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Abstract. This paper is focused on the approximation of the Euler equations of compressible
fluid dynamics on a staggered mesh. With this aim, the flow parameters are described by the velocity,
the density and the internal energy. The thermodynamic quantities are described on the elements
of the mesh, and thus the approximation is only in L2, while the kinematic quantities are globally
continuous. The method is general in the sense that the thermodynamic and kinetic parameters are
described by an arbitrary degree of polynomials. In practice, the difference between the degrees of
the kinematic parameters and the thermodynamic ones is set to 1. The integration in time is done
using the forward Euler method but can be extended straightforwardly to higher-order methods. In
order to guarantee that the limit solution will be a weak solution of the problem, we introduce a
general correction method in the spirit of the Lagrangian staggered method described in [1, 2, 3], and
we prove a Lax Wendroff theorem. The proof is valid for multidimensional versions of the scheme,
even though most of the numerical illustrations in this work, on classical benchmark problems, are
one-dimensional because we have easy access to the exact solution for comparison. We conclude
by explaining that the method is general and can be used in different settings, for example, Finite
Volume, or discontinuous Galerkin method, not just the specific one presented in this paper.

1. Introduction. The Euler equations of fluid dynamics are, formulated in their
conservative version,

∂ρ

∂t
+ div(ρu) = 0,

∂ρu

∂t
+ div(ρu⊗ u+ pI) = 0,

∂E

∂t
+ div((E + p)u) = 0.

(1)

As usual, ρ ≥ 0 is the density, u is the velocity vector, E = e + 1
2ρu

2 is the total
energy, e ≥ 0 is the internal energy and p is the pressure. The system is closed by an
equation of state for p = p(ρ, e). The simplest one is that of a calorically perfect gas

p =
e

γ − 1
,

where the ratio of specific heats γ is constant.
When the solution is smooth, the system (1) can be equivalently written in non-

conservative form as

∂ρ

∂t
+ div(ρu) = 0,

∂u

∂t
+ (u · ∇)u+

∇p
ρ

= 0,

∂e

∂t
+ u · ∇e+ (e+ p)divu = 0.

(2)

When the solution is not smooth, the form (2) is meaningless because the differential
operators are no longer defined. This is why the form (1) is preferred, in particular
in its weak form, see [4]. This fact has a very strong implication for the design of
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numerical schemes applied to (1): the Lax-Wendroff theorem implies and guarantees
that a suitable numerical approximation should be written in terms of flux.

However, the form (2) is better suited for engineering purposes, since one has
direct access to the velocity and the internal energy. Hence a rather natural question
is how to discretise the Euler equations directly from (2), and still have convergence to
the correct weak solutions, at least formally. In addition to this theoretical question,
there are other reasons to use the (2) system, and we list a few of them:

• In the Lagrangian hydrodynamics community (i.e. the US National Labo-
ratories, AWE in the UK, CEA in France and their Russian and Chinese
counterparts), it is very common to describe, for certain applications, the
equations of compressible fluid dynamics using volume, velocity and specific
internal energy. This is, for example, what is done with the Wilkins scheme,
see [5], and even in the finite element version of this scheme, see [3]. Variables
are represented either by cell or by point values, depending on whether they
are intensive (such as velocity) or extensive (such as mass, volume and en-
ergy): this implies that thermodynamic variables are in L2 only, while velocity
is globally continuous (except when we need to introduce slip surfaces).
We think it is interesting to understand how the mechanism that makes these
schemes conservative can be translated into the Eulerian framework. The
technique we develop in this article can be seen as the Eulerian counterpart
of what was done in [1] and then [2] in the Lagrangian framework.

• In many multi-physics applications, it is not obvious whether the fully con-
servative formulation is the most appropriate. MHD equations are a good
example. In the finite-volume community, it is customary to describe flow
with density, momentum and total energy, i.e. the sum of kinetic energy,
thermodynamic energy and magnetic energy. The magnetic field evolution
equation is described in conservation form (using Ohm’s law and Faraday’s
equation), and we have the constraint div B = 0. However, the natural way
to write the magnetic field equation is not using the divergence operator but
the curl operator, and the consequence is the preservation of the divergence
involution. Merging the magnetic field and the mechanical and thermody-
namic energies may be considered somewhat artificial, since we also have an
evolution relation for the magnetic field equation. Hence, it may be consid-
ered interesting to separate the thermodynamics from the magnetic field. See
[6] for an example of this type of approach in the Lagrangian framework. In
addition, one way of preserving the structure of the Faraday equation is to
use a staggered mesh. This is not necessarily done as in the present paper,
but respecting local conservation of total energy may require the same kind
of algebraic manipulations as here, see [7].

• When considering a mixture of gases, the most natural variable describing
fluid energy is not total energy but internal energy, or even pressure. Con-
sequently, the use of a formulation based on a non-conservative form of the
system may offer certain advantages.

• One numerical strategy for simulating incompressible flows is to use a stag-
gered mesh, for reasons of stability. It is well known in the finite volume
community that when data are collocated and the Mach number tends to-
wards 0, the behavior of the numerical scheme degrades considerably. This
problem has been studied in numerous articles, [8, 9, 10] for example, and
the references therein. Several strategies exist, such as preconditioning, but
not only. One might expect staggering, even for the compressible case, to be
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a good strategy when the Mach number tends towards 0. This was done by
Herbin et al. in [11] and by Bijl et al. in [12]. The scheme must be implicit.
Here we are not interested in the low Mach effect, but in conservation issues,
and the extension of our work to small Mach numbers could be a possibility.

We will be using the expression ”locally conservative” for a scheme. By this we
mean that for finite volume schemes, discontinuous Galerkin schemes, finite differences
and even those using continuous finite elements (see [13] for a explicit construction),
each degree of freedom can be associated with a (control) volume. We say that
a scheme is locally conservative if, for any sub-domain obtained by gathering such
volumes, the update of the conservative variable is obtained by the contribution on
the boundary of this sub-domain.

One obvious way to write a scheme on the primitive variables is to start from
a locally conservative approximation of (1), and by simple algebraic manipulations
which amount to multiplying the numerical scheme by approximations of

(3)

 1 0 0
u ρ 0
u2

2
ρu 1

 ,

we can obtain a scheme directly working on the primitive variables. This “new”
scheme is equivalent to the original one.

This is not exactly the question we want to address here. We are interested in
designing locally conservative approximations of (2) for which the thermodynamic
variables are approximated in L2 while the velocity is globally continuous. This can
be seen as an Eulerian version of the Lagrangian schemes designed in [1, 2] or [3] and
the related works by these authors. A similar question has been addressed by Herbin
and co-authors, see, for example, [14, 15, 16] in the Finite Volume context. In these
references, the authors describe a class of numerical schemes where the thermody-
namic variables and the velocity are piecewise constant but logically described on a
staggered mesh. They show the convergence towards the weak solution. The scheme
can also be partially implicit, so that in the low Mach number limit the scheme “de-
generates” to a Mac-type scheme, see [11]. Their schemes are second-order accurate
in time and space.

