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Abstract. We prove the convergence of discontinuous Galerkin approximations for the Vlasov-Poisson
system written as an hyperbolic system using Hermite polynomials in velocity. To obtain stability
properties, we introduce a suitable weighted L2 space, with a time dependent weight, and first prove
global stability for the weighted L2 norm and propagation of regularity. Then we prove error estimates
between the numerical solution and the smooth solution to the Vlasov-Poisson system.
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1. Introduction

We consider a noncollisional plasma of charged particles (electrons and ions). For simplicity, we
assume that the properties of the plasma are one dimensional and we take into account only the
electrostatic forces, thus neglecting the electromagnetic effects. We denote by f = f(t, x, v) the
electron distribution function and by E(t, x) the electrostatic field. The Vlasov-Poisson equations of
the plasma in dimensionless variables can be rewritten as,

(1.1)



∂f

∂t
+ v

∂f

∂x
+ E

∂f

∂v
= 0 ,

∂E

∂x
= ρ− ρ0 ,

f(t = 0) = f0 ,
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where the density ρ is given by

ρ(t, x) =

∫
R
f(t, x, v) d v , t ≥ 0, x ∈ T.

To ensure the well-posedness of the Poisson problem, we add the compatibility (or normalizing) con-
dition

(1.2)

∫
T
ρ(t, x) dx =

∫
T

∫
R
f(t, x, v) d v dx = mes(T) ρ0, ∀ t ≥ 0,

which is the condition for total charge neutrality. Let us notice that (1.2) express that the total charge
of the system is preserved in time.

There is a wide variety of techniques to discretize the Vlasov-Poisson system. For instance, par-
ticle methods (PIC) consist in approximating the distribution function by a finite number of Dirac
masses [6]. They allow to obtain satisfying results with a small number of discrete particles, hence
these methods are very popular in the community of computational plasma physics, but a well-known
drawback of this approach is the inherent numerical noise which only decreases in 1/

√
N when the

number of discrete particles N increases, preventing from getting an accurate description of the distri-
bution function for some specific applications. To overcome this difficulty, Eulerian solvers have been
applied. These methods discretize the Vlasov equation on a mesh of the phase space [14, 11, 35, 15].
Among them, we can mention finite volume methods [13] which are a simple and inexpensive option,
but in general low order. Fourier-Fourier transform schemes [23] are based on a Fast Fourier Transform
of the distribution function in phase space, but suffer from Gibbs phenomenon if other than periodic
conditions are considered. Standard finite element methods [40, 41] have also been applied, but
may present numerical oscillations when approximating the Vlasov equation. Later, semi-Lagrangian
schemes have also been proposed [36], consisting in computing the distribution function at each grid
point by following the characteristic curves backward. Despite these schemes can achieve high order
allowing also for large time steps, they require high order interpolation to compute the origin of the
characteristics, destroying the local character of the reconstruction. Many improvement have been
proposed and studied to make this approach more efficient [4, 8, 39]. Finally, spectral Galerkin and
spectral collocation methods for the asymmetric weighted Fourier-Hermite discretization have been
proposed in [12, 25, 29]. In [7], the authors study a time implicit method allowing the exact conser-
vation of charge, momentum and energy, and highlight that for some test cases, this scheme can be
significantly more accurate than the PIC method.

In the present article, we focus on a class of Eulerian methods based on Hermite polynomials in the
velocity variable, where the Vlasov-Poisson system (1.1) is written as an hyperbolic system. This idea
of using Galerkin methods with a small finite set of orthogonal polynomials rather than discretizing
the distribution function in velocity space goes back to the 60’s [1, 22]. More recently, the merit
to use rescaled orthogonal basis like the so-called scaled Hermite basis has been shown [12, 19, 34,
32, 37]. In [19], Holloway formalized two possible approaches. The first one, called symmetrically-
weighted, is based on standard Hermite functions as the basis in velocity and as test functions in
the Galerkin method. It appears that this symmetrically weighted method cannot simultaneously
conserve the mass and the momentum. It makes up for this deficiency by correctly conserving the
L2 norm of the distribution function, ensuring the stability of the method. In the second approach,
called asymmetrically-weighted, another set of test functions is used, leading to the simultaneous
conservation of mass, momentum and total energy since the infinite hyperbolic system corresponds to
the one satisfied by the moments of the distribution in the velocity space. However, this approach does
not conserve the L2 norm of the distribution function and is then not numerically stable. Recently
in [5], we provide a stability analysis of the asymmetric Hermite method in a weighted L2 space for
the Vlasov-Poisson system. The main idea is to introduce a scaling function t 7→ α(t) which is well
adapted to the variation of the distribution function with respect to time. The aim of this work is
to present a convergence analysis with error estimates based on the asymmetric weighted Hermite
method with a discontinuous Galerkin method for the space discretization. It is worth to mention
that the convergence of the symmetric weighted Fourier-Hermite method has been already studied in
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[30] where the standard L2 framework is well adapted. In [24], the authors study the conservation and
L2 stability properties of a generalized Hermite-Fourier semi-discretization, including as special cases
the symmetric and asymmetric weighted approaches. Concerning discontinuous Galerkin methods,
they are similar to finite elements methods but use discontinuous polynomials and are particularly
well-adapted to handling complicated boundaries which may arise in many realistic applications. Due
to their local construction, this type of methods provides good local conservation properties without
sacrificing the order of accuracy. They were already used for the Vlasov-Poisson system in [18, 9].
Optimal error estimates and study of the conservation properties of a family of semi-discrete DG
schemes for the Vlasov-Poisson system with periodic boundary conditions have been proved for the
one [2] and multi-dimensional [3] cases. In all these works, the discontinuous Galerkin method is
employed using a phase space mesh.

Here, we adopt this approach only in physical space, as in [16], with a Hermite approximation in the
velocity variable. In [16], such schemes with discontinuous Galerkin spatial discretization are designed
in such a way that the conservation of mass, momentum and total energy is rigorously provable. In
the next section, we introduce the formulation of the Vlasov equation using the Hermite basis in
velocity and a class of spatial discretizations based on discontinuous Galerkin approximations. Then
we present our main result on error estimates (Theorem 2.4). In Section 3, we prove some preliminary
results on approximation theory based on Spectral accuracy of Hermite spectral methods and remind
some basic results on interpolation error for discontinuous Galerkin method. Then in Section 4, we
prove an error estimate between the semi-discrete solution (time is continuous) and the exact smooth
solution of the Vlasov-Poisson system. Finally in Section 5 we present numerical results in order to
illustrate the order of convergence and the stability of our approach.

2. Discontinuous Galerkin/Hermite spectral methods

In this section, we present the Discontinuous Galerkin/Hermite spectral method. On the one
hand, we focus on the velocity discretization by expanding the distribution function f using Hermite
polynomials. Then, we treat the space discretization using a discontinuous Galerkin method [16, 5].

2.1. Hermite spectral form. For a given scaling positive function t 7→ α(t) which will be determined
later, we define the weight as

(2.1) ω(t, v) :=
√

2π exp

(
α2(t) |v|2

2

)
,

and the associated weighted L2 space

L2(ω(t) d v) :=

{
g : R→ R :

∫
R
|g(v)|2 ω(t, v) d v < +∞

}
,

with 〈·, ·〉L2(ω(t) d v) the inner product and ‖ · ‖L2(ω(t) d v) the corresponding norm. As in [5], we choose
the following basis of normalized scaled time dependent asymmetrically weighted Hermite functions:

(2.2) Ψn(t, v) = α(t)Hn (α(t)v)
e−(α(t)v)2/2

√
2π

,

where α is a scaling function depending on time and Hn are the Hermite polynomials defined by
H−1(ξ) = 0, H0(ξ) = 1 and for n ≥ 1, Hn(ξ) has the following recursive relation

√
nHn(ξ) = ξ Hn−1(ξ)−

√
n− 1Hn−2(ξ) , ∀n ≥ 1 .

