = 1, . . . ,m. (3.32)

Proposition 3.2. The estimate (3.31) satisfies the data fit relations

Dj =

∫
Ω

dxuT0 (x)uj(x)

=

∫
Ω

dx ũT0 (x; cref)ũj(x; cref), (3.33)

and

Dj+n−1 +Dn−1−j = 2

∫
Ω

dxuTn−1(x)uj(x)

= 2

∫
Ω

dx ũTn−1(x; cref)ũj(x; cref), (3.34)

for j = 0, . . . , n− 1. Here we denote, similar to the row-vector field notation in (3.7),

ũj(x; cref) =
(
ũ(1)(jτ,x; cref), . . . , ũ

(m)(jτ,x; cref)
)
, j = 0, . . . , n− 1.

Proof: The first equalities in (3.33)–(3.34) follow from equation (3.25) and the defi-
nition of M . Indeed, we have from (3.25) evaluated at i = 0 and j = 0, . . . , n− 1,

D
(r,s)
j = M

(r,s)
0,j =

∫
Ω

dxu
(r)
0 (x)u

(s)
j (x),

for r, s = 1, . . . ,m. Equivalently, in block form,

Dj =

∫
Ω

dxuT0 (x)uj(x), j = 0, . . . , n− 1.

For the second equality we take i = n − 1 and j = 0, . . . , n − 1 in (3.25) and get, in
block form,

Dj+n−1 +Dn−1−j = 2Mn−1,j = 2

∫
Ω

dxuTn−1(x)uj(x),

for j = 1, . . . , n−1. To complete the proof of the proposition we note that the estimate
(3.31) satisfies∫

Ω

dx ũTq (x; cref)ũj(x; cref) = eTq R
T

∫
Ω

dxV T (x; cref)V (x; cref)Rej

= eTq R
TRej = eqMej

= eq

∫
Ω

dxUT (x)U(x) ej

=

∫
Ω

dxuTq (x)uj(x),
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for j, q = 0, . . . , n− 1. The statement of the proposition follows. �

The calculation above shows that it is the factor R in the estimate (3.31) that
ensures the data fit. By equations (3.22) and (3.24), R stores the first n ROM snap-
shots. The vector field V (x; cref) is used to map these snapshots from the algebraic
ROM space to the physical space. As long as there is a difference between the data
{Dj}2n−2

j=0 and the computed one in the reference medium {Dj(cref)}2n−2
j=0 , this is

reflected in R and its reference analogue R(cref), so

ũ(s)(jτ,x; cref) = [V (x; cref)Rej ]s 6= u(s)(jτ,x; cref) = [V (x; cref)R(cref)ej ]s .

Numerical evidence and explicit analysis carried out in layered media and also in
waveguides [8, Appendix A] show that V (x; cref) is largely insensitive to the rough
part of cref(x) i.e., the reflectivity, but it does depend on the smooth part of cref(x)
i.e., the kinematics. The implication is that the estimate (3.31) may display the
correct scattering events, but these can be misplaced in Ω due to the travel times
given by the incorrect kinematics.

Our inversion algorithm (see next section) recalculates V (x; cref) as we update
the guess velocity cref(x). As long as the initial guess of the kinematics is not too far
from the truth, it succeeds in giving a better estimate of c(x) than the traditional
iterative algorithms that estimate the internal wave by u(s)(jτ,x; cref).

4. The inversion. Let us begin with a reformulation of Proposition 2.3 that is
better suited for computations.

Proposition 4.1. The forward map c(x) 7→ ρ(x) 7→ D(t) defined in Proposi-
tion 2.3 for a given cref(x), can be rewritten as

D(r,s)(t)−D(r,s)(t; cref) =

∫ t

0

dt′
∫

Ωin

dx ρ(x)u(s)(t′,x)∂t′u
(r)(t′,x; cref), (4.1)

for r, s = 1, . . . ,m and t > 0.

The proof is in appendix D and the main advantage of (4.1) over (2.24) is that
we do not have to deal with the Green’s function G(t,x,xr; cref) which is difficult
to compute. The convolution term f′(t) that appears in the expression (3.5) is now
included in the factor ∂tu

(r)(t,x; cref) that can be easily computed.
We estimate first the function ρ(x) by the minimizer of (2.27), and then the wave

speed c(x), using equation (2.28). The search space is

R = span{βj(x), j = 1, . . . , Nρ}, (4.2)

where {βj(x)}Nρj=1 are user defined basis functions, so the search field is

ρR(x) =

Nρ∑
j=1

ηjβj(x), (4.3)

with the unknown coefficients gathered in the column vector η =
(
η1, . . . , ηNρ

)T
.

The linear map η 7→ ρR 7→ L[ρR ](t; cref) that enters the expression of the objective
function (2.27) is computed as

L[ρR ](t; cref) =

Nρ∑
q=1

ηqΛq(t; cref), (4.4)
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where Λq(t; cref) are m×m matrices with components

Λ(r,s)
q (t; cref) =

∫ t

0

dt′
∫

Ωin

dxβq(x)ũ(s)(t′,x; cref)∂t′u
(r)(t′,x; cref), (4.5)

and ũ(s)(t,x; cref) given by the interpolation of the estimated snapshots (3.31).
The regularization term in the objective function (2.27) can be chosen based on

the prior information on c(x). For the simulations described in the next section we
use either the TV norm of the wave speed, or the squared Euclidian norm of η i.e.,
Tikhonov regularization. We refer to appendix E for the details on the regularization.