In this article, we describe a different technique that allows a priori to achieve an
arbitrary level of precision, both in time and space. This technique is not particularly
designed for any specific class of scheme. The main restriction seems to be that the
time scheme must be based on a sequence of Euler steps. Examples are the Runge
Kutta SSP schemes, or the Defect Correction (DeC) methods in the [17] version.
We have chosen to illustrate the technique on the example of residual distribution
(RD) schemes where evolution over time is done by DeC, see [17]. This choice is
also motivated by the fact that local conservation recovery is simpler for RD schemes
(see [13]). Therefore, before describing this method, we briefly review the class of
residual distribution schemes that will be the main tool we use, and sketch how dG
(and therefore finite-volume) schemes can be reformulated in this framework. We then
describe the scheme and explain why it is locally conservative. Finally, we show a
variant of the Lax-Wendroff theorem adapted to our framework. Finally, we show how
to adapt the method to finite volume schemes and discontinuous Galerkin methods.
Numerical examples illustrate the soundness of the approach.
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2. A first-order nonconservative approach. We have in mind a numerical
approximations where the variables are piecewise polynomial in simplex. We also
assume that the velocity is globally continuous, in contrast to discontinuous Galerkin
(dG)–like approximations. This constraint is motivated by the choice that we want
to extend the technique of [1], where a Petrov Galerkin technique is used, inspired
from [17] and the reference therein. If nothing special is done, we need to invert a
mass matrix. This can be cumbersome, and even impossible if we want to extend
the techniques of [18] because the equivalent of the mass matrix changes at every
time step. This is why a particular time stepping should be preferred, for example,
the Deferred Correction (DeC) approach, see Appendix A. It relies on series of Euler
forward type of discretisation.

This is indeed the essential point: if one prefers to forget the globally continuous
methods, rely on a dG–like approach, and use a Strong Stability Preserving (SSP)
Runge-Kutta approach, one can extend our correction technique and build schemes
that converge to a weak solution of the problem, starting from (2). This will be
explained in section 3.3. Since the novelty of the approach lies in the correction
technique, we will focus for simplicity on a single Euler forward step in time.

We consider a hyperbolic system in the form

(4)
∂U

∂t
+ L(U) = 0

on a domain Ω ⊂ Rd, d = 1, 2, 3. For solving (1) or (2) we define

(5) L(U) =:

 div(ρu)
div(ρu⊗ u+ pI)
div((E + p)u)


for the conservative form and

(6) L(U) =:

 div(ρu)

(u · ∇)u+
∇p
ρ

u · ∇e+ (e+ p)divu


for the non–conservative form. In what follows, we will describe the procedure for
solving the equations in two steps. First, we consider the case of a scalar problem, and
then we look at (1) or (2). The reason is that in (2) not all of the variables play the
same role, contrarily to (1), and it is easier to start with a system with one variable.
For now, we will proceed by forgetting the question of local conservation.

2.1. Scalar case.

2.1.1. Trial space. We consider a triangulation of Ω made of non-overlapping
simplices that are generically denoted by K. We assume that the triangulation is
conformal, and define

V h(Ω) = {v ∈ L2(Ω) such that for any K, v|K ∈ Pk(Rd)} ⊂ L2(Ω),

where as usual, Pk(Rd) is the set of polynomials in Rd of degree less or equal to k.
We also define

Wh(Ω) = V h(Ω) ∩ C0(Ω).

In each element K, a polynomial is defined by a set of degrees of freedom, for ex-
ample, the Lagrange points. We denote by σ a generic degree of freedom. Here, for
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reasons that will be more clear later on, we expand the polynomials in terms of Bézier
polynomials.

• One dimensional elements: In the element K = [xi, xi+1], we consider the
barycentric coordinates

λ1(x) =
xi+1 − x

xi+1 − xi
, λ2(x) =

x− xi
xi+1 − xi

= 1− λ1.

If σ ∈ K, the restriction of Bσ is defined in the element as follows: if σ ̸∈ K,
then the Bézier form vanishes. We describe the two families of Bézier forms
we will need:

– Linear: The degrees of freedom are the vertices, so

φn+1
i = λ1, φn+1

i+1 = λ2 and σ = xi or xi+1 here.

– Quadratic: The degrees of freedom σ are identified with the vertices i,
and the mid-points i+ 1

2

φ(2)
σ (x) =

 λ21, if σ = xi,
2λ1λ2, if σ = xi+1/2,
λ22, if σ = xi+1.

• Multidimensional elements: We only describe the 2D cases, with triangles,
but similar things are obtained for quadrangles, or 3D simplices. A triangle
is made of three vertices denoted by 1, 2 and 3. The barycentric coordinates
with respect to the vertices 1, 2, 3 are denoted by Λ1, Λ2 and Λ3.

– Linear: The degrees of freedom are the vertices and φσi
= Λi and i =

1, 2, 3.
– Quadratic: The degrees of freedom are the three vertices σ1, σ2 and σ3

as well as the midpoints of the edges:

σ4 =
σ1 + σ2

2
, σ5 =

σ2 + σ3
2

, σ6 =
σ3 + σ1

2
.

The Bézier polynomials are:

φσi
= Λ2

i for i = 1, 2, 3,

φσ4
= 2Λ1Λ2, φσ5

= 2Λ3Λ2, φσ6
= 2Λ1Λ3.

Then, considering u ∈ Vh(Ω) or u ∈Wh(Ω), for any K, we expand u|K as

u|K =
∑
σ∈K

uσφ
K
σ ,

where φK
σ is any of the linear, quadratic (or higher-order) functions defined above. If

u ∈ Vh(Ω) then we have the expansion

u =
∑
K

∑
σ∈K

uKσ φ
K
σ

and if u ∈Wh(Ω), we can expand u as

u =
∑
σ

uσφσ.

With some abuse of notations, we will use the second expansion throughout this paper,
depending if we see φσ per element or more globally.
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2.1.2. Test space. As we mentioned earlier, we rely on a Petrov-Galerkin ap-
proach. This means that the test functions will belong to a finite dimensional subspace
Xh(Ω) of L

2(Ω) that can also be described by the degrees of freedom σ: we can iden-
tify functions of Xh(Ω) that are indexed by the σ and span this space. We denote
them by Ξσ. For example, in the SUPG method, we define Ξσ in each K by: for
x ∈ K,

Ξσ(x) = φσ(x) + hK
(
∇UL(U)τK

)
· ∇φσ(x).

Here hK is the diameter of K and τK is a positive matrix. In [18, 19, 20, 21, 22],
examples are given, where Ξσ depends on the solution, in order to get L∞ stability.
In all the examples we are considering, the support of Ξσ is that of φσ.

2.1.3. Description of the time discretisation. We start by integrating (4)
which gives ∫

Ω

∫ tn+1

tn
Ξσ

(
∂U

∂t
+ L(U)

)
dt dx = 0.

By applying the forward Euler method per simplex, we obtain
(7)∫

Ω

∫ tn+1

tn
Ξσ

(
∂U

∂t
+ L(U)

)
dt dx =

∫
Ω

Ξσ(U
n+1−Un) dx+∆t

∫
Ω

ΞσL(U
n) dx = 0.

The definition of
∫
K
ΞσL(u)dx is somewhat formal and we replace it by some approx-

imation ΦK
σ (U) which will be defined later. The only constraint is that we have the

relation

(8)
∑
σ∈K

ΦK
σ (U) = ΦK(U),

where the precise definition of ΦK(U) depends on whether we are dealing with the
problem (4) with the L operator in conservation form L(U) = div f(U) as in (5) or
or in non conservation form L(U) = a(U) · ∇U as in (6). More specificaly,

• If L is in conservation form, we set

ΦK(U) :=

∫
∂K

f̂n dγ,

where f̂n is a consistant approximation of the flux f in the direction n (normal
to ∂K),

• If L is in non conservation form, we set

ΦK(U) :=

∫
K

a(Uh) · ∇Uh dx

where a quadrature formula is employed. In fact, and in that case, the situa-
tion is slightly more complicated, because written as such, there might seem
there is no coupling between elements. Since this is a case by case procedure,
we give an example in section 4.

