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Abstract. The computation of f(A)b, the action of a matrix function on a vector, is a task
arising in many areas of scientific computing. In many applications, the matrix A is sparse but
so large that only a rather small number of Krylov basis vectors can be stored. Here we discuss
a new approach to overcome this limitation by randomized sketching combined with an integral
representation of f(A)b. Two different approximation methods are introduced, one based on sketched
FOM and another based on sketched GMRES. The convergence of the latter method is analyzed for
Stieltjes functions of positive real matrices. We also derive a closed form expression for the sketched
FOM approximant and bound its distance to the full FOM approximant. Numerical experiments
demonstrate the potential of the presented sketching approaches.
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1. Introduction. The computation of f(A)b, the action of a function f of A ∈
CN×N on a vector b ∈ CN , is a task arising in many areas of scientific computing. By
far the most popular methods for this task are polynomial [13, 42] and rational [14,
24,25,49] Krylov methods. In many applications, the matrix A is sparse but so large
that only a rather small number of Krylov basis vectors of size N can be stored.
Furthermore, for non-Hermitian matrices A, the arithmetic cost of orthogonalizing a
Krylov basis can become overwhelming. This naturally limits the attainable accuracy
of Krylov methods which perform full orthogonalization and need to store at least
one additional vector per iteration. Several approaches are available for overcoming
the memory problem, including

• two-pass Krylov methods for Hermitian A as in [10,22], which roughly double
the computational effort,

• methods based on a-priori rational approximation of f on a spectral region
of A, followed by a (short recurrence) Krylov iteration for the resulting shifted
linear systems of equations [18,21], and

• restarted Krylov methods [2, 15, 19, 20, 31, 46, 47] which, similar to restarted
methods for linear systems, construct a series of Krylov iterates in such a way
that each “cycle” of the method only requires a fixed amount of storage and
fixed cost for orthogonalization.

We also refer the reader to the recent survey [26] covering limited-memory polynomial
methods for the general f(A)b problem, and more specifically to [27] for the case of
Stieltjes functions of Hermitian matrices.

In this paper we discuss a new technique to overcome the issues of excessive
memory requirements and orthogonalization cost in Krylov methods for the f(A)b
problem. Our approach is based on the sketched Krylov approximation of the shifted
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linear systems (tI +A)x (t) = b arising with the integral form

f(A)b =

∫
Γ

f(t)(tI +A)−1b dµ(t) =

∫
Γ

x (t) dµ(t).

This representation exists for any function f that is analytic on and inside a closed
contour Γ that encloses the negated spectrum −Λ(A). In the case dµ(t) = −(2πi)−1dz
we obtain the Cauchy integral representation of f(−A)b; see [30, Def. 1.11]. The
above integral representation also contains the important class of Stieltjes functions,
in which case Γ = [0,+∞) and µ(t) is a monotonically increasing and nonnegative
function on Γ with

∫
Γ

1/(t + 1) dµ(t) < ∞; see, e.g., [28]. Important examples of
Stieltjes functions are f(z) = z−α for α ∈ (0, 1) and f(z) = log(1 + z)/z. Some other

interesting functions like f̃(z) = zα for α ∈ (0, 1), including the square root, and

f̃(z) = log(1 + z) can be written as f̃(z) = zf(z) with a Stieltjes function f .
The shifted linear systems (tI+A)x (t) = b can be solved in various ways, and here

we focus on Krylov methods that are accelerated by a sketch-and-solve approach; see,
e.g., [4–7,36,45]. The workhorse of sketching is an embedding matrix S ∈ Cs×N with
s� N that distorts the Euclidean norm ‖ · ‖ of vectors in a controlled manner [45,50].
More precisely, given a positive integer m and some ε ∈ [0, 1), we assume that S is such
that for all vectors v in the Krylov space Km+1(A, b) := span{b, Ab, A2b, . . . , Amb},

(1− ε)‖v‖2 ≤ ‖Sv‖2 ≤ (1 + ε)‖v‖2. (1.1)

The matrix S is also called an ε-subspace embedding for Km+1(A, b). Condition (1.1)
can equivalently be stated with the Euclidean inner product: for all u , v ∈ Km+1(A, b)

〈u , v〉 − ε‖u‖ · ‖v‖ ≤ 〈Su , Sv〉 ≤ 〈u , v〉+ ε‖u‖ · ‖v‖. (1.2)

Of course, in practice, the matrix S is not explicitly available (not least as it requires
knowledge of Km+1(A, b), which is only available in the final Krylov iteration m),
and we hence have to draw it at random to achieve (1.1) with high probability.

In section 2 below we focus our attention on the full orthogonalization method
(FOM, [42,43]) generalized to matrix functions f(A)b using an integral representation
of f . We show that the sketched FOM approximant admits a closed-form expression
which is attractive for numerical evaluation and also allows us to bound the distance of
this approximant to the full (non-sketched) FOM appoximant. In section 3 we use the
generalized minimal residual method (GMRES, [44]) to derive a sketched GMRES ap-
proximant that often exhibits a more stable convergence behavior than sketched FOM
but requires numerical quadrature for its practical evaluation. We prove convergence
of these approximants for the important class of Stieltjes functions f and positive
real matrices A. Section 4 is devoted to the discussion of implementation details.
Following our previous work [20] we discuss how the sketched FOM and GMRES ap-
proximants can be evaluated using adaptive numerical quadrature. Section 5 contains
discussions of some numerical experiments for medium and large-scale problems. We
conclude in section 6 and provide an outlook on future work.

2. Sketched FOM approximation. The basis of polynomial Krylov meth-
ods for the approximation of f(A)b is the Arnoldi method [3]. Applying m Arnoldi
iterations with A and b yields the Arnoldi relation

AVm = VmHm + hm+1,mvm+1e
T
m, (2.1)
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with Vm = [v1, v2, . . . , vm] ∈ CN×m containing an orthonormal basis of the Krylov
space Km(A, b) := span{b, Ab, A2b, . . . , Am−1b}, and [Vm, vm+1] being an orthonor-
mal basis of Km+1. The matrix Hm is unreduced upper-Hessenberg and em denotes
the mth canonical unit vector in Rm.

The Arnoldi (or FOM) approximation fm ≈ f(A)b is obtained by projecting the
original problem onto the Krylov space and evaluating f for a small m×m matrix:

fm := Vmf(V †mAVm)V †mb, (FOM)

where V †m is the Moore–Penrose inverse of Vm. Due to orthonormality of the ba-
sis {vj}, we have V †m = V Hm and fm = ‖b‖Vmf(Hm)e1. However, it will be useful to
write (FOM) in this more general form with a possibly nonorthonormal Vm.

The evaluation of (FOM) requires the storage of the full Krylov basis Vm, i.e.,
m vectors of size N . The (modified) Gram–Schmidt orthogonalization process to
compute the orthonormal Krylov basis Vm requires O(Nm2) arithmetic operations.
For sufficiently large N , memory requirements and orthogonalization time impose a
limit on the maximal number mmax of Krylov iterations that can be performed, and
thereby a limit on the attainable accuracy of the FOM approximation. In the Lanczos
method [34] for Hermitian matrices A, the cost of orthogonalization is just O(Nm)
due to the short-term recurrence of the Krylov basis, but if the full vector f(A)b needs
to be approximated, a memory requirement of O(Nm) generally remains. (A notable
exception is the case f(z) = z−1 where the short recurrence for the Lanczos vectors
translates into a short recurrence for the iterates, resulting in the famous conjugate
gradient method [29].)