4.1. Regularization of the estimation of the internal wave. The compu-
tation of the estimated internal wave snapshots (3.31) involves the block Cholesky
factor R of the data driven Galerkin mass matrix, so we need to ensure that M is
symmetric and positive definite.

In the absence of noise, M is symmetric by reciprocity, but it may not be positive
definite, especially if we over discretize in time i.e., τ is too small, or if the separation
between the sensors is much smaller than the central wavelength.

If data are noisy, let Mnoisy be the mass matrix given by (3.25), and then set
M = 1

2

(
Mnoisy +MT

noisy

)
, to ensure the symmetry. In either case, if M is not

positive definite, we regularize it by adding a small multiple of the block M0,0 to the
block diagonal. Since M0,0 = D0 is computed in the known medium near the sensors,
it is not affected by noise. Note that we use this particular regularization, as opposed
to say, spectral truncation, to ensure that we maintain the block Hankel plus Toeplitz
algebraic structure of M seen from equation (3.25).

4.2. The inversion algorithm. The ROM and therefore the approximation of
the internal wave are causal, so it is possible to carry out the inversion in a layer
peeling fashion, by choosing a progressively larger end time T . Then, the inversion
scheme would consist of two kinds of iterations: The outer iterations, which consider
a progressively larger end time T , and the inner iterations that minimize the objective
function for a given T . We describe next how we carry out the inner iterations. In
our numerical simulations we used a single outer iteration i.e., a fixed T .

There are two ways to carry out the inner iterations, called henceforth “ap-
proach 1” and “approach 2”. The first one updates ũ(t,x; cref) while keeping ∂tu(t,x; cref)
and the definition of ρ(x) fixed, as given in the following algorithm:

Algorithm 1. (Inner iterations for approach 1)

Input: Dj for j = 0, . . . , n − 1, the Cholesky square root R of the mass matrix and
the initial guess c0(x) of the wave speed.

For k ≥ 1 do

1. Set cref(x) = ck−1(x) and compute V (x; cref).

2. Compute ũ(s)(t,x; cref) using linear interpolation of [V (x; cref)Rej ]s, for time
t ∈ (0, . . . , (n− 1)τ), index j = 0, . . . , n− 1 and s = 1, . . . ,m.

3. Compute the m×m matrices {Λq(t; cref)}
Nρ
q=1 defined componentwise by

Λ(r,s)
q (t; cref) =

∫ t

0

dt′
∫

Ωin

dxβq(x)ũ(s)(t′,x; cref)∂t′u
(r)(t′,x; c0),

for r, s = 1, . . . ,m and time t in the set {0, τ, . . . , (n− 1)τ}.
13



4. Determine the vector η = (η1, . . . , ηNρ)
T as the minimizer of the objective function

n−1∑
j=0

τ
∥∥∥Dj −Dj(c0)−

Nρ∑
q=1

ηqΛq(jτ ; cref)
∥∥∥2

F
+ regularization.

5. Compute ρ̃(x) =

Nρ∑
q=1

ηqβq(x) and estimate the wave speed as

ck(x) =
c0(x)

2

[
ρ̃(x) +

√
4 + ρ̃2(x)

]
. (4.6)

6. Check for convergence and decide to continue or stop.

Output: The estimated wave speed.

In the second approach we change all the fields at each iteration. The algorithm
is like the one above, with the following three exceptions:

1. At step 3, the matrices {Λq(t; cref)}
Nρ
q=1 have the entries

Λ(r,s)
q (t; cref) =

∫ t

0

dt′
∫

Ωin

dxβq(x)ũ(s)(t′,x; cref)∂t′u
(r)(t′,x; cref).

2. At step 4, the objective function uses the recomputed data Dj(cref) at the
current guess of the wave speed, instead of Dj(c0).

3. At step 5, the wave speed is estimated by

ck(x) =
cref(x)

2

[
ρ̃(x) +

√
4 + ρ̃2(x)

]
. (4.7)

Here is the motivation for both approaches: If in the definition of {Λq(t; cref)}
Nρ
q=1

we had the true internal wave u(t,x) instead of ũ(t,x; cref), then not counting the
regularization, the problem would be linear least squares that can be solved in one
iteration. As explained in section 3.2, the snapshots of the true wave differ from our
estimates only because we replace the unknown V (x) by the computable V (x; cref).
The idea of the first approach is to correct V (x; cref) as we iterate, hoping that it gets
closer to V (x). The other fields remain equal to their initial values.

The second approach is basically the Gauss-Newton method for minimizing the
objective function. Since all the fields are updated at each iteration, it may look like
it involves more computations. However, since both approaches need the orthonormal
basis stored in V (x; cref), whose computation involves the calculation of the reference
snapshots, there is no extra computational cost. Moreover, this second approach
performs better in the numerical simulations, as shown in the next section.

5. Numerical results. In this section we present numerical results in a two
dimensional rectangular domain Ω, with one side close and parallel to the array,
modeled as the sound hard boundary ∂ΩN . The other three sides are modeled as
the sound soft boundary ∂ΩD. Two of them are perpendicular to the array and are
close enough to affect the waves over the duration 2(n− 1)τ of the data gather. The
remaining side is far away from the array, and plays no role. The sketch in Fig. 2.1
illustrates the setup.
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Fig. 5.1. The wave speed in the first test medium. The colorbar shows the variations of c(x)/c̄.
The 40 sensors in the array are shown with the triangles at the top of the domain. The boundary
of the rectangular inversion domain Ωin is shown with the black line.