We replace the temporal terms by∫
Ω

φσ(U
n+1 − Un) dx
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and then ”lump” the mass matrix, set
∫
K
φσdx = CK (it does not depend on σ) and

obtain

(9) |Cσ|(Un+1 − Un) + ∆t
∑

K,σ∈K

ΦK
σ (Un) = 0.

We note that this is the reason why we use a Bézier approximation since we are sure
that the lumped mass is non zero because it holds

Cσ =

∫
Ω

φσ dx > 0.

This scheme corresponds to the L1 operator of the DeC procedure described
in appendix A. It will be high order in time and space, provided some conditions
described in appendix A are fullfiled. We stick to this, to avoid useless complications,
and also because its form is that of an Euler forward method. Hence our discussion
becomes valid for any algorithm that can be put in the form (9) with ΦK

σ satisfying
(8).

Let us give an other example: the discontinuous Galerkin method in the conser-
vative setting. Using basis functions {φσ} that are now see as polynomial in each K
but only in L2, we have for any σ ∈ K∫

K

φσ
∂U

∂t
dx−

∫
K

∇φσ · f(U) dx+

∫
∂K

φσ f̂n dγ = 0

and we set

ΦK
σ := −

∫
K

∇φσ · f(U) +

∫
∂K

φσ f̂n dγ.

Since in K,
∑
σ∈K

φσ = 1, we have (8). The non conservative setting works formally

similarly, provided a case by case strategy is again adopted.

2.2. Case of system (2). We describe the residuals and develop the method as
before for simplicity for the forward Euler method in time. But as mentioned before,
it can be extended to higher orders in a straightforward way.

We assume that the computational domain Ω is covered by non-overlapping sim-
plices {Kj}j∈T . The velocity field u belongs to a kinematic space V of finite dimension;
it has a basis denoted by {φσV}σV∈DV , where DV is the set of kinematic degrees of
freedom with the total degrees of freedom given by #DV = NV . The thermodynamic
quantities such as the internal energy, the density and the pressure belong to a ther-
modynamic space E ; this space is also finite dimensional and its basis is {φσE}σE∈DE

.
The set DE is the set of thermodynamic degrees of freedom with the total degrees
of freedom #DE = NE . The kinematic space V is formed by the quadratic (or lin-
ear) Bernstein elements, while the thermodynamic space E has a piecewise-linear (or
piece-wise constat) basis. The velocity field is approximated by

u(x, t) =
∑

σV∈DV

uσV (t)φσV (x),

where the φσV are the linear/quadratic (or linear) Bézier polynomials, and the density,
the pressure and the internal energy, are given by

ρ(x, t) =
∑

σE∈DE

ρσE (t)φσE (x), p(x, t) =
∑

σE∈DE

pσE (t)φσE (x),

e(x, t) =
∑

σE∈DE

eσE (t)φσE (x),
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where the φσE are the per elements piecewise constant/linear functions. Note that
the degrees of freedom for the velocity are assumed to be globally continuous, so in(
Wh(Ω)

)d
, while the thermodynamic ones are discontinuous across the boundary of

the elements, so in
(
Vh(Ω)

)2
.

We can rewrite the Euler equations (2) in the following way

∂U

∂t
+ a(U) · ∇U = 0.

The only thing to do is to describe how the method of the previous section adapts
to this case, and this amounts to describing the general structure residuals, that is
how (8) is written. Since the velocity is globally continuous, we write

ΦK,u =

∫
K

(
u⊗ u+

∇p
ρ

)
dx,

where u ∈
(
Wh(Ω)

)d
and p, ρ ∈ Vh(Ω). Since we are on K, these are simply polyno-

mials, and the integration is carried out by numerical quadrature.
For the density, the evolution equation is in conservation form and we use a

numerical flux f̂ :

ΦK,ρ =

∫
∂K

f̂n dγ.

Here, any consistent numerical flow can be used a priori. Of course, the stability of
the method depends on this choice, but the conservation properties of the method do
not.

Last, for the internal energy, we write

ΦK,E =

∫
K

(
u · ∇e+ (e+ p) div u

)
dx

and again we use a quadrature formula.
In the numerical section, we will describe the residuals that we use.

3. A discussion on conservation.

3.1. A set of sufficient conditions to achieve convergence to a weak
solution. Again, to simplify the notations, we focus on the first-order case, but the
extension to the more general case is straightforward. In the appendix B, we show
a Lax Wendroff theorem for this type of discretisation. What we do here is to show
how to go from the system in non–conservative form to the one in conservative form.

Nothing has to be done for the density since it is already in conservative form and
the standard proof [4] applies. There is no need to repeat it here since the proof we
give for the momentum and the total energy, modulo some complications, is essentially
the same.

Let us first look at the momentum. Considering a test function ψ ∈ C1
0 (Rd ×R),

we denote with ψn
K the value of ψ at time tn at the centroid of K, and consider the

following approximation of ψ that we still denote by ψ:

ψ(x, t) =
∑
K

ψn
K1K for t ∈ [tn, tn+1[.
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Then we consider∫
Rd

ψ(x, t)
(
ρn+1un+1 − ρnun

)
dx =

∑
K

ψn
K

∫
K

(
ρn+1un+1 − ρnun

)
dx

=
∑
K

ψn
K

[ ∫
K

ρn+1
(
un+1 − un

)
dx+

∫
K

un
(
ρn+1 − ρn

)
dx

]
.

(10)

Introducing ∆uσV =: un+1
σV

− un
σV

and ∆ρσE := ρn+1
σE

− ρnσE
, we can write∫

K

ρn+1
(
un+1 − un

)
dx =

∑
σV∈K

∆uσV

∫
K

ρn+1φσV dx

and ∫
K

un
(
ρn+1 − ρn

)
dx =

∑
σE∈K

∆ρσE

∫
K

unφσE dx.

Hence, (10) can be rewritten as:

∫
Rd

ψ(x, t)
(
ρn+1un+1 − ρnun

)
dx

=
∑
K

ψn
K

[ ∑
σV∈K

∆uσV

∫
K

ρn+1φσV dx+
∑

σE∈K

∆ρσE

∫
K

unφσE dx

]
=
∑
K

ψn
K

[ ∑
σV∈K

ωρ,n+1,K
σV

|CσV |∆uσV +
∑

σE∈K

ωu,n,K
σE

|CσE |∆ρσE

]
=
∑
K

[ ∑
σV∈K

ψσVω
ρ,n+1,K
σV

|CσV |∆uσV

]
+
∑
K

∑
σV

(
ψn
K − ψσV

)
|CσV | ωρ,n+1

σV
∆uσV +

∑
K

ψn
K

[ ∑
σE∈K

ωu,n,K
σE

|CσE |∆ρσE

]
=
∑
σV

ψn
σV
ωρ,n+1
σV

|CσV | ∆uσV +
∑
K

∑
σV∈K

(
ψn
K − ψσV

)
|CσV | ωρ,n+1

σV
∆uσV

+
∑
K

ψn
K

[ ∑
σE∈K

ωu,n,K
σE

|CσE |∆ρσE

]

(11)

where we have set for simplicity

ωρ,n+1,K
σV

:=

∫
K
ρn+1φσV dx

|CσV |
, ωu,n,K

σE
:=

∫
K
unφσE dx

|CσE |

and (using that the support of φσV is the union of the elements that share σV),

ωρ,n+1
σV

:=

∫
Ω
ρn+1φσV dx

|CσV |

For the velocity, we have:

|CσV |
(
un+1
σV

− un
σV

)
+∆tn

∑
K,σV∈K

Φu
σV ,K = 0,

9



where, for the forward Euler scheme (7),

Φu
σV ,K = Φu

σV ,K(Un
)
.

