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Optimal Control of the Controlled Lotka-Volterra Equations with Applications.1

The Permanent Case∗2

Bernard Bonnard† and Jérémy Rouot‡3

4

Abstract. In this article motivated by the control of complex microbiota in view to reduce the infection by a5
pathogenic agent, we introduce the theoretical frame from optimal control to analyze the problem.6
Two complementary approaches can be applied in the analysis: one is the so-called permanent case,7
where no digital constraints are concerning the control (taken as a measurable mapping) versus the8
sampled–data control case taking into account the logistic constraints, e.g. frequency of the medi-9
cal interventions. The model is the n-dimensional Lotka–Volterra equation controlled using either10
probiotics or antibiotic agents or transplantation and bactericides. In this article, we concentrate11
to the permanent case associated to probiotic or antibiotic agent. The Maximum Principle is used12
to parameterize the geodesics and the optimal synthesis boils down to analyze mainly the singular13
trajectories and their concatenation with bang arcs.14

Key words. Optimal control in the permanent case, biomathematics and population dynamics, geometric con-15
trol theory.16

MSC codes. 49K15, 92B05, 93C10, 93C15, 92D2517

1. Introduction. The book by Vito Volterra [28] ”Leçons sur la théorie mathématique18

pour la lutte pour la vie” leads to the Lotka–Volterra model to predict in a general frame19

the evolution on interacting biological species. The problem was studied independently by20

Lotka which makes the connection with chemical networks. The relation with control systems21

was already present in the original predator-prey model with two species set by Umberto22

D’Ancona to explain the evolution of the species in relation with reduction of the fishing23

activity during the first World War. The original memoir [28] starts with an interesting24

discussion about the evolution of the species in relation with integrability properties of the25

conservative model. It validates D’Ancona observations and opens the road to analyze different26

problems of populations dynamics. This leads to extend the model to the non conservative27

2d–case in any dimension.28

Recently our attention was attracted by the works of Jones et al. [17] based on the model29

by Stein et al. [27] in an attempt to model and cure a gut mouse microbiota infected by30

the C. difficile bacteria which leads to a 11–dimensional controlled Lotka–Volterra model,31

using either fecal transplantation or one antibiotic agent. The problem is analyzed using 2d–32

reduced (projection) non conservative Lotka–Volterra model. This model validates the effect33

of an antibiotic agent prior to infection and followed by a single fecal injection to cure the34

infection by constructing a separatrix which allows to decide about success or failure of the35

∗Submitted to the editors DATE.
Funding: This work benefited from the support of the FMJH Program PGMO and from the support of EDF;

Thales, Orange and by the program PEPS ”Jeunes chercheurs et jeunes chercheuses” of Insmi.
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2 B. BONNARD, AND J. ROUOT

procedure due to delay in the transplantation or insufficient dosing.36

To understand this approach let us introduce the Lotka–Volterra dynamics and analyze37

its limits, already discussed in [28]. The system is given by the equations38

(1.1)
dx

dt
(t) = (diag(x(t)))(Ax(t) + r),39

where x = (x1, x2, . . . , xn)
⊺ belongs to the positive quadrant xi ≥ 0 and is the vector of popu-40

lations of the interacting species, diagx denotes in short the diagonal matrix with coefficients41

xi , A = (aij) is the matrix containing the interacting coefficients between the species and42

r = (r1, r2, . . . , rn)
⊺ is the vector describing the individual growth rate without interaction.43

Assuming the matrix A invertible, the system possesses a unique interior equilibrium given by44

x0 = −A−1r. The model is only valid provided that each species is contained in an interval45

[ε,M ], ε > 0 and hence in the model only the so-called persistent trajectories defined for46

positive times and contained in [ε,M ]n have physical signification. Therefore the differential47

equation represents an analytic continuation of the dynamics to the whole euclidean space.48

But the model in fine describes the interaction between the interior equilibrium and equilibria49

of an hierarchy of reduced Lotka–Volterra dynamics associated to extinction of the different50

species, e.g. extinction of x1 leads to analyze the reduced model of n − 1 interacting species51

where we substitute in the dynamics x → x = (x2, . . . , xn)
⊺ and again we can compute the52

interior equilibria of the reduced dynamics. Therefore this leads to interpret the model as a53

system of interaction between a given number k of isolated equilibria with k ≤ 2n.54

From this point of view the analysis of [17] is precisely to describe a policy in the ex-55

perimental setting where a mouse is treated prior to infection by antibiotic and a final fecal56

injection in order to cure the C. difficile infection. The 2d–reduced model is with a saddle57

interior point with stability and unstability domain delimited by separatrixes and the success58

of the therapy is to reach a stability domain of an healthy equilibrium.59

At this time the connection with the network of chemical species pointed by Lotka has60

to be made in relation with intense research activities in the seventies. They were motivated61

by the analysis of chemical batch reactors and realized mainly by Feinberg-Horn-Jackson, see62

for instance the recent book [15]. The study is related to the graph of the reactions using the63

concept of deficiency.64

Similarly concerning the Lotka–Volterra equations there was an intense research activities65

due in particular to Zeeman, Smale, Hirsch to analyze the dynamics in the frame of the theory66

of dynamical systems [29, 16, 26], the limit of the studies being related to complex chaotic67

behaviors, see [3] for a seminal presentation of the computational complexity of the problem.68

The analysis from geometric optimal control viewpoint of the problem of reducing the69

infection of a complex microbiote using the Lotka–Volterra model leads to introduce the70

polysystem D = {X,Y }, where X is the vector field (diagx)(Ax+ r) and Y is an additional71

vector field associated to a specific treatment and to study the action of the pseudo-semigroup72

S(D) generated by concatenation of the positive orbits of the vectors fields denoted respec-73

tively φt = exp tX, ψt = exp tY . The accessibility set at time t denoted A(x0, t) is the orbit74

S(D)(x0) when the total time is t and its boundary contains the extremities of the time75

minimal geodesics. It can be evaluated for small time using Lie brackets computations of X76

and Y . This boundary can have a complicated structure but an intense research activities77
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at the end of the eighties was devoted to stratify this set under some suitable assumptions78

in relation with the problem of computing a regular synthesis, see in particular [10], [12]. In79

this research program the Maximum Principle [24] is a very powerful tool to analyze the op-80

timal solutions since it gives a parametrization of the boundary of the accessibility set, where81

the geodesics dynamics is the projection of an n–Hamiltonian dynamics that is a differential82

system in dimension 2n and this system is not smooth.83

Let us formulate this principle to analyze for instance the effect of an antibiotic or probiotic84

treatment only, whence the control system takes the form85

dx

dt
(t) = X(x(t)) + u(t)Y (x(t)),86

where the control u(·) in the permanent case belongs to the set U of bounded measurable87

mappings valued in the convex set U = [−1,+1], where u = −1 corresponds to zero dosing that88

is X −Y = (diagx)(Ax+ r) while to maximal dosing corresponds the dynamics (diagx)(Ax+89

r) + 2Y (x), where Y (x) is related to the action of the antibiotic or probiotic agent.90

Consider the problem of reaching in minimum time a terminal manifoldN related to reduce91

the infected agent x1, e.g. reach a small population x1 in minimal time (a dual formulation92

of the problem is minx1 for fixed final time).93

Theorem 1.1. The Maximum Principle tells us that if (x(·), u(·)) is a time minimal control-94

trajectory pair on [0, tf ], then there exists a non vanishing adjoint n-dimensional vector p(·)95

such that the triple (z(·), u(·)), z = (x, p) satisfies the equations that we introduce next.96

Denoting H(z, u) := HX(z)+uHY (z) the pseudo-Hamiltonian, where if Z is a vector field,97

HZ(z) = p · Z(x) denotes the Hamiltonian lift and M is the maximized or true Hamiltonian98

maxu∈[−1,+1]H(z, u). Then for almost every t one has99

(1.2)
dx

dt
(t) =

∂H

∂x
(x(t), p(t), u(t)),

dp

dt
(t) = −∂H

∂p
(x(t), p(t), u(t)).100

Moreover the optimal control satisfies the maximization condition a.e.101

(1.3) H(z(t), u(t)) =M(z(t)),102

and M is a nonnegative constant.103

At the terminal time tf the transversality condition holds104

(1.4) p(tf ) ⊥ T ∗
x(tf )

N.105

From the maximization condition one deduces that an optimal control is the concatenation106

of:107

• Regular subarcs where u(t) = signHY (z(t)) a.e..108

• Singular subarcs defined by the implicit relation HY (z(t)) = 0.109

Such singular arcs define the geodesics solutions when relaxing the control bound to the whole110

u ∈ R. They form an Hamiltonian flow constrained to the switching set Σ : HY (z) = 0 in111

which they filled in general a subset of codimension one. Hence they play an important role112

in our study, see for instance the reference [4].113
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4 B. BONNARD, AND J. ROUOT

The main objective of this article is to analyze geometrically this dynamics in the case114

of the controlled Lotka–Volterra equations and from the control optimal point of view it is115

the analogue of the program of classifying the geometric dynamics for the Lotka–Volterra116

model. The limit being essentially the same that is to handle the curse of dimension and the117

computational complexity. Making the connection of the problem of minimizing the infection118

with the problem of maximizing the production of one species for chemical network, our119

objective is to use in this frame a series of articles started in the eighties, see for instance120

[6, 21] in the frame of geometric optimal control [1, 4], aiming to optimize the production of121

batch chemical reactors and recently pursued in [7].122

Moreover in practice our objective is to compute an approximation of the time minimal123

synthesis that is to reach the terminal manifold for every initial condition determining the124

closed loop optimal control: x → u∗(x). Regularity conditions have to be satisfied in order125

to define the solutions and they are related to the regularity properties of the time minimal126

value function.127

The article is organized as follows. In section 2 the controlled Lotka–Volterra model is128

introduced and the optimal control problem presented in the frame of permanent controls.129