The probing pulse is the Gaussian

f(t) =
2π√

2
exp

(
−B

2t2

2

)
cos(ωct), (5.1)

modulated with the cosine at central frequency ωc/(2π) and with bandwidth deter-
mined by B = ωc/4. After the “pulse compression” we get

F (t) = f(−t) ? f(t) =
π5/2

B
exp

(
−B

2t2

4

)[
cos(ωct) + exp

(
− ω

2
c

B2

)]
≈ π5/2

B
exp

(
−B

2t2

4

)
cos(ωct). (5.2)

This does not have finite support, but it is negligible for |t| ≥ 2
√

3/B, so the theory
applies with tF = 2

√
3/B.

We refer to appendix E for the details on the calculation of the objective function
and its minimization. Here we give the numerical results obtained with the two
approaches described above and also with the traditional FWI method, which differs
from approach 2 by the approximation of the internal wave. Instead of the estimate
(3.31), FWI uses the wave in the reference medium.

In all the figures, we scale the wave speed by the constant value c̄ near the
array, and the lengths by the central wavelength λc = 2πc̄/ωc. Following the typical
terminology in array imaging, we call “range” the direction orthogonal to the array
and “cross-range” the direction along the array. The time sampling step τ , the number
n of time instants, the number m of sensors and the separation between them vary
among the experiments, and are specified in the two sections below.

5.1. Test case 1. The first set of results is for the medium shown in Figure 5.1.
The array consists of m = 40 sensors, spaced at distance λc/4 apart. The time
sampling step is τ = π/(3ωc) and n = 75. The mass matrix M is regularized as
explained in section 4.1, by adding the 0.01 multiple of M0,0 to the block diagonal.

We display in the left plot of Figure 5.2 one column of the data matrix D(t),
corresponding to the central source excitation, indexed by s = 20. Its analogue
{D(r,20)(t; c0)}40

r=1, computed with the initial guess c0(x) = c̄ of the wave speed, is
shown in the middle plot. It contains just the echoes from the side boundaries. The
echoes from the unknown inclusions are prominent in the right plot, which displays
the difference {D(r,20)(t)−D(r,20)(t; c0)}40

r=1.
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Fig. 5.2. The 20th column of the data matrices, displayed as a function of the receiver index in
the abscissa and time index in the ordinate. The magnitude of the entries is given in the colorbar.

Fig. 5.3. Top: The medium and the point x at which we estimate the internal solution,
indicated with a cross. Middle left: The true internal wave uj(x) = {u(s)(jτ,x)}40s=1. Middle right:

The initial FWI estimate uj(x; c0) = {u(s)(jτ,x; c0)}40s=1 of the internal wave. Bottom left: The

initial ROM estimate ũj(x; c0) = {ũ(s)(jτ,x; c0)}40s=1 of the internal wave. Bottom right: The final
ROM estimate of the internal wave.

As explained in the previous section, the essential difference between the ROM
based inversion and FWI is the estimation of the internal wave. Figure 5.3 shows
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the estimates for the point x indicated with a black cross in the top plot. The true
internal wave uj(x) = V (x)Rej , which cannot be computed from the data set, and
requires knowing c(x), is shown in the left plot in the middle line. The initial FWI
estimate uj(x; c0) = V (x; c0)R(c0)ej is shown in the right plot in the middle line,
and the ROM estimate ũj(x; c0) = V (x; c0)Rej is shown in the bottom left plot.
To compare the FWI and ROM initial estimates, we identify in the true internal
wave three arrival events: The first is the direct arrival, indicated by the arrow a,
which is the wave that travels from the array to x, through the top fast inclusion.
The dashed line marks the travel time from the closest source to x. The other two
events, indicated by the arrows b and c, are waves scattered multiple times between
the inclusions and the top boundary. Note that both the ROM and FWI estimates
contain the direct arrival, although it lies behind the dashed line by about 2τ , due to
the incorrect kinematics given by c0(x). The FWI estimate does not account for the
multiply scattered arrival events, as it uses no information about the true medium.
The ROM estimate is superior, because it contains these events, although they are
slightly displaced, due to the wrong kinematics. The ROM based inversion corrects
the kinematics as we iterate, and the final estimate of the internal wave, shown in the
bottom right plot, is very close to the uncomputable true internal wave.

The inversion results are shown in Figure 5.4. They are obtained with the

parametrization (4.3), using the “hat basis” {βj(x)}Nρj=1, defined on a uniform mesh
in Ωin, with spacing 3λc/16 in range and λc/4 in cross-range. Each function βj(x) is
piecewise linear on the mesh, equal to one at the jth mesh point, and zero at all other
points. We use the two regularization methods mentioned in the previous section:
Tikhonov, which penalizes the squared Euclidian norm of the vector η of coefficients
in (4.3) (left plots) and TV, which penalizes the L1(Ωin) norm of the gradient of the
wave speed (right plots). The details of the regularization, and the regularization
parameters are given in appendix E.

To assess the quality of the inversion, we display in the bottom row of Figure 5.4
the ideal result, obtained with the true internal wave u(t,x) that cannot be computed
without knowing the medium. Were it not for the regularization, this ideal result
could be obtained in a single step. However, since we penalize the changes of ρ(x)
and therefore of c(x), we need a few steps to reach convergence. The ROM approach 2
gives a result that is close to the ideal one, as seen from the plots shown in the second
line. The ROM approach 1 result, shown in the first line, is not as good. In particular,
the bottom inclusion is not correctly identified and the values of the wave speed in the
other inclusions are not as close as those given by approach 2. The FWI results are
shown in the third line. They are better for Tikhonov regularization, but the bottom
inclusion is misplaced due to the wrong kinematics of the inclusions above it. For
the TV regularization, the FWI method gets stuck in a local minimum, and thus it
cannot identify the bottom two inclusions.