Using the integral representation of f(Hm) = f(V †mAVm) in (FOM),

fm =

∫
Γ

‖b‖Vm(tI +Hm)−1e1 dµ(t) =

∫
Γ

xm(t) dµ(t),

we find that the integrand contains the FOM (or Galerkin) approximants

xm(t) := ‖b‖Vm(tI +Hm)−1e1 := Vmym(t) (2.2)

for the solution x (t) of the shifted linear systems (tI + A)x (t) = b. The residuals of
these approximants are explicitly given by

rm(t) = b − (tI +A)xm(t) = −‖b‖hm+1,m(eTm(tI +Hm)−1e1)vm+1,

i.e., rm(t) = α(t)vm+1 is orthogonal to span(Vm). Now, instead of imposing this
orthogonality condition fully, we propose to merely require that the sketched residual
Srm(t) be orthogonal to the sketched span of the Krylov basis, span(SVm), where S
is an s×N sketching matrix. This is the same as the sketched Galerkin orthogonality
condition for parametric linear systems used in [6]. More precisely, we require that

x̂m(t) = Vmŷm(t) with (SVm)H [Sb − S(tI +A)x̂m(t)] = 0,

or equivalently (if the inverted quantity is well defined),

x̂m(t) = Vmŷm(t) with ŷm(t) = [(SVm)H(tSVm + SAVm)]−1(SVm)H(Sb). (2.3)

The sketched FOM approximant to f(A)b is then naturally defined as

f̂m :=

∫
Γ

x̂m(t) dµ(t) = Vm

∫
Γ

[(SVm)H(tSVm + SAVm)]−1 dµ(t)(SVm)H(Sb).

(sFOM)
Some immediate comments are in order.
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1. If S = I, (FOM) and (sFOM) are the same approximants.
2. The sketched orthogonality condition is imposed explicitly in (sFOM), hence

there is no requirement for the Krylov basis Vm to be orthogonal. This means
that Vm can be constructed without orthogonalization or by using a truncated
orthogonalization procedure; see section 2.2.

3. The sketched matrices SVm and SAVm can be constructed on-the-fly during
the Arnoldi iteration, being expanded by Svm+1 and SAvm+1 when the new
Krylov basis vector vm+1 is appended to Vm. The matrix-vector product
Avm+1 can be reused in the following iteration so that the overall number of
matrix-vector products with A remains the same as for the Arnoldi procedure
without sketching.

4. If the full vector approximation f̂m defined by (sFOM) is needed, then Vm
will still need to be stored as x̂m(t) = Vmŷm(t). However, as opposed to the
standard FOM approach, Vm does not need to be (fully) orthogonal and hence
Vm can be held on slow memory (e.g., hard disk). Full access to Vm is only

needed once the sketched FOM approximant f̂m is formed, but not during
the basis generation. Alternatively, the sketched approximation also makes
it viable to use a two-pass approach [10,22] in the case of non-Hermitian A.

5. If only a few (say, ` � N) selected components of f̂m are needed or, more

generally, a matrix-vector product M f̂m with a short matrix M ∈ C`×N , then
with truncated Arnoldi only k+1 basis vectors vj need to be kept in memory
in addition to the small matrix MVm.

2.1. A closed formula for sketched FOM. We now investigate the expres-
sion defining (sFOM) in a bit more detail. Provided that (2.3) is well defined, it is
guaranteed that SVm is of full rank m and that V Hm SHSVm is nonsingular. We can
therefore rewrite the expression appearing in square brackets in (2.3) as

[tV Hm SHSVm + V Hm SHSAVm]−1

= (V Hm SHSVm)−1[tI + V Hm SHSAVm(V TmS
TSVm)−1]−1,

so that (sFOM) can be further rewritten as

f̂m = Vm

∫
Γ

[tV Hm SHSVm + V Hm SHSAVm]−1 dµ(t) (SVm)H(Sb)

= Vm(V Hm SHSVm)−1

∫
Γ

[tI + V Hm SHSAVm(V Hm SHSVm)−1]−1 dµ(t) (SVm)H(Sb)

= Vm(V Hm SHSVm)−1f
(
V Hm SHSAVm(V Hm SHSVm)−1

)
(SVm)H(Sb). (sFOM’)

Note that (sFOM’) is a closed formula for the sketched approximation, not involving
any integration, just like the standard FOM approximation (FOM).

Both (sFOM) and (sFOM’) are completely independent of the choice of Vm as
long as span(Vm) = Km(A, b). As SVm is of full rank m, for our analysis we may
require without loss of generality that the sketched basis be orthonormal, i.e.,

(SVm)HSVm = Im. (2.4)

In this case we obtain a much simpler expression

f̂m = Vmf
(
V Hm SHSAVm

)
V Hm SHSb. (sFOM”)
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Algorithm 1 Sketched FOM approximation of f(A)b

Input: A ∈ CN×N , b ∈ CN , function f , integers m < s� N

Output: f̂m ≈ f(A)b

1: Draw sketching matrix S ∈ Cs×N

2: Generate (nonorthogonal) basis Vm of Km(A, b), as well as SVm and SAVm

3: Compute thin QR decomposition SVm = QmRm

4: f̂m ← Vm
(
R−1
m f

(
QHmSAVmR

−1
m

)
QHmSb

)

The “basis whitening” condition (2.4) was first recommended in [39], and it is
also used in [5,36] to stabilize sketched GMRES and eigenvalue computations. In [5],
the basis whitening condition is enforced during the Gram–Schmidt orthonormal-
ization process on sketched vectors. But it can also be imposed retrospectively at
a lower computational cost: if SVm = QmRm is a thin QR decomposition of the
(nonorthonormal) sketched basis SVm, we simply replace

SVm ← Qm, SAVm ← (SAVm)R−1
m , Vm ← VmR

−1
m (only implicitly!)

in (sFOM”), resulting in

f̂m = Vm
(
R−1
m f

(
QHmSAVmR

−1
m

)
QHmSb

)
. (sFOM’’’)

We remark that if SVm and hence Rm are extremely ill-conditioned, it might be
safer to replace R−1

m with a numerical pseudoinverse (though we have not found a
need for that in any of our numerical tests reported in section 5).

2.2. Algorithm and computational complexity. A concise summary of our
sketched FOM algorithm is given in Algorithm 1. One of the simplest ways to generate
the nonorthogonal Krylov basis Vm is to use a k-truncated modified Gram–Schmidt
method whereby at any iteration j, the vector vj is orthogonal to the previous k basis
vectors vj−1, vj−2, . . . , vj−k only (with vectors having nonpositive indices ignored).

We now discuss the computational cost of Algorithm 1 assuming that

• A is a sparse matrix with O(N) nonzeros,
• Vm is computed using k-truncated Gram–Schmidt where k = O(1), and
• the sketching parameter is chosen as s = O(m).

Under these assumptions, computing the basis Vm in line 2 of Algorithm 1 has a
computational cost of O(Nmk2) = O(Nm). The cost of sketching Vm and AVm
depends on the specific choice of the sketching matrix S. For example, the subsam-
pled random Fourier transform [51], see also [36, Sec. 2.3.1], can be applied using
O(Nm logm) arithmetic operations. Performing the thin QR decomposition in line 3
has cost O(sm2) = O(m3).

