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EXISTENCE OF SOLUTIONS TO A SLIGHTLY SUPERCRITICAL PURE

NEUMANN PROBLEM

ANGELA PISTOIA, ALBERTO SALDAÑA, AND HUGO TAVARES

Abstract. We show the existence and multiplicity of concentrating solutions to a pure Neumann
slightly supercritical problem in a ball. This is the first existence result for this kind of problems in
the supercritical regime. Since the solutions must satisfy a compatibility condition of zero average,
all of them have to change sign. Our proofs are based on a Lyapunov-Schmidt reduction argument
which incorporates the zero-average condition using suitable symmetries. Our approach also guarantees
the existence and multiplicity of solutions to subcritical Neumann problems in annuli. More general
symmetric domains (e.g. ellipsoids) are also discussed.

1. Introduction

Let Ω = B1(0) be the unit ball in R
n (n ≥ 4) centered at the origin, q > 0, q 6= 1, and consider the

pure Neumann semilinear problem given by

−∆u = |u|q−1u in Ω, ∂νu = 0 on ∂Ω. (1.1)

Solutions of this problem for a general smooth domain are known to exist only for q ≤ p, where

p :=
n+ 2

n− 2

is the critical Sobolev exponent. The sublinear case q ∈ (0, 1) is studied in [18] via a minimization
problem with a nonsmooth constraint, while the superlinear-subcritical case q ∈ (1, p) can be handled
with a standard Nehari approach, see [28]. Finally, in contrast to the Dirichlet counterpart of (1.1)
(which does not have solutions for q ≥ p because of the Pohozaev identity), the pure Neumann problem
allows the existence of smooth solutions at the critical exponent q = p. For instance, one can find a
least-energy solution using the dual method [7]; this solution is classical and can also be obtained as
a C2,α–limit of slightly subcritical least-energy solutions [27]. These solutions must change sign, since,
integrating (1.1) over Ω, we have that

∫

Ω

|u|q−1u dx =

∫

Ω

−∆u dx =

∫

∂Ω

∂νu dσ = 0. (1.2)

In particular, this implies that for p = q there cannot be any radially symmetric solution (because
this would imply the existence of a radially symmetric solution to the Dirichlet problem in the nodal
component containing the origin).

In addition to the least-energy solution, one can also construct symmetric solutions with a gluing
approach, see for example [8].

The proofs of these results are non trivial, since one has to overcome the lack of compactness inherent
of critical problems. This difficulty is even greater in the supercritical regime q > p, for which no
existence result for (1.1) was previously known.

This is the question that motivates the present paper. In particular, we wish to answer the following
questions. For ε > 0, does the problem

−∆u = |u|p−1+εu in Ω, ∂νu = 0 on ∂Ω, (1.3)

admits a solution? Can one obtain multiple solutions? Is it possible to have solutions in other domains
which are not the unit ball?

We answer all these questions affirmatively in case the domain is either a ball or an annulus. For
this, we use a Lyapunov-Schmidt reduction strategy, which has several differences with respect to its
implementation in the study of Dirichlet problems. For instance, in Neumann problems the maxima
and minima of the solutions can be located at specific points on the boundary (and not necessarily in
the interior of the domain, as in the Dirichlet case). This difference implies important changes in the
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method, since the curvature of the boundary now plays an important role and the blow-up analysis in
the Neumann case leads (after a rescaling) to a limiting problem in the halfspace (see Lemma 2.2).

The Lyapunov-Schmidt reduction strategy has been used previously to construct positive solutions
with bubbling behavior around one or more critical points of mean curvature, with positive mean cur-
vature, to the Neumann problem

−∆u+ µu = uq in Σ, ∂νu = 0 on ∂Σ, (1.4)

when the parameter µ → +∞, q = p in [2, 3, 14, 15, 24, 29], and Σ ⊂ R
N is a general bounded

smooth domain. A similar approach has been also used to obtain solutions to (1.4) when µ > 0 is fixed
and q = p ± ε with ε sufficiently small, which blows-up at critical points of the mean curvature of the
boundary with positive mean curvature if ε > 0 and negative mean curvature if ε < 0, see [11, 25, 26].
In all the previous cases, the presence of the linear term µu allows to use as building block the single
bubble. In the pure Neumann case, namely, with µ = 0, the natural constraint (1.2) forces the solutions
to be sign changing. It is natural, therefore, to look for solutions which are the sum of two single bubbles
with different signs concentrated at two suitable different points. We do not known if a construction
with a single bubble with a small negative part can be done. In symmetric domains, we show below
that the blow-up points can be positioned at points on the boundary that are critical points of the mean
curvature and that preserve a particular symmetric arrangement after a translation, see Remark 3.3. The
symmetry of the domain simplifies the choice of the two concentration points and reduces the number
of unknowns in the Lyapunov-Schmidt reduction. As a side result of independent interest, we also show
the existence of new (concentrating) solutions in the slightly subcritical regime in an annuli.

Before we state our main results, we need to introduce some notation. Let

Uδ,ξ(x) := αn
δ

n−2
2

(δ2 + |x− ξ|2)n−2
2

, where ξ ∈ R
N , δ > 0, αn := [n(n− 2)]

n−2
4 . (1.5)

This family of functions are called bubbles and represent the unique positive solutions in D1,2(RN ) of

−∆U = Up in R
n.

For every t > 1 and h ∈ Lt(Ω) satisfying
∫
Ω
h = 0, we denote by

K(h) = u ∈W 2,t(Ω) (1.6)

the unique solution to the (pure) Neumann problem

−∆u = h in Ω, ∂νu = 0 on ∂Ω,

∫

Ω

u = 0. (1.7)

Furthermore, for ũ ∈ W 2,t
loc (R

n) such that
∫
Ω
∆ũ = 0, we write

P ũ := K(−∆ũ).

Let Wδ := Uδ,en − Uδ,−en , where en := (0, . . . , 0, 1) ∈ R
n. Then PWδ is the solution of

−∆PWδ = −∆Wδ = Up
δ,en

− Up
δ,−en

in Ω, ∂νPWδ = 0 on ∂Ω,

∫

Ω

PWδ = 0.

Observe that
∫
Ω
(Up

δ,en
− Up

δ,−en
) = 0 is satisfied. Set

sε := p+ 1 + ε =
2n

n− 2
+ ε (1.8)

and let

Hε := {u ∈ H1(Ω) ∩ Lsε(Ω) : u is odd in xn and even in xi for i = 1, . . . , n− 1}

=

{
u ∈ H1(Ω) ∩ Lsε(Ω) :

u(x1, . . . , xn−1,−xn) = −u(x1, . . . , xn−1, xn)
u(x1, . . . ,−xi, . . . , xn) = u(x1, . . . , xi, . . . , xn), i = 1, . . . , n− 1

}
,

endowed with the norm

‖u‖Hε = ‖u‖+ |u|sε .

Our main existence result is the following.
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Theorem 1.1. Let n ≥ 4 and let Ω = B1(0) ⊂ R
n be the unit ball centered at the origin. Then there is

ε0 > 0 such that, for ε ∈ (0, ε0), the problem (1.3) has a solution uε ∈ Hε of the form

uε = PWδε,en + φε,

where

δε = d(ε)ε,

with d(ε) → d∗ as ε → 0, for d∗ > 0 given explicitly by (5.1) below. Moreover, φε ∈ Hε is such that
‖φε‖H1(Ω) → 0 as ε→ 0.

As mentioned before, Theorem 1.1 is proved using a Lyapunov-Schmidt reduction method in the space
Hε. In particular, these solutions are odd and therefore we have that

∫

Ω

uε =

∫

Ω

|uε|tuε = 0 for any 0 < t ≤ p+ ε.

Of course, the problem (1.3) could have solutions which do not belong to Hε. For instance, we do not
know if a solution can be constructed using only one bubble.

We believe that our techniques can be adapted to other situations, which we describe next. Theorem
1.1 is concerned with solutions which look like the difference of two bubbles. In the same spirit of [10]
and [19], it is natural to guess the existence of solutions on the unit ball that look like the sum of 2k
bubbles with alternating signs. More precisely, for ξ = (ξ1, . . . , ξn) ∈ R

n and θ ∈ [0, 2π), let

Rθ : Rn → R
n be given by Rθξ = (ξ1 cos θ − ξn sin θ, ξ2, . . . , ξn−1, ξ1 sin θ + ξn cos θ),

namely, Rθ is a rotation through an angle θ in the plane generated by e1 = (1, 0, . . . , 0) and en =
(0, . . . , 0, 1). Then, for small ε ∈ (0, ε0), the supercritical problem (1.3) should have a solution uε ∈ Hε

of the form

uε = P

(
2k−1∑

i=0

(−1)iUδε,ξi

)
+ φε, (1.9)

where ξi := Riπk
en, δε = d(ε)ε, d(ε) → d∗ as ε → 0, and φε ∈ Hε is such that ‖φε‖H1(Ω) → 0 as ε → 0.

In Remark 3.3 we explain why the blow-up points xi require these particular arrangement. Comparing
with Theorem 1.1, the proof of this result should be more technical and we leave it as an open problem.
It would be also interesting to investigate the existence of solutions exhibiting a clustering phenomena
as in [30].

We also mention that our approach should be easily adapted to other symmetric domains. For instance,
in an ellipsoid in R

n (n ≥ 4) one can center two bubbles with opposite signs at the two antipodal points
with the largest mean curvature (the vertex) and also other two bubbles with opposite signs at the two
antipodal points with the smallest mean curvature (the co-vertex). In fact, the n−dimensional ellipse
may have n different solutions blowing up at the critical points of the mean curvature which lie on
opposite axis. A similar approach can be used to consider symmetric bounded smooth domains (not
necessarily convex). For instance, let

Ω be symmetric with respect to xi for every i = 1, . . . , n, (1.10)

that is, (x1, . . . , xi−1,−xi, xi+1, . . . , xn) ∈ Ω ⇐⇒ (x1, . . . , xi−1, xi, xi+1, . . . , xn) ∈ Ω. Furthermore,
given k ∈ N and Rθ as before, assume that Ω is invariant under the rotation Rπ

k
. If ξ ∈ ∂Ω is a

critical point of the mean curvature with positive mean curvature, then (1.9) holds with ξi = Ri π
k
with

i = 0, . . . , 2k− 1. We refer the reader to Remarks 3.3 and A.3 for more details. This shows an important
difference between our approach and the one in [26], where the concentration point must be at a point
maximizing the main curvature. In our case, the symmetries imposed on the domain allow for different
configurations.