For the density, we have

|CσE |
(
ρn+1
σE

− ρnσE

)
+∆tn

∑
K,σE∈K

Φρ
σE ,K

= 0

and we note that the sum reduces to one term, hence

|CσE |
(
ρn+1
σE

− ρnσE

)
+∆tnΦ

ρ
σE ,K

= 0,

where again

Φρ
σE ,K

= Φρ
σE ,K

(Un)

and K is the element such that σE ∈ K. Using these relations in (11), we get∫
Rd

ψ(x, t)
(
ρn+1un+1 − ρnun

)
dx+∆tn

∑
σV

ψn
σV
ωρ,n+1
σV

[ ∑
K,σV∈K

Φu
σV,K

]
︸ ︷︷ ︸

I

+∆tn
∑
K

{ ∑
σV∈K

(
ψn
K − ψσV

)
ωρ,n+1,K
σV

[ ∑
K′,σV∈K′∩K

Φu
σb,K

]}
+∆tn

∑
K

ψn
K

[ ∑
σE∈K

ωu,n,K
σE

Φρ
σE ,K

]
= 0

(12)

The term I can be rewritten as

∑
σV

ψn
σV
ωρ,n+1
σV

[ ∑
K,σV∈K

Φu
σV,K

]
=
∑
K

ψn
K

∑
σV∈K

ωρ,n+1
σV

Φu
σV,K

+
∑
K

[ ∑
σV∈K

(
ψn
K − ψn

σV

)
ωρ,n+1
σV

Φu
σV,K

]

Hence, gathering all together, we get∫
Rd

ψ(x, t)
(
ρn+1un+1 − ρnun

)
dx

+∆tn
∑
K

ψn
K

[ ∑
σV∈K

ωρ,n+1
σV

Φu
σV,K

∑
σE∈K

ωu,n,K
σE

Φρ
σE ,K

]

+∆tn
∑
K

[ ∑
σV∈K

(
ψn
K − ψn

σV

)
ωρ,n+1
σV

Φu
σV,K

]
+∆tn

∑
K

{ ∑
σV∈K

(
ψn
K − ψσV

)
ωρ,n+1,K
σV

[ ∑
K′,σV∈K′∩K

Φu
σb,K

]}
= 0

10



Thus, we obtain the master equation:∫
Rd

ψ(x, t)
(
ρn+1un+1 − ρnun

)
dx

+∆t
∑
K

ψn
K

[ ∑
σV∈K

ωρ,n+1
σV

Φu
σV ,K +

∑
σE∈K

ωu,n,K
σV

Φρ
σE ,K

]
+∆tn

∑
K

(
Fm
K +Dm

K

)
= 0

(13a)

with

Fm
K =

∑
σV∈K

(
ψn
K − ψn

σV

)
ωρ,n+1
σV

Φu
σV ,K

Dm
K =

∑
σV∈K

(
ψn
K − ψσV

)
ωρ,n+1,K
σV

[ ∑
K′,σV∈K′∩K

Φu
σb,K

]
ωρ,n+1,K
σV

=

∫
K
ρn+1φσV dx

|CσV |
, ωρ,n+1

σV
=

∑
K,σV∈K

ωρ,n+1,K
σV

ωu,n,K
σE

=

∫
K
unφσE dx

|CσE |
.

(13b)

Let us now consider the total energy. First, we remark that (with similar notations
as before) the following holds:

∆(ρu2) = un+1 ·∆(ρu) + ρnun ·∆u.

Combined with
∆(ρu) = ρn+1∆u+ un∆ρ

we obtain
∆(ρu2) =

(
ρn+1un+1 + ρnun

)
·∆u+ un+1 · un∆ρ.

To simplify, we will set

m̃ =
ρn+1un+1 + ρnun

2
, q̃2 = un+1 · un.

Using these relations, we see that∑
K

ψK

∫
K

∆E dx =
∑
K

ψK

(∫
K

∆e dx+

∫
K

m̃ ·∆u dx+
1

2

∫
K

q̃2∆ρ dx

)
=
∑
K

ψK

[ ∫
K

∆e dx+
∑

σV∈K

∆uσV ·
∫
K

m̃φσV dx

+
1

2

∑
σE∈K

∆ρσE

∫
K

q̃2φσE dx

]
.

First, we notice that ∫
K

∆e dx = −∆t
∑

σE∈K

Φe
σE ,K .

11



Introducing

θm,K
σV

=

∫
K
m̃φσV dx

|CσV |
and θq

2,K
σE

=

∫
K
q̃2φσE dx

|CσE |
,

we get

∑
σV∈K

∆uσV ·
∫
K

m̃φσV dx = −∆t
∑

σV∈K

θm,K
σV

·

( ∑
K′,σV∈K′

Φu
σV ,K′

)

and because σE belongs to a single element we have∑
σE∈K

∆ρσE

∫
K

q̃2φσE dx = −∆t
∑

σE∈K

θq
2,K

σE
Φρ

σE ,K
.

Then proceeding as for the velocity, and introducing

θmσV
=

∑
K,σV∈K

∫
K
m̃φσV dx

|CσV |
=

∑
K,σV∈K

θm,K
σV

,

we get

∫
Rd

ψ(x, t)
(
En+1 − En

)
dx

+∆tn
∑
K

ψK

( ∑
σE∈K

Φe
σE ,K +

∑
σV∈K

θmσV
· Φu

σV ,K +
1

2

∑
σE∈K

θq
2,K

σE
Φρ

σE,K

)

+∆tn
∑
K

[∑
σV

(
ψn
K − ψn

σV

)
θm,K
σV

·
{ ∑

K′,σV∈K′∩K

Φu
σV ,K

}]
︸ ︷︷ ︸

DE
K

+∆tn
∑
K

∑
σV∈K

(
ψσV − ψn

K

)
θm,K
σV

· Φu
σV,K︸ ︷︷ ︸

:=FE
K

= 0.

(14)

As it is customary, we say that a family of meshes is shape regular if there exists
α > 0 depending only on this family such that the ratio of the inner and outer
diameters of any element of any mesh of this family is greater than α. We show the
following result in Appendix B:

Proposition 1. Assume that the mesh Th is shape regular, we denote by h the
maximum diameter of the element of the mesh. For any K, the residuals Φρ

σE ,K
,

Φe
σE ,K

, Φu
σV ,K are Lipschitz continuous functions of their arguments, with Lipschitz

constant of the form C ·h, where C only depends on α and the maximum norm of the
solution.

Assume that we have a family of meshes F = {Thn} with lim
n→+∞

hn = 0. We

denote by (Uhn
)n≥0 the sequence of functions fulfilling:

if t ∈ [tn, tn+1[, U(x, t) = (ρ(x, tn),u(x, tn), e(x, tn))
T

12



with, if K is the element that exists almost everywhere such that x ∈ K,

ρ(x, tn) =
∑

σE∈K

ρnσE
φσE (x), e(x, tn) =

∑
σE∈K

enσE
φσE (x),

and
u(x, tn) =

∑
σV

un
σV
φσV (x).