Crucially, for the computation in line 4 of Algorithm 1, the full basis Vm should not
be transformed to VmR

−1
m explicitly, as this would incur a rather high cost of O(Nm2),

the same as standard Gram–Schmidt orthogonalization. Instead, it is possible to
compute the compressed matrix operating only on matrices of size s×m and m×m,
resulting in a computational complexity of O(m3). Evaluating f on a (dense) matrix
of size m ×m typically also has a cost of O(m3) and finally afterwards forming the

approximation f̂m requires another O(Nm+m2) = O(Nm) operations.
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In total, Algorithm 1 computes the sketched FOM approximant with a cost of at
most O(Nm logm+m3).

Remark 2.1. Truncated (or incomplete) Arnoldi methods were first considered
by Saad in the context of eigenvalue problems [40, Sec. 3.2] and linear systems [41,
Sec. 3.3]. For computations involving matrix functions, truncated Arnoldi has mostly
been used for approximating the action of the matrix exponential, exp(−tA)b, in
exponential integrators, were the effects of incomplete orthogonalization can be at-
tenuated by choosing a smaller time step t; see, e.g., [23, 33]. In all our experiments
in this paper, we use k-truncated Arnoldi, with k ranging from 2 to 4.

There also exist other possibilities for constructing Krylov bases using a limited
number of inner products (or no inner products at all), e.g., based on recurrence
relations for Chebyshev polynomials [32, Sec. 4] or Newton polynomials [38, Sec. 4].
For comparisons of the different approaches, we refer the reader to [36, Sec. 4] and in
particular the numerical experiments in [38, Sec. 5]. �

Remark 2.2. An alternative approach for computing randomized FOM approxi-
mants has been proposed recently and independently in [12]. Starting with the Arnoldi
relation (2.1), one immediately finds that

V †mAVm = Hm + hm+1,mV
†
mvm+1e

T
m.

Now, xm = V †mvm+1 can be computed by solving a least-squares problem xm =
arg minx∈Cm ‖vm+1 − Vmx‖, or one can cheaply approximate it by sketching:

x̂m = arg min
x∈Cm

‖Svm+1 − (SVm)x‖.

The authors of [12] then suggest to use the approximation

f̂m = Vmf(Hm + hm+1,mx̂meTm)‖b‖e1,

which turns out to be mathematically equivalent to our sketched FOM approximant;
see the discussion in [12, section 3.3]. �

Interestingly, the alternation interpretation in [12] allows us to characterize f̂m as
an approximation obtained from the Arnoldi-like decomposition

AVm = Vm(Hm + hm+1,mx̂meTm) + hm+1,m(vm+1 − Vmx̂m)eTm

=: VmĤm + hm+1,mv̂m+1e
T
m (2.5)

defined in [15, eq. (2.5)]. By [15, Thm. 2.4], we have the following result.

Corollary 2.3. The sketched FOM approximant f̂m to f(A)b satisfies

f̂m = Vmf(Ĥm)‖b‖e1 = q(A)b, (2.6)

where q is the unique polynomial of degree at most m − 1 that interpolates f at the
eigenvalues of Ĥm defined in (2.5).

The interpolation characterization (2.6) applies to any approximation obtained

from an Arnoldi-like decomposition AVm = Ĥm + hm+1,mv̂m+1e
T
m, including the

“cheaper approximants” suggested in [12, section 3.2]. This can even be generalized
to so-called Krylov-like decompositions which drop the requirement that the columns
of Vm be linearly independent [16]. This interpolation characterization is numerically
robust, independent of the basis conditioning: for example, it has been used in [1]
to analyze the convergence of restarted/truncated Krylov approximants when the
truncation length is small as k = 1. Perhaps these insights can be used in future work
to analyze sketched Krylov approximations in the case where the basis Vm becomes
numerically singular.
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2.3. Error analysis. It is interesting to compare (sFOM”) to (FOM). Clearly,
both formulas coincide if V Hm SHS = V †m, but we can also state a more general result.

Corollary 2.4. Assume that (1.1) holds with ε ∈ [0, 1) and that SVm has

orthonormal columns, i.e., (2.4) is satisfied. Let fm and f̂m denote the FOM and
sketched FOM approximants to f(A)b defined in (FOM) and (sFOM”), respectively.
Then

‖fm − f̂m‖ ≤
√

1 + ε

1− ε
· ‖b‖ · ‖f(V †mAVm)− f

(
V Hm SHSAVm

)
‖.

Proof. First note that Sb is a column in the sketched Krylov matrix SVm, the lat-
ter of which is assumed to be orthonormal. Hence, ‖(SVm)HSb‖ = ‖Sb‖ ≤

√
1 + ε‖b‖

by (1.1). Also by (1.1) we have

‖Vm‖ = max
‖w‖=1

‖Vmw‖ ≤ max
‖w‖=1

1√
1− ε

‖SVmw‖ =
1√

1− ε
‖SVm‖ =

1√
1− ε

.

The claimed inequality follows from

‖fm − f̂m‖ ≤ ‖Vm‖ · ‖f(V †mAVm)− f
(
V Hm SHSAVm

)
‖ · ‖(SVm)HSb‖.

Remark 2.5. We stress again that the sketched FOM approximants (sFOM)
and (sFOM’) with an arbitrary Krylov basis Vm will yield exactly the same errors

‖fm− f̂m‖ as the approximants (sFOM”) assuming orthonormal SVm, but only in the
later case we obtain a simple error formula as in Corollary 2.4.

The corollary offers a general avenue for a thorough analysis of the distance be-
tween the full FOM and the sketched FOM approximation depending on the sketching
matrix S and the function f . However, without some restrictive assumptions on S
and f , the factor ‖f(V †mAVm) − f

(
V Hm SHSAVm

)
‖ will likely be difficult to bound:

while it is clear that the Rayleigh quotient V †mAVm has eigenvalues contained in the
numerical range W (A) := {xHAx : ‖x‖ = 1}, the eigenvalues of V Hm SHSAVm, which
by Corollary 2.3 are the nodes of an interpolating polynomial for f , are not restricted
to such a canonical set. In light of (1.2), the only inclusion that we can give without
further assumptions is

Λ(V Hm SHSAVm) ⊂W (A) + ∆(0, ε‖A‖) = {z1 + z2 : z1 ∈W (A), |z2| ≤ ε‖A‖}. (2.7)

Hence, even if A is Hermitian, there is no guarantee that Λ(V Hm SHSAVm) be real;
or if W (A) is contained in the right complex half-plane, then V Hm SHSAVm may still
have eigenvalues with negative real part. This may lead to potential instabilities when
evaluating the sketched FOM approximant. Indeed, we observe in numerical experi-
ments reported in section 5 that sketched FOM can exhibit non-smooth convergence
behavior on some problems. Similar observations have been reported for FOM (and
analyzed for symmetric positive definite A) in the recent technical report [48]. �

3. Sketched GMRES approximation. Sketched GMRES methods for the
solution of (parameterized) linear systems have been considered, e.g., in [4, 5, 7, 36].
In our setting with shifted linear systems (tI + A)x (t) = b, we simply impose that
the residual

r̃m(t) := b − (tI +A)x̃m(t) (3.1)
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of x̃m(t) := Vmỹm(t) be minimal after sketching:

‖Sr̃m(t)‖ = ‖Sb − S(tI +A)Vmỹm(t)‖ → min .

The solution is

ỹm(t) = (tSVm + SAVm)†(Sb),

leading to the sketched GMRES approximant to f(A)b defined as

f̃m =

∫
Γ

x̃m(t) dµ(t) = Vm

∫
Γ

(tSVm + SAVm)† dµ(t)(Sb). (sGMRES)

We will see in numerical experiments reported in section 5 that the sketched
GMRES method can exhibit a smoother convergence behavior than sketched FOM.
On the other hand, there appears to be no simple closed form for the sketched GMRES
approximant and quadrature is necessary for its evaluation.