In the case of a general C1 domain (without symmetries), however, it remains an open question the
existence of solutions to (1.3). The main difficulty is that, without the symmetries, it is not clear where
to position the concentration points in order to maintain the zero average constraint needed to solve
Neumann problems.

Finally, we mention that the techniques presented in this paper can also be used to guarantee the
existence of blowing-up solutions to slightly subcritical problems in symmetric domains, but in the
subcritical case the blow-up points must be positioned at points of negative curvature. For example, we
have the following.
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Theorem 1.2. Let n ≥ 4, k ∈ N, and let Ω ⊂ R
n be a an annulus centered at the origin

Ω := {x ∈ R
n : a < |x| < b} for some 0 < a < b.

There exists ε0 > 0 such that, for ε ∈ (0, ε0), there is a solution uε ∈ Hε of the form (1.9) for

(1) the subcritical problem

−∆u = |u|p−1−εu in Ω, ∂νu = 0 on ∂Ω,

where ξi := aRi π
k
en, δ

ε = dεε, dε → d∗ as ε → 0, and φε ∈ Hε is such that ‖φε‖H1(Ω) → 0 as
ε→ 0.

(2) the supercritical problem

−∆u = |u|p−1+εu in Ω, ∂νu = 0 on ∂Ω,

where ξi := bRi π
k
en, δ

ε = dεε, dε → d∗ as ε → 0, and φε ∈ Hε is such that ‖φε‖H1(Ω) → 0 as
ε→ 0.

These solutions would be the pure Neumann analog of the positive solutions of (1.4) found in [26].

To close this introduction, we point out some closing remarks. In this work, we have only considered
dimensions n ≥ 4. Dimension n = 3 requires more delicate computations (cf. [24] for the correction term
in a similar problem) and we do not pursue this here. Furthermore, here we have only considered smooth
domains, but we believe a similar approach could also be used in symmetric domains with corners such
as a cube {x = (x1, . . . , xn) ∈ R

n : |xi| < 1 for i = 1, . . . , n} with concentrating points en and −en.
Other polygonal domains could also be considered. If the concentration points are placed at the corners,
we point out that the expansion given in Lemma 2.2 would need to be adjusted with a different limiting
profile for ϕ0.

The paper is organized as follows. In Section 2 we give some preliminaries and construct the Ansatz
that we use in our proofs. In Section 3 we reduce the problem of finding a solution of (1.3) to finding a
critical point of a functional in a space of dimension one. Finally, in Section 4 we show that the reduced
problem does have a critical point and in Section 6 we discuss some open problem.

1.1. Acknowledgments. We thank the referees for their careful reading of our paper and for their
valuable comments and suggestions that helped us to substantially improve this paper. A. Saldaña is
supported by UNAM-DGAPA-PAPIIT grants IA101721 and IA100923 (Mexico), by CONACYT grant
A1-S-10457 (Mexico), and by the 2021 Visiting Professor Programme of La Sapienza University (Italy).
H. Tavares is partially supported by the Portuguese government through FCT-Fundação para a Ciência
e a Tecnologia, I.P., under the projects UID/MAT/04459/2020 and PTDC/MAT-PUR/1788/2020.

2. Preliminaries and the Ansatz.

Recall that, from now on, we take Ω = B := B1(0) ⊂ R
n, n ≥ 4 and p = (n+ 2)/(n− 2). For t > 0,

let

|u|t :=
(∫

B

|u|t
) 1

t

〈u, v〉 :=
∫

B

∇u · ∇v and ‖u‖ :=

(∫

B

|∇u|2
) 1

2

.

In particular, ‖ · ‖ is an equivalent norm in the Hilbert space {u ∈ H1(B) :
∫
B
u = 0}.

It is well known (see [6]) that the space of solutions of the linearized equation

−∆V = pUp−1
δ,ξ V, V ∈ D1,2(Rn) (2.1)

has dimension n+ 1, being spanned by

∂δUδ,ξ(x) = αn
n− 2

2
δ

n−4
2

|x− ξ|2 − δ2

(δ2 + |x− ξ|2)n
2
, ∂ξiUδ,ξ(x) = −αnδ

n−2
2 (xi − ξi)

(δ2 + |x− ξ|2)n
2
, i = 1, . . . , n,

where Uδ,ξ is given by (1.5).
Therefore, the space of solutions of

−∆v = pUp−1
1,0 v, v ∈ D1,2(Rn), (2.2)

which are even in x1, . . . , xn−1,

is spanned by V := ∂δUδ,0

∣∣
δ=1

= αn
n− 2

2

|x|2 − 1

(1 + |x|2)n
2
. (2.3)

4



For future convenience, we observe that

δ |∂δUδ,ξ(x)| ≤ Uδ,ξ(x). (2.4)

Lemma 2.1. The operator K (given in (1.6)) satisfies the following.

(1) Let h ∈ L
2n

n+2 (B) with
∫
B
h = 0. Then there exists c > 0 such that

‖Kh‖ ≤ c|h| 2n
n+2

. (2.5)

(2) Let s > n
n−2 and h ∈ L

ns
n+2s (B) with

∫
B h = 0. Then Kh ∈ Ls(B) and

|Kh|s ≤ c|h| ns
n+2s

(2.6)

for some positive constant c which depends only on n, s and B.

Proof. Proof of (a). By using integration by parts, Hölder’s inequality, and Sobolev embeddings,

‖Kh‖2 =
∫

B

∇(Kh) · ∇(Kh) =

∫

B

(Kh)h ≤ |Kh| 2n
n−2

|h| 2n
n+2

≤ c‖Kh‖ |h| 2n
n−2

,

from which (2.5) follows.

Proof of (b). The assumptions imply that ns
n+2s > 1, so that L

ns
n+2s (B) ⊂ L1(B) and

∫
B h is well

defined. By elliptic regularity theory (see [23, Theorem and Lemma in page 143] or [4, Theorem 15.2])
there exists C = C(B, n, s) such that ‖Kh‖2, ns

n+2s
≤ C|h| ns

n+2s
, and (2.6) follows from the Sobolev

embedding W 2, ns
n+2s (B) →֒ Ls(B). �

We also use the following notation:

ω+ := B ∩B 1
2
(en) and ω− := B ∩B 1

2
(−en). (2.7)

As in the previous section, we let Wδ := Uδ,en − Uδ,−en and let PWδ be the solution of

−∆PWδ = −∆Wδ = Up
δ,en

− Up
δ,−en

in B, ∂νPWδ = 0 on ∂B,

∫

B

PWδ = 0.

That is, PWδ = K(−∆PWδ) = K(Up
δ,en

− Up
δ,−en

). Observe that, since Up
δ,en

− Up
δ,−en

is odd in xn and

even in x1, . . . , xn−1, then so is PWδ. Let R
n
+ := {x ∈ R

n : xn > 0} and let ϕ0 be the solution of

−∆ϕ0 = 0 in R
n
+,

∂ϕ0

∂xn
= αn

n− 2

2

|x′|2
(1 + |x′|2)n

2
on ∂Rn

+, ϕ0 → 0 as |x| → ∞. (2.8)

We then have the following expansion, whose proof can be found in Appendix A.

Lemma 2.2. For n ≥ 4, it holds that, for x ∈ B,

PWδ(x) =Wδ(x)− δ−
n−4
2

(
ϕ0

(en − x

δ

)
− ϕ0

(en + x

δ

))
+ ζδ(x),

where

ζδ = O(δ
6−n

2 ) and ∂δζδ = O(δ
4−n

2 ) as δ → 0 for n ≥ 5,

ζδ = O(δ log δ) and ∂δζδ = O(log δ) as δ → 0 for every ε ∈ (0, 1) and n = 4,

uniformly in B. Moreover, there exists C > 0 such that

|ζδ(x)|, |PWδ(x) −Wδ(x)| ≤
Cδ

n−2
2

(δ + |x− en|)n−3
+

Cδ
n−2
2

(δ + |x+ en|)n−3

=
Cδ

4−n
2

(1 + |x−en
δ |)n−3

+
Cδ

4−n
2

(1 + |x+en
δ |)n−3

. (2.9)

|∂δζδ(x)|, |∂δ(PWδ(x) −Wδ(x))| ≤
Cδ

n−4
2

(δ + |x− en|)n−3
+

Cδ
n−4
2

(δ + |x+ en|)n−3

=
Cδ

2−n
2

(1 + |x−en
δ |)n−3

+
Cδ

2−n
2

(1 + |x+en
δ |)n−3

. (2.10)

A straightforward consequence of the estimates (2.9) and (2.10) is the following.
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Corollary 2.3. For every τ ∈
[
n−3
n−2 , 1

]
, there exists κ = κ(τ) > 0 such that

|PWδ −Wδ|, |δ∂δ(PWδ −Wδ)| ≤ κ(Uδ,en + Uδ,−en)
τ for every x ∈ B,

and there exists C > 0 such that |PWδ|, |δ∂δPWδ| ≤ C(Uδ,en + Uδ,−en).

By performing the rescaling

y =
x+ en
δ

for x ∈ ω− = B ∩B 1
2
(−en)

and

y =
en − x

δ
for x ∈ ω+ = B ∩B1(en),

we have that the rescaled projections have remainder terms that go to zero.

Corollary 2.4. As δ → 0, we have

δ
n−2
2 PWδ(δy − en) = −U1,0(y) + δϕ0(y) +O(δ2), (2.11)

δ
n−2
2 PWδ(δy + en) = U1,0(x)− δϕ0(−x) +O(δ2), (2.12)

uniformly in y ∈ B 1
δ
(0) ∩B 1

δ
( enδ ).

Proof. Let x ∈ ω− and let x = δy − en. Then y ∈ B 1
2δ
(0) ∩B 1

δ
( enδ ), |y − 2en

δ | ≥ 3
2δ and

δ
n−2
2 PWδ(δy − en) = U1,− 2en

δ
(y)− U1,0(y) + δϕ0(y)− δϕ0

(2en
δ

− y
)
+O(δ2).