Here {(ρnσE
), (un

σV
), (enσE

)}n≥0,σE ,σV are defined by the introduced scheme.
We assume that the density, velocity and internal energy are uniformly bounded

and that a subsequence converges in L2 towards (ρ,u, e), where ρ, e ∈ L2(Rd × [0, T ])
and u ∈

(
L2(Rd × [0, T ]))d .

We also assume that the residuals satisfy

(15)
∑

σV∈K

ωρ,n+1
σV

Φu
σV ,K +

∑
σE∈K

ωu,n,K
σE

Φρ
σE ,K

=

∫
∂K

fm(Un) · n dγ

and

(16)
∑

σE∈K

Φe
σE ,K +

∑
σV∈K

θmσV
· Φu

σV ,K +
1

2

∑
σE

θq
2,K

σE
ΦσE =

∫
∂K

fE(Un) · n dγ,

where we have set

ωρ,n+1
σV

=

∑
K,σV∈K

∫
K
ρn+1φσV dx

|CσV |
, ωu,n,K

σV
=

∫
K
unφσE dx

|CσE |
,

m̃ =
ρn+1un+1 + ρnun

2
, q̃2 = un+1 · un,

θmσV
=

∑
K,σV∈K

∫
K
m̃φσV dx

|CσV |
, θq

2,K
σE

=

∫
K
q̃2φσE dx

|CσE |

(17)

with the assumption that there exists C independent of n, such that ∆t ≤ Ch. In
(15) (resp. (16)), fm(Un) · n (resp. fE(Un) · n) is the momentum component of the
normal flux (resp. its energy component).

Then V = (ρ, ρu, e+ 1
2ρu

2) is a weak solution of the problem.

3.2. How to achieve discrete conservation. Since there is no ambiguity, we
drop the dependency of the residuals with respect to the element.

Given a set of residuals that satisfy (8) also satisfy (15) and (16). In this section,
we will show how to slightly modify the original scheme so that the new one will satisfy
(8), (15) and (16), and hence if the scheme converges, we have convergence towards a
weak solution. To achieve this, following [1, 23, 24], we introduce the correction terms
in the residuals. This needs to be done only for the velocity and the internal energy.

Knowing at time tn the solution (ρn,un, en) we obtain with the forward Euler
step (ρn+1,un+1, en+1). For this, we first compute ρn+1 and then perform the update
for the velocity and the energy:

Momentum.
We introduce a correction ruσ,K so that

(18) Ψu
σV

= Φu
σV

(Un) + ruσV

13



is such that (15) holds true for the new set of residuals, i.e.∑
σV∈K

ωρ,n+1
σV

ruσV
=

∫
∂K

fm(Un) · n dγ −
{ ∑

σV∈K

ωρ,n+1
σV

Φu
σV ,K +

∑
σE∈K

ωu,n,K
σE

Φρ
σE ,K

}
.

There is no reason to have a different value of ruσV
unless for possible special needs,

so we set ruσV
= ru, and since a priori∑

σV∈K

ωρ,n+1
σV

> 0

we get a unique value of ru defined by
(19)( ∑

σV∈K

ωρ,n+1
σV

)
ru =

∫
∂K

fm(Un) ·n dγ−
{ ∑

σV∈K

ωρ,n+1
σV

Φu
σV ,K+

∑
σE∈K

ωu,n,K
σE

Φρ
σE ,K

}
.

Once this is known, we can update the velocity and compute un+1
σV

.

Energy.
Now we know ρn, ρn+1, un, un+1 and en, and have the updated residuals for the

velocity (there is no change for the density). Again we introduce a correction on the
energy, reσE

, and for the residual

Ψe
σE

= Φe
σE
(Un) + reσE

to satisfy (16), we simply need:
(20)∑
σE∈K

reσE
=

∫
∂K

fE(Un) ·n dγ−
{ ∑

σE∈K

Φe
σE ,K +

∑
σV∈K

θmσV
·Φu

σV ,K +
1

2

∑
σE

θq
2,K

σV
ΦσE

}
.

Since there is no reason to favour one degree of freedom with respect to the other
ones, we take reσE

= re, and again we can explicitly solve the equation and obtain the
energy at the new time instance.

3.3. Modifications for other schemes. We have presented this conservation
recovery method using a class of schemes that might seem a bit narrow. In this
section, we want to explain that it is not the case. This can apply to more general
schemes, as soon as the update of any variable w (density, velocity, energy), described
by degrees of freedom σ (point values, averages, moments), can be written as:∑

K,σ∈K

ΦK
σ .

About accuracy : The calculations made for the first order in time can be immediately
extended to the higher accuracy ones in time. One just has to add a temporal con-
tribution into the new residuals, see for example [17] for more details. In Appendix
A we briefly present a straightforward choice to obtain a high order accurate approx-
imation, the Deferred Correction (DeC) approach which was used for the numerical
results in Section 4.2.

We also see that the exact form of the residuals is never used, so this can also
be extended to any type of residuals, including for high order ones as in [17] or [25].
We also note that we have never used the global continuity of the velocity: instead of

14



using
(
Wh

)2
for the velocity, we could have used

(
Vh
)2

in a discontinuous Galerkin
like spirit.

The coefficients of (17) can be computed with any quadrature formula provided
that the geometrical location of the quadrature points needed to evaluate the bound-
ary integrals depend only on the faces and not the element, so that the edge con-
tribution will sum up to zero. However, in the calculations we have always used
enough points so that the quadrature formula are exact for the polynomial degree
that we need. It is only to test global conservation that we have also used non exact
quadrature formula.

4. Some numerical results. In this section, we want to illustrate the previous
results and show that the method is effective. We are not claiming that these are the
optimal ones, they can be seen more as a proof of concept. It is enough to describe
what is done on K = Kj+1/2, for j ∈ Z.

4.1. Actual schemes. In the following, f̂j+1/2 is a numerical flux evaluated
between the states

U+
j+1/2 = lim

x→xj+1/2,x>xj+1/2

(
ρ, ρu, e+

1

2
ρu2)(x)

U−
j+1/2 = lim

x→xj+1/2,x<xj+1/2

(ρ, ρu, e+
1

2
ρu2)(x).

Here ρ(x),u(x) and e(x) are obtained from the approximation space. The flux f̂ has
a ρ component, a m− component, and a total energy component, they are denoted
by f̂ρ, f̂m, and f̂E . Note that u is continuous. In the numerical experiments, we will
consider a solver constructed from an approximate Rieman solver because it appears
we need intermediate states in the present description of the residual, see above: this
allows to couple the neighbouring cells. This could be the exact solver, we have used
the HLLC one. Both provide solutions with the same success, the HLLC is easier to
generalise.

We approximate the thermodynamic variables by polynomials of degree r in each
interval Kj+1/2 and the velocity by a continuous approximation which is a polynomial
of degree r+1 in each interval Kj+1/2. We denote the approximation by K(r+1)T (r).
For the time discretisation, we use the DeC formulation briefly explained in Appendix
A. For that reason, in each interval we expand the thermodynamic and kinetic function
using Bézier polynomials since the integrals of the basis functions are always positive.

For simplicity, we reduce the formal time accuracy to second order, and we only
need to describe the spatial terms: Φρ

σE
for the density, Φe

σE
for the energy and Φu

σV
for the velocity. The update of the density is done by the dG scheme:

(21) Φρ
σE

= −
∫
Kj+1/2

∇φσE f
ρ dx+

(
f̂ρj+1/2φσE (xj+1/2)− f̂ρj−1/2φσE (xj−1/2)

)
.