Let us also emphasize that H ′n(ξ) =
√
nHn−1(ξ) for all n ≥ 1, and the set of functions (Ψn)n defined

by (2.2) is an orthogonal system satisfying

(2.3) 〈Ψn,Ψm〉L2(ω(t) d v) = α(t)

∫
R

Ψn(v)Hm(α(t) v) d v = α(t) δn,m,

where δn,m is the Kronecker delta function. Finally, for any integer N ≥ 1 and t ≥ 0, we introduce
the space VN as the subspace of L2(ω(t) d v) defined by

(2.4) VN := Span{Ψn(t), 0 ≤ n ≤ N − 1}.
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Then we look for an approximate solution fN of (1.1) as a finite sum which corresponds to a truncation
of a series

(2.5) fN (t, x, v) =

N−1∑
n=0

Cn(t, x) Ψn(t, v) ,

where N is the number of modes and (Cn)0≤n≤N−1 are computed using the orthogonality property
(2.3), and taking Hn(α v) as test function in (1.1). Therefore, a system of evolution equations is
obtained for the modes (Cn)0≤n<N as in [5],

(2.6)



∂tCn + Tn[C] = Sn[C,EN ] ,

Tn[C] =
1

α

(√
n∂xCn−1 +

√
n+ 1 ∂xCn+1

)
,

Sn[C,EN ] =
α′

α

(
nCn +

√
(n− 1)nCn−2

)
+ EN α

√
nCn−1 ,

with Cn = 0 when n < 0 and n ≥ N , and the initial data Cn(t = 0) is given by

Cn(t = 0) =
1

α(0)
〈f0, Ψn(0)〉L2(ω(0) d v) .

Meanwhile, we observe that the density ρN satisfies

ρN =

∫
R
fN d v = C0 ,

and then the Poisson equation becomes

(2.7)
∂EN
∂x

= C0 − ρ0,N ,

with ρ0,N such that ∫
T

(C0 − ρ0,N ) dx = 0 .

Observe that when we take N = ∞ in the expression (2.5), we get an infinite system (2.6)-(2.7) of
equations for (Cn)n∈N and EN , which is formally equivalent to the Vlasov-Poisson system (1.1).

2.2. Spatial discretization. As in [5], we consider a discontinuous Galerkin approximation for the
Vlasov equation with Hermite spectral basis in velocity (2.6). Let us first introduce some notations

and start with J = {0, . . . , Nx − 1} describing the set of subintervals and Ĵ = {0, . . . , Nx} related to
the number of edges, where Nx ≥ 1 is an integer, then we consider the set {xj+1/2}j∈Ĵ , a partition of

the torus T, where each element is denoted as Ij = [xj−1/2, xj+1/2] with its length hj for j ∈ J , and
h = maxj hj . Finally, we introduce the parameter δ = (h, 1/N) related to the numerical discretization
in space and velocity.

Given any k ∈ N, we define a finite dimensional discrete piecewise polynomial space

(2.8) Xh =
{
u ∈ L2(T) : u|Ij ∈Pk(Ij), j ∈ J

}
,

where the local space Pk(I) consists of polynomials of degree at most k on the interval I. We further
denote the jump [u]j+1/2 and the average {u}j+1/2 of u at xj+1/2 defined as

[u]j+1/2 = u(x+
j+1/2) − u(x−j+1/2) and {u}j+1/2 =

1

2

(
u(x+

j+1/2) + u(x−j+1/2)
)
, ∀ j ∈ Ĵ ,

where u(x±) = lim∆x→0± u(x+ ∆x). We also denote

uj+1/2 = u(xj+1/2) , u±j+1/2 = u(x±j+1/2) , ∀ j ∈ Ĵ .
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From these notations, we apply a semi-discrete discontinuous Galerkin method for (2.6) as follows.
We look for an approximation Cδ = (Cδ,n)0≤n≤N−1 with Cδ,n(t, ·) ∈ Xh, such that for any ϕn ∈ Xh,
we have

(2.9)
d

d t

∫
Ij

Cδ,n ϕn dx + An,j(gn(Cδ), ϕn) =

∫
Ij

Sn[Cδ, Eδ]ϕn dx, for j ∈ J , 0 ≤ n ≤ N − 1,

where An,j is defined by

(2.10)


An,j(gn, ϕn) = −

∫
Ij

gn ϕ
′
n dx + ĝn,j+ 1

2
ϕ−n,j+1/2 − ĝn,j−1/2 ϕ

+
n,j−1/2 ,

gn(Cδ) =
1

α

(√
nCδ,n−1 +

√
n+ 1Cδ,n+1

)
.

The numerical flux ĝn in (2.10) is given by

(2.11) ĝn =
1

2

[
g−n (Cδ) + g+

n (Cδ) −
νn
α

(
C+
δ,n − C−δ,n

)]
,

with the numerical viscosity coefficient νn such that νn ∈ [ν, ν] with 0 < ν ≤ ν <∞.
Therefore the approximate solution of (1.1) obtained using Hermite polynomials in velocity variable

and discontinuous Galerkin discretization in space is then defined by

(2.12) fδ(t, x, v) =
N−1∑
n=0

Cδ,n(t, x) Ψn(t, v) ,

where δ = (1/N, h) is a small parameter, (Cδ,n)n satisfy (2.9) and (Ψn)n are the basis functions defined
by (2.2).

We now deal with the approximation Eδ of the electric field. To this end, we consider the potential
function Φδ(t, x), such that

(2.13)


Eδ = −∂Φδ

∂x
,

∂Eδ
∂x

= Cδ,0 − ρ0,δ .

Hence we get the one dimensional Poisson equation

−∂
2Φδ

∂x2
= Cδ,0 − ρ0,δ ,

with ρ0,δ such that ∫
T

(Cδ,0 − ρ0,δ) dx = 0 .

We simply consider a conforming approximation of the electric potential, corresponding to a direct
integration of this Poisson problem (2.13), which is straightforward in 1D.

In what follows, we study the scheme (2.9)–(2.13), where α is a time-dependent function defined
in the next subsection by (2.15), and not a constant scaling parameter as usual. In [5], we provide a
study of the conservation properties satisfied by this type of discontinuous Galerkin/Hermite spectral
methods with a time-dependent scaling function α. It appears that the conservation properties only
rely on the choice of the spatial discretization and not on the definition of α. Indeed, we proved in
[5, Proposition 2.1] the conservation of mass, momentum and total energy for the Hermite velocity
discretization (2.6). Then, concerning the spatial discretization, we established in [5, Theorem 3.4]
the conservation of the discrete total energy for the scheme (2.9)–(2.11) with a centered numerical
flux ĝ0 (corresponding to ν0 = 0 in (2.11)) together with a discontinuous Galerkin approximation of
the Poisson equation.
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2.3. Discussion on the scaling function α and main results. Before to state an error estimate
on the numerical solution to (2.9)-(2.13), let us introduce the suitable functional framework. We set
µt the measure given as

(2.14) dµt = ω(t, v) dx d v

where the weight ω is provided in (2.1) and the following L2 weighted space given by

L2(dµt) :=

{
g : T× R→ R :

∫∫
T×R
|g(x, v)|2 dµt < +∞

}
,

with 〈·, ·〉L2(dµt) the associated inner product, that is

〈f, g〉L2(dµt) =

∫∫
T×R

f(x, v) g(x, v) dµt ,

and ‖ · ‖L2(dµt) the corresponding norm.
Let us remark that for all functions α, α̃ : R+ → R+ such that α̃(t) ≤ α(t) for all t ≥ 0, the

associated ω, ω̃ defined by (2.1) satisfy ω̃(t, v) ≤ ω(t, v) for all t ≥ 0, v ∈ R. Then, the corresponding
weighted L2 norms verify∫ ∫

T×R
|f(x, v)|2 ω̃(t, v) dx d v ≤

∫ ∫
T×R
|f(x, v)|2 ω(t, v) dx d v.