Then

U1,− 2en
δ
(y) =

αn
(
1 +

∣∣y − 2en
δ

∣∣2
)n−2

2

= O(δn−2),

δϕ0(y)− δϕ0

(2en
δ

− y
)
= O

(
δ

(
1 +

∣∣y − 2en
δ

∣∣)n−3

)
= O(δn−2),

where we used the estimate (A.2) in the second identity. Since n ≥ 4, then O(δn−2) = O(δ2) and (2.11)
holds true. The estimate (2.12) follows in an analogous way. �

2.1. The Ansatz. Let wδ = PWδ(x) and fε(t) := |t|p−1+εt. We search for a solution of (1.3) of the
form

u = PWδ + φ = wδ + φ,

where

δ = dε,

d ∈ {c ∈ R : η < c < 1/η} for a small 0 < η < 1, φ ∈ Hε. Using this Ansatz in the equation, we obtain

wδ + φ = K(fε(wδ + φ)), (2.13)

or, equivalently,

φ−K(f ′
ε(wδ)φ) = K(fε(wδ + φ)− fε(wδ)− f ′

ε(wδ)φ) + (K(fε(wδ))− wδ).

Observe that f ′
ε(wδ)φ, fε(wδ +φ)− fε(wδ)− f ′

ε(wδ)φ and fε(wδ) are odd in xn and even in x1, . . . , xn−1,
so φ−K(f ′

ε(wδ)φ), K(fε(wδ + φ) − fε(wδ)− f ′
ε(wδ)φ) and K(fε(wδ))− wδ have the same symmetries.

The fact that they belong to H1(B) ∩ Lsε(B), and hence to Hε, will be checked in the next section.
Define

Θd,ε := span {δ∂δwδ} and Θ⊥
d,ε = {φ ∈ Hε : 〈φ, δ∂δwδ〉 = 0}

and let Πε : Hε → Θd,ε, Πε : Hε → Θ⊥
d,ε be the orthogonal projections:

Πε(φ) := ‖∂δwδ‖−2 〈φ, ∂δwδ〉 ∂δwδ, Π⊥
ε (φ) := φ−Πε(φ).

The following estimate will be used in the next section.

Lemma 2.5. Let 0 < η < 1 and take δ = dε with η < d < 1
η . There exists C = C(n, η) > 0 such that,

as ε→ 0,

‖Π⊥
ε φ‖Hε ≤ C(‖φ‖ + |φ|sε) for every φ ∈ Hε,

where sε is defined in (1.8).
6



Proof. Since Π⊥
ε is a projection, it is clear that ‖Π⊥

ε φ‖ ≤ ‖φ‖ for every φ ∈ Hε. As for the Lsε–norm,
by Cauchy-Schwarz inequality we have

|Π⊥
ε φ|sε ≤ |φ|sε + |Πε(φ)|sε ≤ |φ|sε +

|δ∂δwδ|sε
‖δ∂δwδ‖

‖φ‖.

By Lemma B.10, there exists c > 0 such that ‖δ∂δwδ‖ ≥ c. On the other hand, by Corollary 2.3,
|δ∂δwδ(x)| ≤ (Uδ,en + Uδ,−en). Combining this with Lemma B.3, we deduce that, as ε→ 0,

|δ∂δwδ|sε ≤ C(|Uδ,en |sε + |Uδ,−en |sε) ≤ Cε−ε (n−2)2

4n+2ε(n−2) = O(1)

and the proof is finished. �

We then decompose (2.13) in

Πε (wδ + φ) = Πε ◦K(fε(wδ + φ)), (2.14)

Π⊥
ε (wδ + φ) = Π⊥

ε ◦K(fε(wδ + φ)), (2.15)

and rewrite (2.15) as

Ld,εφ = Nd,ε(φ) +Rd,ε, (2.16)

where

Ld,εφ := Π⊥
ε (φ−K(f ′

ε(wδ)φ)) ,

Nd,ε(φ) := Π⊥
ε ◦K (fε(wδ + φ)− fε(wδ)− f ′

ε(wδ)φ) ,

Rd,ε := Π⊥
ε (K(fε(wδ))− wδ) .

3. Reduction to a finite dimensional problem

This section is dedicated to the treatment of (2.15), more precisely to the proof of the following result.

Proposition 3.1. For every 0 < η < 1 sufficiently small there exists ε0 > 0 and C > 0 such that,
whenever ε ∈ (0, ε0) and d ∈ (η, 1/η), there exists a unique function φ = φd,ε ∈ Θ⊥

d,ε solving the equation

Ld,εφ = Nd,ε(φ) +Rd,ε,

and satisfying

‖φd,ε‖Hε(B) = o(ε1−γ) for every small γ > 0, (3.1)

as ε→ 0, uniformly in d ∈ (η, 1/η). Moreover, the map (η, 1/η) → Θ⊥
d,ε, d 7→ φd,ε is of class C1.

The proof of this result has the following structure: first, in Subsection 3.1, we check that Ld,ε is an
invertible operator with continuous inverse in Θ⊥

d,ε. Therefore, (2.16) can be written as

φ = L−1
d,ε(Nd,ε(φ) +Rd,ε)

and

‖φ‖Hε ≤ C(‖Nd,ε(φ)‖Hε + ‖Rd,ε‖Hε).

In Subsection 3.2 we prove the estimate ‖Rd,ε‖Hε = O(ε1−γ) for every γ ∈ (0, 1), and in Subsection
3.3 we conclude the proof of Proposition 3.1, showing that the operator Nd,ε is of higher order with
respect to φ, which allows the use of a fixed point argument and the implicit function theorem. The
main difficulties in these steps arise from the fact that we are dealing with a superlinear problem, which
require delicate estimates in Lsε-norms; moreover, the symmetry assumptions on both the domain and
the functions play a crucial role in the proof of the invertibility of the linear operator Ld,ε; see, for
instance Remark 3.3 below.
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3.1. Estimates for the linear part Ld,ε.

Proposition 3.2. For every η ∈ (0, 1) small enough there exists ε0 > 0 small, and C > 0, such that if
ε ∈ (0, ε0) then

‖Ld,ε(φ)‖Hε ≥ C‖φ‖Hε ∀φ ∈ Θ⊥
d,ε, d ∈ (η, 1/η). (3.2)

Moreover, Ld,ε is invertible in Θ⊥
d,ε, with continuous inverse.

Proof. We adapt the proof of [17, Lemma 3.1] to our setting. We argue by contradiction, assuming there
exists η ∈ (0, 1), dk ∈ (η, 1/η) with dk → d∗, εk → 0 and φk ∈ Θ⊥

dk,εk
such that

‖φk‖Hεk
= 1, ‖hk‖Hεk

→ 0, (3.3)

where

hk := Ldk,εk(φk) ∈ Θ⊥
dk,εk (3.4)

Denote also δk := dkεk → 0 and Zδ := δ∂δWδ. By (3.4),

φk −K(f ′
εk
(wδk)φk) = hk + zk (3.5)

with zk ∈ Θdk,εk , which means there exists ck ∈ R such that

zk = ckPZδk . (3.6)

Step 1. Check that ‖zk‖Hεk
→ 0.

We test (3.5) with zk. Since 〈φk, zk〉 = 〈hk, zk〉 = 0,

‖zk‖2 = −
∫

B

f ′
εk
(wδk)φkzk.

Using that zk = ckPZδk ,

c2k‖PZδk‖2 = −ck
∫

B

f ′
εk(wδk)φkPZδk . (3.7)

Now, by Lemma B.10,

‖PZδk‖2 = κ+ o(1), (3.8)

for some κ > 0, while

0 = 〈zk, φk〉 = ck

∫

B

δk(f
′
0(Uδk,en)∂δUδk,en − f ′

0(Uδk,−en)∂δUδk,−en)φk,

where ∂δUδk,±en := ∂δUδ,±en |δ=δk . Then,∫

B

f ′
εk(wδk)φkPZδk =

∫

B

f ′
εk(wδk)φk(PZδk − Zδk) +

∫

B

(f ′
εk(wδk)− f ′

0(wδk))φkZδk

+

∫

B

(f ′
0(wδk )Zδk − f ′

0(Uδk,en)δk∂δUδk,en + f ′
0(Uδk,−en)δk∂δUδk,−en)φk. (3.9)

Note that, by Corollary 2.3, Lemmas B.3 and B.13, (3.3) and by (3.8),

T1 :=

∣∣∣∣
∫

B

f ′
εk(wδk)φk(PZδk − Zδk)

∣∣∣∣ ≤ |f ′
εk(wδk)|n2 |φk|2∗ |PZδk − Zδk |2∗ = o(1).

Similarly, by Lemmas B.3 and B.13, (3.3), and (2.4),

T2 :=

∣∣∣∣
∫

B

(f ′
εk
(wδk)− f ′

0(wδk))φkZδk

∣∣∣∣ ≤ |f ′
εk
(wδk)− f ′

0(wδk)|n2 |φk|2∗ |Zδk |2∗ = o(1).

Finally, recalling that wδk = PWδk = P (Uδk,en − Uδk,−en) and that Zδk = δk∂δUδk,en − δk∂δUδk,−en ,

T3 :=

∣∣∣∣
∫

B

(f ′
0(wδk)Zδk − f ′

0(Uδk,en)δk∂δUδk,en + f ′
0(Uδk,−en)δk∂δUδk,−en)φk

∣∣∣∣

≤
∫

B

|f ′
0(wδk)− f ′

0(Uδk,en)||δk∂δUδk,en ||φk|+
∫

B

|f ′
0(wδk )− f ′

0(Uδk,−en)||δk∂δUδk,−en ||φk|

≤ 2|Uδk,en |2∗ |φk|2∗ |f ′
0(wδk)− f ′

0(Uδk,en)|n2 = o(1),

where we used (2.4), (3.3) and Lemma B.13.
Then, by (3.7), (3.9), and the fact that T1 +T2 +T3 = o(1), we have that ck → 0. Therefore, by (3.6)

and (3.8), we conclude that ‖zk‖Hεk
→ 0.
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Step 2. Prove that

lim inf
k→∞

∫

B

f ′
εk(wδk)u

2
k > 0, (3.10)

where uk := φk − hk − zk, which satisfies

uk = K(f ′
εk
(wδk)φk) = K(f ′

εk
(wδk)uk + f ′

εk
(wδk)(hk + zk)) (3.11)

or, equivalently,
{
−∆uk = f ′

εk
(wδk)φk = f ′

εk
(wδk)uk + f ′

εk
(wδk)(hk + zk) in B,∫

B uk = 0, ∂νuk = 0 on ∂B,
(3.12)

and ‖uk‖Hεk
→ 1 (by Step 1). We claim that

lim inf
k→∞

‖uk‖ > 0. (3.13)

Indeed, by using (3.3), (3.11), Lemmas 2.1 and B.13, and Step 1,

|uk|sεk ≤ C

(
|f ′

εk
(wδk)uk| nsεk

n+2sεk

+ |f ′
εk
(wδk)(hk + zk)| nsεk

n+2sεk

)

≤ C|f ′
εk
(wδk)| (p+1)nsεk

(p+1)(n+2sεk
)−nsεk

|uk|p+1 + C|f ′
εk
(wδk )|n2 |hk + zk|sεk ≤ C‖uk‖+ o(1),

where we have used that
(p+1)nsεk

(p+1)(n+2sεk )−nsεk
= n

2 +O(εk) and |f ′
εk
(wδk)| (p+1)nsεk

(p+1)(n+2sεk
)−nsεk

= O(1) as k →

∞, by Corollary 2.3 and Lemma B.3. Therefore, if ‖uk‖ → 0, then also |uk|sεk → 0 and ‖uk‖Hεk
→ 0, a

contradiction. Hence, the claim (3.13) is true.
Next, testing (3.12) with uk, we obtain

‖uk‖ =

∫

B

f ′
εk(wδk)u

2
k +

∫

B

f ′
εk(wδk)(hk + zk)uk. (3.14)

Since ∣∣∣∣
∫

B

f ′
εk
(wδk)(hk + zk)uk

∣∣∣∣ ≤ |f ′
εk
(wδk)|n2 |hk + zk|2∗ |uk|2∗ ≤ C‖hk + zk‖Hεk

|uk|Hεk
→ 0,

combining this with (3.13) and (3.14) yields directly (3.10), which is the goal of Step 2.