The update of the velocity is done by considering the centered residual:

(22) ρ⋆K Ψu
σV

=

∫
K

φσVρu
∂u

∂x
dx−

∫
K

p
∂φσV

∂x
dx+

∫
∂K

p⋆φσV dγ,

where p⋆ is the pressure evaluated at the quadrature points by the Riemann solver
(this is why we have chosen HLLC), and ρ⋆K is the average of the density in K.
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Inspired by what is done in the RD context, and by [26], we may need to consider a
jump term for the velocity only because it is globally continuous. We have taken

(23) JK
σ = θKβKh

2
K

∫
∂K

[
∇φσV

] [
∇u
]
dγ.

θK is a parameter (set to 0.1 in the experiments), βK is an upper bound of the wave
speeds in K and a Local Lax Friedrich dissipation term

(24) DK
σ = αK

(
uσV − u

)
where αK is an upper bound of the wave speeds in K and u is the arithmetic average
of the velocity within K. In practice, we will take either the residual

(25a) Ψu
σV

= Ψu
σV

+DK
σ

which will leads to a first order scheme or

(25b) Ψu
σV

= Ψu
σV

+ JK
σ

which will be higher order and stable.
The update of the internal energy is simply done by

(26) Φe
σE

=

∫
K

φσE

(
u · ∇e+ (e+ p) div u

)
dx

The schemes, even with the Euler forward time stepping, have no chance to be
positivity preserving, and we note that the update of the velocity will be at most
first order in time. Hence, inspired by the Residual Distribution schemes, we upgrade
formal accuracy in two possible ways:

• Procedure 1: We use the residuals (21) and (26) for the thermodynamic
variables, and for the velocity, we replace Φu

σV
by
(
Φu

σV

)⋆
defined by:

1. Compute Φu =
∑
σV

Φu
σV

.

2. If ∥Φu∥ > 0, define

xσV = max

(
Φu

σV

Φu
, 0

)
and (

Φu
σV

)⋆
=

xσV∑
σV∈Kj+1/2

xσV

Φu.

3. Else
(
Φu

σV

)⋆
= 0.

• Procedure 2: We do the same as before for Φu
σV

, Φρ
σE

and Φe
σE
, where the

thermodynamic residuals are now:

Φρ
σE

+ αK

(
ρσE − ρ̄K

)
and Φe

σE
+ αK

(
eσE − ēK

)
,

where ρ̄K (resp. ēK) are the arithmetic average of the density DOFS (resp.
internal energy) in K.

We may also need to add a jump term of the type (23) on all the variables (we have
not done this here. We refer the reader to [17] for more details, and in particular why
formal accuracy is increased. This procedure will lead, in practice, to a scheme that
preserves the positivity of the density and the pressure.

In the experiments where we want to test the accuracy of the method, we will use
the combination (21), (25b), (26).
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4.2. Results. Here we solve a series of shock tube problems to assess the ac-
curacy and robustness of the proposed RD staggered scheme. For the numerical
experiments of this section, we will use the ideal EOS for gas, linking the pressure,
the internal energy and the density: p = (γ − 1)ρe, where γ = 1.4. All the solutions
are displayed with 1000 points: all the examples are shock tube problems where the
exact solution is known, so we can show the convergence of the method to the exact
solution. This is not needed for other purposes, such as stability or other reasons.
We have also computed the solution with a more reasonable number of points, the
results are similar to what could be obtained with more classical methods when the
correction is activated. We do not show them here to lower the number of plots.

4.2.1. A smooth case. The purpose is to test accuracy. We test the accuracy
of our scheme (with corrections) on a smooth isentropic flow problem similar to the
test case introduced in [27]. The initial data for our test problem is the following:

ρ0(x) = 1 + 0.9 sin(2πx), u0(x) = 0, p0(x) = ργ(x, 0), x ∈ [−1, 1].

with polytropic index γ = 3 and periodic boundary conditions.
The exact density and velocity in this case can be obtained by the method of

characteristics and is explicitly given by

ρ(x, t) =
1

2

(
ρ0(x1) + ρ0(x2)

)
, u(x, t) =

√
3
(
ρ(x, t)− ρ0(x1)

)
,

where for each coordinate x and time t the values x1 and x2 are solutions of the
nonlinear equations

x+
√
3ρ0(x1)t− x1 = 0,

x−
√
3ρ0(x2)t− x2 = 0.

The errors (L1 only is plotted because all the others shows a similar behaviour) is
displayed in figure 1 The errors are somehow between second and first order: the

(a) (b)

Fig. 1. (a) error on the density, (b) error on the velocity

scheme in time is second order at most in this implementation, this is a choice, we
could have used a third order scheme.
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Fig. 2. Solution of the Sod shock tube problem for (a) density, (b) velocity and (c) pressure at
time T = 0.16 with CFL = 0.4. In each figure, the exact, numerical as well as the solution without
correction are depicted.

4.2.2. The Sod shock tube problem. The Sod shock tube is a common one-
dimensional Riemann problem for the illustration of the interesting behavior of nu-
merical solutions to hyperbolic Euler equations of gas dynamics. The structure of the
solution involves three distinct waves: a left rarefaction wave, a contact discontinuity,
and a right shock wave. This test case is used to determine if a scheme recovers
properly discrete Rankine-Hugoniot relations on the shock. If we put the initial dis-
continuity at x = 0.5 in the domain [0, 1], the initial data for this problem is given as
follows:

(27) (ρ0, u0, p0) =

 (1.0, 0.0, 1.0), if x < 0.5,

(0.125, 0.0, 0.1), if x > 0.5.

In Figure 2, profiles of density, velocity and pressure are depicted with a reference
solution for a mesh containing 1000 cells. We also have plotted the solution obtained
without any correction. Both have been obtained with the T0K1 scheme, and first
order in time. We see that the uncorrected solution is completely off, as expected,
but also that the correction we have defined provides an accurate approximation of
all three distinct waves.
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Fig. 3. Solution of the Sod shock tube problem for (a) density, (b) velocity and (c) pressure at
time T = 0.16 with CFL = 0.4. In each figure, the exact solution and the solutions obtained with
K2T1 and K1T0 on a mesh with 1000 points are depicted.

In Figure 3, we show the results obtained by the first order (K1T0) and second
order (K2T1) in time and space schemes. One can notice some improvements, but this
example mostly shows that the correction is also effective when we use representations
with polynomials of higher degree.

4.2.3. Strong shock. The next test problem contains a left rarefaction wave,
a contact discontinuity, and a strong right shock wave. This test case highlights the
robustness of the numerical methods for fluid dynamics. The initial data, again in
the domain [0, 1], are:

(28) (ρ0, u0, p0) =

 (1.0, 0.0, 1000.0), if x < 0.5,

(1.0, 0.0, 0.01), if x > 0.5.

In Figure 4, profiles of density, velocity and pressure are depicted with a reference
solution for a mesh containing 1000 cells. It indicates that the first-order scheme can
accurately resolve strong shocks. As before, the results of Figure 5 show that the
correction is effective by comparing the results of the first order (K1T0) and second
order (K2T1) in time and space schemes.

4.2.4. 123-problem. For the next test, called the 123 problem, the solution
consists of a left rarefaction wave, a contact discontinuity and a right rarefaction
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Fig. 4. Exact and numerical solutions of the strong shock problem for (a) density, (b) velocity
and (c) pressure at time T = 0.012 with CFL = 0.4.

wave. Two rarefaction waves are traveling in opposite directions. A low-density and
low-pressure region is generated in between. The initial data for this problem is given
as follows:

(29) (ρ0, u0, p0) =

{
(1.0,−2.0, 0.4), if 0.0 ≤ x < 0.5,
(1.0, 2.0, 0.4), if 0.5 < x < 1.