In particular, taking α̃ = 0, the standard L2(dx d v) norm is controlled by the weighted L2 norm:

‖f‖2L2(dx d v) =

∫ ∫
T×R
|f(x, v)|2 dx d v ≤

∫ ∫
T×R
|f(x, v)|2 ω(t, v) dx d v = ‖f‖2L2(dµt)

.

The first issue is to find the appropriate framework for the stability of approximations based on
asymmetrically-weighted Hermite basis. Indeed, this choice fails to preserve the L2 norm of the
approximate solution, and therefore to ensure the long-time stability of the method. Consequently, we
introduce a L2 weighted space, with a time-dependent weight, allowing to prove the global stability
of the solution in this space [5]. Actually, this idea has been already employed in [27, 28] to stabilize
Hermite spectral methods for linear diffusion equations and nonlinear convection-diffusion equations
in unbounded domains, yielding stability and spectral convergence of the considered methods. The
main point now is to determine a function α. We proved the following result in [5, Proposition 3.2].

Proposition 2.1. Let (fδ, Eδ) be the approximate solution defined by (2.9)–(2.13), with the scaling
function α defined by

(2.15) α(t) := α0

(
1 + γ α2

0

∫ t

0
max(1, ‖Eδ(s)‖2L∞) d s

)−1/2

.

Assume that ‖fδ(0)‖L2(dµ0) < +∞. Then, for any t ≥ 0, we have
(2.16)

d

d t
‖fδ(t)‖2L2(dµt)

:=
d

d t

(
α(t)

N−1∑
n=0

∫
T
|Cδ,n|2 dx

)
≤ −

N−1∑
n=0

∑
j∈Ĵ

νn [Cδ,n]2
j− 1

2

+
1

2 γ
‖fδ(t)‖2L2(dµt)

,

from which we deduce

(2.17) ‖fδ(t)‖L2(dµt) ≤ ‖fδ(0)‖L2(dµ0) e
t/4γ ,

where γ > 0 is the fixed parameter, which can be chosen arbitrarily, appearing in the definition (2.15)
of α.

To study the convergence of the numerical method, we also need to establish a stability result for
the exact solution f in the weighted norm L2(dµt), where the weight depends on the approximate
solution (see definition (2.15) of α).
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Proposition 2.2. Consider (f,E) a smooth solution of the Vlasov-Poisson system (1.1). Assuming
that the initial data f0 belongs to L2(dµ0), then there exists c0 > 0 such that the solution f(t) satisfies
for all t ≥ 0:

‖f(t)‖L2(dµt) ≤ ‖f0‖L2(dµ0) e
t/4η,

where dµt is defined by (2.14), with α appearing in the weight ω given by (2.15).
The parameter η > 0 has to be chosen small enough, namely such that η C/γ < 1, where C > 0 is a
constant depending only on the mass of f0 such that ‖E(t)‖2L∞ ≤ C for all t ≥ 0, and γ > 0 is the
fixed parameter appearing in the definition (2.15) of α.

Proof. Using the Vlasov equation (1.1) and the definition (2.1) of the weight ω, we have

1

2

d

d t
‖f(t)‖2L2(dµt)

=
1

2

∫ ∫
T×R

f2 (α2E v + αα′ |v|2)ω dx d v.

Applying now the Young inequality on the first term, we get for η > 0,

1

2

d

d t
‖f(t)‖2L2(dµt)

≤ 1

2

(η
2
‖E‖2L∞α4 + α′α

)∫ ∫
T×R

f2 |v|2ω dx d v +
1

4 η
‖f(t)‖2L2(dµt)

.

Then, using the definition (2.15) of α, it is clear that

α′ = −γ
2

max(1, ‖Eδ‖2L∞)α3,

leading to

1

2

d

d t
‖f(t)‖2L2(dµt)

≤ 1

2

(η
2
‖E‖2L∞ −

γ

2
max(1, ‖Eδ‖2L∞)

)
α4

∫ ∫
T×R

f2 |v|2ω dx d v+
1

4 η
‖f(t)‖2L2(dµt)

.

In one space dimension, the L1 estimate on f can be used to bound the electric field, namely there
exists a constant C > 0 depending only on the initial mass of f such that for all t ≥ 0, ‖E(t)‖2L∞ ≤ C.
Then, choosing η > 0 such that η C/γ < 1, the first term of the right-hand side is nonpositive, which
concludes the proof. �

Notice that the functional space L2(dµt) depends on α given by (2.15), and then on the discretiza-
tion parameter itself through the term ‖Eδ(t)‖L∞ involved in this definition. Therefore, to establish a
convergence result, it is mandatory to control α uniformly with respect to δ. This control is achieved
by bounding ‖Eδ(t)‖L∞ uniformly with respect to δ.

Proposition 2.3. We consider a solution (fδ, Eδ) of (2.9)–(2.13), with α defined by (2.15). We
assume that ‖fδ(0)‖L2(dµ0) < +∞. Let T > 0 be a fixed final time.
Then, there exists a constant CT > 0 independent of the discretization parameter δ such that

‖Eδ(t)‖L∞ ≤ CT , ∀t ∈ [0, T ].

Moreover, the scaling function α satisfies

(2.18) 0 < αT ≤ α(t) ≤ α0, ∀t ∈ [0, T ],

where the constant αT is independent of δ and given by

αT := α0 (1 + γ α2
0(1 + CT )T )−1/2.

Proof. The proof of the uniform L∞ bound on Eδ is mainly based on the Sobolev and Poincaré-
Wirtinger inequalities, together with the stability estimate (2.17), as detailed in [5, Theorem 3.6].
Thanks to this bound, it is straightworfard to obtain the lower bound of α by using the definition
(2.15). The upper bound α0 is also clear since α is a nonincreasing function. �

We are now in position to state our main result.
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Theorem 2.4. For any t ∈ [0, T ], consider the scaling function α defined by (2.15) and let f(t, .) ∈
Hm(dµt) be the solution of the Vlasov-Poisson system (1.1) where m ≥ k + 1 and fδ be the approxi-
mation defined by (2.9)-(2.12). Then there exists a constant C > 0, independent of δ = (h, 1/N), but
depending on T , such that

(2.19) ‖f(t)− fδ(t)‖L2(dx d v) ≤ ‖f(t)− fδ(t)‖L2(dµt) ≤ C
[

1

N (m−1)/2
+ hk+1/2

]
.

Before to present the proof of this result, let us make some comments.

• On the one hand this result shows that the discretization in velocity using Hermite polynomials
provides spectral accuracy. On the other hand, we get the classical order of convergence of the
discontinuous Galerkin method for the space discretization.
• For the sake of clarity, we do not write explicitly how the error bound (2.19) depends on the

scaling parameter α, nevertheless in the proof we will follow carefully this dependence.

3. Preliminary results

In the next section, we provide some results about the propagation of regularity of the solution to
the Vlasov-Poisson system (1.1).