Step 3. Since B is a smooth domain, there is an extension operator E : H1(B) → H1(RN ) such that
Euk = uk in B and

‖∇Euk‖L2(Rn) ≤ ‖Euk‖H1(Rn) ≤ C‖uk‖H1(B),

for some constant C = C(B) > 0. Since uk has zero average in B, the Poincaré-Wirtinger inequality
implies that

‖∇Euk‖L2(RN ) ≤ C′‖∇uk‖L2(B),

for some constant C′ = C′(B) > 0.
We identify uk with its extension. Define

ûk(y) = δ
n−2
2

k uk(δky + en), and Ωk :=
B − en
δk

= B 1
δk

(−en
δk

), (3.15)

which is such that ∫

Rn

|∇ûk|2 ≤ C′
∫

B

|∇uk|2 = C′
∫

Ωk

|∇ûk|2.

Therefore, (ûk) is a bounded sequence in D1,2(Rn) and, passing to a subsequence, there is u0 ∈ D1,2(Rn)
such that

ûk → u0 weakly in D1,2(Rn), strongly in Lq
loc(R

n) for all q ∈ [2, 2∗). (3.16)

We want to prove that u0 = 0.
We have, for x = δky + en ∈ B and y ∈ Ωk, that

{
−∆ûk(y) = δ2kf

′
εk
(wδk (x))ûk(y) + δ2kf

′
εk
(wδk (x))(ĥk(y) + ẑk(y)),∫

Ωk
ûk = 0,
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where ĥk(y) = δ
n−2
2

k hk(δky + en), ẑk(y) = δ
n−2
2

k hk(δky + en). Moreover, for y ∈ ∂Ωk,

∂ν ûk(y) = δ
n
2

k ∇uk(δky + en) · ν(y) = δ
n
2

k ∇uk(δky + en) ·
δky + en
|δky + en|

= δ2k∇uk(x) ·
x

|x| = 0.

Let ϕ ∈ C∞
c (Rn

+). Then, by dominated convergence, Corollary 2.3, (3.16), and by ‖hk‖, ‖zk‖ → 0,
∫

R
n
+

∇u0∇ϕ = lim
k→∞

∫

Ωk

∇ûk∇ϕ = lim
k→∞

∫

Ωk

δ2kf
′
εk(wδk(δky + en))ûk(y)ϕ(y) dy

+ lim
k→∞

∫

Ωk

δ2kf
′
εk(wδk(δky + en))(ĥk(y) + ẑk(y))ϕ(y) dy =

∫

R
n
+

f ′
0(U1,0)u0ϕ.

Then u0 would be a solution of

−∆u0 = f ′
0(U1,0)u0 in R

n
+, ∂νu0 = 0 on ∂Rn

+.

Identifying u0 with its even reflection with respect to ∂Rn
+, we obtain that u0 is a solution of

−∆u0 = f ′
0(U1,0)u0 in R

n, u0 ∈ D1,2(Rn). (3.17)

Since uk ∈ Hεk , then uk is even with respect to x1, . . . , xn−1. This is preserved under the change of
variables y 7→ δky + en and under the even reflection with respect to ∂Rn

+, so we have that

ûk is also even in the coordinates x1, . . . , xn−1. (3.18)

Therefore, u0 is also even with respect to x1, . . . , xn−1. By (2.3), we have that u0 = cV with V as in
(2.3). We claim that c = 0. Indeed, since uk is odd with respect to xn and B = B1(0), we have that

∫

B

ukf
′
0(Uδk,en)δk∂δUδk,en = −

∫

B

ukf
′
0(Uδk,−en)δk∂δUδk,−en ,

and therefore,

c

∫

Rn

|∇V |2 = 2

∫

R
n
+

∇V∇u0 = 2

∫

Ωk

∇V∇ûk + o(1)

= 2

∫

Ωk

ûkf
′(U1,0)V + o(1) = 2

∫

B

ukf
′
0(Uδk,en)δk∂δUδk,en + o(1)

=

∫

B

uk[f
′
0(Uδk,en)δk∂δUδk,en − f ′

0(Uδk,−en)δk∂δUδk,−en ] + o(1)

= 〈uk, PZδk〉+ o(1) = 〈zk, PZδk〉+ o(1) = o(1),

where we used that uk = φk − hk − zk in B and that ‖zk‖Hεk
→ 0, by Step 1. Therefore, c = 0 and

u0 = 0.

Step 4. Finally, we check that

lim inf
k→∞

∫

B

f ′
εk(wδk)u

2
k = 0, (3.19)

which contradicts (3.10) and concludes the proof of the proposition. Observe that, using Corollary 2.3,
∣∣∣∣
∫

B

f ′
εk
(wδk)u

2
k

∣∣∣∣ ≤ C

∫

B

|PWδk |
4

n−2+εk |uk|2 ≤ C

∫

B

(U
4+εk(n−2)

n−2

δk,en
+ U

4+εk(n−2)

n−2

δk,−en
)|uk|2

We split B = ω+ ∪ ω− ∪ (B \ (ω+ ∪ ω−)). On B \ (ω+ ∪ ω−), we have
∫

B\{ω+∪ω−}
(U

4+εk(n−2)

n−2

δk,en
+ U

4+ε(n−2)
n−2

δk,−en
)u2k ≤ Cδ

4+εk(n−2)

n−2

k

∫

B

u2k = O(δ
4+εk(n−2)

2

k ) = o(1).

On ω+, considering the extension of uk to the whole Rn and considering the blowup sequence ûk defined
in (3.15), we have

∫

ω+

(U
4+εk(n−2)

n−2

δk,en
+ U

4+ε(n−2)
n−2

δk,−en
)u2k =

∫

ω+

U
4+εk(n−2)

n−2

δk,en
u2k + o(1) ≤ C

∫

Ωk

U
4+εk(n−2)

n−2

1,0 û2k + o(1)

≤ C

∫

Rn

1

(1 + |y|2)2 û
2
k + o(1) = o(1),

since û2k ⇀ 0 in L
n

n−2 (Rn) and 1
(1+|y|2)2 ∈ L

n
2 (Rn).
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Considering now the blowup sequence at −en given by y 7→ δ
n−2
2

k uk(δky−ek), we prove in an analogous
way that ∫

ω−

(U
4+εk(n−2)

n−2

δk,en
+ U

4+ε(n−2)
n−2

δk,−en
)u2k = o(1). �

Remark 3.3. In the previous proof, a key ingredient is that (3.18) holds, namely, that if ϕ ∈ Hε then

ϕ̂(y) := δ
n−2
2 ϕ(δky+en) is even in the coordinates x1, . . . , xn−1. This property imposes some restrictions

when considering the more general case of (1.9) where 2k bubbles are considered. In particular, it explains
why the blow-up points xi need to be positioned at regular angles and why the signs must be alternating.

3.2. Estimates for the zero order term Rd,ε. In this subsection we prove the following asymptotic
bound for Rd,ε.

Proposition 3.4. Let γ ∈ (0, 1), 0 < η < 1 and δ = dε. Then

‖Rd,ε‖Hε = O(ε1−γ)

as ε→ 0, uniformly in d ∈ (η, 1/η).

Observe that

Rd,ε = Π⊥
ε (K(fε(wδ))− wδ) = Π⊥

ε (K(fε(wδ)− f0(wδ) + f0(wδ))− wδ)

= Π⊥
ε (K(fε(wδ)− f0(wδ))) + Π⊥

ε (K(f0(wδ))− wδ).

Since ‖ · ‖Hε = ‖ · ‖+ | · |sε and using Lemma 2.5,

‖Rd,ε‖Hε ≤C (‖K(fε(wδ)− f0(wδ))‖+ ‖K(f0(wδ))− wδ‖
+|K(fε(wδ)− f0(wδ))|sε + |K(f0(wδ))− wδ|sε) . (3.20)

Thus we need to estimate

‖K(f0(w)) − wδ‖, ‖K(fε(wδ)− f0(wδ))‖,
(see Lemmas 3.5 and 3.6 below) as well as

|K(fε(wδ)− f0(wδ))|sε , |K(f0(wδ))− wδ|sε
(Lemmas 3.7 and 3.8 below). The proof of Proposition 3.4 will follow directly from this.

Lemma 3.5. Let η ∈ (0, 1), d > 0 and δ = dε. We have that, for every γ ∈ (0, 1),

‖K(f0(w)) − wδ‖ ≤ C|f0(wδ)− f0(Uδ,en) + f0(Uδ,−en)| p+1
p

=

{
O(δ| log δ| 14 ) if n = 4,

O(δ) = O(ε) if n ≥ 5,
= O(ε1−γ)

as ε→ 0, uniformly in d ∈ (1/η, η).

Proof. Let vδ = K(f0(wδ)) and recall that wδ = K(f0(Uδ,en)− f0(Uδ,−en)), that is, vδ and wδ solve

−∆vδ = f0(wδ) = f0(P (Uδ,en − Uδ,−en)) in B, ∂νvδ = 0 on ∂B,

∫

B

vδ = 0,

−∆wδ = f0(Uδ,en)− f0(Uδ,−en) in B, ∂νwδ = 0 on ∂B,

∫

B

wδ = 0.