The Maximum Principle leads to the classification of the geodesics in the context of geometric130

optimal control and singularity theory using the seminal earliest contributions of [19, 20, 14].131

The section 3 is based on the series of articles [6, 21, 7], dealing with a terminal manifold132

of codimension one. They are rather technical and our contribution being to introduce two133

main concepts. The first one is the notion of Whitney chart to determine in an appropriated134

coordinates system the time minimal synthesis in a neighborhood of the terminal manifold135

using the construction of semi-normal forms to estimate the switching and cut loci up to all136

cases of codimension two for the C∞-Whitney topology. Secondly the concept of unfolding137

from singularity theory is introduced in our control frame to reduce the classification to 2d and138

3d cases and using their description (dictionary) of the aforementioned references. The final139

section is devoted to the analysis and the classification of singular arcs in the 2d and 3d cases140

to deduce the time minimal syntheses. In this program the computation can be automatized141

in the 2d case using two classical invariants: the collinear set and the singular locus. In142

dimension 3 the problem is intricate due to the complexity of the singular dynamics. But a143

program of computations in the general case can be outlined based on gluing Whitney charts144

as an alternative of programs as for example in [2] to derive patchy feedbacks to approximate145

the time minimal function, our construction differing by the dominant use of the feedback146

singular control.147

2. Model of Controlled Lotka–Volterra Equation and Optimal Control.148

2.1. A quick tour in the 2d–Lotka–Volterra predator-prey model. The original Lotka–149

Volterra model analyzed in [28] describes, in the frame of (conservative) integrable dynamics,150

the interaction between two species. More precisely it was constructed to explain the evo-151

lution of the averaged populations of two fishing species in relation with diminution of the152

fishing activity observed by D’Ancona during the first World War and succeeds to explain the153

observation. From dynamical point of view it concerns the case of a center, the mechanical154

analogue being the oscillating non linear pendulum and it was extended to the case of an155

integrable saddle by Volterra himself. The limit of the model are clearly indicated in the156

This manuscript is for review purposes only.
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memoir and a parallel can be made with the 2d–reduced model of the gut microbiote that we157

are analyzing in this paper.158

We conserve the same notation than in the memoir. In the oscillatory situation the prey-159

predator population N = (N1, N2) satisfies the dynamics:160

(2.1)
dN1

dt
= N1(ε1 − γ1N2),

dN2

dt
= −N2(ε2 − γ2N1)161

where (ε1, ε2, γ1, γ2) > 0, which can be written in a general form as162

(2.2)
dN1

dt
= N1(λ1 + µ1N2)

dN2

dt
= N2(λ2 + µ2N1)163

for real parameters λi, µi, i = 1, 2.164

This leads to the equation165

(2.3) µ2
dN1

dt
+ λ2

1

N1

dN1

dt
− µ1

dN2

dt
− λ1

1

N2

dN2

dt
= 0166

and integrating one gets167

µ2N1 + λ2lnN1 − (µ1N2 + λ1lnN2) = constant.168

Hence169

Nλ2
1 eµ2N1 = CNλ1

2 eµ1N2 ,170

where C is a constant depending upon the initial conditions (N1(0), N2(0)).171

Volterra describes the solution using the auxiliary curves172

(2.4) Y = N−ε2
1 eγ2N1 , X = N ε1

1 e
−γ1N2173

so that the solution can be locally either represented as a graph Y = CX or X = CY .174

One denotes175

Ω := (K1,K2) =

(
ε2
γ2,

,
ε1
γ1

)
176

the interior equilibrium.177

Exact formulae give the time evolution of the population t 7→ Ni(t). But from physical point178

of view, what matters is the averaged population ⟨Ni⟩ and a simple computation gives the179

following.180

Theorem 2.1. The averaged populations are given by:181

⟨Ni⟩ :=
1

T

∫ ⊺

0
Ni(t)dt = Ki, i = 1, 2,182

which are not depending upon the initial conditions but only from the equilibrium Ω.183
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Equilatera ellipse Equilatera hyperbola

Figure 1. Volterra memoir. Left: center-case. Right: saddle case.

The Lotka–Volterra model can be normalized in the same category using the dimensionless184

variables:185

n1 :=
N1

K1
, n2 :=

N2

K2
186

and we get187

(2.5)
dn1
dt

= ε1n1(1− n2),
dn2
dt

= −ε2n2(1− n1)188

and the linearized system at Ω takes the form189

(2.6)
δn1
dt

= −ε1δn2,
δn2
dt

= ε2δn1.190

The geometric construction of the dynamics in the memoir is based on the auxiliary curves191

(2.4) to compute Y = CX.192

This opens the path to treat in the same frame the case where ε1ε2 < 0 so that Ω is a193

saddle point to get the form XY = C. Volterra gives a geometric representation of the two194

cases in a single figure, see Fig. 1.195

Let us analyze in the oscillatory case the role of the fishing activity, introducing control196

in the model. The system takes the form:197

(2.7)
dN1

dt
= (ε1 − αλ− γ1N2)N1,

dN2

dt
= −(ε2 + βλ− γ2N1)N2,198

where α, β ≥ 0 are the modes of destruction and λ ≥ 0 is the intensity.199

Assuming ε1 − αλ > 0 so that the population is still oscillating, the averaged values of200

N1, N2 become201
ε2 + βλ

γ2
,
ε1 − αλ

γ1
versus

ε2
γ2
,
ε1
γ1

202

This manuscript is for review purposes only.
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Healthy State

Infection

Fecal
transplantation

Gluing two centers Separatrix

Figure 2. Jones et al. model .

without fishing activity (see Theorem 2.1). This confirms the observations by D’Ancona.203

This simple model can be generalized to analyze, in the same frame, controlled populations204

dynamics introducing dissipation in the model associated to non zero coupling coefficients, to205

get a 2d–control model of the form206

(2.8)
dx

dt
= (diagx) [(r +Ax) + uϵ] ,207

where A is the interaction matrix, ϵ is the sensitivity vector and the control u is the intensity.208

Hence, in this frame the role of the constant control u = 1 is to shift the interior equilibrium209

and the spectrum of the linearized dynamics.210

The previous discussion clarifies the construction by Jones et al. of a 2d–Lotka–Volterra211

model to describe a complex microbiote with an interior saddle point and the interaction212

between the C. difficile population x1 and the healthy microbiote population aggregated into213

a single population x2. Noting again Ω = (K1,K2) the interior saddle equilibrium and nor-214

malizing: x1 → x1
K1
, x2 → x2

K2
, this leads to a system with four equilibria: Ω, the origin and215

two non interior equilibria O1, O2 associated respectively to the reduced dynamics with x1 or216

x2 equal zero. This can be interpreted as gluing together two prey-predators models (see Fig.217

2).218

The model simulates the following medical protocol:219

day 0 −→ day k −→ day k′ > k,
(healthy mouse (C. difficile infection) (fecal transplantation)

& antibiotic),
220

where the control actions are the choice of the day of the transplantation and the composition221

of the fecal injection.222

The final state posterior to the fecal injection is either the healthy state O1 or the infected223

state O2.224

A separatrix Σ is constructed in the 2d–model indicating the success or the failure of225

the transplantation therapy. This yields decision algorithms based on the computations of the226

parameters of the reduced models using the observations. The infection has to be compensated227

by the fecal transplantation. The mathematical limit of the model being that each species228
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8 B. BONNARD, AND J. ROUOT

population shall satisfies M ≥ xi ≥ ε, in particular if the x2 population becomes too small229

the model is not valid. Also from medical point of view a probiotic injection versus antibiotic230

injection increases the healthy population aiming to struggle against infection.231

2.2. Controlled Lotka–Volterra model and optimal control. Next we introduce the def-232

initions and concepts in a general frame.233

Definition 2.2. Let x = (x1, . . . , xn)
⊺ ∈ Rn

+ be the state of interacting species, x1 being the234

infected agent , x′ = (x2, . . . , xn)
⊺ being the state of healthy agents. The dynamics is described235

by236

(2.9)
dx

dt
= (diagx)(Ax+ r)237

the matrix A = (aij) being the matrix of coefficients of interaction and r = (r1, . . . , rn)
⊺ is238

the vector of individual growth rate. We denote by M+ = Rn
+ the invariant domain xi > 0239

and M∼ the union of M+ with its boundary. The dynamics is called regular if A is invertible.240

The interior equilibrium is the point Ω = (K1, . . . ,Kn) given by x = −A−1r.241

We note n = (n1, . . . , nn)
⊺ the dimensionless coordinates so that Ω is identified to (1, . . . ,242

1)⊺.243

One can associate to (2.9) an hierarchy of dynamics replacing x→ x′ = (x2, . . . , xn)
⊺ and244

this leads to up to 2n equilibria for the dynamics in the physical space, which can be easily245

computed by recurrence.246

The dynamics can be compactified using Poincaré compactification, identifying Rn to the247

hyperplane (x, z = 1) in Rn+1 to define the system:248

dx

dt
= (diagx)(Ax+ r),

dz

dt
= 0,249

where the right-member can be homogenized to define an homogeneous vector field which can250

be projected on the n−sphere Sn.251

Each equilibrium of the hierarchy of dynamics can be classified according to the L–(linear)252

stability status associated to the linearized dynamics at equilibrium.253

Our study is related to the interaction of k non interior equilibria interacting with the inte-254

rior equilibrium and one can introduce a model reduction consisting in a polynomic dynamics255

of the form: dx
dt = P (x).256

Introducing the ln–coordinates x = ey so that the system takes the form:257

(2.10)
dy

dt
= (Aey + r),258

where y ∈ lnM+ and the non interior equilibria are at the infinity.259

We denote byX(x) the vector field defined by (1.1) where x can be taken as the normalized260

coordinates.261

2.2.1. Antibiotic or probiotic agent. For a single antibiotic or probiotic agent the control262

system takes the form263

(2.11)
dx

dt
= X(x) + uY (x),264
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with Y (x) = (diagx)(ε1, . . . , εn)
⊺ is the sensitivity vector and the control u(t) describes the265

dosing regimen. Note that u can be restricted to domain [0, 1] using normalizations.266