Figure 5.5 shows two cross-sections of the images, where the misplacement of
the bottom inclusions by FWI and approach 1 are more evident. We also show in

Figure 5.6 the relative data misfit:
[
(
∑2n−1
j=0 ‖Dj −Dj(ck)‖2F )/(

∑2n−1
j=0 ‖Dj‖2F )

] 1
2

,

where ck(x) is the estimated wave speed at the kth iteration. This misfit cannot be
zero even in the ideal inversion, because the unknown c(x) cannot be represented
exactly in the hat basis and because we use regularization. Note that approach 2
achieves the ideal fit, while the other methods give a worse fit. This is consistent with
the results in Figure 5.4.
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Tikhonov regularization TV regularization

Fig. 5.4. Inversion results for the setup shown in Figure 5.1. We display the results in the
subdomain Ωin. The left column shows the results for Tikhonov regularization and the right column
for TV regularization. From top to bottom, the first row is for approach 1, the second row for
approach 2, the third row is for FWI. The last row shows the ideal inversion results, obtained with
the true internal wave. The colorbar is kept the same as in Figure 5.1.

We now focus attention on the better approach 2, and illustrate in Figure 5.7 its

stability to the change of basis {βj(x)}Nρj=1 of the search space R: The left plot uses

a Gaussian basis, where βj(x) peaks at the jth mesh point, and has the standard
deviation 0.0796λc in range and 0.11λc in cross-range. The mesh is the same as for
the basis of hat functions and the standard deviations are chosen so that the Gaussian
functions have the same full width at half maximum as the hat functions [1]. The right
plot is for a pixel basis defined on a uniform, square mesh with spacing λc/8, where
βj(x) equals one in the jth grid cell and zero elsewhere. Both results are obtained with
TV regularization. It may appear natural to use the pixel basis in conjunction with
TV regularization to recover a piecewise constant wave speed. However, the jump
discontinuities introduced by this basis cause spurious scattering events, because the
unknown inclusions are misaligned with the inversion mesh. Consequently, the image
is slightly worse and, in particular, the bottom small inclusion is barely seen. The
continuous basis functions, like the hats and the Gaussians, are not so sensitive to the
mesh misalignment and give a better result.

The robustness of approach 2 to 10% additive noise is illustrated in Figure 5.8.
To mitigate the noise, we regularized the mass matrix as explained in section 4.1,
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Fig. 5.5. Two cross-sections of the inversion results, indicated in the top plot by the solid and
dotted vertical lines.

Fig. 5.6. Data fit of the inversion methods.

by adding the multiple 0.87 of M0,0 to the block diagonal. We display the inver-
sion results obtained with Tikhonov regularization (left plot) and TV regularization
(right plot). We use the same basis of hat functions as in Figure 5.4 and the noise
model is as follows: For j = 1, . . . , 2n− 1, we add to Dj the matrix Nj , with m2 en-
tries (N(r,s))mr,s=1 that are independent and identically distributed Gaussian random

variables, with mean zero and variance 0.12

2nm2

∑2n−1
j=0 ‖Dj‖2F .
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Fig. 5.7. The stability of the inversion algorithm with respect to changes of the basis in the
parametrization of ρ(x). Both results are obtained with TV regularization. The left plot is for the
Gaussian basis and the right plot is for the pixel basis.

Fig. 5.8. Inversion results using data contaminated with 10% noise. Left plot: Tikhonov
regularization. Right plot: TV regularization.

5.2. Test case 2. The second set of results is for the medium shown in Fig-
ure 5.9, with four thin and slow inhomogeneities, that model fractures. The array has
m = 50 sensors, at distance 0.35λc apart, the time step is τ = π/(3ωc) and n = 118.

Fig. 5.9. The wave speed in the second test medium, with thin, fracture like, slow inhomo-
geneities. The colorbar shows the variations of c(x)/c̄. The 50 sensors in the array are shown with
the triangles at the top of the domain.

The main difference between this test case and the one considered in the previous
section is that c0(x) = c̄ gives a good approximation of the kinematics, which is
only slightly perturbed by the thin inhomogeneities. This is why our initial estimate
ũ(t,x; c0) of the internal wave is close to the true wave u(t,x), as illustrated in
Figure 5.10, for the point x marked with the red cross in the left plot. Note how the
estimate contains the marked 4 arrivals in the middle plot. The arrival marked by d
is for the wave scattered once at the bottom inhomogeneity. The events marked with
c and b are surface multiples, that scattered at the sound hard boundary and the top
inhomogeneity. The later arrival marked a is also correctly identified.

In Figure 5.11 we compare the inversion results given by the ROM approach 2
and FWI. We parametrize ρ(x) with the hat basis, on a grid with steps 3λc/16 in
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Fig. 5.10. The internal wave at the point x marked with the red cross in the left plot. Middle
plot displays the true internal wave. The right plot is our initial estimate of this wave.

range and 5λc/16 in cross-range. We use TV regularization, with the regularization
parameter given in appendix E. Since the initial estimate of the internal wave is so
accurate, the ROM approach 2 identifies the four thin inhomogeneities at the first
step. The remaining four iterations sharpen slightly the image. FWI gives a spurious
feature at the first iteration, because it uses the inaccurate estimate u(t,x; c0) of the
internal wave. This spurious feature disappears at the 5th iteration, but the lower
inhomogeneities are not reconstructed. The optimization is stuck in a local minimum
and the result does not improve if we iterate more.