Then, recalling that p+ 1 = 2n
n−2 and by (2.5) in Lemma 2.1,

‖vδ − wδ‖ ≤ C|f0(wδ)− f0(Uδ,en) + f0(Uδ,−en)| p+1
p
. (3.21)

We have

|f0(wδ)− f0(Uδ,en) + f0(Uδ,−en)| p+1
p

≤ |f0(wδ)− f0(Wδ)| p+1
p

+ |f0(Wδ)− f0(Uδ,en) + f0(Uδ,−en)| p+1
p
.

The claim now follows from Lemma B.11. �

Lemma 3.6. Let η ∈ (0, 1), d > 0 and δ = dε. Then, for every γ ∈ (0, 1),

‖K(fε(wδ)− f0(wδ))‖ ≤ C|fε(wδ)− f0(wδ)| p+1
p

= O(ε1−γ).

as ε→ 0, uniformly in d ∈ (1/η, η).
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Proof. By (2.5) in Lemma 2.1,

‖K(fε(wδ)− f0(wδ))‖ ≤ C|fε(wδ)− f0(wδ)| p+1
p
,

and the statement now follows from Lemma B.12. �

Lemma 3.7. Let γ, η ∈ (0, 1), d > 0 and δ = dε. Then

|K(fε(wδ)− f0(wδ))|sε = O(ε1−γ)

as ε→ 0, uniformly in d ∈ (1/η, η).

Proof. Let s̄ := sε̄ = p+ 1 + ε̄ and ε < ε̄. By (2.6) in Lemma 2.1 (observe that s̄ > n/(n− 2)):

|K(fε(wδ)− f0(wδ))|sε ≤ |K(fε(wδ)− f0(wδ))|s̄|B| s̄−sε
s̄s̄

≤ Cε̄|fε(wδ)− f0(wδ)| ns̄
n+2s̄

.

Taking now ℓ > 0 such that ns̄
n+2s̄ = (p+1)(1+ℓ)

p , we can now conclude from Lemma B.12. �

Lemma 3.8. Let γ, η ∈ (0, 1), d > 0 and δ = dε. Then there exists C > 0 such that

|K(f0(wδ))− wδ|sε = O(ε1−γ)

as ε→ 0, uniformly in d ∈ (1/η, η).

Proof. Let u := K(f0(wδ)), w = wδ, and observe that v := u− w is a solution to

−∆v = f0(wδ)− f0(Uδ,en) + f0(Uδ,−en) in B, ∂νv = 0 on ∂B,

∫

B

v = 0,

that is, v = K(f0(wδ)− f0(Uδ,en) + f0(Uδ,−en)). Take ε̄ > 0 small and s̄ = p+1+ ε̄. By (2.6) in Lemma
2.1:

|u− w|sε ≤ |u− w|s̄|B|
s̄−sε
sεs̄

≤ C′
ε̄|f0(wδ)− f0(Uδ,en) + f0(Uδ,−en)| ns̄

n+2s̄

≤ C′
ε̄|f0(wδ)− f0(Wδ)| ns̄

n+2s̄
+ |f0(Wδ)− f0(Uδ,en) + f0(Uδ,−en)| ns̄

n+2s̄

Writing ns̄
n+2s̄ = (p+1)(1+γ)

p , by Lemma B.11 we deduce that, for every σ > 0 small there exists γ > 0

such that

|f0(wδ)− f0(Wδ)| (p+1)(1+γ)
p

+ |f0(Wδ)− f0(Uδ,en) + f0(Uδ,−en)| (p+1)(1+γ)
p

= O(ε1−σ)

as ε→ 0, and the proof of the lemma follows. �

Proof of Proposition 3.4. This follows from combining equation (3.20) with Lemmas 3.5–3.8 �

3.3. Estimates for the nonlinear part Nd,ε. Conclusion of the proof of Proposition 3.1. In
this subsection we conclude the proof of Proposition 3.1. By Proposition 3.2, we know that the linear
operator Ld,ε is invertible. Therefore, equation (2.15), that is,

Ld,εφ = Nd,ε(φ) +Rd,ε,

is equivalent to the fixed point problem

φ = L−1
d,ε(Rd,ε +Nd,ε(φ)) =: Td,ε(φ).

By Proposition 3.2 we have

‖Td,ε(φ)‖Hε ≤ C(‖Rd,ε‖Hε + ‖Nd,ε(φ)‖Hε).

In the previous subsection we have shown that, for every γ ∈ (0, 1), ‖Rd,ε‖Hε = O(ε1−γ). Next we
perform an estimate for the other term.

Lemma 3.9. Let η ∈ (0, 1), d > 0 and δ = dε. Then there exists C > 0 such that

‖Nd,ε(φ)‖Hε ≤
{
C(‖φ‖p+ε

Hε
+ ‖φ‖p+

2ε
n

Hε
) if n > 6,

C(‖φ‖p+ε
Hε

+ ‖φ‖p+
2ε
n

Hε
+ ‖φ‖2Hε

) if n ∈ [4, 6)

as ε→ 0, uniformly in d ∈ (1/η, η).
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Proof. Combining Lemmas 2.1 and 2.5 yields the existence of C > 0 such that

‖Nd,ε(φ)‖Hε ≤ C(|fε(wδ + φ) − fε(wδ) − f ′
ε(wδ)φ| p+1

p
+ |fε(wδ + φ) − fε(wδ) − f ′

ε(wδ)φ| nsε
n+2sε

).

By Lemma B.1, there exists C > 0 such that, for ε sufficiently small,

|fε(wδ + φ)− fε(wδ)− f ′
ε(wδ)φ| ≤

{
C(|wδ |p−2+εφ2 + |φ|p+ε) if n ∈ [4, 6],

C|φ|p+ε if n > 6.

Therefore, for n > 6, we see that

‖Td,ε(φ)‖Hε ≤ C(||φ|p+ε| p+1
p

+ ||φ|p+ε| nsε
n+2sε

) ≤ C(|φ|p+ε
(p+1)(p+ε)

p

+ |φ|
n+2sε

n
sε )

≤ C′(|φ|p+ε
sε + |φ|p+

2ε
n

sε ) ≤ C′(‖φ‖p+ε
Hε

+ ‖φ‖p+
2ε
n

Hε
).

For n ∈ [4, 6], one should also take into account the terms

||wδ|p−2+εφ2| p+1
p

≤ |wδ|p−2+ε
(p−2+ε)2nsε
(n+2)sε−4n

|φ|2sε

and

||wδ|p−2+εφ2| nsε
n+2sε

≤ |wδ|p−2+ε
(p−2+ε)nsε

2sε−n

|φ|2sε .

Since (p−2+ε)2nsε
(n+2)sε−4n = n

2 + O(ε) and (p−2+ε)nsε
2sε−n = n

2 + O(ε), we have that |wδ|p−2+ε
(p−2+ε)2nsε
(n+2)sε−4n

, |wδ|p−2+ε
(p−2+ε)nsε

2sε−n

=

O(1), by Corollary 2.3 and Lemma B.3. This ends the proof. �

Conclusion of the proof of Proposition 3.1. Let κ be such that |Rd,ε| ≤ 2κ
√
ε (take γ = 1/2 in Proposi-

tion 3.4). Therefore, by taking

B :=
{
φ ∈ Θ⊥

d,ε : ‖φ‖Hε ≤ κ
√
ε
}
,

we have Td,ε(B) ⊂ B for sufficiently small ε > 0. Moreover, reasoning as in, for instance, [17, pp. 18-19],
we obtain the existence of L ∈ (0, 1) such that

‖Td,ε(φ1 − φ2)‖Hε ≤ L‖φ1 − φ2‖Hε for every φ1, φ2 ∈ B.

Therefore, by the Banach Fixed Point Theorem, given η ∈ (0, 1), d ∈ (η, 1/η), δ = dε, for ε sufficiently
small there exists a unique φd,ε, fixed point of Td,ε, that is, a unique solution of 2.16. Now a standard
argument using the implicit function theorem (see for instance [22, Lemma 3.3] for detailed computations
in a related framework) yields that the map d 7→ φd,ε is of class C1. �

4. Expansion of the reduced functional

Consider the functional Fε : Hε → R defined by

Fε(u) =

∫

B

|∇u|2
2

− |u|p+1+ε

p+ 1 + ε
dx.

and observe that critical points correspond to solutions to (1.3). For each small η fixed, let ε0 > 0 be as
in Proposition 3.1. Then for ε ∈ (0, ε0) (and recalling that δ = dε), we consider the reduced functional
Jε : (η, 1/η) → R given by

Jε(d) := Fε(PWδ + φd,ε) = Fε(PWdε + φd,ε),

where φd,ε ∈ Θ⊥
d,ε is as in Proposition 3.1. The following results says that, whenever we find a critical

point of Jε, we obtain a solution of (1.3) having the form PWdε + φd,ε.

Lemma 4.1. For small η > 0, ε ∈ (0, ε0) and d ∈ (0, ε), we have

J ′
ε(d) = 0 ⇐⇒ F ′

ε(PWdε + φd,ε) = 0.

Proof. This a consequence of standard arguments, see for instance [17, Proposition 2.2] or [22, Proposition
3.4], [21, Lemma 4.1]. �
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For n ≥ 4, recall that αn = (n(n− 2))
n−2
4 and let

A =

∫

Rn

Up+1
1,0 =

∫

Rn

αp+1
n

(1 + |x|2)n dx,

B =

∫

∂Rn
+

|U1,0(y)|p+1|y|2 = αp+1
n

∫

Rn−1

|y|2
(1 + |y|2)n dy,

C = αn

∫

Rn−1

|y|2
(1 + |y|2)n−1

,

D =

∫

Rn

Up+1
1,0 logU1,0.

(4.1)

The main goal is to check that Jε has an absolute minimizer in (η, 1/η) for sufficiently small η, therefore
a critical point. In order to prove this, we compute the expansion of Jε(d) as ε→ 0.

Theorem 4.2. Given 0 < η < 1 small we have

Jε(d) =
A

n
+

(n− 2)2

4n
Aε log ε+Ψ(d)ε+ o(ε),

as ε→ 0 uniformly in d ∈ (η, 1/η), where

Ψ(d) :=
n− 2

2n

(
n− 2

2n
A−D

)
+

(n− 2)2

4n
A log d−

(
n− 2

2
C+

B

n

)
d. (4.2)

This section is devoted to the proof of this result, which we split in several lemmas.