This notation can be applied to the hierarchy of models so that this leads to an hierarchy267

of control problems which can be analyzed independently. For instance, prior to infection one268

can analyze the effect of probiotics agents where εi > 0, while posterior to infection one can269

consider the effect of antibiotic treatment.270

The set of admissible controls fits in the frame of permanent control, where u(·) is a271

measurable mapping on [0, tf ] valued in [0, 1]. Each measurable bounded mapping can be272

approximated by a sequence of piecewise constant mappings in the L∞–topology and acces-273

sibility can be studied restricting to this class. This is the point of view of geometric control274

which leads to introduce the polysystem: D = {X + uY ;u constant in the interval [0, 1]}.275

2.2.2. Fecal transplantation and bactericide. In the case of transplantation or bacteri-276

cide the control system takes the form:277

dx

dt
= X(x) + uY (x),278

where Y = (v1, . . . , vn)
⊺ is a constant vector field and u takes it values in the whole R+, where279

its action being to get Dirac pulse δ(t− t′), defined as the limit of controls sequence: un = λn280

on [t′, t′ + 1/n].281

2.2.3. Optimal control problem in the permanent case vs the sampled-data frame.282

Resuming the previous discussion, one can write the general control system in the form:283

dx

dt
(t) = X(x(t)) +

∑
ant.,pro.

ui(t)Yi(x(t)) +
∑

transp.,bac.

u′i(t)Y
′(x(t)),284

where the two sums are related respectively to probiotic, antibiotic agents and transplantations285

and bactericides. Moreover discontinuity in the state x = (x1, . . . , xn)
⊺ → x′ = (x′1, x2, ..., xn)

⊺286

can be understood as the jump action x→ x′. Hence this leads in the general case to a mixture287

of permanent and sampled-data control systems. The first action is related to permanent288

control, but due to logistic medical constraints it can fit in the sampled-data frame, e.g. a289

finite number of medical interventions at some predefined times: 0 < t1 < · · · < tk < tf to290

modify the treatment. The second action fits in the sampled-data frame, since in particular291

it corresponds to invasive therapies.292

In this article we concentrate to the permanent case associated to a single antibiotic or293

probiotic agent.294

OCP in the permanent case. The problem is either to reduce the x1−infection or to increase295

the production or ratio of healthy agents, prior to infection. This leads to consider in a dual296

formulation problems of the form:297

• Reach in minimum time tf a given terminal manifold N of codimension one for the298

control system written as: dx
dt = X(x) + uY (x), Y being associated to a specific299

treatment.300

In this formulation candidates as minimizers are selected using the Maximum Principle stated301

in the introduction.302
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10 B. BONNARD, AND J. ROUOT

2.3. Singular trajectories and time optimal control. In this section, we make a brief303

recap of the properties of singular trajectories, crucial in our analysis, for full details see [4].304

Definition 2.3. Let (X,Y ) the pairs of Cω (real analytic) vector fields on M associated to305

control system: dx
dt = X(x) + uY (x). The feedback group Gf is the set of triples (φ, α, β),306

where φ is a local diffeomorphism and u = α(x) + β(x)v, β ̸= 0 is a feedback, the group307

structure being induced by the actions:308

• local diffeomorphism φ : (X,Y ) → (φ ∗X,φ ∗ Y ), where φ ∗Z = dφ(Z ◦ φ−1) denotes309

the image of a vector field Z.310

• feedback: u = α(x) + β(x)v: (X,Y ) → (X + Y α, Y β).311

The control system can be lifted on the cotangent bundle T ∗M with symplectic structure312

defined by dω, where ω = pdx is the Liouville form. The Hamiltonians HX(z) = p · X(x),313

HY (z) = p · Y (x), where z = (x, p) are the symplectic coordinates, are the Hamiltonian lifts314

of X,Y . The system lift takes the form: dz
dt = HX(z) + uHY (z), and HX(z) + uHY (z) is315

the pseudo or non maximized Hamiltonian. One can lift every local diffeomorphism φ into316

a Mathieu symplectomorphism φ defined by: x = φ(y), p = q
(
∂φ
∂y

)−1
, where p, q are row317

vectors. This induces an action of Gf on the pairs (HX , HY ).318

2.3.1. Computations of singular extremals. Relaxing the control bound to u ∈ R , from319

the Maximum Principle the candidates as time minimizers are the so-called singular extremals320

control-trajectory pairs written shortly (z, u) solutions of the constrained Hamiltonian dyna-321

mics: dz
dt (t) = H(z(t)), H being the Hamiltonian vector field, the constraints coming from the322

maximization condition: ∂H
∂u = HY (z) = 0.323

Hence they are solutions contained in the switching set Σ : HY (z(t)) = 0. They can324

be computed, deriving this equation with respect to t. Introducing the Poisson bracket of325

HZ1(z) = p · Z1(x), HZ2(z) = p · Z2(x), by {HZ1 , HZ2}(z) = p · [Z1, Z2](x).326

Hence we deduce:327

(2.12)
HY (z(t)) = {HY , HX}(z(t)) = 0,

{{HY , HX}, HX}(z(t)) + u(t){{HY , HX}, HY }(z(t)) = 0.
328

We introduce the following.329

Definition 2.4. The Generalized Legendre-Clebsch condition (GLC) along a singular ex-330

tremal (z(·), u(·)) on (0, tf ] is given by:331

∂

∂u

d2

dt2
∂H

∂u
(z(t)) = {{HY , HX , }, HY }(z(t)) ̸= 0,332

for every t in [0, tf ]. The switching surface is Σ : HY (z) = 0 and we denote Σ′ the sub-333

set: HY (z) = {HY , HX}(z) = 0. Then outside the collinear set of Y (x) and [Y,X](x), if334

{{HY , HX}, HY } ̸= 0, the restriction of the symplectic form dω to Σ′ defines a symplectic335

manifold (M ′, ω|M ′).336

This gives the following.337

Proposition 2.5. Assume that the GLC-condition holds along (z(t), u(t)) then the extremal338

is called of minimal order. We have:339
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1. The singular control us(.) is the dynamic feedback: us(z) = −{{HY ,HX},HX}(z)
{{HY ,HX},HY }(z) .340

2. Introduce the true Hamiltonian Hs(z) := HX(z) + us(z)HY (z), the singular extremals341

of minimal order are the solutions of Hs(z) contained in the set Σ′.342

They are the solutions of Hs(z) restricted to the symplectic manifold M ′.343

Higher-order singular extremals can be determined at any order using the following algo-344

rithm. If345

{{HY , HX}, HY }(z(t)) = 0 and {{HY , HX}, HX}(z(t)) = 0346

then,deriving both relations one gets:347

{{{HY , HX}, HY }, HX}(z(t)) + u(t) {{{HY , HX}, HY }, HY }(z(t)) = 0,

{{{HY , HX}, HX}, HX}(z(t)) + u(t) {{{HY , HX}, HX}, HY }(z(t)) = 0.
348

If the control cannot be derived from the previous equations, we repeat the derivation349

procedure.350

2.3.2. Singular extremals as feedback invariants.351

Definition 2.6. Let E,F be two vector spaces and G a group acting linearly on E,F . An352

homomorphism χ: G→ R∖ {0} is called a character. Let χ be a character, a semi-invariant353

of weight χ is a map λ : E → R such that for all x ∈ E, g ∈ G,λ(g ·x) = χ(g)λ(x). It is called354

an invariant if χ = 1. A map λ : E → F is a semi-covariant of weight χ if for all x ∈ E,355

g ∈ G, λ(g · x) = χ(g)g · λ(x). It is called a covariant if χ = 1.356

The following theorem is unveiled in [4, Theorem 13, p.103]357

Theorem 2.7. Denote by λs the map which associates to the pair (X,Y ) the Hamiltonian358

vector field Hs restricted to Σ′. Then it is a covariant for the respective actions of the feedback359

group. In particular singular extremals are feedback invariants.360

2.3.3. High order Maximum Principle [18].361

Proposition 2.8. Assume p is oriented using the convention of the Maximum Principle362

along the singular extremal z(·): HX(z(t)) ≥ 0. Then a necessary time optimality condition363

on ]0, tf ] is given by364

∂

∂u

d2

dt2
∂H

∂u
(z(t)) = {{HY , HX}, HY }(z(t)) ≥ 0.365

366

Definition 2.9. The singular extremal z(t) = (x(t), p(t)), t ∈ [0, tf ] is called strict if p is367

unique up to a scalar.368

Corollary 2.10. Assume the strict case. Then the singular trajectories projections of sin-369

gular extremals of minimal order are stratified according to the following:370

• Hyperbolic case: HX · {{HY , HX}, HY }(z) > 0,371

• Elliptic case: HX · {{HY , HX}, HY }(z) < 0,372

• Abnormal or exceptional case: HX(z) = 0.373

2.3.4. Applications.374
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2d-case. Singular extremals satisfy HY = {HY , HX} = 0 so that singular trajecto-375

ries are located on the set S : det(Y (x), [Y,X](x)) = 0. Outside the collinear set C :376

det(Y (x), X(x)) = 0 one can takes Y,X as a frame and writing [[Y,X], Y ](x) = α(x)X(x) +377