3.1. Propagation of the weighted Sobolev norms. The global existence of classical C 1 solutions
of the Vlasov-Poisson system has been obtained by Ukai-Okabe [38] in the case of space dimension
two, and by Pfaffelmoser [31] and Lions-Perthame [26] independently in three dimensions. The key
to obtain classical solutions of the Vlasov-Poisson system is to prove that the macroscopic (charge)
density ρ ∈ L∞([0, T ] × Rd) for all T > 0. Following Ukai & Okabe who show the decay of the
distribution function f in the v variable formulated in terms of a convenient weighted estimate, we
get the propagation of Cm regularity for the solution (f,E). More precisely, according for example to
the article of Ukai & Okabe [38], the following result holds.

Let β ∈ Cm(R) be such that

β ≥ 0, β′ ≤ 0, and β(r) = O

(
1

rλ

)
,

with λ > 1.

Theorem 3.1. For any m ≥ 1, assume that f0 is nonnegative such that f0 ∈ Cm−1(T × R) and for
all 0 ≤ k ≤ m, (

|∂kxf0| + |∂kvf0|
)

(x, v) ≤ β(|v|) .
Then there exists a unique classical solution to the Vlasov-Poisson system (1.1) satisfying for any
0 ≤ k ≤ m− 1 (

|∂kxf | + |∂kvf |
)

(t, x, v) = O
(

1/|v|λ
)
, as |v| → ∞,

uniformly in (t, x) ∈ [0, T ]× T. Moreover the electric field E satisfies for all 1 ≤ k ≤ m(
|E| + |∂kxE|

)
(t, x) ≤ CT .

The proof of this result is done in the two dimensional case in [38], but also applies in the simpler
one dimensional case.

This latter result allows to obtain uniform estimates on the electric field and its space derivative
in Cm([0, T ]× T), hence we can propagate the weighted Sobolev norm on the solution to the Vlasov-
Poisson system (1.1)

Corollary 3.2. Under the assumption of Theorem 3.1 and assuming that

‖f0‖Hm(dµ0) <∞,
we have that for any t ∈ [0, T ]

‖f(t)‖Hm(dµt) ≤ ‖f0‖Hm(dµ0) exp(C t).
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Proof. Theorem 3.1 ensures that the electric field is such that for all t ∈ ([0, T ]

‖E(t)‖Wm,∞ ≤ CT .

Then since the electric field is uniformly bounded, we propagate the Hm(dµt) norms of f(t) as we
estimate the weighted L2(dµt) norm in Proposition 2.2. �

3.2. Projection error of the Hermite decomposition. In this section we present some approxi-
mation properties of the chosen Hermite functions. Since the results presented here are very similar
to those proposed in [17, Section 2], we only briefly outline the proofs.

For any integer m ≥ 1, we define

Hm(ω(t) d v) :=
{
g : R→ R ; ∂lvg ∈ L2(ω(t) d v), 0 ≤ l ≤ m

}
,

with the following seminorm and norm:

|g|Hm(ω(t) d v) = ‖∂mv g‖L2(ω(t) d v) , ‖g‖Hm(ω(t) d v) =

(
m∑
l=0

|g|2Hl(ω(t) d v)

)1/2

.

Using the definition (2.2) of Ψn and the properties of the Hermite polynomials Hn, one obtains that
for all n ≥ 0,

(3.1)


∂tΨn = −α

′

α

(
nΨn +

√
(n+ 1)(n+ 2) Ψn+2

)
,

α vΨn =
√
n+ 1 Ψn+1 +

√
nΨn−1 ,

∂vΨn = −α
√
n+ 1 Ψn+1 .

Using the latter relation, the set (∂vΨn)n is also an orthogonal system, namely

(3.2) 〈∂vΨn, ∂vΨm〉L2(ω(t) d v) = α3(t) (n+ 1) δn,m .

Therefore, any g ∈ L2(ω(t) d v) can be expanded as

(3.3) g(v) =
∑
n∈N

ĝn(t) Ψn(t, v),

and the Hermite coefficients are given by

(3.4) ĝn(t) =
1

α(t)
〈g, Ψn(t)〉L2(ω(t) d v) .

Remark also that the following equalities hold for every g ∈ L2(ω(t) d v):

(3.5) ‖g‖2L2(ω(t) d v) = α(t)
∑
n∈N
|ĝn(t)|2 =

1

α(t)

∑
n∈N

∣∣∣〈g, Ψn(t)〉L2(ω(t) d v)

∣∣∣2 .
Finally, we also introduce PVN the orthogonal projection on VN such that we have

〈g − PVN g, ϕ〉L2(ω(t) d v) = 0, ∀ϕ ∈ VN ,

and

PVN g(t, v) =

N−1∑
n=0

ĝn(t) Ψn(t, v) .

Following [17], we now establish some inverse inequalities and imbedding inequalities which are needed
to analyze the spectral convergence property for the here considered Hermite method.

Lemma 3.3. For any g ∈ VN ,

|g|H1(ω(t) d v) ≤ α(t)
√
N ‖g‖L2(ω(t) d v).
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Proof. Decomposing g ∈ VN as

g(t, v) =

N−1∑
n=0

ĝn(t) Ψn(t, v) ,

and using the orthogonality properties (2.3) and (3.2) yields

|g|2H1(ω(t) d v) = α3(t)
N−1∑
n=0

(n+ 1) |ĝn(t)|2 ≤ α3(t)N
N−1∑
n=0

|ĝn(t)|2 = α2(t)N ‖g‖2L2(ω(t) d v).

�

Furthermore, we also show the following inequalities.

Lemma 3.4. For any g ∈ H1(ω(t) d v), it holds

(3.6)


‖g‖L2(ω(t) d v) ≤

2

α(t)
|g|H1(ω(t) d v) ,

‖v g‖L2(ω(t) d v) ≤
2

α2(t)
|g|H1(ω(t) d v) .

Proof. Using that ∂vω(t, v) = v α2(t)ω(t, v), we have∫
R

(v g(v))2 ω(t, v) d v =
1

α2(t)

∫
R
v g(v)2 ∂vω(t, v) d v.

By an integration by parts, one gets∫
R

(v g(v))2 ω(t, v) d v = − 1

α2(t)

∫
R
g(v)2 ω(t, v) d v − 2

α2(t)

∫
R
v g(v) ∂vg(v)ω(t, v) d v.

Then, applying the Cauchy-Schwarz inequality to the second term of the right hand side, it yields

(3.7) ‖v g‖2L2(ω(t) d v) +
1

α2(t)
‖g‖2L2(ω(t) d v) ≤

2

α2(t)
‖v g‖L2(ω(t) d v) |g|H1(ω(t) d v),

from which we deduce that

‖v g‖L2(ω(t) d v) ≤
2

α2(t)
|g|H1(ω(t) d v).

Now, using this later estimate in (3.7), we obtain that

‖g‖2L2(ω(t) d v) ≤
4

α2(t)
|g|2H1(ω(t) d v),

which concludes the proof. �

Still following [17], let us define the Fokker-Planck operator F as

(3.8) F [g](v) = −∂v
(
ω−1(t) ∂v (g ω(t))

)
,

where ω(t) is the weight defined in (2.1). It follows from Lemma 3.4 that F is a continuous mapping
from H2(ω(t) d v) to L2(ω(t) d v), with ‖F‖ independent of t, as stated in the following lemma.

Lemma 3.5. For all g ∈ H2(ω(t) d v), it holds

(3.9) ‖F [g]‖L2(ω(t) d v) ≤ 7 |g|H2(ω(t) d v).