Lemma 4.3. Given 0 < η < 1 small,

Jε(d) = Fε(PWδ) + o(ε)

as ε→ 0 uniformly in d ∈ (η, 1/η).

Proof. We argue as in [17, Lemma 6.1] to show that

Fε(PWδ + φd,ε)− Fε(PWδ) = o(ε) as ε→ 0.

Note that, by (3.1),

Fε(PWδ + φd,ε)− Fε(PWδ) =
1

2
‖φd,ε‖2 +

∫

B

(Up
δ,en

− Up
δ,en

)φd,ε

− 1

p+ 1 + ε

∫

B

|PWδ + φd,ε|p+1+ε − |PWδ|p+1+ε

= o(ε) +

∫

B

(Up
δ,en

− Up
δ,en

− |PWδ|p−1+ε)PWδφd,ε

−
∫

B

|PWδ + φ|p+1+ε

p+ 1 + ε
− |PWδ|p+1+ε

p+ 1 + ε
− |PWδ|p−1+εPWδφd,ε.

Moreover, by (3.1) and Lemmas B.11 and B.12 with γ = 0,
∣∣∣∣
∫

B

(Up
δ,en

− Up
δ,en

− |PWδ|p+ε)φd,ε

∣∣∣∣ ≤ |Up
δ,en

− Up
δ,en

− |Wδ|p+ε| 2n
n+2

|φd,ε|2∗ = o(ε).

On the other hand, by the mean value theorem, there is t = t(x, ε) ∈ [0, 1] such that
∣∣∣∣
∫

B

|PWδ + φ|p+1+ε

p+ 1 + ε
− |PWδ|p+1+ε

p+ 1 + ε
− |PWδ|p−1+εPWδφd,ε

∣∣∣∣ ≤ C

∫

B

|PWδ + tφd,ε|p−1+εφ2

≤ C′(
∣∣|PWδ|p−1+ε|n

2

∣∣φd,ε|22∗ + |φd,ε|sεsε) = o(ε),

where we used again (3.1) and that
∣∣|PWδ|p−1+ε

∣∣
n
2

= O(1) (by Corollary 2.3 and Lemma B.3). �

In the rest of the section we expand the leading term

Fε(PWδ) =

∫

B

|∇PWδ|2
2

− |PWδ|p+1+ε

p+ 1 + ε
dx,

We compute separately the expansions for
∫

B

|∇PWδ|2
2

and

∫

B

|PWδ|p+1+ε

p+ 1 + ε

14



in Subsections 4.1 and 4.2 respectively. We perform them in the δ variable, recalling that δ = dε for
some d > 0.

Recall also that Wδ := Uδ,en − Uδ,−en and, by Lemma 2.2,

PWδ(x) =Wδ(x) − δ−
n−4
2

(
ϕ0

(en − x

δ

)
− ϕ0

(en + x

δ

))
+ ζδ(x), ζδ(x) = O(δ

6−n
2 (log δ)τ ),

where τ = 0 if n ≥ 5, and τ = 1 if n = 4.

4.1. Expansion of the gradient term. Note that
∫

B

|∇PWδ|2 =

∫

B

PWδ(−∆)PWδ =

∫

B

PWδ(U
p
δ,en

− Up
δ,−en

)

=

∫

B

(
Wδ(x) − δ−

n−4
2

(
ϕ0

(en − x

δ

)
− ϕ0

(en + x

δ

))
+ ζδ(x)

)
(Up

δ,en
− Up

δ,−en
)

= I1 − I2 + I3, (4.3)

where

I1 :=

∫

B

Wδ(x)(U
p
δ,en

− Up
δ,−en

),

I2 :=

∫

B

δ−
n−4
2

(
ϕ0

(en − x

δ

)
− ϕ0

(en + x

δ

))
(Up

δ,en
− Up

δ,−en
),

I3 :=

∫

B

ζδ(x)(U
p
δ,en

− Up
δ,−en

).

Proposition 4.4. We have the expansion
∫

B

|∇PWδ|2 = I1 − I2 + I3 = A+ (−B+ (n− 2)C)δ + o(δ), as δ → 0,

where A, B, and C are given in (4.1).

The proof of this proposition follows directly from the following three lemmas.

Lemma 4.5. We have

I1 =

∫

B

Wδ(x)(U
p
δ,en

− Up
δ,−en

) = A−Bδ + o(δ), as δ → 0,

where A and B are given in (4.1).

Proof. Note that

I1 =

∫

B

Wδ(x)(U
p
δ,en

− Up
δ,−en

) =

∫

B

Up+1
δ,en

− Uδ,enU
p
δ,−en

− Uδ,−enU
p
δ,en

+ Up+1
δ,−en

.

The result follows from Lemmas B.4 and B.6. �

Lemma 4.6. We have

I2 = −(n− 2)C δ + o(δ), as δ → 0,

where C is given in (4.1).

Proof. Note that

I2 = δ−
n−4
2

∫

B

ϕ0

(en − x

δ

)
Up
δ,en

− ϕ0

(en + x

δ

)
Up
δ,en

− ϕ0

(en − x

δ

)
Up
δ,−en

+ ϕ0

(en + x

δ

)
Up
δ,−en

.

Therefore, the result follows from Lemmas B.7 and B.8 and the fact that n ≥ 4. �

Lemma 4.7. Let τ = 0 if n ≥ 5, and τ = 1 if n = 4. We have

I3 :=

∫

B

ζδ(x)(U
p
δ,en

− Up
δ,−en

) = O(δ2(log δ)τ ) = o(δ) as δ → 0.
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Proof. Let D := ω+ − en and observe that, since ζδ = O(δ
6−n
2 (log δ)τ ) uniformly in B as δ → 0 (by

Lemma 2.2),

∫

ω+

|ζδ(x)|Up
δ,en

≤ Cαp
nδ

6−n
2 (log δ)τ

∫

ω+

δ
n+2
2

(δ2 + |x− en|2)
n+2
2

= Cαp
nδ

6−n
2 (log δ)τ

∫

δ−1D

δ
n−2
2

(1 + |x|2)n+2
2

= Cαp
nδ

2(log δ)τ
∫

δ−1D

1

(1 + |x|2)n+2
2

≤ Cαp
nδ

2(log δ)τωn

(
1 +

∫ 1
2δ

1

r−3 dr

)
= O(δ2(log δ)τ ). (4.4)

On the other hand,
∫

B\ω+

|ζδ(x)|Up
δ,en

≤ Cαp
nδ

6−n
2 (log δ)τ

∫

B\ω+

(4δ)
n+2
2 = O(δ4(log δ)τ ). (4.5)

The claim follows from (4.4) and (4.5) and from the fact that

∫

B

ζδ(x)U
p
δ,en

=

∫

B

ζδ(x)U
p
δ,−en

. �

4.2. The nonlinear term. Next, we focus on an expansion for the nonlinear term

1

p+ 1 + ε

∫

B

|PWδ|p+1+ε,

where we recall we are using the Ansatz δ = dε for some d > 0.

Proposition 4.8. Given η ∈ (0, 1), we have the expansion

1

p+ 1 + ε

∫

B

|PWδ|p+1+ε

=
n− 2

2n
(A−B dε+ 2nC dε) +

(
− (n− 2)2

4n
A ε log |dε|+ n− 2

2n
D ε− (n− 2)2

4n2
εA

)
+ o(ε),

as ε→ 0+ uniformly in d ∈ (η, 1/η).

We argue as in [26, Proposition A.1]. We start by noting that

1

p+ 1 + ε
=

1

p+ 1
− 1

(p+ 1)2
ε+ o(ε) =

n− 2

2n
− (n− 2)2

4n2
ε+ o(ε). (4.6)

Moreover,
∫

B

|PWδ|p+1+ε =

∫

B

|PWδ|p+1 + |PWδ|p+1(|PWδ|ε − 1) =: J1 + J2. (4.7)

We obtain expansions for each of these terms. For convenience, within this subsection we denote

ψ(x) :=Wδ(x)− PWδ(x)

=δ−
n−4
2

(
ϕ0

(en − x

δ

)
− ϕ0

(en + x

δ

))
− ζδ(x), ζδ(x) = O(δ

6−n
2 ).

Lemma 4.9. We have
∫

ω+

|Wδ(x)− ψ(x)|p+1 =

∫

ω−

|Wδ(x)− ψ(x)|p+1 =
A

2
+ (−B

2
+ nC)δ + o(δ), (4.8)

where A, B, and C are defined in (4.1). In particular,

J1 =

∫

B

|PWδ|p+1 =

∫

B

|Wδ(x) − ψ(x)|p+1 = A+ (−B+ 2nC)δ + o(δ).
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Proof. Let D := ω+ − en, then

∫

ω+

|Wδ(x)− ψ(x)|p+1 =

∫

ω+

|Uδ,en(x)− Uδ,−en(x)− ψ(x)| 2n
n−2

=

∫

δ−1D

∣∣∣∣∣αn
δ−

n−2
2

(1 + |x|2)n−2
2

− ψ(δx + en)

∣∣∣∣∣

2n
n−2

δn + o(δ)

=

∫

δ−1D

∣∣∣∣∣αn
1

(1 + |x|2)n−2
2

−
(
ϕ0(−x)− ϕ0

(
2en + δx

δ

))
δ − ζδ(δx+ en)δ

n−2
2

∣∣∣∣∣

2n
n−2

+ o(δ)

=

∫

δ−1D

|U1,0 − ϕ0(−x)δ|
2n

n−2 + o(δ) =

∫

δ−1D

|U1,0|
2n

n−2 − δ
2n

n− 2
|U1,0|

n+2
n−2 ϕ0(−x) + o(δ),

where we use Lemma 2.2, the decay estimates for ϕ0 and ζδ, respectively inequalities (A.2) and (2.9).

The integral
∫
δ−1D

|U1,0|
2n

n−2 is expanded in the proof of Lemma B.4 and we have that

∫

δ−1D

|U1,0|
2n

n−2 =
A

2
− B

2
δ + o(δ).

Moreover, since U1,0 is even, ∂xnU1,0 = 0 on ∂Rn
+ and

δ
2n

n− 2

∫

δ−1D

|U1,0|
n+2
n−2 ϕ0(−x) = δ

2n

n− 2

∫

R
n
+

(−∆)U1,0ϕ0(x) + o(δ) = δ
2n

n− 2

∫

∂Rn
+

U1,0∂νϕ0

= −δ 2n

n− 2

∫

Rn−1

αn
n− 2

2

|y|2
(1 + |y|2)n−1

+ o(δ) = −δnαn

∫

Rn−1

|y|2
(1 + |y|2)n−1

+ o(δ).