β(x)Y (x). The singular control is given by: [[Y,X], X](x) + us(x) [[Y,X], Y ](x) = 0. Hyper-378

bolic case corresponds to α(x) > 0 and elliptic case to α(x) < 0.379

3d-case. The 3d−case is already a very rich situation to analyze the singular extremals380

and the program goes as follows.381

Introduce the following determinants:382

(2.13)

D(x) = det(Y (x), [Y,X](x), [[Y,X], Y ](x)),

D′(x) = det(Y (x), [Y,X](x), [[Y,X], X](x)),

D′′(x) = det(Y (x), [Y,X](x), X(x)),

383

and using the relations384

(2.14)
HY (z) = {HY , HX}(z) = 0,

{{HY , HX}, HX}(z) + us{{HY , HX}, HY }(z) = 0,
385

we can eliminate p and the singular control is given by the feedback:386

us(x) = −D
′(x)

D(x)
.387

388

Lemma 2.11. The action of the feedback group implies the following changes on D,D′ and389

D′′:390

Dϕ∗X,ϕ∗Y (x) = det

(
∂ϕ

∂x

)
DX,Y (ϕ−1(x)), DX+αY,βY (x) = β4DX,Y (x),391

D
′ϕ∗X,ϕ∗Y (x) = det

(
∂ϕ

∂x

)
D

′X,Y (ϕ−1(x)), D
′X+αY,βY (x) = β3

(
D

′X,Y (x) + αDX,Y (x)
)
,392

D
′′ϕ∗X,ϕ∗Y (x) = det

(
∂ϕ

∂x

)
D

′′X,Y (ϕ−1(x)), D
′′X+αY,βY (x) = β2D

′′X,Y (x).393

In particular the surfaces D = 0 and D′′ = 0 are feedback invariant.394

Defining the vector field:395

(2.15) Xs(x) := X(x) + us(x)Y (x),396

we have:397

Proposition 2.12. Singular trajectories of minimal order stratified the dynamics into:398

• Hyperbolic arcs in DD′′ > 0,399

• Elliptic arcs in DD′′ < 0,400

• Exceptional or abnormal arcs in D′′ = 0.401
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From Lemma 2.11, we obtain the following proposition.402

Proposition 2.13. For the action of the feedback group Gf = {(φ, α, β)} reducing to φ–403

changes of coordinates on vector fields Xs, the map λs : (X,Y ) → Xs is a covariant. Hence404

this allows to generate feedback invariants using the dynamics (2.15).405

Equilibria of this dynamics split into two types:406

• If D ̸= 0, they are given by the solutions of Xs(x) = 0.407

• If D = 0, one can reparameterize the dynamics to get the vector field D(x)X(x) −408

D′(x)Y (x) and additional (non isolated) singular points are located onD(x) = D′(x) =409

0.410

Exceptional trajectories are contained in the invariant set D′′(x) = 0 for the dynamics.411

3. Extremals classification and local time minimal syntheses near a terminal manifold412

of codimension one.413

3.1. Introduction and definitions. In this section we consider the time minimal con-414

trol problem for the system: dx
dt = X(x) + uY (x), |u| ≤ 1, with terminal manifold N of415

codimension one. We denote by H(z, u) = HX(z) + uHY (z) the pseudo-Hamiltonian and416

M(z) = max|u|≤1H(z, u) the true or maximized Hamiltonian. In this setting the control do-417

main is taken as U = [−1,+1], where extreme control values lead to introduce the vector fields418

X(x)− Y (x) (no medical treatment) or X(x) + Y (x), that is the maximal dosing regimen.419

Definition 3.1. The extremals are concatenation of regular extremals for which almost eve-420

rywhere421

u(t) = signHY (z(t))422

and singular extremals if423

HY (z(t)) = 0424

holds identically.425

An extremal is called exceptional if the maximized Hamiltonian is such that M(z) = 0.426

A BC–extremal is an extremal satisfying the transversality condition. A switching time is427

an instant such that the extremal control is discontinuous. A bang-bang extremal is a regular428

extremal with a finite number of switches.429

Since the control domain is U = [−1,+1], a singular extremal is called strictly feasible430

(admissible) if |us| < 1 and saturating at time t if |us(t)| = 1. A regular or singular extremal is431

called strict if p is unique up to a scalar. In the strict case singular extremals can be classified432

into hyperbolic, elliptic and exceptional extremals. We denote by σ+, σ− bang arcs associated433

respectively to u = +1 or u = −1, σs is a singular arc associated to us. We denote by σ1σ2434

an arc σ1 followed by σ2.435

Definition 3.2. Taking an open set V of M , the problem is called geodesically complete on436

V if for each x0, x1 ∈ V there exists a time minimizing geodesic in V joining x0 to x1. Fixing437

the target to N (=N ∩V ), a time minimal synthesis is a discontinuous feedback x→ u∗(x) so438

that the solutions of dx
dt = X(x)+u∗(x)Y (x) are well defined and u∗(x) is the optimal feedback439

solution to steer x to the target in minimum time.440
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3.2. Small time classification of regular extremals. In this section we recall some basic441

properties of regular extremals, see [19] but also [20] for the analysis of the Fuller phenomenon442

as a recommended reading.443

The surface Σ : HY (z) = 0 is called the switching surface and we denote by Σ′ the set444

HY (z) = {HY , HX}(z) = 0. Let z(·) = (x(·), p(·)) be a reference extremal on [0, tf ]. We note445

Φ(t) := HY (z(t)) the switching function coding the switching times.446

Deriving twice Φ with respect to time, one gets:447

dΦ

dt
(t) = {HY , HX}(z(t)),448

d2Φ

dt2
(t) = {{HY , HX}, HX}(z(t)) + u(t){{HY , HX}, HY }(z(t)).(3.1)449

Definition 3.3. The time t is called an ordinary switching time time if Φ(t) = 0 and dΦ
dt (t) ̸=450

0.451

Lemma 3.4. Assume t be an ordinary switching time, then near z(t) every extremal projects452

onto:453

• σ+σ− if dΦ
dt (t) > 0,454

• σ−σ+ if dΦ
dt (t) < 0.455

Definition 3.5. Let z(·) be a bang extremal on [0, tf ] with u = ε ∈ {−1,+1}. We note456

by d2Φε
dt2

the expression (3.1) in which u ≡ ε. The point z(t) is called a fold point if Φ(t) =457

dΦ
dt (t) = 0 and d2Φε

dt2
(t) ̸= 0. Assume that Σ′ is a regular surface of codimension two. We have458

three cases:459

• Parabolic case: d2Φ+

dt2
(t) d2Φ−

dt2
(t) > 0,460

• Hyperbolic case: d2Φ+

dt2
(t) > 0 and d2Φ−

dt2
(t) < 0,461

• Elliptic case: d2Φ+

dt2
(t) < 0 and d2Φ−

dt2
(t) > 0.462

This leads to:463

Proposition 3.6. In the neighborhood of a fold point every extremal projects onto:464

• In the parabolic case: σ+σ−σ+ or σ−σ+σ−.465

• In the hyperbolic case σ±σsσ±.466

• In the elliptic case, every extremal is bang-bang but the number of switches is not467

uniformly bounded.468

This is illustrated in Fig. 3.469

Note that in the elliptic case, there is a foliation by a cylinder of the regular extremal dyna-470

mics and the number of switches is related to the distance to Σ′ versus the Fuller phenomenon,471

where the sequence of regular arcs is not bang-bang and converges to Σ′.472

Application to the 3d−case. Consider the case where Y , [Y,X] and X form a frame i.e.473

D′′ = det(Y, [Y,X], X)474

is not vanishing. The problem is strict for singular extremals since Y and [Y,X] are indepen-475

dent. Hyperbolic trajectories are small time minimizing trajectories, while elliptic trajectories476
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Parabolic case Elliptic case

Hyperbolic case

Figure 3. Fold case.

are small time maximizing, this up to the first conjugate time t1c computed in [5] if they are477

strictly admissible (even in the limit case with no constraints on the control). In the parabolic478

case, they can be absent or not feasible. Consider the separating case where the singular arc479

is exceptional (abnormal) and assume that it is strictly admissible (for instance relaxing the480

control bound to the whole R). In this case using again [5] an exceptional arc σs is time481

minimizing and time maximizing, up to the first conjugate time t1c. Such a point is absent in482

the 3d-case. Such an arc can be lifted into two extremals (±p, σs) and it corresponds either483

to an hyperbolic or elliptic situation in Σ′. One contribution of [21] is to analyze the time484

minimal syntheses near the terminal manifold in this situation.485

3.3. General concepts of regular synthesis with a terminal manifold of codimension486

one. Take a triple (X,Y,N) and let x0 ∈ N which can be identified to 0 while N is the plane487

x1 = 0. Let U be a neighborhood of 0, which divides the space into neighborhoods V and W488

contained respectively in x1 < 0 and x1 > 0 so that U = V ∪W . The problem is to compute489

the time minimal regular synthesis to steer each point of U to the terminal manifold.490

N can be taken locally as f−1(0) where f is a submersion from U into a neighborhood of491

0 in R. The set of triples (X,Y, f) is endowed with the C∞−Whitney topology and we denote492

by jkX (resp. jkY, jkf) the k−jet of X (resp. Y, f) obtained by taking the Taylor expansion493

at x0 = 0 up to order k. We say that the triple (X,Y, f) has at 0 a singularity of codimension494

i if (jkX, jkY, jkf) belongs to a semi-algebraic set of codimension i in the jet space.495

Our aim is to make a short presentation of the results of [6, 21, 7] to classify local syn-496

theses up to an homeomorphim preserving the target N for all cases of codimension ≤ 2, by497

considering two cases occurring in the application that we introduce next.498

Definition 3.7. When Y is everywhere tangent to the target N , the control u is indirect and499

this case is called the flat case. In the non flat case, the action of the control is direct and the500
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set of points where Y is tangent to N is of codimension ≥ 1.501