Fig. 5.11. Inversion results: Top row shows the first iteration. Bottom row shows the fifth
iteration. The left column is for the ROM approach 2 and the right column is for FWI.

6. Summary. We introduced a novel waveform inversion methodology, that es-
timates the wave speed in the acoustic wave equation from the time resolved response
matrix gathered by an array of sensors that emit probing pulses and measure the
generated wave. The algorithm uses a least squares data fit formulation of the prob-
lem, where the forward map from the wave speed to the data is defined using the
Lippmann-Schwinger integral equation for the scattered wave field. This map is non-
linear and, typically, the least squares objective function has multiple local minima
that are far from the true wave speed. This behavior is known to be caused by
the following factors: (1) The data acquisition geometry i.e., the array measures the
backscattered waves but not the waves transmitted through the unknown medium.
(2) The multiple scattering of the waves on the rough part of the medium, called
the reflectivity, and modeled for example by the jump discontinuities of the wave
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speed. (3) The cycle-skipping phenomenon, caused by kinematic errors that exceed
half a period of the probing waves. Kinematics refers to the smooth part of the wave
speed, that determines the travel times of the waves, and cycle-skipping is especially
problematic for high frequency waves.

The novelty of our methodology is that these effects can be mitigated partially
using a data driven estimate of the internal wave i.e., the wave field at points inside
the inaccessible medium. Full knowledge of this wave would linearize the forward
map and thus turn the problem into an easier, linear least squares minimization. Our
estimate is an approximation of the internal wave that is more accurate than the usual
ones used in iterative optimization methods. In particular, we prove that it satisfies
automatically the measured data.

Our estimate of the internal wave is rooted in a data driven reduced order model
of the wave propagator operator, which controls the evolution of the wave field at
discrete time instants separated by an appropriately chosen interval. The computation
of the estimate of the internal wave is cost effective and it is robust to additive noise.
The accuracy of the estimate depends mostly on the guess kinematics and not the
reflectivity, and it can be improved iteratively. We introduced an inversion algorithm
based on the estimated internal wave and assessed its performance with numerical
simulations.
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Force Office of Scientific Research under award number FA9550-22-1-0077 to Borcea
and Garnier, the U.S. Office of Naval Research under award number N00014-21-1-
2370 to Borcea and Mamonov and the National Science Foundation under Grant No.
DMS-2110265 to Zimmerling.

Appendix A. Derivation of the expression (2.18). This derivation can also
be found in [8]. We repeat it here for the convenience of the reader. We begin by
writing the solution of (2.6)–(2.7) as

P (s)(t,x) = F (t) ?t G(t,x,xs), (A.1)

where G(t,x,xs) is the causal Green’s function, satisfying

[
∂2
t +A(c)

]
G(t,x,xs) = δ′(t)δxs(x), t ∈ R, x ∈ Ω, (A.2)

G(t,x,xs) ≡ 0, t < 0, x ∈ Ω, (A.3)

[1∂ΩD (x) + 1∂ΩN (x)∂n]G(t,x,xs) = 0, t ∈ R, x ∈ ∂Ω. (A.4)

This problem can be solved using separation of variables: Expanding G(t,x,xs) in
the orthonormal basis given by the eigenfunctions {yj(x)}j≥1 of A(c), and imposing
the jump conditions at t = 0, due to the derivative of the Dirac δ(t) in (A.2), we get

G(t,x,xs) = H(t) cos
[
t
√
A(c)

]
δxs(x) = H(t)

∞∑
j=1

cos(t
√
θj )yj(x)yj(xs), (A.5)
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where H(t) is the Heaviside step function, equal to 1 at t > 0 and 0 otherwise.
Therefore, equation (A.1) becomes‡

P (s)(t,x) = F (t) ?t H(t)

∞∑
j=1

cos(t
√
θj )yj(x)yj(xs)

=

∞∑
j=1

[
F (t) ?t H(t) cos(t

√
θj )
]
yj(x)yj(xs). (A.6)

We can evaluate the convolution in (A.6) using the Fourier transform formula∫ ∞
−∞

dtH(t) cos(t
√
θj )eiωt =

π

2

[
δ(ω −

√
θj ) + δ(ω +

√
θj )
]

+
iω

θj − ω2
,

and obtain

F (t) ?t H(t) cos(t
√
θj ) =

1

4

[
F̂ (
√
θj )e−it

√
θj + F̂ (−

√
θj )eit

√
θj
]

+

∫ ∞
−∞

dω

2π

iωF̂ (ω)

(θj − ω2)
e−iωt,

where the first term simplifies because by the definition of F (t) and the fact that the

probing pulse is real valued, we have F̂ (ω) = F̂ (−ω), for all ω ∈ R. Therefore,

F (t) ?t H(t) cos(t
√
θj ) =

1

2
F̂ (
√
θj ) cos(t

√
θj ) +

∫ ∞
−∞

dω

2π

iωF̂ (ω)

(θj − ω2)
e−iωt,

and substituting in (A.6) and recalling the definition (2.10) of the even wave, we get

W (s)(t,x) =

∞∑
j=1

[
F̂ (
√
θj ) cos(t

√
θj ) +

∫ ∞
−∞

dω

π

iωF̂ (ω) cos(ωt)

(θj − ω2)

]
yj(x)yj(xs).