By symmetry, this establishes (4.8). Finally, note that, by Corollary 2.3,

∫

B\(ω+∪ω−)

|Wδ(x)−ψ(x)|p+1 =

∫

B\(ω+∪ω−)

|PWδ(x)|p+1 ≤ C

∫

B\(ω+∪ω−)

(|Uδ,en |+ |Uδ,−en |)
2n

n−2 = o(δ).

�

Lemma 4.10. We have, as ε→ 0,

J2 = −εn− 2

2
log(δ)A + εD+ o(ε).

Proof. Let D := ω+ − en and recall that δ = dε. We start by claiming that

J2 =

∫

B

|PWδ|p+1(|PWδ|ε − 1) = ε

∫

B

|PWδ|p+1 log |PWδ|+ o(δ). (4.9)

Indeed, by reasoning like in the proof of Lemma B.2,

|t|p+1+ε = |t|p+1 + ε|t|p+1 log |t|+ ε2rε(t), where |rε(t)| ≤
1

2
(|t|p+1 + |t|p+1+ε)(log |t|)2.

Therefore,

J2 = ε

∫

B

|PWδ|p+1 log |PWδ|+ ε2
∫

B

rε(PWδ);

now the claim (4.9) follows by reasoning like in the proof of Lemma B.12, recalling that |PWδ| ≤
|Uδ,en |+ |Uδ,−en | and using Lemma B.3.
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Then,

ε

∫

ω+

|PWδ|p+1 log |PWδ| = ε

∫

ω+

|Wδ − ψ|p+1 log |Wδ − ψ|

= ε

∫

ω+

|Wδ|p+1 log |Wδ|+ o(ε)

= ε

∫

ω+

|Uδ,en |p+1 log |Uδ,en |+ o(ε)

= ε

∫

δ−1D

|δ−n−2
2 U1,0|

2n
n−2 log |δ−n−2

2 U1,0|δn

= ε

∫

δ−1D

|U1,0|
2n

n−2 log |δ−n−2
2 U1,0|+ o(ε)

= ε

∫

δ−1D

|U1,0|
2n

n−2

(
−n− 2

2
log |δ|+ log |U1,0|

)
+ o(ε)

= −εn− 2

2
log |δ|

∫

δ−1D

|U1,0|
2n

n−2 + ε

∫

δ−1D

|U1,0|
2n

n−2 log |U1,0|+ o(ε),

where we have used the estimate (B.1) with q = p + 1, together with Lemma 2.2, Corollary 2.3 and
Lemma B.3.

One can argue similarly for the integral over ω− and the integral over B\(ω+ ∪ ω−) is o(ε) as ε→ 0.
Therefore, since (by Lemma 2.2)

∫

δ−1D

|U1,0|
2n

n−2 =
A

2
− B

2
δ + o(δ)

and
∫

δ−1D

|U1,0|
2n

n−2 log |U1,0| =
1

2

∫

Rn

|U1,0|
2n

n−2 log |U1,0|+ o(1) =
D

2
+ o(1),

we have that

J2 = −εn− 2

2
log |dε|A+ εD+ o(ε),

as claimed. �

Proof of Proposition 4.8. From (4.7) and Lemmas 4.9 and 4.10, we have
∫

B

|PWδ|p+1+ε = A−B dε+ 2nC dε− n− 2

2
A ε log |dε|+Dε+ o(ε).

Combining this with (4.6), we deduce

1

p+ 1 + ε

∫

B

|PWδ|p+1+ε

=

(
n− 2

2n
− (n− 2)2

4n2
ε+ o(ε)

)
(A−B dε+ 2nC dε− n− 2

2
A ε log |dε|+D ε+ o(ε))

=
n− 2

2n
(A−B dε+ 2nC dε) +

(
− (n− 2)2

4n
A ε log |dε|+ n− 2

2n
D ε− (n− 2)2

4n2
εA

)
+ o(ε),

as ε→ 0+. �

Proof of Theorem 4.2. The expansion follows directly from Lemma 4.3 and Propositions 4.4 and 4.8. �

5. Proof of the main theorems

Lemma 5.1. Let Ψ be as in (4.2). This function has a unique critical point at

d∗ =
(n− 2)2A

2d(n(n− 2)C+ 2B)
, (5.1)

which is a global maximum.
18



Proof. Note that Ψ(d) → −∞ as d → 0+ and as d → +∞. Therefore, Ψ achieves a global maximum.
Since

Ψ′(d) =
(n− 2)2A

4n

1

d
−
(
n− 2

2
C+

B

n

)
,

the point d∗ given in (5.1) corresponds to the unique critical point of Ψ, which is a global maximum. �

Proof of Theorem 1.1. Let d∗ > 0 be the unique global maximum of Ψ and let η ∈ (0, 1) be such that
d∗ ∈ (η, 1/η). Then Ψ(η),Ψ(1/η) < Ψ(d∗). On the other hand, for such η we know from Theorem 4.2
that

Jε(d) =
A

n
+

(n− 2)2

4n
Aε log ε+Ψ(d)ε+ o(ε),

as ε→ 0, uniformly in (η, 1/η). Then there exists ε0 > 0 such that

Jε(η) < Jε(d
∗) and Jε(1/η) < Jε(d

∗)

for ε ∈ (0, ε0). Therefore, Jε has an interior maximum in (η, 1/η), hence a critical point. We can now
conclude by using Lemma 4.1. �

6. Open problems

We believe that the following are some interesting open questions.

(i) If B is a ball, is is true that (1.1) has a solution for all exponents q > p or is there a Neumann
critical exponent after which there are no solutions?

(ii) The solutions given by Theorem 1.1 are most likely not of least-energy type. Indeed, we believe
that the Morse index of our solution could be at least 2 (arguing as in [5, Theorem 1]). Is there
a least-energy solution in the supercritical regime?

Finally, we observe that our approach does not guarantee that the solutions given by Theorem 1.1 are
bounded (and therefore classical) solutions. However, if one uses weighted Hölder norms as in [10] (the
pioneering paper concerning the slightly-supercritical problem), instead of the classical Sobolev norms,
one can most likely build, via the same Lyapunov-Schmidt reduction, regular solutions.

Appendix A. An expansion for PWδ

Recall that B = B1(0), Wδ := Uδ,en − Uδ,−en and PWδ is the solution of

−∆PWδ = −∆Uδ,en +∆Uδ,−en in B, ∂νPWδ = 0 on ∂B,

∫

B

PWδdx = 0.

Let Rn
+ := {x ∈ R

n : xn > 0} and let ϕ0 be the solution of (2.8), that is,

−∆ϕ0 = 0 in R
n
+,

∂ϕ0

∂xn
= αn

n− 2

2

|x′|2
(1 + |x′|2)n

2
on ∂Rn

+, ϕ0 → 0 as |x| → ∞.

Using the Poisson kernel for the halfspace and the fact that n ≥ 4, we obtain the representation

ϕ0(x) = −αn

ωn

∫

Rn−1

|y|2
(1 + |y|2)n

2 |x− y|n−2
dy, (A.1)

where ωn denotes the measure of the unit sphere in R
n, |·| is the Euclidean norm in R

n, x = (x1, . . . , xn) ∈
R

n
+, and y = (y1, . . . , yn−1, 0), see for instance [9, Theorem 4]. We note, however, that the formula (27)

in [9] has a sign mistake (indeed, if ϕ0 were positive, it would violate the maximum principle, since ϕ0

would be a positive harmonic function with an interior maximum). Moreover, observe that formula (A.1)
is consistent with the case n = 3 [16, p. 120], or with the case of a Neumann problem in a bounded C1

domain, see [13, p.165].
Rewriting (A.1) as

ϕ0(x) = − αn

ωn|x|n−3

∫

Rn−1

|z|2
(

1
|x|2 + |z|2

)n
2
∣∣∣ x
|x| − z

∣∣∣
n−2

dz

we deduce its asymptotic behaviour, which yields the existence of C > 0 such that

|ϕ0(x)| ≤
C

(1 + |x|)n−3
, |∇ϕ0(x)| ≤

C

(1 + |x|)n−2
, |D2ϕ0(x)| ≤

C

(1 + |x|)n−1
(A.2)

for x ∈ R
n
+.
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Before we proceed to the proof of Lemma 2.2, we present the following auxiliary result.

Lemma A.1. Let

zδ := ∂ν

[
Uδ,0(x)− δ

4−n
2 ϕ0

(x
δ

)]
, x ∈ ∂B1(en).

Then, as δ → 0,

zδ = O

(
δ

4−n
2

(1 + |x′

δ |)n−3

)
on ∂B1(en) ∩B1(0), zδ = O

(
δ

n−2
2

)
on ∂B1(en) ∩Bc

1(0). (A.3)

and

∂δzδ = O

(
δ

2−n
2

(1 + |x′

δ |)n−3

)
on ∂B1(en) ∩B1(0), ∂δzδ = O

(
δ

n−4
2

)
on ∂B1(en) ∩Bc

1(0). (A.4)

Proof. We follow the ideas from [26, Lemma A.1].

Step 1. We start by proving estimates on ∂B1(en) ∩Bc
1(0). In this set, we have

|∂νUδ,0| ≤ |∇Uδ,0| = αn(n− 2)δ
n−2
2

|x|
(δ2 + |x|2)n

2
= O(δ

n−2
2 ),

|∂δ∂νUδ,0| ≤ |∇∂δUδ,0| ≤ Cδ
n−4
2

|x|
(δ2 + |x|2)n

2
+ Cδ

n−2
2

|x|
(δ2 + |x|2)n+2

2

= O(δ
n−4

2 ).

and, by using (A.2),

∣∣∣δ
4−n
2 ∂ν

[
ϕ0

(x
δ

)]∣∣∣ ≤ δ
2−n
2

∣∣∣∇ϕ0

(x
δ

)∣∣∣ ≤ Cδ
2−n
2

(
1 +

∣∣x
δ

∣∣)n−2 = O(δ
n−2

2 ).

∣∣∣∂δ
(
δ

4−n
2 ∂ν

[
ϕ0

(x
δ

)])∣∣∣ ≤ δ−
n
2

∣∣∣∇ϕ0

(x
δ

)∣∣∣+ δ−
n+2
2

∣∣∣D2ϕ0

(x
δ

)∣∣∣ = O(δ
n−4

2 ).