3.3.1. Stratified synthesis. Our aim is to describe the local time minimal synthesis in502

a neighborhood of N by estimating at any order the different strata. Actually, the optimal503

control feedback u∗(x) is not always defined on the whole subset V of U in the domain x1 < 0504

, since for some x ∈ V the target N is not accessible.505

In fact we can reduce our study to two cases:506

• The case when the convex cone C generated by {X ± Y } is strict and the set of507

admissible directions points towards the space x1 > 0.508

• The exceptional case where the set of admissible directions are tangent to the terminal509

manifold.510

This leads to introduce the exceptional locus in the construction of the stratification of N .511

Definition 3.8. Let n be the normal to N oriented toward x1 > 0. The exceptional locus512

(restricted to N) E is the set of points of N such that: n(x) · Y (x) = n(x) ·X(x) = 0.513

The second part of the stratification amounts to introduce the singular locus.514

Definition 3.9. The singular locus (restricted to N) S is the set of points of N such that:515

n(x) · Y (x) = n(x) · [Y,X](x) = 0.516

Definition 3.10. A stratified synthesis amounts to find a partition of V (or a partition of517

U in the exceptional case) into V + (resp. U+) where u∗(x) = +1 and V − (resp. U−) where518

u∗(x) = −1 and a stratified surface separating V +and V − (resp. U+, U−) with three kind of519

strata:520

• Switching locus. It is the closure of the set or ordinary switching points and forming521

the set W♯, ♯ ∈ {−1,+1}, where W+ is associated to σ+σ− and W− to σ−σ+.522

• Cut locus. Let σ : [tf , 0] →M be a minimizing curve, integrating backwards from N so523

that σ(0) ∈ N, tf < 0. The cut-locus is the closure of the set of points where optimality524

is lost. It is denoted C and contains the splitting locus L where the optimal feedback525

is not unique.526

• Switching singular locus. It is foliated by optimal singular arcs and is denoted Γs.527

Recall that if us ∈] − 1,+1[ the singular arc is strictly feasible but it can be saturated528

if u∗s(x) ∈ {−1,+1}.529

To estimate the different strata we use semi-normal forms restricting the action of the feedback530

group to local diffeomorphisms φ preserving 0 and feedbacks u → −u so that σ+ and σ− can531

be inverted in the classification.532

We can choose local coordinates to normalize a reference trajectory to t 7→ (t, 0, . . . , 0),533

the terminal manifold N and the controlled vector field Y to compute the optimal synthesis534

in a neighborhood of N . More precisely, we introduce the following important concept.535

Definition 3.11. Let x0 ∈ N which can be identified to 0. A Whitney chart is a pair (U,φ)536

where U is a neighborhood of x0 and φ a system of coordinates (x, y, y1, . . . , yn−3, z) such that:537

1. Y = ∂
∂z ,538

2. N is the surface of codimension one parameterized by (ks2 + s2O(|w1, w2, . . . , wn−3,539

w, s|), w, w1, . . . , wn−3, s),540

3. The time minimal synthesis in U is C0 described with foliations by 2d or 3d syntheses541
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with triples (X♭(x), Y ♭(x), N ♭(x)), x ∈ R2 or R3 where the 3d−cases occur only in the542

exceptional case if n ≥ 3.543

Moreover in U , one can construct the stratified optimal synthesis, where each strata can be544

estimated at any order.545

Definition 3.12. In the previous construction the restriction from n to n − 1 decomposing546

x = (x′, λ), N = ∪λN
′(λ), where λ ∈ R, is a parameter is called a one dimensional unfolding.547

The previous definitions will be clarified in the examples we present next.548

3.3.2. Main points of the geometric and analytic construction. One can restrict our549

presentation to the 2d–case. Let n(x) be the normal to N , oriented towards x1 > 0. We550

denote by N⊥ the symplectic lift of N : N⊥ = {(x, p); x ∈ N, p = n(x)}. The stratification551

of N by the conditions n(x) · Y (x) = 0 and n(x) · [Y,X](x) = 0 selects ordinary switching552

points or fold points classified in Proposition 3.6.553

• Ordinary switching locus K: One can restrict for simplicity the analysis to the 2d non554

flat case. Let x0 ∈ N such that n ·Y (x0) = 0 and both n ·X(x0) and n · [Y,X](x0) non555

zero. This leads to compute a switching locus K terminating at x0. Such a switching556

locus is part ofW if the corresponding bang-bang extremal crosses the switching locus557

versus reflects on the switching locus. This leads to estimate the slope of K.558

• Singular locus Γs: Consider again the non flat case. Let x0 such that (n(x0), x0)) is a559

fold point hence n · Y (x0) = n · [Y,X](x0) = 0. Moreover assume that n ·X(x0) ̸= 0560

(non exceptional case) and that the singular arc σs terminating at x0 is strictly ad-561

missible, such an arc being small time minimizing for the problem with fixed extrem-562

ities (assuming the condition n · [[Y,X], Y ](x0) ̸= 0). One can choose coordinates563

(x, y) such that Y = ∂
∂y and N is given by (12ks

2, s), while X can be normalized to564 (
1− y2X1(x, y)

)
∂
∂x + (u − us(x) + yX2(x, y))

∂
∂y , where σs is identified to t → (t, 0)565

and us is the singular control. Note that such normalizations were introduced in [5]566

in a more general context.567

In order to decide about optimality one can compare by direct computations in the normalized568

coordinates the curvature of the boundary of the accessibility set along the singular arc with569

the curvature of N given by k. This leads to the cases described in Fig. 4. In the first case,570

there exists a cut locus C with slope −us(0).571

The 3d–case with an hyperbolic point terminating at x0 = 0 can be obtained by construct-572

ing a semi-normal form in coordinates (x, y, z) by unfolding the case k > 0 and this leads to573

Fig. 5.574

The central picture corresponds to Fig. 4 with k > 0. Left we have represented a Whitney575

neighborhood containing the optimal switching locus W+ intersecting the hyperbolic singular576

locus. They can be easily computed using the stratification of N⊥ into sectors with ordinary577

switching points and fold points while the singular arc terminating at 0 corresponds to an578

hyperbolic fold point.579

This gives the procedure to compute the optimal syntheses using [6] in the non exceptional580

case as unfolding of 2d−cases. The procedure fails in the exceptional case for n ≥ 3, where581

the following example from [21] shows why it cannot be reduced to 2d-foliations.582
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k < 0 k > 0 flat case

Figure 4. Optimal synthesis in the 2d-hyperbolic case.

Whitney chart Whitney chart Whitney chart

w0 < 0 w0 = 0 w0 > 0

Figure 5. Unfolding in the 2d-hyperbolic case with parameter w0.

3.3.3. An exceptional 3d–case not 2d–reducible. One take a flat case so that N can be583

identified to (0, w, s) in (x, y, z) coordinates and Y = ∂
∂z . In the construction the main point584

is to take a bang arc σ−, which is optimal in the domain x ≥ 0 with a contact of order 3 at 0585

with the surface N . Hence this gives birth in the domain x > 0 to arcs σ− intersecting three586

times the target N , thanks to contact analysis.587

Such a situation occurs for instance for the model which in fine is a C0−normal form588

describing the situation:589

dx

dt
= z,

dy

dt
= b,

dz

dt
= 1 + u+ y,590

the target N given by (w, s) → (0, w, s).591

One considers the situation with b > 0, where each point of the neighborhood U can be592

steered to the target.593

In the domain x < 0, every time optimal trajectory is of the form σ+ and the contact of594

σ+ at 0 with N is of order 2.595

Optimal arcs σ−(t) included in x ≥ 0 are satisfying:596

(3.2) x−(t) = t(s+ wt/2 + bt2/6 + . . . ),597
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Figure 6. Synthesis exceptional case when b < 0. σ− has a contact of order 3 with N .

where the weight of s is one and the weight of w is two, neglected having weights greater than598

3.599

The curve Ξ is the set of points (0, w, s) of N such that: x−(t)
t = d

dt

(
x−(t)

t

)
have a common600

zero and is given using (3.2) by: w2 ∼ 8bs
3 .601

The optimal synthesis is represented on Fig. 6. Optimal arcs σ− in the domain x ≥ 0 are602

cutting twice N in the subsets of the target denoted 2 and 2′ and have two subarcs which are603

optimal in x > 0, but the subarc in x < 0 is not optimal.604

4. Computations and preliminary results on the Controlled Lotka–Volterra model. The605

aim of this section is to present the geometric study of the controlled Lotka–Volterra model:606

dx

dt
(t) = X(x(t)) + u(t)Y (x(t)),607

with X(x) = (diagx)(Ax+r) and Y (x) = (diagx)ϵ, where x = (x1, . . . , xn)
⊺ is the population608

species, x1 represents the infected species and ϵ = (ε1, . . . , εn)
⊺.609

The system can be written in ln–coordinates: y = lnx and it takes the form:610

(4.1)
dy

dt
= (Aey + r) + uϵ.611

4.1. Equilibria and the collinear set. The collinear set C is one of the main feedback in-612

variant, related to computations of the free equilibria of the system for the hierarchy of models613

with no treatment u = 0 or maximal dosing treatment u = 1, but also for all intermediate614

dosing.615

This set is a one dimensional algebraic variety and is the projection of the set:616

(4.2) {(xe, ue) ∈ Rn × R; ∃ue, X(xe) + ueY (xe) = 0}.617

At such a point introduce the Jacobian matrix:618

J(xe, ue) =
∂

∂x |(xe,ue)
(X(x) + ueY (x)).619

The following dimensionless coordinates are useful in the computations.620
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The system can be written:621