The integral vanishes, because the integrand is odd, and the result becomes

W (s)(t,x) =

∞∑
j=1

F̂ (
√
θj ) cos(t

√
θj t)yj(x)yj(xs)

= cos
[
t
√
A(c)

]
F̂
[√

A(c)
]
δxs(x).

This is equation (2.18), by definition (2.15). That W (s)(t,x) solves the initial bound-
ary value problem (2.11)–(2.14) is obvious from this expression.

Appendix B. Proof of Proposition 2.3. Let us undo the similarity transfor-
mation in (2.5) and work for the moment with the causal wave

w(s)(t,x) = H(t)c(x)W (s)(t,x), (B.1)

‡Because the series (A.5) converges pointwise in t, and the partial sums are dominated by an
integrable function in t, we could move the time convolution inside the series using the dominated
convergence theorem.
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defined for t ≥ 0. We deduce from (2.11)–(2.13) that this satisfies[
∂2
t − c2(x)∆

]
w(s)(t,x) = δ′(t)c̄ϕ(s)(x), t ∈ R, x ∈ Ω, (B.2)

w(s)(0,x) ≡ 0, t < 0, x ∈ Ω, (B.3)

[1∂ΩD (x) + 1∂ΩN (x)∂n]w(s)(t,x) = 0, t ∈ R, x ∈ ∂Ω, (B.4)

where we used the jump conditions for the derivative of the Dirac δ(t), which give

c̄ϕ(s)(x) = lim
ε↘0

[
w(s)(ε,x)− w(s)(−ε,x)

]
= w(s)(0+,x),

0 = lim
ε↘0

[
∂tw

(s)(ε,x)− ∂tw(s)(−ε,x)
]

= ∂tw
(s)(0+,x).

Similarly, we define the reference wave

w(s)(t,x; cref) = H(t)cref(x)W (s)(t,x; cref), (B.5)

which solves the analogue of (B.2)–(B.4), with c(x) replaced by cref(x). Then, the
“scattered wave”

w(s)
sc (t,x) = w(s)(t,x)− w(s)(t,x; cref) (B.6)

satisfies the equation,[
∂2
t − c2ref(x)∆

]
w(s)

sc (t,x) =
[c2(x)− c2ref(x)]

c2(x)
∂2
tw

(s)(t,x), t ∈ R, x ∈ Ω, (B.7)

driven by the unknown variations of the wave speed, and can be written via the
principle of linear superposition in terms of the Green’s function G(t,x,x′; cref) for
the wave operator in the reference medium. This is the solution of[

1

c2ref(x)
∂2
t −∆

]
G(t,x,x′; cref) = δ(t)δx′(x), t ∈ R, x ∈ Ω, (B.8)

G(0,x,x′; cref) ≡ 0, t < 0, x ∈ Ω, (B.9)

[1∂ΩD (x) + 1∂ΩN (x)∂n]G(t,x,x′; cref) ≡ 0, t ∈ R, x ∈ ∂Ω, (B.10)

and it is related to the Green’s function G(t,x,x′; cref) in Proposition 2.3 by

∂tG(t,x,x′; cref) = cref(x)cref(x
′)G(t,x,x′; cref). (B.11)

The principle of linear superposition gives

w(s)
sc (t,x) =

∫ ∞
−∞

dt′
∫

Ω

dx′
[c2(x′)− c2ref(x

′)]

c2(x′)c2ref(x
′)

∂2
t′w

(s)(t′,x′)G(t− t′,x,x′; cref),

and after one step of integration by parts in t′, we get

w(s)
sc (t,x) = −

∫ ∞
−∞

dt′
∫

Ω

dx′
[c2(x′)− c2ref(x

′)]

c2(x′)c2ref(x
′)

∂t′w
(s)(t′,x′)∂t′G(t− t′,x,x′; cref).

Substituting

∂t′G(t− t′,x,x′; cref) = −∂tG(t− t′,x,x′; cref)

= −cref(x)cref(x
′)G(t− t′,x,x′; cref),
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into this equation, using definitions (B.1) and (B.6), and recalling thatG(t−t′,x,x′; cref)
vanishes at t < t′, we get

c(x)

cref(x)
W (s)(t,x)−W (s)(t,x; cref) =

∫ t

0

dt′
∫

Ω

dx′
[c2(x′)− c2ref(x

′)]

c(x′)cref(x′)
∂t′W

(s)(t′,x′)

×G(t− t′,x,x′; cref),

for t > 0. The result of the proposition follows from this equation evaluated at x = xr,
because c(xr) = cref(xr) = c̄.

Appendix C. Derivation of equation (3.1). Recall from section 2.2 the spec-
tral decomposition of the operator A(c), and the definition of functions of this opera-
tor. We have from (2.18), definitions (3.2), (3.4), and the fact that functions of A(c)
commute, that

W (s)(t,x) = f̂
[√

A(c)
]

cos
[
t
√
A(c)

]
u

(s)
0 (x)

=

∞∑
j=1

f̂
(√

θj
)

cos
(
t
√
θj
) 〈
yj , u

(s)
0

〉
yj(x), (C.1)

where 〈·, ·〉 denotes the L2(Ω) inner product. The definition of the Fourier transform
gives

f̂
(√

θj
)

cos
(
t
√
θj
)

=

∫ ∞
−∞

dt′ f(t′) cos
(
t′
√
θj
)

cos
(
t
√
θj
)

=
1

2

∫ ∞
−∞

dt′ f(t′)
{

cos
[
(t− t′)

√
θj
]

+ cos
[
(t+ t′)

√
θj
]}

=

∫ ∞
−∞

dt′ f(t′) cos
[
(t− t′)