Proof. Using the definition (3.8), we obtain after some computations that for all g ∈ H2(ω(t) d v),

F [g](v) = −∂2
vg − α2(t) v ∂vg − α2(t) g.

Then, applying the triangle inequality together with the second inequality of Lemma 3.4 on the
second term and twice the first inequality of Lemma 3.4 on the third term, we obtain the expected
estimate. �
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Moreover, Ψn is the n-th eigenfunction of the following singular Liouville problem:

(3.10) −F [g](v) + λ g(v) = 0, v ∈ R,

with corresponding eigenvalues λn = α2(t)n.

Proposition 3.6. Let r ≥ 0. For any g ∈ Hr(ω(t) d v), it holds for all N ≥ 0

(3.11) ‖ g − PVN g ‖L2(ω(t) d v) ≤
C

(α2(t)N )r/2
‖g‖Hr(ω(t) d v) ,

with C > 0 independent of N and t.

Proof. Throughout this proof, let C be a generic positive constant independent of N and t, which may
be different in different places. Using the orthogonal relation (2.3) and the definition of the orthogonal
projection PVN , we have

‖ g − PVN g ‖
2
L2(ω(t) d v) = α(t)

∑
n≥N
|ĝn(t)|2 .

Let us first treat the case where r is an even integer. By the singular Liouville equation (3.10), we get∫
R
gΨn ω(t) d v =

1

α2(t)n

∫
R
gF [Ψn]ω(t) d v .

Then, using the definition of the Fokker-Planck operator F in (3.8) and performing two successive
integrations by parts, it holds∫

R
gΨn ω(t) d v =

1

α2(t)n

∫
R
ω−1(t) ∂v (Ψn ω(t)) ∂vg ω(t) d v ,

= − 1

α2(t)n

∫
R

Ψn ∂v
(
ω−1(t) ∂v (g ω(t))

)
ω(t) d v ,

=
1

α2(t)n

∫
R

ΨnF [g]ω(t) d v .

Then by induction, we deduce that

(3.12)

∫
R
gΨn ω(t) d v =

1

(α2(t)n)r/2

∫
R
Fr/2[g] Ψn ω(t) d v .

Consequently, using (3.4), it yields

(3.13) |ĝn(t)| = 1

α(t)

1

(α2(t)n)r/2

∣∣∣∣∫
R
Fr/2[g] Ψn ω(t) d v

∣∣∣∣ .
Furthermore, using (3.5) and Lemma 3.5, we get

‖ g − PVN g‖
2
L2(ω(t) d v) = α(t)

∑
n≥N

1

α2(t)

1

(α2(t)n)r

∣∣∣∣∫
R
Fr/2[g] Ψn ω(t) d v

∣∣∣∣2 ,
≤ 1

(α2(t)N)r
‖Fr/2[g]‖2L2(ω(t) d v) ,

≤ C
(α2(t)N)r

‖g‖2Hr(ω(t) d v) .
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Now, let r be any odd integer. Applying (3.12) for r − 1 (which is now even), using the Liouville
equation (3.10) and an integration by parts, we have∫

R
gΨn ω(t) d v =

1

(α2(t)n)(r−1)/2

∫
R
F (r−1)/2[g] Ψn ω(t) d v

=
1

(α2(t)n)(r+1)/2

∫
R
∂v

(
F (r−1)2[g]ω(t)

)
∂v (Ψn ω(t))ω−1(t) d v.

On the one hand, by virtue of the two last relations in (3.1), we obtain

ω−1(t) ∂v (Ψn ω(t)) = α(t)
√
nΨn−1 .

On the other hand, we remark that

ω−1(t) ∂v

(
F (r−1)/2[g]ω(t)

)
= ∂vF (r−1)/2[g] + α2(t) vF (r−1)/2[g] .

Using these latter results, it yields that

|ĝn| =
1

α(t)

1

(α2(t)n)r/2

∣∣∣∣∫
R

(
∂vF (r−1)/2[g] + α2(t) vF (r−1)/2[g]

)
Ψn−1 ω(t) d v

∣∣∣∣ .
Then, proceeding as above and using (3.6), we get

‖g − PVN g‖
2
L2(ω(t) d v) ≤

C
(α2(t)N)r

[∥∥∥∂vF (r−1)/2[g]
∥∥∥2

L2(ω(t) d v)
+ α4(t)

∥∥∥vF (r−1)/2[g]
∥∥∥2

L2(ω(t) d v)

]
≤ C

(α2(t)N)r

∥∥∥∂vF (r−1)/2[g]
∥∥∥2

L2(ω(t) d v)

≤ C
(α2(t)N)r

‖g‖2Hr(ω(t) d v) ,

which concludes the proof. �

3.3. Projection error of the discontinuous Galerkin methods. Now, let us recall a classical
result concerning the spatial approximation (see for example [21, Lemma 2.1]).

Proposition 3.7. There exists a constant C̄ > 0, independent of h, such that for any g ∈ Hk+1(dx),
the following inequality holds:

(3.14) ‖g − PXhg‖
2
L2 + h ‖g − PXhg‖

2
L2(Γ) ≤ C̄ h

2(k+1) ‖g‖2Hk+1 ,

where ‖ · ‖L2(Γ) is the norm over the mesh skeleton Γ =
(
xj+1/2

)
j∈Ĵ defined by

(3.15) ‖u‖2L2(Γ) =
∑
j∈Ĵ

(
|u+
j−1/2|

2 + |u−j−1/2|
2
)
.

3.4. Global projection error. In this section, we provide a global projection error on the combi-
nation of Hermite polynomial approximations and local discontinuous Galerkin interpolation in the
suitable functional space. For any t ≥ 0, we introduce Wδ, the subspace of L2(dµt) defined by

Wδ := VN ⊗Xh,

where VN is given by (2.4) and Xh is defined in (2.8), and PWδ
the orthogonal projection on Wδ. For

f ∈ L2(dµt) which can be expanded as

(3.16) f(x, v) =
∑
n∈N

Ĉn(t, x) Ψn(t, v),

the projection PWδ
f is then given by

(3.17) PWδ
f =

N−1∑
n=0

PXhĈn(t, x) Ψn(t, v),
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where PXh is the L2(dx)-orthogonal projection on Xh. We prove the following result.

Theorem 3.8. For any t ≥ 0, we consider g(t) ∈ Hr(dµt), with r ≥ k + 1. Then we have

(i) the global projection error for all t ∈ [0, T ],

‖g(t)− PWδ
g(t)‖L2(dµt) ≤ C

(
1

(α2(t)N)r/2
+ hk+1

)
‖g(t)‖Hr(dµt) ,

(ii) the global projection error on the fluxes for all t ∈ [0, T ],(∫
R
‖(g − PWδ

g)(t, ·, v)‖2L2(Γ) ω(t) d v

)1/2

≤ C
(

1

(α2(t)N)r/2
+ hk+1/2

)
‖g(t)‖Hr(dµt) .

Proof. To prove (i), we first write g(t) ∈ L2(dµt) as

(3.18) g(t, x, v) =
∑
n∈N

Ĉn(t, x) Ψn(t, v),

where the modes (Ĉn)n∈N are computed from g(t) using the orthogonality property (2.3). Hence, we
get

(3.19) g(t)− PWδ
g(t) =

∑
n≥N

ĈnΨn +

N−1∑
n=0

(
Ĉn − PXhĈn

)
Ψn.

On the one hand, observing that the first term of the right hand side is nothing else than g(t)−PVN g(t),
it can be estimated thanks to Proposition 3.6

‖
∑
n≥N

ĈnΨn ‖L2(dµt) ≤
C

(α2(t)N )r/2
‖g‖Hr(dµt) .