(4.3)
dxi
dt

= xiri − xi

n∑
j=1

aijxj + uxiεi622

and denotes by x∗ the free equilibrium given by:623

ri −
n∑

j=1

aijx
∗
j = 0, i = 1, . . . , n.624

One sets vi =
xi
x∗
i
so that the dynamics takes the form:625

dvi
dt

= viri − vi

n∑
j=1

aijx
∗
jvj + u viεi,626

and denoting a∗ij = aijx
∗
j , one has ri =

∑n
j=1 a

∗
ij since the interior equilibrium is normalized627

to Ω = (1, . . . , 1).628

If we set: xi = vi − 1, the dynamics is given by:629

dxi
dt

= (xi + 1)
n∑

j=1

a∗ij − (xi + 1)
n∑

j=1

a∗ij(xj + 1) + u (xi + 1)εi.630

Hence we have:631

Proposition 4.1. In the dimensionless coordinates the controlled Lotka–Volterra model is632

given:633

dxi
dt

= −(xi + 1)
n∑

j=1

aijxj + u (xi + 1)εi,634

so that Ω is identified to 0 and the Jacobian matrix at 0 is −A.635

4.1.1. Computations in the 2d−case in the dimensionless coordinates. We consider the636

regular 2-dimensional dynamics given in Proposition 4.1.637

Collinear set and classification of equilibria. The collinear set is one of the main feedback638

invariant related to the computations of free equilibria with no treatment u = 0 and forced639

equilibria with maximal dosing u = 1.640

The collinear set is given by the determinantal variety: det(X(x), Y (x)) = 0:641

(x1 + 1) (x2 + 1) (x1κ2 − x2κ1) = 0,642

where κ1 = ε1a22 − ε2a12 and κ2 = ε2a11 − ε1a21.643

Alternatively, it can be viewed as the one dimensional algebraic variety projection of the644

set645

{(x, ue) ∈ R2 × R, ∃ue such that X(x) + ue Y (x) = 0}.646
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The condition ue ∈ [0, 1] selects a segment of persistent equilibria located on the line:647

C :=

{
x2 = ue(x1)

κ2
detA

, ue(x1) = x1
detA

κ1
∈ [0, 1]

}
.648

In particular, introduce xe = (x1e, x2e) ∈ C, the origin xe = 0 is associated to the control649

ue = 0 while xe = (κ1/detA, κ2/ detA) is associated to the control ue = 1.650

For ue ∈ [0, 1], define the Jacobian matrix651

J(xe, ue) =
∂

∂x
(X(x) + ue Y (x))|x=xe

,652

we have:653

Lemma 4.2. Let xe ∈ C associated to the control ue, the spectrum of J is:654

spec(J(xe, ue)) =
{(
k(xe)±

√
k(xe)2 + k′(xe)

)
/2
}
,655

where k(x) = −x1a22κ2/κ1 − a22 − a11(x1 + 1) and k′(x) = −4 detA (x1 + 1) (1 + x1κ2/κ1).656

4.2. Computation of the collinearity locus and properties. Construction of a normal657

form in ln–coordinates.658

Computations about C in the n-dimensional case. We have the following algorithm,659

taking the system represented in the x–coordinates.660

• Step 1. The collinear set is the projection of the algebraic curve defined by: There661

exists ue constant such that X(xe) = −ueY (xe). This gives n–equations depending662

upon (n+ 1) variables (xe, ue).663

• Step 2. Take such a pair (xe, ue) so that xe is a forced equilibrium for u = ue and they664

form a set with extreme points associated to ue = 0 and ue = 1, when restricting to665

ue ∈ [0, 1].666

The linear dynamics at the point xe is characterized by the Jacobian matrix:667

J(xe, ue) =
∂

∂x |(xe,ue)
(X(x) + ueY (x))668

the spectrum being σ(J) = (λ1, . . . , λn) with associated generalized eigenspaces Eλi
, i =669

1, . . . , n.670

The linear stability is determined by this spectrum, thanks to Lyapunov linear stability671

theory.672

• Step 3. From control point of view we have three cases:673

1. ue /∈ [0, 1]: ue is not feasible,674

2. ue ∈]0, 1[: ue is strictly feasible,675

3. ue = ±1: ue being feasible but saturating.676

One can discuss the linear controllability of the pair (J(xe, ue), b) where b = Y (xe).677

• Kalman condition: rank
[
b, Jb, . . . , Jn−1

]
= n and the singular point xe is regular. If678

the control ue is strictly feasible local controllability holds [22].679
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• If rank [b, Jb, . . . , Jn−1] = n − k < n, then the singular point is a singular trajectory680

(reduced to a point) associated to ue and k is the codimension of the singularity.681

From linear controllability theory, one can construct a normal form, at a given equilibrium682

pair (xe, ue).683

We take ln–coordinates so that X(x) takes the form X♭(y) = (Aey + r) and the controlled684

vector field Y (x) becomes the constant vector field Y ♭ = ϵ.685

Let (ye, ue) be the selected forced equilibrium in the ln–coordinates and let z = y − ye ,686

v = (u− ue) so that the system takes the form:687

dz

dt
= J(z) +R(z) + v ϵ,688

where J is the Jacobian matrix at (ye, ue).689

One can find coordinates such that the linear dynamics decomposes into690

dz1
dt

= J11z1 + J12z2 + vϵ
dz2
dt

= J21z2

691

where the restriction to the controllable space z2 = 0 is given by the dynamics:692

dz1
dt

= J11z1 + v ϵ.693

The pair (J11,ϵ) can be set in Brunovsky canonical form:694

J11 =

 0 Idn−k−1

−a1 −a2 . . . −an−k

 , ϵ =


0
...
0
1

 ,695

where the coefficients (a1, . . . , an−k) are the coefficients of the characteristic polynomial of696

J11.697

Finally this leads to the construction of a normal form:698

dz

dt
= J(z) +R(z) + vϵ,699

where the pair (J(xe), ue),ϵ) is in linear canonical form. Note in particular that the sensitivity700

vector ϵ is normalized to (0, . . . , 0, 1)⊺ and R(z) is the non linear part of the dynamics, related701

to singular trajectories computations.702

4.3. Singular extremals. Lie brackets can be computed in the original coordinates but703

the computations are simpler in ln–coordinates, since the control vector field Y ♭ is constant.704

This comes from the following.705

Proposition 4.3.706
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1. If X = (diagx)X1(x), Y = (diagx)Y1(x), where X1, Y1 are polynomic then the ite-707

rated Lie brackets are in the same category of polynomic vector fields of the form708

(diagx)P (x).709

2. Let φ be the diffeomorphism: x = ey. Denote by X♭, Y ♭ the images of X,Y by this710

diffeomorphism. Then by invariance of the Lie bracket: [X♭, Y ♭](y) = dφ−1[X,Y ](ey).711

4.3.1. Computations in the 2d–case. We start by computing the ln–coordinates:712

• X♭ =
(
r1 +

∑
j=1,2 a1je

xj , r2 +
∑

j=1,2 a2je
xj

)
,713

• Y ♭ = (ε1, ε2) ,714

• [X♭, Y ♭] =
(∑

j=1,2 εja1je
xj ,

∑
j=1,2 εja2je

xj

)
.715

Hence the singular locus: S : det([X,Y ](x), Y (x)) = 0 is given by:716

(4.4) x1x2 (ε1x1κ2 − ε2x2κ1) = 0717

which is stratified into x1 = x2 = 0 and a permanent straight-line L : ε1x1κ2 = ε2x2κ1.718

Moreover:719

• [[X♭, Y ♭], Y ♭] = (
∑

j=1,2 ε
2
ja1je

xj ,
∑

j=1,2 ε
2
ja2je

xj ).720

Outside the collinear set C, X,Y form a frame and writing:721

[[Y,X], X](x) = α(x)X(x) + β(x)Y (x),722

so that:723

• Hyperbolic (feasible) subarcs are such that α(x) > 0,724

• Elliptic subarcs are such that α(x) < 0.725

• At the persistent point intersection of S and C, one gets an exceptional point.726

4.3.2. Computations in the 3d−case. The Lie brackets computations are as before, ex-727

cept that the index j goes from 1 to 3. So that728

D = det(Y ♭, [Y ♭, X♭], [[Y ♭, X♭], Y ♭])729

is homogeneous and quadratic with respect to the variable exi .730

Moreover the exceptional locus is given by the relation:731

D′′ = det(Y ♭, [Y,X]♭, X♭) = 0,732

this set being a quadratic non homogeneous variety with respect to the variables exi .733

Note that the computation of the Lie bracket: [[Y ♭, X♭], X♭] is more complex and formal734

computations are necessary.735

This fixes the limit of the computational complexity in the n–dimensional case.736

4.4. Applications.737

4.4.1. A 2d-working case. In this section, the general techniques from [6, 21] will be738

applied to analyze a 2d-case study which occurs in the Lotka–Volterra model, see also [11] as739

a complementary study for the fixed end point problem.740
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Lie brackets and feedback invariants. The first step is to compute the collinear set C defined741

by det(X(x), Y (x)) = 0, which takes the form in the original coordinates:742

(4.5) x1x2 (x1κ2 − x2κ1 + ε2r1 − ε1r2) = 0,743

while the singular locus is S : x1x2 (ε1x1κ2 − ε2x2κ1) = 0 from (4.4) and Lie brackets of length744

3 are:745

[[Y,X] , Y ] (x) =− x1
(
ε21x1a11 − ε22x2a12

) ∂

∂x1
− x2

(
ε21x1a21 + ε22x2a22

) ∂

∂x2
,

[[Y,X] , X] (x) =− x1

(
ε1x1 (r1a11 + x2a12 (a11 − a21)) + ε2x2a12 (x1 (a21 − a11) + r2)

) ∂

∂x1

−x2
(
ε2x2 (r2a22 + x1a21 (a22 − a12)) + ε1x1a21 (x2 (a12 − a22) + r1)

) ∂

∂x2
.