Remark 3.1. The approximant (sGMRES) does not necessarily coincide with
the harmonic Arnoldi approximant introduced in [20, Section 6] even when S = I.
In the harmonic Arnoldi approach the shifted linear system with t = 0 is solved by
GMRES, but all other systems with t ∈ Γ are solved such that their residual vectors
are collinear to that of the t = 0 problem. There is no reason why the residuals
r̃m(t) defined in (3.1) would necessarily be collinear for different values of t. As a
consequence, it also appears to be more challenging to interpret sGMRES as a simple
polynomial interpolation process as we have done for sFOM in Corollary 2.3. �

Let us compare the residual r̃m(t) of the sketched solution x̃m(t) to the residual
rm(t) of the full GMRES solution xm(t) = Vm(tVm +AVm)†b. We have

‖rm(t)‖ ≤ ‖r̃m(t)‖ ≤ 1√
1− ε

‖Sr̃m(t)‖ ≤ 1√
1− ε

‖Srm(t)‖ ≤
√

1 + ε

1− ε
‖rm(t)‖.

For the second and fourth inequalities we have used (1.1) and this is indeed valid
because r̃m(t), rm(t) ∈ Km+1(A, b). In the first and third inequality we have used the
fact that rm(t) and Sr̃m(t) have smallest possible norm as per definition, respectively.
Crucially,

‖r̃m(t)‖ ≤ Cε‖rm(t)‖, Cε :=

√
1 + ε

1− ε
for all t ∈ Γ. (3.2)

3.1. Convergence for Stieltjes functions of positive real matrices. In
this section, let us assume that A is a positive real matrix, i.e., Re(vHAv) > 0 for
all v ∈ CN , v 6= 0. Further, assume that f is a Stieltjes function with Γ = [0,+∞).
Building on the analysis in [19], the quantities

δ := λmin

(
A+AH

2

)
= min

{
Re
(
vHAv

)
: ‖v‖ = 1

}
,

ρ := λmin

(
A−1 +A−H

2

)
= min

{
Re
(
vHA−1v

)
: ‖v‖ = 1

}
,

will be useful. Since with A the matrices A−1 and AHA are also positive real, the
numbers δ and ρ are positive.
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For a Hermitian matrixM , let us define theM -energy norm as ‖v‖M :=
√
vHMv ,

and denote by ẽm(t) := (tI + A)−1b − x̃m(t) and em(t) := (tI + A)−1b − xm(t) the
error of the sketched GMRES and full GMRES approximants, respectively. Then we
can equivalently write the residual inequality (3.2) in terms of errors as

‖ẽm(t)‖(A+tI)H(A+tI) ≤ Cε‖em(t)‖(A+tI)H(A+tI). (3.3)

The following lemma from [19, Lemma 6.4] is included for convenience.

Lemma 3.2. Let A ∈ CN×N be positive real.
(i) For all v ∈ CN and t ≥ 0 we have

‖v‖2AHA ≤
1

‖A‖−2t2 + 2ρt+ 1
‖v‖2(A+tI)H(A+tI) .

(ii) For t ≥ 0 we have

1

‖A‖−2t2 + 2ρt+ 1
≤ ‖A‖

(t+ ρ‖A‖2)2
.

We are now in the position to state our main theorem on the convergence of the
sketched GMRES approximation. The proof will be different to that for the harmonic
Arnoldi approximation presented in [19, Theorem 6.5] as we do not have collinearity
of residuals for different values of t ≥ 0; cf. Remark 3.1.

Theorem 3.3. Let A be a positive real matrix and f a Stieltjes function. As-
sume that the condition (1.1) holds with ε ∈ [0, 1). Let f̃m be the sketched GMRES
approximant to f(A)b defined by (sGMRES). Let β0 = arccos(δ/‖A‖) ∈ [0, π/2).
Then

‖f(A)b − f̃m‖AHA ≤ C1Cε‖b‖(sin(β0))m,

with constants C1 = ‖A‖f(ρ‖A‖2) and Cε =
√

(1 + ε)/(1− ε).
Proof. We have

‖f(A)b − f̃m‖AHA =

∥∥∥∥∫ ∞
0

ẽm(t) dµ(t)

∥∥∥∥
AHA

≤
∫ ∞

0

Cε‖em(t)‖(A+tI)H(A+tI)√
‖A‖−2t2 + 2ρt+ 1

dµ(t)

=

∫ ∞
0

Cε‖rm(t)‖√
‖A‖−2t2 + 2ρt+ 1

dµ(t),

where we have used Lemma 3.2(i) together with (3.3) for the first inequality. It
remains to bound ‖rm(t)‖, the residual of the standard GMRES method for the
system (tI + A)x (t) = b. Using a convergence result in [17] (see also [8] for an
improved version), we have the bound

‖rm(t)‖ ≤ ‖b‖(sin(βt))
m,

cos(βt) =
λmin([(tI +A) + (tI +A)H ]/2)

‖tI +A‖
=

t+ δ

‖tI +A‖
< 1.

Since for all t ≥ 0,

cos(βt) ≥
t+ δ

t+ ‖A‖
≥ δ

‖A‖
= cos(β0),
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we also have βt ≤ β0 and hence

‖rm(t)‖ ≤ ‖b‖(sin(β0))m for all t ≥ 0.

Therefore,

‖f(A)b − f̃m‖AHA ≤
∫ ∞

0

Cε‖b‖(sin(β0))m√
‖A‖−2t2 + 2ρt+ 1

dµ(t) ≤ C1Cε‖b‖(sin(β0))m,

where C1 = ‖A‖f(ρ‖A‖2) by Lemma 3.2(ii).

While the convergence factor sin(β0) in Theorem 3.3 can often be improved, re-
sults like this can generally not be expected to give particularly tight error bounds.
This is not a problem of our derivation but common to all a-priori convergence bounds
on GMRES. Nevertheless, Theorem 3.3 guarantees convergence of the sketched GM-
RES approximant (sGMRES) for Stieltjes functions of positive real matrices.

One might wonder why we have used δ = λmin((A + AH)/2) in place of the
distance of the origin to the numerical range, dist(0,W (A)), as sharper convergence
factors could be obtained with the later; see [8]. This is because the former expression
increases exactly by t if A is replaced by tI +A, while the latter only satisfies

dist(0,W (tI +A)) ≤ t+ dist(0,W (A)),

an inequality in the wrong direction to be of use in the proof of Theorem 3.3.

4. Implementation details. In this section we discuss a number of topics con-
cerning the implementation of the sketched FOM and sketched GMRES methods.
To support this discussion, we summarize the quadrature-based sketched GMRES
method in Algorithm 2 (including the truncated modified Gram–Schmidt process).