On the other hand, the second term can be controlled by applying Proposition 3.7 with g = Ĉn, for
0 ≤ n ≤ N − 1, which yields

‖
N−1∑
n=0

(
Ĉn − PXhĈn

)
Ψn ‖2L2(dµt)

≤ C̄ h2(k+1) α(t)
N−1∑
n=0

‖ Ĉn ‖2Hk+1(dx) ,

≤ C̄ h2(k+1) ‖ g ‖2Hk+1(dµt)
.

Gathering the latter results and using that r ≥ k + 1, we prove that there exists a constant C > 0,
independent of the discretization parameter δ = (h, 1/N), such that for all t ∈ [0, T ]

‖g(t)− PWδ
g(t)‖L2(dµt) ≤ C

(
1

(α2(t)N)r/2
+ hk+1

)
‖g(t)‖Hr(dµt) .

The second estimate in (ii) is obtained using the same ideas, together with the definition (3.15) of the
norm over the mesh skeleton and the classical trace theorem on Sobolev spaces. Indeed, from (3.19)
and Proposition 3.6, we obtain that for all x ∈ T,∫

R
|g(t, x, v)− PWδ

g(t, x, v)|2ω(t) d v ≤ C
(α2(t)N )r

‖g(t, x, .)‖2Hr(ω(t) d v)

+ α(t)

N−1∑
n=0

|Ĉn − PXhĈn|
2(t, x) .

Furthermore, since Hr(T) ⊂ L∞(T) for r ≥ 1 and thanks to Proposition 3.7 on the mesh skeleton Γ,
it yields ∫

R
‖(g − PWδ

g)(t, ., v)‖2L2(Γ) ω(t) d v ≤ C
(

1

(α2(t)N )r
+ h2k+1

)
‖g(t)‖2Hr(dµt)

,

from which we deduce the second item. �
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4. Proof of Theorem 2.4

From the previous stability analysis and global projection error, we are now ready to prove our
main result on the convergence of the numerical solution fδ given by (2.9)-(2.12) to the solution f to
the Vlasov-Poisson system (1.1). By the triangle inequality, we have

(4.1) ‖f(t)− fδ(t)‖L2(dµt) ≤ ‖f(t)− PWδ
f(t)‖L2(dµt) + ‖PWδ

f(t)− fδ(t)‖L2(dµt) ,

where the first term on the right hand side is the projection error, which has already been estimated
in Theorem 3.8, whereas the second one is the consistency error, which will be treated by considering
its time derivative and using stability arguments together with interpolation properties.

We define the consistency error B for a given C = (Cn)n∈N and a smooth test function ϕ as

(4.2) Bn(C,E, ϕ) :=

∫
T
∂tCn ϕ dx +

∑
j∈J
An,j(gn(C), ϕ)−

∫
T
Sn[C,E]ϕ dx ,

where (An,j , gn(C)) are given in (2.10) and Sn[C,E] in (2.6).
On the one hand, from the modes Cδ = (Cδ,n)0≤n<N corresponding to fδ satisfying (2.9), we

construct C̄δ = (C̄δ,n)n∈N as

C̄δ,n =

{
Cδ,n, if 0 ≤ n ≤ N − 1 ,
0, else,

which satisfies for any n ∈ N
(4.3) Bn(C̄δ, Eδ, ϕn) = 0, ∀ϕn ∈ Xh,

where Eδ is solution to (2.13).

On the other hand, by consistency of the numerical flux (2.11), the first modes Ĉ = (Ĉn)n∈N
corresponding to the exact continuous solution f of (1.1) satisfies for all n ∈ N

(4.4) Bn(Ĉ, E, ϕn) = 0, ∀ϕn ∈ Xh,

with E given by the second equation (Poisson equation) of (1.1). Then we introduce, for any t ≥ 0,
ηδ(t) ∈Wδ as

(4.5) ηδ(t, x, v) := PWδ
f(t, x, v) − fδ(t, x, v) =

∑
n∈N

ηδ,n(t, x) Ψn(t, v),

with
ηδ,n = PXhĈn 1{n<N} − C̄δ,n, n ∈ N,

and ξδ(t) ∈ L2(dµt) as

(4.6) ξδ(t, x, v) := f(t, x, v) − PWδ
f(t, x, v) =

∑
n∈N

ξδ,n(t, x) Ψn(t, v),

with
ξδ,n(t, x) := Ĉn − PXhĈn 1{n<N}, n ∈ N.

Since ηδ,n ∈ Xh, by taking ϕn = ηδ,n in (4.3) and (4.4) and substrating the two equalities, we get

(4.7) Bn(ηδ, Eδ, ηδ,n) = −Bn(ξδ, Eδ, ηδ,n) + α
√
n

∫
T
(E − Eδ) Ĉn−1 ηδ,n dx.

Now, the aim is to estimate the consistency error defined for any t ≥ 0 by

‖PWδ
f(t)− fδ(t)‖2L2(dµt)

=
N−1∑
n=0

α(t)

∫
T
| ηδ,n|2 dx .

To do this, we compute the time derivative of ‖PWδ
f(t)− fδ(t)‖2L2(dµt)

given by

1

2

d

d t

[
N−1∑
n=0

α(t)

∫
T
| ηδ,n(t) |2 dx

]
=

N−1∑
n=0

∫
T

[
α(t) ηδ,n ∂tηδ,n +

1

2
α′(t) | ηδ,n|2

]
dx ,
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hence using (4.7) together with the definition (4.2) of Bn, we obtain

(4.8)
1

2

d

d t

[
N−1∑
n=0

α(t)

∫
T
| ηδ,n(t) |2 dx

]
= I1 + I2 + I3,

where
(4.9)

I1 := −
N−1∑
n=0

α(t)

∑
j∈J
An,j(gn(ηδ), ηδ,n) −

∫
T
Sn[ηδ, Eδ] ηδ,n dx− 1

2

α′(t)

α(t)

∫
T
|ηδ,n|2 dx

 ,

I2 :=
N−1∑
n=0

α2(t)
√
n

∫
T
(E − Eδ) Ĉn−1 ηδ,n dx,

I3 := −
N−1∑
n=0

α(t)Bn(ξδ, Eδ, ηδ,n).

Let us now estimate each of these terms separately. Throughout the following computations, C will
be a generic positive constant, depending on the L2(dµt) of the exact solution f and its derivatives,
but independent of δ = (h, 1/N), and which may be different in different places.

We proceed as in the stability analysis detailed in [5, Proposition 3.2] or in Proposition 2.1, replacing
Cδ by ηδ. We get

(4.10) I1 ≤ −
1

2

N−1∑
n=0

∑
j∈Ĵ

νn [ηδ,n]2j−1/2 +
1

4 γ
‖ηδ(t)‖2L2(dµt)

.

For the second term I2, we apply the Cauchy-Schwarz inequality and write

|I2| ≤ ‖E − Eδ‖L∞(dx)

(
N−1∑
n=0

α3(t)n

∫
T
|Ĉn−1|2 dx

)1/2(N−1∑
n=0

α(t)

∫
T
|ηδ,n|2 dx

)1/2

.

On the one hand, to estimate ‖E −Eδ‖L∞(dx), we proceed as in the proof of [5, Proposition 2.3]. By
the Sobolev and Poincaré-Wirtinger inequalities, there exists a constant C > 0 such that

‖E − Eδ‖2L∞ ≤ C ‖∂x(E − Eδ)‖2L2(dx).