The results for the first-order scheme are depicted in Figure 6 with a reference solution
on a mesh containing 1000 cells. In Figure 7 we show again that the correction is
effective by comparing the results of the first order (K1T0) and second order (K2T1)
in time and space schemes.

4.2.5. Severe test case. The solution of the next test case consists of three
strong discontinuities traveling to the right. The initial data consists of two constant
states:

(30) (ρ0, u0, p0) =

{
(5.99924, 19.5975, 460.894), if 0.0 ≤ x < 0.8,

(5.992420,−6.19633, 46.0950), if 0.8 < x ≤ 1.0.

This is one of the two test cases designed in [28] which correspond to wave interaction
in Collela and Woodward bast waves test case. The exact and numerical solutions
are found in the spatial domain 0 ≤ x ≤ 1. The numerical solution is computed with
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Fig. 5. Solution of the strong shock problem for (a) density, (b) velocity and (c) pressure at
time T = 0.012 with CFL = 0.4. In each figure, the exact solution and the solutions obtained with
K2T1 and K1T0 are depicted.

1000 cells and the chosen Courant number coefficient is 0.1. Boundary conditions are
transmissive. The results for the density, velocity and pressure compared to the exact
solution are shown in Figure 8 .

4.2.6. 2D test case. The scheme is a straightforward extension of the one di-
mensional one. In this test case we look at a 2D shock propagation in the domain
[0, 1]× [0, 1]. The initial data is given by:

(31) (ρ0, u0, v0, p0) =

{
(1, 0, 0, 1), if ||x|| < 0.25,

(0.125, 0, 0, 0.1), if ||x|| ≥ 0.25.

The solutions for the density, velocity and pressure computed with the K1T0 first
order-scheme as well as the used triangular mesh can be found in Figure 9. It shows
that the staggered scheme works in a stable way also in higher dimensions. By com-
paring the staggered scheme with the solution obtained by a conservative scheme in
Figure 10 we demonstrate that the shock front is correctly resolved.

We have also displayed in Figure 11 the relative error of conservation, i.e∫
Ω

mn
x dx,

∫
Ω

my dx, and

∫
Ω
En dx∫

Ω
E0 dx

− 1.
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Fig. 6. Exact and numerical solutions of the 123-problem for (a) density, (b) velocity and (c)
pressure at time T = 0.15 with CFL = 0.4.

There is no question on the density, since we use a dG scheme for that variable. We
see that the errors are negligible. They also are independent of the choice of the
quadrature formula (not shown) used to compute the parameters needed in (4.1) and
(26).

4.3. Some remarks concerning the polynomial orders of the velocity
and the thermodynamics parameters. In all the simulations, we have made the
choice of polynomials of degree p for the thermodynamic parameter, and p+1 for the
velocity one, but there is no justification except a rule of the thumb inspired of what
is done for incompressible flows. We have encountered stability problems in the case
of equal degree polynomials. We discuss this in one dimension, the two dimensional
case has not been explored. More precisely, when computing the quantities p⋆ for the
velocity update, and the mass flux, several choices can be made in addition to the
polynomial orders:

• We can take a centerred flux (arithmetic average between the left and right
states), and p⋆ is also the arithmetic average. This will be the ”centerred”
choice.

• We can compute the flux using the exact Godunov solver, as well as for p⋆.
This will be the ”exact” choice,

• We can compute these quantities using the HLLC methodology. This will be
the ”HLLC” choice.
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Fig. 7. Solution of the 123-problem for (a) density, (b) velocity and (c) pressure at time
T = 0.15 with CFL = 0.4. In each figure, the exact solution and the solutions obtained with K2T1
and K1T0 are depicted.

In the figure 12 we report the results on the density for the smooth case of section 4.2.1
and time t = 0.025. We see that all the combinations in polynomial orders with the
exact, HLLC choices are stable. The combination velocity with degree 1 and thermo-
dynamics with degree 0 is also stable, while with linear velocity and thermodynamics
the scheme is not stable. This is why we have chosen t = 0.0025 because soon after
the code blows up. Only the polynomial degrees and the flux have been changed, all
of the other elements of the schemes remain the same. No limiting has been used,
and the time accuracy is only first order. We have no mathematical explanation,
only heuristic ones. We conjecture that for a centerred approximation, which is the
closest with what is done for incompressible flows, we suffer of a kind of LBB stability
problem. This stability problem is cured because of some ”upwinding” mechanism
with the exact and HLLC solver.

In all the other simulations, the velocity has been one degree more that the
thermodynamics, and we take the exact or the HLLC solver, for security.

5. Conclusions. In this paper, we have proposed a method to construct stag-
gered high order schemes for compressible flows. The method has been illustrated on a
staggered higher-order Residual Distribution (RD) scheme for compressible flow, but
as explained in the text, this is not restricted to this particular class of schemes.The
key elements are (i) a reformulation of the local conservation properties at the level
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Fig. 8. Exact and numerical solutions of the Collela and Woodward test case for (a) density,
(b) velocity and (c) pressure at time T = 0.012 with CFL = 0.1 computed on a mesh with 1000
points.

of elements, and not faces as it is classically done, (ii) that the type stepping method
is obtained by a combination of Euler forward steps, but this is more general than,
for example SSP Runge Kutta: Defect correction methods can also be used.

One of the contributions of this paper is to show how one can discretise a non-
conservative version of the Euler equations of gas dynamics in Eulerian form and
guarantee that the correct weak solutions are recovered. A series of classical problems
considered in this paper show the accuracy and robustness of the proposed numerical
scheme. The scheme we have developed provides an accurate numerical approximation
and the correction we have defined is effective. In addition, for solutions with shock,
the scheme is parameter-free and does not require any artificial viscosity.

Let us write a series of remarks to conclude this paper.
1. Though the numerical examples are mostly one-dimensional (because in this

case one can compute the exact solution for comparison), the description of
the correction introduced in Section 3.2, as well as the conditions introduced
in Proposition 1 are formulated for general elements.

2. The Residual Distribution formalism introduced here is not restrictive. In
[13], it is shown that any classical scheme (Finite Volume, Finite Element,
discontinuous Galerkin) can be rewritten equivalently in distribution form. If
one approximates (for example) the velocity equation with another method,
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(a) (b)

(c) (d)

Fig. 9. Numerical solutions of the 2D shock test case for (a) density, (b) vertical velocity and
(c) pressure at time T = 0.16 computed on a mesh consisting of triangles which is depicted for the
pressure in (d).

Fig. 10. Comparison of the solutions of the 2D shock test case for the pressure obtained by a
conservative scheme (red) and the staggered one (black) at time T = 0.16.
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Fig. 11. Conservation errors, in time.

(a) (b)

Fig. 12. (b) linear velocity, piecewise constant thermodynamics, (b) all the other cases.

it is certainly possible to write the contribution at element level, as here,
and then to rewrite the scheme in the semi-discrete form (9) (if first-order
accuracy in time is chosen), or more general for higher in time approximation.
Then, the key fact is to write the local conservation property, not at the level
of faces between elements, but on the elements themselves: this is what is
behind the proof of Proposition 1, thus corrections of the form (19) and (20)
can be written. What is not guaranteed is that the modified scheme will
still be stable. In all our experience, we have not see any degradation of the
stability condition. We have used this type of correction in other context,
see e.g [24, 23, 29], and the conclusions are the same. This is however not a
proof.