4.1. Adaptive quadrature. In order to evaluate the sketched GMRES approx-
imant (sGMRES), the occurring integral needs to be approximated as no closed form
is available (in contrast to the situation for the sketched FOM approximant). One
can in principle use any `-point quadrature rule∫

Γ

(tSVm + SAVm)†(Sb) dµ(t) ≈
∑`

i=1
wi(tiSVm + SAVm)†(Sb) =: q`(S,A, Vm, b),

(4.1)
with weights wi and quadrature nodes ti ∈ Γ (i = 1, 2, . . . , `). Following the im-
plementation of the quadrature-based restarted Arnoldi method in [20], we propose
to use a rather simple form of numerical quadrature: we start by computing the re-
sult of two quadrature rules q`1(S,A, Vm, b) and q`2(S,A, Vm, b) of orders `1 < `2,
respectively. If

‖q`1(S,A, Vm, b)− q`2(S,A, Vm, b)‖ < tol (4.2)

for some user-specified tolerance tol, we accept the result of the higher-order quadra-
ture rule q`2 and use it to approximate f̃m ≈ Vmq`2(S,A, Vm, b). Should (4.2) not
be satisfied, we increase the order of both quadrature rules by setting `1 ← `2 and
`2 ← b

√
2 · `2c. This way, the result of the previous computation can be reused for

the updated q`1(S,A, Vm, b), while only q`2(S,A, Vm, b) needs to be computed anew.
This process is repeated until (4.2) is fulfilled. We emphasize that all computations
related to the adaptive quadrature rule are done on small matrices of size s×m, while
quantities of size N are only formed once the quadrature is sufficiently accurate.
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Algorithm 2 Sketched GMRES approximation of f(A)b with k-truncated Arnoldi

Input: A ∈ CN×N , b ∈ CN , function f , integers m, s, `1, `2, tolerance tol

Output: f̃m ≈ f(A)b

1: Draw sketching matrix S ∈ Cs×N

2: v1 ← (1/‖b‖2) · b
3: w ← Av1

4: Compute sketches Sv1 and Sw . start construction of SVm, SAVm

5: for j = 1, . . . ,m do

6: for i = max{1, j − k + 1}, . . . , j do . truncated MGS orthogonalization

7: w ← w − 〈vi,w〉vi
8: end for

9: vj+1 ← (1/‖w‖2) ·w
10: w ← Avj+1

11: Compute sketches Svj+1 and Sw and append them to SVj+1 and SAVj+1

12: end for

13: Compute thin QR decomposition SVm = QmRm . basis whitening

14: SVm ← Qm, SAVm ← (SAVm)R−1
m , Vm ← VmR

−1
m (only implicitly!)

15: if contour Γ is not fixed then . can be skipped for Stieltjes functions

16: Compute solutions Λ of generalized rectangular EVP SAVmx = −λSVmx

17: Choose Γ such that it encircles Λ

18: end if

19: Compute quadrature rules q`1(S,A, Vm, b) and q`2(S,A, Vm, b) . see (4.1)

20: while ‖q`1(S,A, Vm, b)− q`2(S,A, Vm, b)‖ > tol do

21: Set q`1(S,A, Vm, b)← q`2(S,A, Vm, b) . reuse previous result

22: Set `1 ← `2, `2 ← b
√

2 · `2c . increase order of quadrature rules

23: Compute quadrature rule q`2(S,A, Vm, b)

24: end while

25: f̃m ← Vmq`2(S,A, Vm, b)

A suitable choice of a specific quadrature rule should depend on f and Γ. We refer
the reader to [20, Section 4] for a discussion of quadrature rules tailored specifically
to the important functions exp(A), A−α, and A−1 log(I +A), the latter two of which
are Stieltjes functions. When f is not a Stieltjes function, one additionally needs to
construct a suitable contour Γ before numerically integrating (sGMRES).

4.2. Two-pass k-truncated Arnoldi computation. For Hermitian A, the
two-pass Lanczos method [10, 22] is a simple approach for employing the Lanczos
method in a limited memory environment by running the iteration twice. The sketched
FOM and sketched GMRES methods allow us to use a similar approach in the non-
symmetric case: we employ an Arnoldi method with truncation length k for computing
the Krylov basis Vm. Whenever we compute a new basis vector vj , we compute the
sketches Svj and SAvj , thereby assembling the matrices SVm and SAVm column-
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by-column. As soon as a basis vector is not needed any longer for performing the
truncated orthogonalization, we discard it from memory. At the end of this first pass
of the method, we approximate the coefficient vector

ỹm =

∫
Γ

(tSVm + SAVm)† dµ(t)(Sb)

by adaptive quadrature as outlined in section 4.1. In the second pass, the sketched
GMRES approximation is computed as

f̃m =

m∑
i=1

[ỹm]ivi,

which can be updated from one iteration to the next. Thus, we can again discard old
basis vectors. Of course, this approach doubles the number of matrix-vector products
that need to be performed, but it often converges in much fewer iterations than a
restarted Arnoldi approach, which amortizes the additional work.

4.3. Stopping criterion. As in any iterative method, it is important to have
an estimate for the approximation error available in order to determine whether the
computed quantity f̃m is an accurate enough approximation of the desired quantity
f(A)b (or to be able to stop the iteration early, if fewer iterations than initially
expected are required for reaching the desired accuracy). A-priori error bounds as
given in Theorem 3.3 are not well-suited for this purpose, as they tend to overestimate
the actual error norm by a large margin and also involve quantities that are usually
difficult to access; see also the brief discussion at the end of section 3.

A simple error estimate that is often used in Krylov methods is the difference of
two iterates, i.e., ∥∥f(A)b − f̃m

∥∥ ≈ ∥∥f̃m+d − f̃m
∥∥

for a small integer d ≥ 1. In the context of sketched GMRES, it is important to be
able to evaluate a stopping criterion without access to the full matrix Vm (e.g., when
it is kept in slow memory or when a two-pass approach is employed). Thus, it must

be avoided to explicitly form f̃m+d and f̃m. To do so, we exploit that f̃m, f̃m+d ∈
Km+d(A, b) and S is an ε-subspace embedding for this space. Therefore, by (1.1),

1√
1 + ε

∥∥S(f̃m+d − f̃m)
∥∥ ≤ ∥∥f̃m+d − f̃m

∥∥ ≤ 1√
1− ε

∥∥S(f̃m+d − f̃m)
∥∥ (4.3)

Writing f̃m = Vmỹm, we obtain from (4.3) the relation

∥∥f̃m+d − f̃m
∥∥ ≤ 1√

1− ε
∥∥SVm+dỹm+d − SVmỹm

∥∥ =

∥∥∥∥SVm+d

(
ỹm+d −

[
ỹm
0d

])∥∥∥∥ ,
(4.4)

which can be evaluated without access to the full basis, working just with small-scale
vectors and matrices. For estimating the unknown embedding quality ε one can, e.g.,
compare ‖Svj‖, j = 1, . . . ,m to ‖vj‖ = 1 whenever a new basis vector is computed
and keep track of these values.



RANDOMIZED SKETCHING OF MATRIX FUNCTIONS 13

5. Numerical tests. In this section we demonstrate the stability and efficiency
of the proposed sketching approaches on some model problems and problems from
relevant applications. All computations were performed in MATLAB R2022A. Tim-
ings are measured on a PC with an AMD Ryzen 7 3700X 8-core CPU with clock
rate 3.60GHz and 32 GB RAM. Since a part of MATLAB code is interpreted, MAT-
LAB implementations are not always best suited for comparing running times of
algorithms, but they are certainly appropriate to assess stability. Moreover, since all
algorithms spend most of their time in sparse matrix-vector multiplications, which
are calls to precompiled libraries, larger differences in running times can be trusted as
significant. All Krylov bases are generated by a (truncated) modified Gram–Schmidt
process without reorthogonalization. In all examples with sketching, we use the basis
whitening condition (2.4). The code used for generating all figures and tables in this
section is available at https://github.com/marcelschweitzer/sketched_fAb.