746

The geometric situation that we analyze in our working example is the exceptional case747

where we consider the intersection of the collinear locus with the singular locus, which corre-748

sponds from (4.5) and (4.4) to intersection of two straight-lines. It corresponds to a generic749

interaction between an hyperbolic arc and an elliptic arc.750

Constructing a semi-normal form. The second step is to construct a semi-normal form for751

the system. The construction is detailed in [6] but computation are simple in the 2d–case.752

It consists to choose coordinates such that the intersection is taken as the origin (0, 0), Y is753

identified to the constant vector field Y = ∂
∂x2

(this amounts mainly to choose ln–coordinates)754

while the reference singular direction is identified to the straight line (0x1).755

Expanding X in the jet space at (0, 0), this leads to analyze the control system:756

(4.6) ẋ1 = −λx1 + αx22, ẋ2 = u− ue757

with ue ∈]− 1, 1[, |u| ≤ 1, λ > 0 and α > 0.758

Properties of the system. Computing Lie brackets in the new coordinates show relevant759

simplification with respect to the previous formulae:760

X(x) = (−λx1 + αx22)
∂

∂x1
− ue

∂

∂x2
, Y (x) =

∂

∂x2
,761

[Y,X] (x) = −2αx2
∂

∂x1
, [[Y,X] , Y ] (x) = −2α

∂

∂x1
,762

and the singular line is given by763

x2 = 0.764

Restricting to x2 = 0, one has:765

X|x2=0 = −λx1
∂

∂x1
, [[Y,X] , Y ]|x2=0 (x) = −2α

∂

∂x1
.766

Hence767

[[Y,X] , Y ]|x2=0 (x) =
2α

λx1
X|x2=0(x)768

for x1 ̸= 0.769

Therefore, we obtain the following lemmas.770
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Lemma 4.4. 1. The origin (0, 0) is an abnormal singular arc reduced to a point and771

the arc x1 > 0 is hyperbolic and the arc x1 < 0 is elliptic.772

2. The singular control along the line x2 = 0 is given by u = ue and is constant and773

strictly admissible since ue ∈]− 1,+1[.774

Lemma 4.5. The collinear set C given by det(X,Y ) = 0 is the parabola x1 = αx22/λ.775

Clock form. To analyze a 2d–time minimal problem with fixed extremities the standard776

technique is to introduce the clock form ω = pdx defined outside the collinear set by:777

p ·X(x) = 1, p · Y (x) = 0.778

Computing one has ω =
1

−λx1 + αx22
dx1 so that779

dω =
2αx2

(−λx1 + αx22)
2
dx1 ∧ dx2.780

One can decompose R2 ∖ (C ∪ S) in four domains:781

• domain A: ẋ1 < 0 ∩ x2 > 0,782

• domain B: ẋ1 > 0 ∩ x2 > 0,783

• domain C: ẋ1 < 0 ∩ x2 < 0,784

• domain D: ẋ1 > 0 ∩ x2 < 0.785

On each domain one can compare the time along arcs γ1, γ2 joining respectively x0 to x1786

where γ1 = σ+σ−, γ2 = σ−σ+ using Stokes theorem. One has:787

Lemma 4.6. In domain A and D for such arcs the time minimal policy is σ−σ+ while in788

domain B and C the optimal policy us σ+σ−.789

Proof. Take the case of domain A, one has:790 ∫
γ1

ω −
∫
γ2

ω =

∫
γ1∨(−γ2)

dω > 0,791

hence the time along γ1 is longer than the time along γ2. The discussion is similar for the792

other cases.793

Integrating the extremal curves. The adjoint system takes the form with p = (p1, p2):794

ṗ1 = λp1, ṗ2 = −2αx2p1.795

Denoting for u = ±1, β = u− ue, one gets:796

Lemma 4.7. The extremal system is characterized by:797

• x2(t) = x2(0) + βt,798

• x1(t) = e−λt
(
x1(0) +

∫ t
0 e

λs(x2(0) + βs)2 ds
)

799

• p1(t) = eλtp1(0),800

• p2(t) = −2αp1(0)
∫ t
0 e

λs(x2(0) + βs) ds801

and they belong to the polynomial exponential category.802
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The integrals in the expressions of x1(t) and p2(t) can be evaluated using:803 ∫ t

0
seλs =

teλt

λ
− 1

λ2

(
eλt − 1

)
,

∫ t

0
s2eλs =

t2eλt

λ
− 2

λ

∫ t

0
seλsds.804

Lemma 4.8. The switching function is Φ(t) = p2(t) so that for u = ±1 and one has:805

p̈2(t) = −2αp1 (λx2 + u− ue) where p1(t) is of constant sign given by the sign of p1(0).806

Geometric discussion of the synthesis with a terminal manifold N of codimension one. Next807

we present the discussion of the time minimal synthesis with a terminal manifold N of codi-808

mension one by gluing cases discussed in [6].809

One takes N as a circle with radius d centered at 0 where the synthesis amounts to glue810

the hyperbolic and elliptic situation. The circle intersects the hyperbolic arc σs at x1 = d and811

the elliptic arc σs at x1 = −d.812

The BC–extremals curves can be parameterized by Lemma 4.7 with (p1(0), p2(0)) = ±n(0)813

where n(0) is the normal to the circle, n(0) = (x(s), y(s)). Geodesics curves are integrated814

backwards, geodesics in the interior to the circle are associated to n(0) and geodesics exterior815

to the circle are associated to −n(0).816

Since Y = ∂
∂x2

, from [6] we can at once deduced the synthesis outside the circle, near817

the hyperbolic point (d, 0) and the elliptic point (−d, 0), using the curvature of N only at818

such point which are the images of the curve (−1/2ks2, s), k > 0 at the hyperbolic point and819

(1/2ks2, s) at the elliptic point. They are represented on Fig. 7.

Elliptic case Hyperbolic case

Figure 7. 2d–syntheses.

820
The main properties are821

• hyperbolic case: the singular arc is optimal and the optimal policy is −1 for x2 > 0822

and +1 for x2 < 0.823

• elliptic case: The time minimal synthesis is defined by the stratificationW =W−∪W+824

of the switching locus and there exists a cut locus C terminating at (−d, 0).825

To complete the analysis one must glue the two syntheses along the target N and consider826

also geodesics interior to the circle.827

Using the analysis of [6] to glue different Whitney charts, we obtain the time minimal828

synthesis in a neighborhood V of the origin, which is schematically represented in Fig. 8.829
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Figure 8. Schematic representation of the time minimal synthesis gluing hyperbolic and elliptic case with
N being the unit circle. The cut locus was numerically computed with parameters λ = α = 1 and ue = 1/2.

4.4.2. Complexity of the singular flow in the 3d–case. From dynamical system point830

of view, the complexity of the Lotka–Volterra model is related to the existence of persistent831

equilibrium point, which leads to complicated dynamics related to the hierarchy of dynamics832

associated to the hierarchy of at most 2n–equilibria.833

Hence, in this section one analyses the same question regarding to existence of permanent834

equilibria for the singular dynamics associated to the time minimal control problem.835

First one must extent the previous 2d–result concerning the existence of (exceptional)836

singular arc reduced to a point, in the context of controlled Lotka–Volterra model.837

Proposition 4.9. Consider the controlled Lotka–Volterra model in the n–dimensional case.838

Then there exists (isolated) exceptional arcs reduced to a point.839

Proof. Consider the pair (X,Y ), and choose ln–coordinates so that Y (x) = ∂
∂xn

with840

X(x) =
∑n

i=1Xi(x)
∂
∂xi

, the collinear set is defined by the (n − 1)–equations Xi(x) = 0,841

i = 1, . . . , n − 1 and let λ = −ue so that Xn(x) = −λ. Let X̃(x) =
∑n−1

i=1 Xi(x)
∂
∂xi

+842

(Xn(x) + ue)
∂

∂xn
and by construction there exists xe on the collinear set so that X̃(xe) = 0.843

Denote by J̃ the Jacobian matrix of X̃ at x = xe and let σ(J̃) be its spectrum.844

Denoting by adX̃ ·Y = [X̃, Y ]. Then at xe the matrix with columns of iterated Lie brackets845

K =
(
Y, adX̃ · Y, . . . , adn−1X̃ · Y

)
846

coincides with the Kalman matrix847 (
b, J̃b, . . . , J̃n−1b

)
848

where b is the constant vector Y (x). The singular point is exceptional if and only if rankK ≤849

n− 1.850
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At isolated point, the condition rank = n − 1 can be realized for the controlled Lotka–851

Volterra model (see Example 4.10 for n = 3).852

Example 4.10. In the dimensionless coordinates (see Proposition 4.1), take: A = diag(λ1,853

λ1, λ3), X(x) = −diag(x+ 1)Ax, Y (x) = diag(x+ 1) (ε1, ε2, ε3)
⊺ so that the persistent equi-854

librium is located at xe = 0. The columns of the Kalman matrix K defined in the proof of855

Proposition 4.9 are856

Y (0) = (ε1, ε2, ε3)
⊺,857

[X,Y ](0) = (−ε1λ1,−ε2λ1,−ε3λ3)⊺ ,858

[X, [X,Y ]](0) =
(
ε1λ

2
1,+ε2λ

2
1, ε3λ

2
3

)⊺
,859

hence rankK < 3 and 0 is a singular exceptional point.860

Note that the Jacobian matrix of the singular flow, defined for ε1 ̸= ε2, evaluated at 0 is861