Substrating (2.13) and the second equation of (1.1), taking ∂x(E−Eδ) as test function, and applying
the Cauchy-Schwarz inequality, it yields

‖∂x(E − Eδ)‖2L2 ≤ ‖∂x(E − Eδ)‖L2 ‖Ĉ0 − Cδ,0‖L2 ,

and then

‖E − Eδ‖2L∞ ≤ C ‖Ĉ0 − Cδ,0‖2L2 ≤
C
α(t)

‖f(t)− fδ(t)‖2L2(dµt)
.

On the other hand, we remark that using the decomposition (3.16) of f and the third equality in (3.1),
we have

∂vf = −
+∞∑
n=0

α
√
n Ĉn−1Ψn,

and then

N−1∑
n=0

α3(t)n

∫
T
|Ĉn−1|2 dx ≤

∑
n∈N

α(t)

∫
T
|α(t)

√
n Ĉn−1|2 dx = ‖∂vf‖2L2(dµt)

.

Gathering these results, we obtain an estimate on I2 as

|I2| ≤
C√
α(t)

‖f(t)− fδ(t)‖L2(dµt) ‖ηδ(t)‖L2(dµt).
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Since the total error is the sum of the projection and consistency errors, we get by the triangle
inequality and the use of the first item of Theorem 3.8 that

|I2| ≤
C√
α(t)

[
1

(α2N)m/2
+ hk+1 + ‖ηδ‖L2(dµt)

]
‖ηδ‖L2(dµt) ,

where the constant C > 0 depends on the weighted Hm norm of f(t). Finally applying the Young
inequality, we conclude that

(4.11) |I2| ≤
C√
α(t)

(
1

(α2N)m
+ h2(k+1) + ‖ηδ‖2L2(dµt)

)
.

Now we turn to the last term I3 and use the definition (4.2) of Bn to obtain

I3 = I31 + I32 + I33,

with 

I31 := −
N−1∑
n=0

α(t)

∫
T

(
∂tξδ,n −

α′(t)

α(t)

(
n ξδ,n +

√
(n− 1)n ξδ,n−2

))
ηδ,n dx ,

I32 := +
N−1∑
n=0

α2(t)
√
n

∫
T
Eδ ξδ,n−1 ηδ,n dx ,

I33 := −
N−1∑
n=0

α(t)
∑
j∈J
An,j(gn(ξδ), ηδ,n) .

We start with I31 and remark that

N−1∑
n=0

α(t)

∫
T

[
∂tξδ,n −

α′(t)

α(t)

(
n ξδ,n +

√
(n− 1)n ξδ,n−2

)]2

dx ≤ ‖∂tf(t)− PWδ
∂tf(t)‖2L2(dµt)

.

Then, since f(t) ∈ Hm(dµt) satisfies the Vlasov equation (1.1), and using the second estimate (3.6)
of Lemma 3.4, we have

‖∂tf‖Hm−1(dµt) ≤ ‖v ∂xf‖Hm−1(dµt) + ‖E‖L∞ ‖∂vf‖Hm−1(dµt)

≤ C
α2(t)

‖f‖Hm(dµt) .

Thus, applying the Cauchy-Schwarz inequality to I31 and using Theorem 3.8 to ∂tf with r = m− 1,
we have

(4.12) |I31| ≤
C

α2(t)

(
1

(α2(t)N)(m−1)/2
+ hk+1

)
‖ηδ‖L2(dµt).

The estimate on I32 follows the same lines as the one for I31. Indeed, remarking again that

N−1∑
n=0

α(t)

∫
T

∣∣α(t)
√
n ξδ,n−1

∣∣2 dx ≤ ‖∂vf − PWδ
∂vf‖2L2(dµt)

,

and applying the Cauchy-Schwarz inequality to I32 and Theorem 3.8 to ∂vf with r = m− 1, we get

|I32| ≤ C ‖Eδ‖L∞
(

1

(α2(t)N)(m−1)/2
+ hk+1

) (
α(t)

N−1∑
n=0

∫
T
| ηδ,n |2 dx

)1/2

,

which can be written as

(4.13) |I32| ≤
C√
α(t)

(
1

(α2(t)N)(m−1)/2
+ hk+1

)
‖ηδ(t)‖L2(dµt) .
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Finally, we turn to the estimation of I33 and split it as I33 = I331 + I332, with
I331 :=

N−1∑
n=0

α(t)
∑
j∈J

∫
Ij

gn(ξδ) ∂xηδ,n dx,

I332 := −
N−1∑
n=0

α(t)
∑
j∈J

(
(ĝn(ξδ) η

−
δ,n)j+1/2 − (ĝn(ξδ) η

+
δ,n)j−1/2

)
.

Using the definition (2.10) of gn(ξδ), we have

I331 =

N−1∑
n=0

∑
j∈J

∫
Ij

(√
n ξδ,n−1 +

√
n+ 1 ξδ,n+1

)
∂xηδ,n dx .

Since ξδ,n = Ĉn−PXhĈn for n = 0, . . . , N −1 and ∂xηδ,n ∈ Xh, we have by definition of the projection
PXh that I331 = 0. Now, it remains to estimate I332. Using the periodic boundary conditions, we
may write it as

I332 =
N−1∑
n=0

α(t)
∑
j∈Ĵ

( ĝn(ξδ) [ηδ,n])j−1/2 .

Then, applying the Young inequality, we obtain

|I332| ≤
α(t)

2

N−1∑
n=0

∑
j∈Ĵ

(
α(t)

νn

∣∣ ĝn(ξδ)j−1/2

∣∣2 +
νn
α(t)

[ηδ,n]2j−1/2

)
.

The second term of the right hand side will be balanced with the dissipation term figuring in the
estimate (4.10) of I1, whereas the first term is estimated as follows. Using the definition of the
numerical flux ĝn (2.11) and the artificial viscosity νn, we have

α2(t)

2

N−1∑
n=0

∑
j∈Ĵ

1

νn

∣∣ ĝ(ξδ)n,j−1/2

∣∣2 ≤
N−1∑
n=0

∑
j∈Ĵ

1

ν

{√
n ξδ,n−1 +

√
n+ 1 ξδ,n+1

}2

j−1/2

+ ν

N−1∑
n=0

∑
j∈Ĵ

[ξδ,n]2j−1/2 .

On the one hand, observing that

v f − PWδ
(v f) =

∑
n∈N

1

α

(√
n ξδ,n−1 +

√
n+ 1 ξδ,n+1

)
Ψn,

we apply the second item of Theorem 3.8 to g = vf with r = m − 1 and the second inequality (3.6)
of Lemma 3.4,

N−1∑
n=0

∑
j∈Ĵ

1

ν

{√
n ξδ,n−1 +

√
n+ 1 ξδ,n+1

}2

j−1/2
≤ C α2

∫
R
‖v f − PWδ

(v f)‖2L2(Γ) ω(t) d v

≤ C
(

1

(α2(t)N)m−1
+ h2k+1

)
‖f(t)‖2Hm(dµt)

.

The viscosity term is estimated in the same manner, hence we deduce that

(4.14) |I33| ≤ C
(

1

(α2(t)N )m−1 + h2k+1

)
‖f(t)‖2Hm(dµt)

+
1

2

N−1∑
n=0

∑
j∈Ĵ

νn [ηn,h]2j−1/2.
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Gathering (4.12), (4.13) and (4.14), we obtain

|I3| ≤
C

α2(t)

(
1

(α2(t)N)(m−1)/2
+ hk+1

)
‖ηδ(t)‖L2(dµt)

+ C
(

1

(α2(t)N)m−1
+ h2k+1

)
+

1

2

N−1∑
n=0

∑
j∈Ĵ

νn [ηδ,n(t)]2j−1/2.