5.1. Convection–diffusion example. In this example, let A be the discretiza-
tion of a two-dimensional convection-diffusion operator on the unit square with con-
stant convection field pointing in the direction [1,−1] and diffusion coefficient D =
10−3, where we discretize the convection term by a first-order upwind scheme, giving

A =
D

h2
· (I ⊗ L+ L⊗ I) +

1

h
· (C ⊕ CT ) ∈ Rn

2×n2

with h = 1/(n+1), L = tridiag(−1, 2,−1) ∈ Rn×n, and C = tridiag(−1, 1, 0) ∈ Rn×n.
For this experiment, we use n = 100. We approximate A−1/2b, where b is a vector
of all ones scaled to have norm 1. For the sketching matrix we use a subsampled
randomized discrete cosine transform (DCT): S = PFE, where E ∈ RN×N is a
diagonal matrix having diagonal entries ±1 with equal probability, F ∈ RN×N is a
DCT, and P ∈ Rs×N selects s rows of FE at random; see also [36, Sec 8.1.1.]. The
sketching parameter is fixed at s = 2mmax, where mmax = 200 is the maximum Krylov
dimension we encounter.

Figure 5.1 illustrates the results. We compare the sketched FOM and GMRES ap-
proximations to the best approximation obtained by explicitly projecting f(A)b onto
the Krylov space Km(A, b). In the sketched FOM case we test both the integral rep-
resentation (sFOM) evaluated via quadrature as well as the closed formula (sFOM”).
For sketched GMRES only an integral representation is available and we again use
quadrature for its evaluation.

In the quadrature-based methods, we use a Gauss–Chebyshev rule after applying
the variable transformation x = (1 − t)/(1 + t) which maps the interval [0,+∞) to
(−1, 1]; see also [20, Section 4.1]. The number of quadrature nodes is determined adap-
tively as described in section 4.1. For simplicity, we have determined the quadrature
rule once for the maximum Krylov dimension mmax = 200 and then kept it fixed for
all iterations. This way, ` = 45 quadrature nodes were used for all m = 1, . . . ,mmax.

As can be seen in the left plot of Figure 5.1, the error of all sketched approxima-
tions follows that of the best approximation quite well and also inherits the superlinear
convergence. The sketched FOM approximants show a less regular convergence be-
havior than the sketched GMRES approximants, the latter following the best approx-
imation error very closely. The error curves of the two sketched FOM approximants
(quadrature-based and closed form) are visually indistinguishable, indicating that the
quadrature rule is highly accurate and that the quadrature approximation can be
ruled out as the source of the irregular sFOM convergence.

To gain some insight into the less regular convergence behavior of both sketched

https://github.com/marcelschweitzer/sketched_fAb
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Fig. 5.1. Convection–diffusion example. The left plot shows the convergence of the sketched
methods based on truncated Arnoldi with truncation parameter k = 4. The error of best approxima-
tion to f(A)b from the Krylov space Km(A, b) is also shown. On the right we show some of the Ritz
values Λ(V H

m SHSAVm) for the orders m = 84 and m = 85, which are closest to the gray vertical
bar at position m = 84.5 on the left. The jump in the sketched FOM error at m = 85 is caused by
a Ritz value being very close to a quadrature node.

FOM variants, we plot on the right of Figure 5.1 the Ritz values Λ(V Hm SHSAVm) for
the orders m = 84 and m = 85. Order m = 85 is characterized by a spike in the
error curve and we see that one of the corresponding Ritz values is very close, namely
at x ≈ 0.392, to a quadrature node at t = −3.05 · 10−4. The Ritz values of order
m = 84, on the other hand, stay safely away from the quadrature nodes. Some of the
eigenvalues Λ(A) are also shown for information.

5.2. Network example. We consider the nonsymmetric binary adjacency ma-
trix wiki-Vote of size N = 8,297 in the SNAP collection [35]. The function to
compute is f(A)b where f(z) = e−z and b is the vector of all ones. As in the pre-
vious example, S is a subsampled randomized DCT with sketching parameter fixed
at s = 2mmax = 100, independent of m. For sFOM and sGMRES we run truncated
Arnoldi with truncation parameter k = 2, 3, 4. The resulting three convergence plots
are shown in Figure 5.2. For the construction of the quadrature rule for the integral
representations we use the approach from [20], with a parabolic integration contour
Γ parameterized as

γ(t) = a+ it− cζ2, t ∈ R,

and with the parameters a, c chosen so that the Ritz values are surrounded. A fixed
quadrature rule with ` = 100 nodes is used in all cases and some of its nodes are
shown in the fourth plot of Figure 5.2. Note how some of the eigenvalues of A, in
particular the outliers, are well approximated by some of the Ritz values.

We also include the quadrature-based restarted FOM code funm quad [20] with
restart lengths r = 2, 3, 4 in Figure 5.2. The overall memory requirement of the
orthogonalization for truncated Arnoldi and funm quad are comparable when k = r,
namely they both require the storage of k+1 = r+1 Krylov basis vectors of size N . We
find that even with a truncation length as low as k = 2, all sketched methods exhibit
a surprisingly robust convergence, while restarted FOM requires a restart length of
at least r = 4 to converge steadily. In all cases, the sketched methods follow quite
closely the error of the best approximant obtained by projecting the exact f(A)b
onto Km(A, b), while restarting prevents or delays the convergence. We also depict
the condition number of the non-orthogonal Krylov basis Vm (multiplied by the unit
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Fig. 5.2. Network example. The first three plots show the convergence of the sketched methods
based on truncated Arnoldi with truncation parameter k = 2, 3, 4. The error of the restarted Arnoldi
approximation with restart length r = k and the error of best approximation from the Krylov space
Km(A, b) is also shown, as well as the condition number of the truncated Krylov basis (multiplied
by the unit round-off). The final plot shows the placement of ` = 100 complex-valued quadrature
nodes on the parabolic contour relative to the Ritz values of order m = 50.

round-off u ≈ 2.2 · 10−16). Interestingly, the sketched Krylov methods continue to
perform well and converge without problems even when the condition number of the
basis reaches (or even exceeds) u−1, while this is typically mentioned as a source of
instablities in the literature; see, e.g., [36].

5.3. Lattice QCD. Quantum chromodynamics (QCD) is the area of theoretical
physics that studies the strong interaction between quarks and gluons, governed by
the Dirac equation. To be able to perform simulations, in lattice quantum chromo-
dynamics, the Dirac equation is discretized on a four-dimensional space–time lattice
with 12 variables at each lattice point, corresponding to all possible combinations of
three colors and four spins. In order to preserve the so-called chiral symmetry on the
lattice, one needs to solve linear systems with the overlap Dirac operator [37],

Novl := ρI + Γ5 sign(Q). (5.1)

In (5.1), ρ > 1 is a mass parameter, Q represents a periodic nearest-neighbor coupling
on the lattice, and Γ5 is a permutation matrix. The matrix Q is very large, sparse,
complex and, in the presence of a nonzero chemical potential (the situation we consider
here), non-Hermitian.