J =


ε1λ3
ε1−ε2

− λ1
ε1λ3
ε2−ε1

0
ε2λ3
ε1−ε2

ε1λ3
ε2−ε1

− λ1 + λ3 0
ε3λ3
ε1−ε2

− ε3λ3
ε1−ε2

−λ3

862

and its spectrum {λ3 − λ1,−λ3,−λ1} is resonant.863

3d–case. In the 3d–case, the singular trajectories are solutions of the vector field: ẋ =864

Xs(x) = X(x)− usY (x), where the singular control feedback is us = −D′(x)/D(x) with865

D(x) = det(Y (x), [Y,X](x), [[Y,X], Y ](x)), D′(x) = det(Y (x), [Y,X](x), [[Y,X], X](x)).866

Moreover exceptional trajectories are located on the exceptional locus D′′(x) = 0 with867

D′′(x) = det(Y (x), [Y,X](x), X(x)).868

Computing in the original coordinates leads to complicated expressions:869

D(x)/x1x2x3 =
(
ε21x1a21 + ε1 (ε2 (x2a22 − x1a11) + ε3x3a23)− ε2 (ε2x2a12 + ε3x3a13)

)
870 (

ε21x1a31 + ε22x2a32 + ε23x3a33
)
+
(
ε21x1a11 + ε22x2a12 + ε23x3a13

) (
ε22x2a32+ε3ε2 (x3a33 − x2a22)871

− ε23x3a23 + ε1x1 (ε2a31 − ε3a21)
)
−
(
ε21x1a21 + ε22x2a22 + ε23x3a23

)
872 (

ε21x1a31 + ε1 (ε2x2a32 + ε3 (x3a33 − x1a11))− ε3 (ε2x2a12 + ε3x3a13)
)
,873

874

D′(x)/x1x2x3 =
(
−ε21x1 a21 + ε1 (ε2 (x1a11 − x2a22)− ε3x3a23) + ε2 (ε2x2a12 + ε3x3a13)

)
875 (

ε2x2
(
x1a12a31 − a32

(
x1a21 + x3

(
a23 − a33

)
+ r2

))
− ε1x1

(
r1a31 + x3 (a13 − a33) a31876

+ x2
(
a12a31 − a21a32

))
+ ε3x3 (−r3a33 + x1a31 (a13 − a33) + x2a32 (a23 − a33))

)
877

+
(
ε22 (−x2) a32 + ε3ε2 (x2a22 − x3a33) + ε23x3a23 + ε1x1 (ε3a21 − ε2a31)

)
878 (

− ε1x1 (r1a11 + x2a12 (a11 − a21) + x3a13 (a11 − a31)) + ε2x2
(
x3a13a32 − a12

(
x1 (a21 − a11)879

+ x3a23 + r2
))

− ε3x3 (a13 (x1 (a31 − a11) + x2a32 + r3)− x2a12a23)
)

880
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−
(
ε21 (−x1) a31 + ε1 (ε3 (x1a11 − x3a33)− ε2x2a32) + ε3 (ε2x2a12 + ε3x3a13)

)
881 (

ε1x1 (x3a23a31 − a21 (x3a13 + x2 (a12 − a22) + r1)) + ε2x2
(
− r2a22 + x1a21 (a12 − a22)882

+ x3a23 (a32 − a22)
)
+ ε3x3 (x1a13a21 − a23 (x1a31 + x2 (a32 − a22) + r3))

)
,883

884

D′′(x)/x1x2x3 =
(
−ε21x1a21 + ε1 (ε2 (x1a11 − x2a22)− ε3x3a23) + ε2 (ε2x2a12 + ε3x3a13)

)
885

(x1a31 + x2a32 + x3a33 + r3) +
(
− ε22x2a32 + ε3ε2 (x2a22 − x3a33) + ε23x3a23 + ε1x1

(
ε3a21886

− ε2a31
))

(x1a11 + x2a12 + x3a13 + r1) +
(
ε21x1a31 + ε1 (ε2x2a32 + ε3 (x3a33 − x1a11))887

− ε3 (ε2x2a12 + ε3x3a13)
)
(x1a21 + x2a22 + x3a23 + r2) .888

Proposition 4.11. If D(x) ̸= 0, the equilibria of the singular dynamics ẋ = Xs(x) are889

exceptional trajectories reduced to a point. At such a point xe, the spectrum of J = ∂Xs
∂x (xe)890

is a feedback invariant. Moreover the dynamics is foliated by the invariant set D′′(x) = 0 and891

D(x)D′′(x) > 0 or < 0 associated respectively to hyperbolic and elliptic arcs. The singular892

feedback us acts as a geometric pole placement of the dynamics on the collinear set.893

Proof. The proof is clear following the construction detailed in the proof of Proposition894

4.9.895

4.4.3. The 4d–case. This gives the road to the n–dimensional case.896

The singular exceptional control can be expressed as a feedback using the relation897

HX(z) = HY (z) = {HX , HY } (z) = 0898

{{HX , HY } , HX} (z) + use {{HX , HY } , HY } (z) = 0899

and this leads to900

use(x) = −D
′(x)

D(x)
,901

where902

D(x) = det(X(x), Y (x), [Y,X](x), [[Y,X], Y ](x)),903

D′(x) = det(X(x), Y (x), [Y,X](x), [[Y,X], X](x)).904

Similarly to the 3d–case, the singular exceptional dynamics: ẋ = X(x)+useY (x) can be used905

to generate feedback invariants.906

Remaining singular dynamics are parameterized by a dynamic feedback u(x, λ) depending907

upon a one dimensional coefficient.908

We refer to [9] for a general approach to compute feedback invariants for the dynamics.909

5. Conclusion. In this article we have presented the general techniques from geometric910

control to analyze in the permanent case, the optimal control problem related to vermin911

reduction in a complex microbiote modelled by the Lotka–Volterra equations.912

Our analysis is based on a series of articles classifying the time minimal syntheses for a913

single–input affine system with terminal manifold of codimension one developed for chemical914

networks [6, 7, 21]. Using the concepts of Whitney chart and unfolding the explicit computa-915

tions in a neighbourhood of the terminal manifold can be reduced to problems in dimension 2916
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Barnesiella (Bar.) 0.3680 Akkermansia (Akk.) 0.2297
undefined genus of Lachnospiraceae (Und. Lac.) 0.3102 Coprobacillus (Cop.) 0.8300
undefined genus of unclassified Mollicutes (Und. Mol.) 0.4706 Clostridium difficile (C. diff.) 0.3918
unclassified Lachnospiraceae (Uncl. La.) 0.3561 Enterococcus (Ent.) 0.2907
Blautia (Bla.) 0.7089 undefined genus of Enterobacteriaceae (Und. En.) 0.3236
Other 0.5400

Bar. Und. Lac. Uncl. Lac. Other Bla. Und. Mol. Akk. Cop. Und. En. Ent. C. diff.
Bar. -0.205 0.098 0.167 -0.164 -0.143 0.019 -0.515 -0.391 -0.268 0.008 0.346
Und. Lac. 0.062 -0.104 -0.043 -0.154 -0.187 0.027 -0.459 -0.413 -0.196 0.022 0.301
Uncl. Lac. 0.143 -0.192 -0.101 -0.139 -0.165 0.013 -0.504 -0.772 -0.206 -0.006 0.292
Other 0.224 0.138 0.000 -0.831 -0.223 0.220 -0.205 -1.009 -0.400 -0.039 0.666
Bla. -0.180 -0.051 0.000 -0.054 -0.708 0.016 -0.507 0.553 0.106 0.224 0.157
Und. Mol. -0.111 -0.037 -0.042 0.041 0.261 -0.422 -0.185 -0.432 -0.264 -0.061 0.164
Akk. -0.126 -0.185 -0.122 0.380 0.400 -0.160 -1.212 1.389 -0.096 0.191 -0.379
Cop. -0.071 0.000 0.080 -0.454 -0.503 0.169 -0.562 -4.350 -0.207 -0.223 0.443
Und. Ent. -0.374 0.278 0.248 -0.168 0.084 0.033 -0.232 -0.395 -0.384 -0.038 0.314
Ent. -0.042 -0.013 0.024 -0.117 -0.328 0.020 0.054 -2.096 0.023 -0.192 0.111
C. diff. -0.037 -0.033 -0.049 -0.090 -0.102 0.032 -0.181 -0.303 -0.007 0.014 -0.055

Table 1
(top) Growth rates aij of each microbial population i of the CDI model. (bottom) Interactions between

pairwise microbial populations of the CDI model. Both tables are excerpted from [27].

or 3 and a dictionary of the time minimal syntheses is described in [6, 21], up to codimension917

2 cases. Global syntheses can be described by gluing different Whitney charts.918

It can be applied to the controlled Lotka–Volterra model to analyze either the problem919

of reducing the infection using an antibiotic agent or to reinforce the body prior to infection920

using a probiotic agent. A case study is given to construct a global optimal synthesis by gluing921

distinct Whitney charts.922

Our article shows the parallel between the analysis of the free dynamics in the frame of dy-923

namical systems and the dynamics of the Hamiltonian dynamics deduced from the Maximum924

Principle which parameterizes the extremals candidates as minimizers.925

The complexity of the Hamiltonian dynamics for nonlinear control systems is related to926

the existence and their complexity of the singular extremals dynamics. Our contribution is to927

present preliminary analysis of this complexity, in the frame of the controlled Lotka–Volterra928

model. It is shown to be related to the collinear set on which are located the equilibrium of929

the free dynamics, where no treatment is applied, and the forced equilibrium associated to930

maximal treatment.931

An additional step in our analysis will be to analyze the problem in the sampled–data932

control frame in relation with the permanent case, see [8] for such an analysis.933
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