√
θj
]

= f(t) ?t cos
(
t
√
θj
)
, (C.2)

where we used that f(t) is even. Equation (3.1) follows once we substitute this result
in (C.1) and use the dominated convergence theorem, as in appendix A, to take the
time convolution out of the series. We also need the observation that

u(s)(t,x) = cos
[
t
√
A(c)

]
u

(s)
0 (x) =

∞∑
j=1

cos
(
t
√
θj
) 〈
yj , u

(s)
0

〉
yj(x). (C.3)

Appendix D. Proof of Proposition 4.1. We get from equations (2.24) and
(3.1) that

D(r,s)(t)−D(r,s)(t; cref) =

∫
Ωin

dx ρ(x)

∫ ∞
−∞

dt1 u
(s)(t1,x)

∫ t

0

dt′ f′(t′ − t1)

×G(t− t′,x,xr; cref),

where we used that supp(ρ) ⊂ Ωin. Changing the variable of integration t′ = t2 + t1
and using the notation

ψ(t, t1,x,xr) =

∫ t−t1

−t1
dt2 f

′(t2)G(t− t1 − t2,x,xr; cref), (D.1)
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we get

D(r,s)(t)−D(r,s)(t; cref) =

∫
Ωin

dx ρ(x)

∫ ∞
−∞

dt1 u
(s)(t1,x)ψ(t, t1,x,xr), (D.2)

so let us study (D.1).

First, we note that since f′(t) is supported in (−tF , tF ), the right hand side in
(D.1) vanishes when

(−t1, t− t1) ∩ (−tF , tF ) = ∅.

Thus, ψ(t, t1,x,xr) is supported at t1 ∈ (−tF , t + tF ), and equation (D.2) becomes,
for t > 0,

D(r,s)(t)−D(r,s)(t; cref) =

∫
Ωin

dx ρ(x)

∫ t+tF

−tF
dt1 u

(s)(t1,x)ψ(t, t1,x,xr). (D.3)

Second, since the Green’s function is supported at positive time arguments, we
can rewrite the definition (D.1) as

ψ(t, t1,x,xr) =

∫ ∞
−∞

dt2H(t1 + t2)f′(t2)G(t− t1 − t2,x,xr; cref)

=

∫ ∞
−∞

dt3H(t3)f′(t3 − t1)G(t− t3,x,xr; cref), (D.4)

where we recall that H(t) is the Heaviside step function. This solves the equation
(recall appendix A)[

∂2
t +A(cref)

]
ψ(t, t1,x,xr) = ∂t [H(t)f′(t− t1)] δxr (x), (D.5)

for t ∈ R and x ∈ Ω, with homogeneous initial condition and with boundary condition

[1∂ΩD (x) + 1∂ΩN (x)∂n]ψ(t, t1,x,xr) = 0, t ∈ R, x ∈ ∂Ω.

Since supp f′(· − t1) ⊂ (t1 − tF , t1 + tF ), the Heaviside function plays no role in the
right hand side of (D.5) if t1 > tF and we then get that (t,x) 7→ ψ(t, t1,x,xr) is the
solution to [

∂2
t +A(cref)

]
ψ(t, t1,x,xr) = f′′(t− t1)δxr (x), (D.6)

with ψ(t, t1,x,xr) = 0, ∀t < 0. We can write

ψ(t, t1,x,xr) = ζ(r)(t− t1,x; cref), (D.7)

where ζ(r)(t,x; cref) is the analogue of the wave (2.5), the solution of (2.6)–(2.8), with
c(x) replaced by cref(x) and F (t) replaced by f′(t). The even extension in time of
this wave is u(r)(t,x; cref) and, similar to equation (2.16), we have for t1 > tF and
t1 < t− tF :

ψ(t, t1,x,xr) = ζ(r)(t− t1,x; cref) = ∂tu
(r)(t− t1,x; cref). (D.8)

26



In summary, the equation for computing the scattered wave at the receivers becomes

D(r,s)(t)−D(r,s)(t; cref) =

∫
Ωin

dx ρ(x)

∫ t+tF

−tF
dt1 u

(s)(t1,x)ψ(t, t1,x,xr)

=

∫
Ωin

dx ρ(x)

∫ 0

−tF
dt1 u

(s)(t1,x)ψ(t, t1,x,xr)

+

∫
Ωin

dx ρ(x)

∫ (t−tF )∨0

0

dt1 u
(s)(t1,x)∂tu

(r)(t− t1,x; cref)

+

∫
Ωin

dx ρ(x)

∫ t+tF

(t−tF )∨0

dt1 u
(s)(t1,x)ψ(t, t1,x,xr).

The first term in the right hand side vanishes because on the one hand the subdomain
Ωin is further than the distance O(c̄tF ) from the array, and on the other hand the
hyperbolicity of the wave equation and the finite wave speed give that the support of
u(s)(t1,x) is disjoint from Ωin for |t1| < tF . Consequently, we have

D(r,s)(t)−D(r,s)(t; cref) =

∫
Ωin

dx ρ(x)

∫ t

0

dt1 u
(s)(t1,x)∂tu

(r)(t− t1,x; cref)

−
∫

Ωin

dx ρ(x)

∫ t

(t−tF )∨0

dt1 u
(s)(t1,x)∂tu

(r)(t− t1,x; cref)

+

∫
Ωin

dx ρ(x)

∫ t+tF

(t−tF )∨0

dt1 u
(s)(t1,x)ψ(t, t1,x,xr).