As sign(Q) cannot be explicitly computed for realistic grid sizes, one typically
solves linear systems with (5.1) by an inner-outer Krylov method which only needs to
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Fig. 5.3. Lattice QCD example. The first three plots show the convergence of the sketched
methods based on truncated Arnoldi with truncation parameter k = 2, 3, 4. The error of the restarted
Arnoldi approximation with restart length r = k and the error of best approximation from the Krylov
space is also shown, as well as the condition number of the truncated Krylov basis (multiplied by the
unit round-off). The final plot shows the convergence of the 4-truncated sketched methods compared
to the restarted Arnoldi method with r = 20.

access sign(Q) via matrix-vector products. At each outer Krylov iteration, one there-
fore has to compute sign(Q)b where the vector b changes from one iteration to the
next. Efficient preconditioners for the “outer iteration” for (5.1) can be constructed
based on, e.g., domain decomposition and adaptive algebraic multigrid. It then turns
out that the “inner iteration” for evaluating sign(Q)b represents the by far most ex-
pensive part of the overall computation (see, e.g., [11, Section 5.2]), which makes any
improvements in this area very welcome.

To show how the sign function fits into the framework considered here, write

sign(Q)b = (Q2)−1/2Qb. (5.2)

Thus, when performing a Krylov iteration with A = Q2 (which of course does not
need to be formed explicitly), we can use the same Gauss–Chebyshev rule for the
inverse square root as in section 5.1. We use a lattice configuration with 8 lattice
points in the temporal and each spatial direction, resulting in N = 12 · 84 = 49,152
and choose b = e1 as the first canonical unit vector.

For the first part of this experiment, we construct a fixed Gauss–Chebyshev
quadrature rule with accuracy parameter tol = 10−7, which results in ` = 176 quadra-
ture points. We use a maximum Krylov dimension of mmax = 300 and a fixed sketch-
ing parameter s = 2mmax = 600. As before, we compare to the quadrature-based
restarted Arnoldi method from [20], which is also used in state-of-the-art HPC code
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Table 5.1
Lattice QCD example. Truncation (resp. restart) length, required number of Krylov iterations,

wall-clock time and relative error norm at the final iteration for the different discussed algorithms
when invoked with a target accuracy of 10−5. Details on the experimental setup are given in the
final paragraphs of section 5.3.

method k resp. r Krylov dim. time rel. error

sketched FOM (closed form) 2 220 3.36s 5.93 · 10−6

sketched FOM (quadrature) 2 240 7.66s 3.17 · 10−6

sketched GMRES (quadrature) 2 220 6.64s 7.88 · 10−6

funm quad 2 340 3.92s 1.25 · 10−5

standard FOM – 220 7.87s 3.67 · 10−6

for simulation of overlap fermions [11]. We use the truncation parameters k = 2, 3, 4
and the same restart lengths r = k. Additionally, we compare the sketched methods
with k = 2-truncated Arnoldi to restarted FOM with restart length r = 20, a value
used in realistic large-scale simulations of overlap fermions.

The results of the experiment are depicted in the four plots of Figure 5.3. We
observe that all sketched approximations converge robustly and follow the error of
the best approximation closely, while convergence is strongly delayed in the restarted
methods for r = 2, 3, 4 (although in contrast to the network example, the restarted
method does make progress for all restart lengths). Even for the larger restart length
r = 20 (which leads to much higher orthogonalization cost than in the sketched
methods), convergence is much slower than for the sketching-based approaches. Ad-
ditionally, we again observe that convergence of the sketched methods takes place well
after the point where the basis condition number exceeds u−1.

In the second part of this experiment we measure the run time of the different
methods, but now with all quadratures performed fully adaptively as explained in
section 4.1. We use the same problem setup as before and aim for reaching an overall
relative error norm below 10−5. We compare the run time of the sketched methods
with truncation length k = 2 (i.e., at most 3 basis vectors need to be stored at a time)
with that of restarted Arnoldi with restart length r = 20 (i.e., at most 21 vectors basis
need to be stored at a time) and with standard FOM which constructs an orthonormal
basis of the Krylov space via modified Gram–Schmidt orthogonalization (but without
reorthogonalization). For a fair comparison, we check the error estimate (4.4) in the
sketched methods (and a similar estimate in standard FOM) every 20 iterations (i.e.,
d = 20), as funm quad also checks for convergence at the end of each restart cycle.
I.e., in all quadrature-based methods (sketched or non-sketched), integrals need to
be evaluated every 20th matrix-vector product. We stop the iteration once the error
estimate is below the desired tolerance of 10−5. Note that the stopping condition in
funm quad is also based on comparing approximants from subsequent restart cycles.
As tolerance tol for the quadrature rules in the sketched methods we choose the same
value 10−5 as for the desired error accuracy. In funm quad, we had to use the slightly
more stringent tolerance of 10−6, as the method otherwise stagnated around an error
norm of 10−4.

The results of this experiment are reported in Table 5.1. Among all methods,
sketched FOM using the closed form (sFOM”) runs the fastest, which is to be ex-
pected as it needs the smallest number of matrix-vector products, uses a short re-
currence orthogonalization and has close to no overhead for things like quadrature.
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In comparison to restarted Arnoldi (funm quad), the second fastest method, sketched
FOM saves about 15% of run time and also reaches a higher accuracy. The quadrature-
based sketching methods need slightly less than twice the time of restarted Arnoldi
but also have much lower memory consumption. The bottleneck in the quadrature-
based methods is the efficient evaluation of integrals, which make up the largest part
of the run time. In the sketched GMRES approximation, approximately 42% of the
run time is spent in matrix-vector products, 52.5% for computations related to eval-
uating the quadrature rule, 3.5% for computing sketches, and 1.5% for orthogonal-
ization. Standard FOM (without sketching or restarting) is the slowest of all tested
methods as—already for the rather moderate Krylov dimension in this example—
orthogonalization cost becomes the dominating factor. For larger and more difficult
problems where a higher Krylov dimension is necessary, the gains provided by sketch-
ing can be expected to be even more pronounced. This example clearly illustrates
that sketching and restarting techniques are very relevant for nonsymmetric matrices
even when memory is not limited.

We end with a few further comments on how to best interpret the results above.
In the QCD model problem we consider here, matrix-vector products are extremely
expensive compared to inner products (Q contains 49 nonzeros per row and needs to be
applied twice per iteration). In situations were matrix-vector products are cheaper,
the difference in run time between sketched FOM and restarted Arnoldi would be
much higher, as orthogonalization then makes up a larger fraction of the cost in the
restarted methods. The overhead in the quadrature-based methods can likely be
reduced by a more sophisticated implementation. In particular, this would also be
highly dependent on the computing environment (as quadrature rules can of course
be evaluated in a parallelized fashion) and is therefore beyond the scope of this work.
Also keep in mind that the cost of quadrature mainly scales with m and s, but not
with the matrix size N . Thus, if N is increased, the quadrature overhead will become
negligible compared to cost of matrix-vector products and orthogonalization. Further,
in the quadrature-based restarted Arnoldi method the quadrature rule needs to be
evaluated after every restart cycle (i.e. every r = 20 matrix-vector products) in order
to compute the update. This is not necessary with sketching, where the quadrature
needs to be evaluated only once for forming the final approximant. However, if error
monitoring is needed, then intermediate approximants may still need to be computed.

5.4. Fractional graph Laplacian example. We end this section with an ex-
periment that highlights possible problems and limitations in our approach. The
example we consider here is taken from [12, Section 5.1.3]. We let A ∈ R6,301×6,301

be the (nonsymmetric) adjacency matrix of the network p2p Gnutella08 from the
SuiteSparse matrix collection (https://sparse.tamu.edu/) and let L = Din −A be
its in-degree Laplacian, i.e., Din is a diagonal matrix containing the in-degree of all
nodes in the network. Consequently, L has zero column sums and is thus singular,
with its spectrum contained in the closed right half-plane. We are interested in ap-
proximating L1/2b, i.e., the action of the fractional Laplacian, where b is a randomly
chosen canonical unit vector.