Further investigations of high order Residual Distribution schemes and applications
to different mathematical models will be considered in forthcoming works.
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comments. I am also grateful to Dr. Ksenya Ivanova during her stay at I-Math for
our discussions on this problem. I am also in debt with the two unknown reviewers
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Appendix A. Short introduction to the Deferred Correction (DeC)
approach. We consider again a hyperbolic system in the form

(32)
∂U

∂t
+ L(U) = 0

which we want to approximate with a high-order accurate scheme in time. To do so,
we will use the Deferred Correction (DeC) approach. The aim of DeC schemes is to
avoid implicit methods, without losing the high order of accuracy of a scheme. The
high order method that we want to approximate will be denoted by L2. To use the
DeC procedure, we also need another method, which is easy and fast to be solved with
low order of accuracy which will be denoted by L1. The DeC algorithm is providing
an iterative procedure that approximates the solution of the L2 scheme U∗ in the
following way:

(33) L1
(
Un+1

)
= 0,

(34) L1
(
U (k)

)
= L1

(
U (k−1)

)
− L2

(
U (k−1)

)
, with k = 2, ..,K,

where K is the number of iterations that we compute. We need as many iterations
as the order of accuracy that we want to reach. We know from [30]:

Proposition A.1. Let L1 and L2 be two operators defined on Rm, which depend
on the discretization scale ∆ ∼ ∆x ∼ ∆t, such that

• L1 is coercive with respect to a norm, i.e., ∃α1 > 0 independent of ∆, such
that for any U, V we have that

α1

∣∣∣∣U − V
∣∣∣∣ ≤ ∣∣∣∣L1(U)− L1(V )

∣∣∣∣,
• L1 − L2 is Lipschitz with constant α2 > 0 uniformly with respect to ∆, i.e.,

for any U, V∣∣∣∣ (L1(U)− L2(U)
)
−
(
L1(V )− L2(V )

) ∣∣∣∣ ≤ α2∆
∣∣∣∣U − V

∣∣∣∣.
We also assume that there exists a unique U∗

∆ such that L2(U∗
∆) = 0. Then, if

η :=
α2

α1
∆ < 1, the DeC is converging to U∗

∆ and after k iterations the error∣∣∣∣U (k) − U∗
∆

∣∣∣∣ is smaller than ηk
∣∣∣∣Un − U∗

∆

∣∣∣∣.
Following the proceeding in Section 3, we get for a second-order DeC scheme:

Φu
σV ,K =

1

2

(
Φu

σV ,K(U (k)) + Φu
σV ,K(Un)

)
, Φρ

σE ,K
=

1

2

(
Φρ

σE ,K
(U (k)) + Φρ

σE ,K
(Un)

)
.

The calculations can also be immediately extended to higher accuracy in time by
modifying the above half sums.

Appendix B. Proof of Proposition 1. We first show some estimates for scalar
functions (the system case is identical), and then we use them to show Proposition 1.
We start with some notations: Rd is subdivided into non-overlapping elements,

Rd = ∪K
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and the mesh is supposed to be conformal (because of the global continuity of the
velocity). The parameter h will be the maximum of the diameters of the K. We
assume that the partition is shape regular, i.e. the ratio between the inner and
outer diameter of the elements is bounded from above and below. In Rd, we have a
functional description of the density, the velocity and the energy: we call them ρh,
uh and eh to refer they are defined from Rd = ∪K.

Let T > 0 and let 0 < t1 < . . . < tn < . . . < tN ≤ T be a time discretisation of
[0, T ]. We define ∆tn = tn+1 − tn and ∆t = max

n
∆tn. We are given the sequences

{uph}p=0...N , where uph belongs to V h or Wh (see Section 2.1). They are defined from
degrees of freedom that are again denoted by σ. We can define a function u∆ by:

if (x, t) ∈ Ω× [tn, tn+1[, then u∆(x, t) = unh(x).

The set of these functions is denoted by X∆ and is equipped with the L∞ and L2

norms.
We then have the following lemma:

Lemma 2. Let T > 0 , {tn}n=0,...,N an increasing subdivision of [0, T ] and Q a
compact subset of Rd. Let furthermore (u∆)h denote a sequence of functions of X∆

defined on Rd × R+. We assume that there exists C ∈ R independent of ∆ and ∆t,
and u ∈ L2

loc(Ω× [0, T ]) such that

sup
∆

sup
x,t

|u∆(x, t)| ≤ C and lim
∆,∆t→0

|u∆ − u|L2(Ω×[0,T ]) = 0.

Then, if (unh)K is the average of unh in K, we have

(35) lim
h→0,∆t→0

( N∑
n=0

∆tn
∑
K⊂Q

|K|
∑
σ∈K

∣∣∣∣(uh)σ − (uh)K)
∣∣∣∣) = 0.

Proof. The proof is inspired from [31] and can be found in [18].

Now we have all the prerequisites for proving Proposition 1. We will perform the
proof for the momentum since the proof for the energy is similar and can be done in
a straightforward manner. We proceed the proof with several lemmas.

Lemma 3. Under the conditions of Proposition 1, for any φ ∈ C∞
0 (Rd × R+) we

have

lim
∆t→0,∆→0

∞∑
n=0

∫
Rd

φh

(
ρn+1
h un+1

h − ρnhu
n
h

)
dx

= −
∫
R×R+

∂φ

∂t
u dxdt+

∫
R
φ(x, 0)u0 dxdt,

where

φh(x, tn) =
∑
K

φ(xK , tk)1K and φh(x, t) = φ(x, tn) for t ∈ [tn, tn+1[.

Proof. This is the classical lemma.
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Proof of Proposition 1. We start from (13a)∫
Rd

ψ(x, t)
(
ρn+1un+1 − ρnun

)
dx

+∆tn
∑
K

ψn
K

[ ∑
σV∈K

ωρ,n+1
σV

Φu
σV ,K +

∑
σE∈K

ωu,n,K
σV

Φρ
σE ,K

]

+∆tn
∑
K

(
FK(un) +

∑
σV∈K

DσV (u
n)

)
= 0,

and by using the assumptions of Proposition 1 we obtain∫
Rd

ψ(x, t)
(
ρn+1un+1 − ρnun

)
dx+

∑
K

ψn
K

[
∆tn

∫
∂K

fm
(
Un
)
· n dγ

]

+∆tn
∑
K

(
FK(un) +

∑
σV∈K

DσV (u
n)

)
= 0.

From (13b), we see that

FK(un) =
∑

σV∈K

(
ψn
σV

− ψn
K

)
ωρ,n+1,K
σV

Φu
σV ,K ,

DσV (u
n) =

∑
K′,σV∈K′

[ ∑
K,σV∈K∩K′

ωρ,n+1,K
σV

(
ψn
K − ψn

σV

)
Φu

σV ,K′

]
,

so that, since ψn
K − ψn

σV
= O(h), using the estimates of Lemma 2, we have

lim
∆tn,h→0

∆tn
∑
K

FK(un) = 0 and lim
∆tn,h→0

∆tn
∑

σV∈K

DσV (u
n) = 0

because the mesh is shape regular and ∆tn/h is bounded. Last, using the same tech-
nique as in [18], and due again to the Lemma 2, we see that

lim
∆tn,h→0

∑
K

ψn
K∆tn

∫
∂K

fm
(
Un
)
· n dγ =

∫
R+

∫
Rd

∇xψ(x, t)f
m(U) dx.

The convergence result for the energy is done with exactly the same method which
then finishes the proof of Proposition 1.
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