The last two terms in the right hand side vanish because the support of ∂tu
(r)
ref (t−t1,x)

and ψ(t, t1,x,xr) is disjoint from Ωin for |t− t1| < tF . Therefore, we have

D(r,s)(t)−D(r,s)(t; cref) =

∫
Ωin

dx ρ(x)

∫ t

0

dt1 u
(s)(t1,x)∂tu

(r)(t− t1,x; cref). (D.9)

�

Appendix E. Details on our implementation of the inversion algorithm.
The data matrices (2.17) are generated by solving the initial boundary value problem
(2.1)–(2.3) with a time domain, second-order centered finite-difference scheme in space
and time, on a square mesh with size

h =
πc̄

4(ωc +B)
.

The time steps in this scheme are chosen to satisfy the Courant Friedreichs Lewy
(CFL) condition.

The data driven mass matrix M is computed as in equation (3.25) and its block
Cholesky square root R is obtained with [16, Algorithm 5.2]. We solve the wave
equation in the reference medium with wave speed cref(x) to compute the vector field
U(x; cref) of snapshots and the reference data matrices D(t; cref), which then give
M(cref) via equation (3.25). The block Cholesky square root R(cref) of M(cref) is
computed with [16, Algorithm 5.2]. We use it to get V (x; cref) = U(x; cref)R(cref)

−1

and the estimated internal wave snapshots defined by (3.31).
The parametrization of the unknown ρ(x) is done as in equation (4.3). At the kth

iteration we have the estimate η(k) of the vector of coefficients in the parametrization
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(4.3). This defines the estimate of the wave speed, as explained in section 4. To
emphasize the dependence of this estimate on η(k), we change the notation in this
appendix to c̃(x;η(k)). Each iteration seeks to update the vector of coefficients as

η(k+1) = η(k) + δη,

where δη is the minimizer of∥∥Γ(η(k)
)
δη − b

(
η(k)

)∥∥2

2
+ Oreg

(
η(k) + δη;α(k)

)
. (E.1)

The first term in this expression comes from the data fit term in the objective function,
where the time and spatial integrals are approximated with the midpoint rule on the
time grid with step τ and the spatial grid with step h. We arrange in lexicographical
order the entries inside the Frobenius norm, for snapshot indexes j = 0, . . . , n−1 and
for source receiver pairs s, r = 1, . . . ,m. Then, the δη independent term gives the
vector b(η(k)) ∈ Rm2n and the matrix that multiplies δη is Γ(η(k)) ∈ Rm2n×Nρ .

If we choose Tikhonov regularization,

Oreg

(
η(k) + δη;α(k)

)
= α(k)‖δη‖22. (E.2)

If we choose TV regularization, then we approximate

Oreg

(
η(k) + δη;α(k)

)
= α(k)‖∇c̃

(
x;η(k) + δη

)
‖L1(Ωin), (E.3)

via linearization of the map η 7→ c̃(x;η) at η(k). We have from definitions (4.3) and
(4.6) or (4.7) and the chain rule

c̃
(
x;η(k) + δη

)
≈ c̃
(
x;η(k)

)1 +
1

2

[
1 +

ρ̃(x;η(k))√
4 + ρ̃2(x;η(k))

]
Nρ∑
j=1

δηjβj(x)

 , (E.4)

where δη = (δη1, . . . , δηNρ)
T . The TV norm of this function is approximated using

a standard approach, see for example [18], and we obtain the following form of the
regularization term

α(k)
∥∥∥Ψ(η(k)

)
δη + ξ

(
η(k)

)∥∥∥2

2
, (E.5)

for a full rank matrix Ψ(η(k)), vector ξ(η(k)) and redefined α(k).
For both choices of the regularization, the estimation of δη can now be rewritten

as a linear least squares problem. For the Tikhonov regularization, the coefficient is
chosen as

α(k) = (γσ)2, σ =
∥∥Γ(η(k)

)∥∥
2
, (E.6)

where σ is obviously the largest singular value of Γ
(
η(k)

)
and γ is a user defined

parameter. For the TV regularization, the coefficient is chosen using the generalized
SVD of the pencil

[
Γ(η(k)),Ψ

(
η(k)

)]
,

Γ(η(k)) = Q1Σ1W, Ψ
(
η(k)

)
= Q2Σ2W,

where Q1,2 are unitary matrices, Σ1,2 are rectangular, diagonal matrices and W is
a square matrix that is nonsingular (because Ψ

(
η(k)

)
is supposed to be full rank).
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The matrix Σ1 has diagonal coefficients 0 ≤ σΓ,1 ≤ · · · ≤ σΓ,Nρ ≤ 1 (we assume
Nρ ≤ m2n) and the matrix Σ2 has diagonal coefficients 1 ≥ σΨ,1 ≥ · · · ≥ σΨ,Nρ > 0

(we assume that the full rank matrix Ψ
(
η(k)

)
has more rows than columns). The

diagonal coefficients satisfy

σ2
Γ,j + σ2

Ψ,j = 1,

for all j and the generalized singular values are the ratios σΓ,j/σΨ,j , for j = 1, . . . , Nρ.
Note that the generalized singular values form an increasing sequence. We then choose

α(k) = (γσ)2, σ = max
j=1,...,Nρ

σΓ,j

σΨ,j
,

with a user defined γ.

The numerical results shown in section 5.1 are obtained with γ = 0.03 for the
Tikhonov regularization and γ = 0.01 for the TV regularization. The numerical
results shown in section 5.2 are obtained with TV regularization, for γ = 0.02.
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