We again compare the same methods as before∗, with truncation (or restart)
length 2 and 4. The results of this experiment are depicted in Figure 5.4, and it
is clearly visible that all considered methods fail for this problem. While the error

∗Note that the published version of funm quad does not natively support the square root and we
added it to the implementation using the approach outlined in [20, Corollary 3.6]

https://sparse.tamu.edu/
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Fig. 5.4. Fractional graph Laplacian example. Convergence of the sketched methods based
on truncated Arnoldi with truncation parameter k = 2, 4 for approximating L1/2b. The error of
the restarted Arnoldi approximation with restart length r = k and the error of best approximation
from the Krylov space is also shown, as well as the condition number of the truncated Krylov basis
(multiplied by the unit round-off).
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Fig. 5.5. Fractional graph Laplacian example. Convergence of the sketched methods based on
truncated Arnoldi with truncation parameter k = 2, 4 for approximating L−1/2(Lb). The error of
the restarted Arnoldi approximation with restart length r = k and the error of best approximation
from the Krylov space is also shown, as well as the condition number of the truncated Krylov basis
(multiplied by the unit round-off).

of the best approximation decreases smoothly (and superlinearly), the sketched and
restarted methods do not converge to the solution at all or at least converge extremely
slowly after a short initial phase in which they closely follow the error of the best ap-
proximation. Interestingly, deteriorating convergence begins long before the truncated
Krylov basis starts becoming ill-conditioned. A reason for the unsatisfactory behavior
of the sketched methods is likely the occurrence of sketched Ritz values on (or very
close to) the negative real axis, i.e., the branch cut of the square root. As the origin is
part of the field of values of L, in light of (2.7), these “critical” sketched Ritz values
can occur for any ε > 0, i.e., irrespective of how good the subspace embedding is.

A simple trick that can be used for improving the convergence of polynomial
Krylov methods for fractional graph Laplacians is to rewrite L1/2b = L−1/2(Lb)
and then approximate the action of the inverse square root using a Krylov space
built with starting vector Lb. While L is not invertible (and thus does not actually
have an inverse square root), the initial multiplication Lb removes the contributions
from the nullspace of L from the starting vector, so that all subsequent computations
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happen in a space on which L is an invertible operator (at least in exact arithmetic).
We repeat our experiment using this approach and depict the results in Figure 5.5.
We observe that convergence is indeed greatly improved. While the methods still
do not track the error of the best approximation closely, sGMRES shows at least
acceptable convergence (with hints of superlinear phases) when using a truncation
length of 4. The sketched FOM method converges at a similar rate, but shows much
more irregular error norms and large spikes, likely again caused by sketched Ritz
values near the negative real axis. An interesting effect is visible for sGMRES with
truncation length k = 2. When the error of the best approximation starts to converge
superlinearly, this does not happen for sGMRES, but instead convergence continues
at the same linear rate as before.

In conclusion, the above example illustrates that there are cases in which the
sketched methods can fail, but it also suggests that this is typically bound to happen
in situations were polynomial Krylov methods are expected to show unsatisfactory
performance anyway (rational Krylov methods are more commonly used for fractional
graph Laplacian computations exactly for this reason). Additionally, the example
(together with the preceding ones in Section 5.1–5.3) highlights that ill-conditioning
of the truncated Krylov basis is typically not the primary cause of instabilities and
deteriorating convergence.

6. Conclusions. We have presented several new approaches to efficiently com-
pute Krylov approximations to f(A)b based on integral representations and random-
ized sketching. We have focused on two popular Krylov methods, namely FOM and
GMRES. We have shown that the sketched FOM approximant admits a closed form
and provided a convergence analysis of the sketched GMRES approximants for Stielt-
jes function of positive real matrices. Numerical experiments have demonstrated the
potential of the sketching approach as an alternative to restarting.

The proposed approach also opens up a number of research questions. Firstly, it
is crucial to better understand the numerical stability (or rather, potential sources of
instability) in sketched Krylov methods. While by conventional wisdom, instabilities
occur once the condition number of the non-orthogonal Krylov basis exceeds the
reciprocal of unit round-off, our experiments reveal that in many cases convergence
still takes place in this setting. Experience from the convergence analysis and practical
use of restarted Krylov methods, even when the Arnoldi restart/truncation length is
as small k = 1, suggests that the basis conditioning cannot be the only determining
factor (see also our discussion after Corollary 2.3).

Another possible research direction addresses the choice of the sketching param-
eter s. Currently, a rough estimate of the number mmax of required Krylov iterations
is needed in order to choose s > mmax, and the choice s = 2mmax used here is not
rigorously justified. One possible idea would be a “responsibly reckless” approach (a
term used in HPC; see, e.g., [9]), where an optimistic choice for s will be made initially
with a careful monitoring of the computation. If s turns out to be too small, which
needs to be automatically detected, the computation will be halted and redone with
an increased value of s, or with a completely different method.

A significant improvement in the efficiency of sketched GMRES method could be
obtained by developing a fast evaluation of the integral in (sGMRES). In our numeri-
cal experiments with the QCD example we found that replacing MATLAB’s pinv(X)
by (X’*X)\X’ yields significant speed-up. The action of the Moore–Penrose inverse
(tSVm + SAVm)†v on a vector v is needed for ` distinct values of t corresponding to
the quadrature nodes (SVm can be assumed to have orthonormal columns).
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If the dimension m of the required subspace becomes extremely large, say in the
order of 104 and above, then it may be necessary to combine sketching with restarting.
In the restarting approach developed in [20], each restart cycle c = 1, 2, . . . amounts

to the Krylov approximation of an error function e
(c)
m (A)b, where e

(c)
m (z) is a scalar

error function that is explicitly given in terms of the interpolation nodes defining the
restarted Arnoldi approximant. In view of the interpolation characterization given in
Corollary 2.3, it seems plausible that a similar restarting approach might be developed
for the sketching-based methods. (If f is already given as a rational function in
partial fraction form, then each linear system could be treated independently and the
usual FOM or GMRES restarting as in [2] can immediately be applied.) Restarting
would also allow the use of implicit deflation techniques, which can often mitigate
convergence delays.
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[10] A. Boriçi, Fast methods for computing the Neuberger operator, in Numerical Challenges in
Lattice Quantum Chromodynamics, A. Frommer, T. Lippert, B. Medeke, and K. Schilling,
eds., Berlin, Heidelberg, 2000, Springer Berlin Heidelberg, pp. 40–47.

[11] J. Brannick, A. Frommer, K. Kahl, B. Leder, M. Rottmann, and A. Strebel, Multi-
grid preconditioning for the overlap operator in lattice QCD, Numer. Math., 132 (2016),
pp. 463–490.

[12] A. Cortinovis, D. Kressner, and Y. Nakatsukasa, Speeding up krylov subspace methods for
computing f(a)b via randomization, arXiv preprint arXiv:2212.12758, (2022).

[13] V. Druskin and L. Knizhnerman, Two polynomial methods of calculating functions of sym-
metric matrices, U.S.S.R. Comput. Math. Math. Phys., 29 (1989), pp. 112–121.

[14] V. Druskin and L. Knizhnerman, Extended Krylov subspaces: Approximation of the matrix
square root and related functions, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 755–771.

[15] M. Eiermann and O. G. Ernst, A restarted Krylov subspace method for the evaluation of
matrix functions, SIAM J. Numer. Anal., 44 (2006), pp. 2481–2504.
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