Finally applying the Young inequality to the first term, we conclude that

(4.15) |I3| ≤
C

α4(t)

(
1

(α2(t)N)m−1
+ h2k+1

)
+ ‖ηδ(t)‖2L2(dµt)

+
1

2

N−1∑
n=0

∑
j∈Ĵ

νn [ηn,h(t)]2j−1/2.

Collecting (4.10), (4.11) and (4.15) in (4.8), it yields

1

2

d

d t
‖PWδ

f(t)− fδ(t)‖2L2(dµt)
≤ C√

α(t)
‖PWδ

f(t)− fδ(t)‖2L2(dµt)

+
C

α4(t)

(
1

(α2(t)N)m−1
+ h2k+1

)
.

We conclude using the Gronwall lemma that for any t ≥ 0, we have

‖PWδ
f(t)− fδ(t)‖2L2(dµt)

≤
∫ t

0

C
α4(s)

(
1

(α2(s)N)m−1
+ h2k+1

)
d s exp

(∫ t

0

C d τ√
α(τ)

)
.

Using the projection estimate of Theorem 3.8 together with the latter inequality, and since by Propo-
sition 2.3 the function α is bounded from below and above on a finite interval of time, we have
established (2.19).

5. Numerical simulations

It is worth to mention that the Hermite/discontinuous Galerkin method has already been validated
in [16, 5] on classical numerical tests. Hence in this section, we perform complementory numerical
simulations on the Vlasov-Poisson system (1.1) using the DG/Hermite Spectral method to illustrate
our theoretical result and to investigate the impact of the choice of the free parameter γ ≥ 0 which
enters in the definition of the scaling function α in (2.15). We also refer to [37] for a discussion on the
latter point.

5.1. Test 1: order of convergence. We take N modes for the Hermite spectral bases and Nx cells
in space, and apply a third order Runge-Kutta scheme for the time discretization with a small time
step ∆t = 0.001 in order to neglect the time discretization error. The initial scaling parameter α(0)
is chosen to be 1 and the Hou-Li filter with 2/3 dealiasing rule [20, 10] will be used.

We choose the following initial condition

(5.1) f0(x, v) = (1 + δ cos (k x))
1√
2π

exp

(
−v

2

2

)
,

with δ = 0.01, which corresponds to the Landau damping configuration. The background density is
ρ0 = 1, the length of the domain in the x-direction is L = 4π (that is k = π/6) and the final time is
T = 0.1. The free parameter γ is chosen as γ = 1 and the errors are computed by comparing to a
reference solution obtained using Nx×N = 512×512 with P2 piecewise polynomial basis and Hermite
polynomial in velocity. In Table 5.1, we show the weighted L2 errors and orders for Pk piecewise
polynomials with k = 1, 2 respectively. Due to the fact that the time steps are smaller than the spatial
mesh size, we can observe (k + 1)-th order of convergence for Pk polynomials respectively.



DISCONTINUOUS GALERKIN/HERMITE SPECTRAL METHODS FOR VLASOV-POISSON 19

P1 P2

Nx ×N L2(dµt) error Order L2(dµt) error Order
16× 16 5.12E-4 – 1.44E-5 –
32× 32 1.05E-4 2.28 1.68E-6 3.09
64× 64 2.31E-5 2.18 2.05E-7 3.04
128× 128 5.42E-6 2.09 2.48E-8 3.04

Table 5.1. Test 1 : Numerical weighted L2 errors and orders for Landau damping
with initial distribution (5.1), δ = 0.01 and k = π/6, T = 0.5.

5.2. Test 2: Bump-on-the-tail. Now we investigate the impact of the parameter γ appearing in the
definition of scaling function α in (2.15). According to our analysis, when γ decreases, the function α
decays more slowly and the weighted norm ‖fδ(t)‖L2(dµt) is bounded as

(5.2) ‖fδ(t)‖L2(dµt) ≤ ‖fδ(0)‖L2(dµ0) e
t/4γ .

For practical computation, we expect that the scaling function α follows the variation of the distri-
bution function in the velocity space, hence it is crucial to have a good understanding of the impact
of this free parameter. For these reasons we present a numerical example on the bump-on-the-tail [5,
Section 5.2] where the distribution function strongly varies in v. We consider the initial distribution
as

f(0, x, v) = fb(v)(1 + κ cos(k nx)) ,(5.3)

where the bump-on-tail distribution is

fb(v) =
np√
πvp

e−v
2/v2p +

nb√
πvb

e−(v−vd)2/v2b .(5.4)

We choose a strong perturbation with κ = 0.04, n = 3 and k = 2π/L with L = 62 and the other
parameters are set to be np = 0.9, nb = 0.1, vd = 4.5, vp =

√
2, vb =

√
2/2. The computational

domain is [0, L] × [−8, 8]. These settings have been used in [33] and [16, Section 4.3]. For this case,
we take the initial scaling function to be α0 = 5/7. We take Nx ×N = 64× 128.
For the Vlasov-Poisson system, we know that the total energy and the L2 norm of f are exactly
conserved, but this property is no more true at the discrete level. In Figure 5.1 (a)-(b), we present the
time evolution of these quantities for different values of γ corresponding to the definition (2.15). On
the one hand, the amplitude of the variations of the total energy are of order 10−6 for the different
values of γ and are even smaller when γ is small. On the other hand, the L2 norm of f oscillates
around its initial value, but again the impact of the parameter γ is negligible (see (b)). We also present
the time evolution of the potential and kinetic energy in Figure 5.1 (c)-(d) for different values of γ.
From these plots, we can observe that the impact of this free parameter is limited and does not affect
the accuracy of the method.

Finally, in Figure 5.2, we present the time evolution of α and the corresponding weighted L2 norm
for different values of γ. Since the initial data α(0) is the same for our simulations, we know that
when γ ≤ γ′, we have αγ′(t) ≤ αγ(t) (since αγ′ decays faster than αγ) and then

‖f(t)‖L2(dµ′t)
≤ ‖f(t)‖L2(dµt),

where µ′t represents the measure associated to αγ′(t). We also notice that when γ increases, the
weighted L2 norm ‖f(t)‖L2(dµt), grows slowly, which is consistent with our estimate (5.2). Moreover,
for a fixed γ, the time evolution of ‖f(t)‖L2(dµt) first follows the growth of the potential energy which
is almost exponentially fast, but when nonlinear effects dominate, it starts to oscillate and is stabilized.
This last numerical result illustrates that the estimate (5.2) is certainly not optimal for large time...
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(a) (b)

(c) (d)

Figure 5.1. Test 2: time evolution of (a) the variation of the total energy, (b) the
standard L2 norm of f , (c) the potential energy and (d) the kinetic energy for α given
by (2.15), with several values of γ = 0, ... , 10−1.

(a) (b)

Figure 5.2. Test 2: time evolution of (a) the scaling function α and (b) the corre-
sponding weighted L2 norm of f , for α given by (2.15), with several values of γ =
0, ... , 10−1.
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6. Conclusion & Perspectives

In this article we investigate the convergence analysis of a spectral Hermite discretization of the
Vlasov-Poisson system with a time-dependent scaling factor allowing to prove the stability and conver-
gence of the numerical solution in an appropriate functionnal framework. The control of this scaling
factor, and more precisely a positive lower bound, is crucial to ensure completely the stability of the
method and our proof follows carefully this dependency. Our analysis is limited to the one dimensional
case for which the control of the electric field is straightforward. In a future work we would like to
adapt our approach to the multi-dimensional case following the ideas in [3] for the control of the L∞

norm of the electric field in two and three dimensions.
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