Therefore, zδ = O
(
δ

n−2
2

)
and ∂δzδ = O

(
δ

n−4
2

)
on ∂B1(en) ∩Bc

1(0).

Step 2. Next we focus on the (complementary) set ∂B1(en)∩B1(0), which can be described through the
identity

xn = ρ(x′) := 1−
√
1− |x′|2 =

|x′|2
2

+O(|x′|3) as |x′| → 0. (A.5)

In particular, this shows that the principal curvatures for the unitary ball at any point of its boundary
are ki = 1 for i = 1, . . . , n − 1. Moreover, the exterior unitary normal on this part of the boundary is
given by the expression

ν(x) =
(∇ρ,−1)√
1 + |∇ρ|2

=
( x′√

1−|x′|2
,−1)

√
1 + |x′|2

1−|x′|2
= (x′,−

√
1− |x′|2). (A.6)

Combining (A.5) with (A.6), for x ∈ ∂B1(en) ∩B1(0) we have

∂νUδ,0(x) = ∂ναn
δ

n−2
2

(δ2 + |x|2)n−2
2

= −αn(n− 2)δ
n−2
2

〈x, ν〉
(δ2 + |x|2)n

2

= −αn(n− 2)δ
n−2
2

|x′|2 − xn
√
1− |x′|2

(δ2 + |x|2)n
2

= −αn(n− 2)δ
n−2
2

|x′|2 −
√
1− |x′|2 + 1− |x′|2
(δ2 + |x|2)n

2

= −αn(n− 2)δ
n−2
2

1−
√
1− |x′|2

(δ2 + |x|2)n
2

= −αn(n− 2)

2

δ
n−2
2 |x′|2

(δ2 + |x|2)n
2
+O

(
δ

n−2
2 |x′|3

(δ2 + |x|2)n
2

)

− αn(n− 2)

2

δ
n−2
2 |x′|2

(δ2 + |x′|2)n
2
+O

(
δ

n−2
2 |x′|3

(δ2 + |x′|2)n
2

)
, (A.7)
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where in the last equality we have used the fact that
∣∣∣∣

1

(δ2 + |x|2)n
2
− 1

(δ2 + |x′|2)n
2

∣∣∣∣ ≤
n

2

x2n

(δ2 + |x′|2)n+2
2

= O

( |x′|4
(δ2 + |x′|2)n+2

)

Let ηδ : B1(en) → R be given by

ηδ(x) = δ−
n−4
2 ϕ0

(x
δ

)
for δ > 0.

By (2.8), for x ∈ ∂B1(en) ∩B1(0),

∂νηδ(x) = ∇ηδ(x) · ν(x) (A.8)

= ∂−enηδ(x
′, 0) + ((∇ηδ(x)−∇ηδ(x′, 0)) · ν(x) +∇ηδ(x′, 0) · (ν(x) + en)) (A.9)

= −αn(n− 2)

2

δ
n−2
2 |x′|2

(δ2 + |x′|2)n
2
+O

(
δ

n−2
2

(δ + |x′|)n−3

)
, (A.10)

as δ → 0, since, by (A.2) and (A.6),

δ
n−2
2 |∇ηδ(x′, 0) · (ν(x) + en))| ≤ |∇ϕ0(

x′

δ
, 0)| |ν(x) + en|

≤ C|(x′, 1−
√
1− |x′|2)|

(1 + |x′

δ |)n−2
= O

(
δn−2|x′|

(δ + |x′|)n−2

)

while, by (A.2) and (A.5), there exist t1, . . . , tn ∈ (0, 1) such that

δ
n−2
2 |∇ηδ(x) −∇ηδ(x′, 0)| = |∇ϕ0(

x

δ
)−∇ϕ0(

x′

δ
, 0)| (A.11)

=

∣∣∣∣
(

∂2ϕ0

∂x1∂xn

(
x′

δ
, t1

x1
δ

)
, . . . ,

∂2ϕ0

∂x2n

(
x′

δ
, tn

xn
δ

))∣∣∣∣
|xn|
δ

(A.12)

≤ C|xn|
δ(1 + |x′

δ |)n−1
= O

(
δn−2|x′|2

(δ + |x′|)n−1

)
. (A.13)

From and we deduce that

zδ = O

(
δ

4−n
2

(1 + |x′

δ |)n−3

)
on ∂B1(en) ∩B1(0).

As for the first asymptotic estimate in (A.4), it is enough to follow the previous steps, taking the derivative
in (A.7) and (A.10) with respect to δ in and estimating accordingly. One should use the fact that

δ
n−2
2

(δ + |x′|)n−2
= O

(
δ

n−4
2

(δ + |x′|)n−3

)

and |D3ϕ0(x)| ≤ C/(1 + |x|)n (the last one being used in the estimates corresponding to (A.13)). �

For the pure Neumann problem in a ball, there is an explicit Green’s function [33]. In particular, if u
is a solution of

−∆u = 0 in B, ∂νu = ϕ on ∂B,

then

u(x) =

∫

∂B

G(x, y)ϕ(y) dy,

where

G(x, y) = c1|x− y|2−n + c2

∫ |y|

0

x · y
|y| − 1

s

|sx− y
|y| |n

+
1

s
ds− c3|x|2 (A.14)

for some explicit positive constants c1, c2, and c3. Here, the second term can be decomposed in simpler
explicit expressions, see [33]. The function G is bounded by a multiple of the fundamental solution;
this follows from direct computations using the explicit formula (A.14) or from [12, Proposition 9 in
Appendix A] (which also covers general smooth domains), see also [31, Lemma 3.1]. In particular, there
is C > 0 such that

|G(x, y)| ≤ C|x− y|2−n for all x ∈ B, y ∈ ∂B, x 6= y. (A.15)
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For the proof of Lemma 2.2, we use the following estimate.

Lemma A.2. Let σ ∈ (0, n− 2), then there is C > 0 such that
∫

Rn−1

1

|x− y|n−2(1 + |y|)1+σ
dy ≤ C

(1 + |x|)σ for all x ∈ R
n
+.

Moreover, when σ = 0 and for a ball B1/δ(0) ⊂ R
n−1,

∫

B1/δ(0)

1

|x− y|n−2(1 + |y|) dy = O(log δ) as δ → 0.

Proof. The proof follows closely the argument in [32, Lemma B.2]. We include a proof for the reader’s
convenience. Let x ∈ R

n
+, σ ∈ (0, n− 2), d = 1

2 |x| > 0, and let Bd(0) ⊂ R
n−1. Using polar coordinates,

∫

Bd(0)

1

|x− y|n−2(1 + |y|)1+σ
dy ≤ C

dn−2

∫

Bd(0)

1

(1 + |y|)1+σ
dy ≤ C

dn−2
dn−2−σ =

C

dσ

and ∫

Bd(x)

1

|x− y|n−2(1 + |y|)1+σ
dy ≤ C

d1+σ

∫

Bd(0)

|y|2−n dy =
C

d1+σ
d =

C

dσ
.

Next, let y ∈ R
n−1\(Bd(0) ∪Bd(x)), then

|x− y| ≥ 1

2
|x|, |y| ≥ 1

2
|x|.

If |y| ≥ 2|x|, then |x− y| ≥ |y| − |x| ≥ 1
2 |y|; therefore,

1

|x− y|n−2(1 + |y|)1+σ
≤ C

|y|n−2(1 + |y|)1+σ
.

If |y| ≤ 2|x|, then
1

|x− y|n−2(1 + |y|)1+σ
≤ C

|x|n−2(1 + |y|)1+σ
≤ C

|y|n−2(1 + |y|)1+σ
.

As a consequence,

1

|x− y|n−2(1 + |y|)1+σ| ≤
C

|y|n−2(1 + |y|)1+σ
for all y ∈ R

n−1\(Bd(0) ∪Bd(x)).

Thus,
∫

Rn−1\(Bd(0)∪Bd(x))

1

|x− y|n−2(1 + |y|)1+σ
dy ≤

∫

Rn−1\(Bd(0)∪Bd(x))

C

|y|n−2(1 + |y|)1+σ
dy

≤ C

∫ ∞

d

rn−2

rn−2(1 + r)1+σ
dr =

C

dσ
.

If σ = 0, the only difference in the proof is the next step: we use B1/δ(0)\(Bd(0) ∪Bd(x)) instead of

R
n−1\(Bd(0) ∪Bd(x)), obtaining that

∫

B1/δ(0)\(Bd(0)∪Bd(x))

1

|x− y|n−2(1 + |y|) dy ≤ C

∫ 1/δ

d

1

r
dr = O(log δ).

�

Proof of Lemma 2.2. We argue as [26, Lemma A.1], with some modifications due to the fact that we
project the difference of two bubbles and because our differential operator does not have a linear term1.
Let us write

ζδ(x) = PWδ(x) −Wδ(x) + δ−
n−4
2

(
ϕ0

(en − x

δ

)
− ϕ0

(en + x

δ

))
for x ∈ B = B1(0),

which solves

−∆ζδ = 0 in B, ∂νζδ = z1,δ + z2,δ on ∂B,

∫

B

ζδ = 0,

1The operator −∆ + µ with µ > 0 is considered in [26, Lemma A.1], which with Neumann boundary conditions has
important differences with respect to the case µ = 0.
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where

z1,δ(x) = ∂ν

[
δ

4−n
2 ϕ0

(
en − x

δ

)
− Uδ,en(x)

]
, z2,δ(x) = ∂ν

[
Uδ,−en(x) − δ

4−n
2 ϕ0

(
en + x

δ

)]
.

Let τ1(x) = en − x, which satisfies τ1(B1(0)) = B1(en), τ1(0) = en, τ1(en) = 0. Moreover, for
x ∈ ∂B1(0), we denote by ν(x) the exterior unitary normal on ∂B1(0) at x, and by ν(τ1(x)) the exterior
unitary normal on ∂B1(en) at τ1(x). Note that ν(x) = −ν(τ1(x)). Let

ψδ(y) := δ
4−n
2 ϕ0

(y
δ

)
− Uδ,0(y), for y ∈ B1(en).

Then

z1,δ(x) = ∂ν [ψδ(τ1(x))] = ∇ψδ [(τ1(x))] · ν(x) = ∇ψδ(τ1(x)) · ν(τ1(x)).
Hence, by (A.3) in Lemma A.1,

z1,δ = O

(
δ

4−n
2

(1 + |x′

δ |)n−3

)
on ∂B1(0) ∩B1(en), z1,δ = O

(
δ

n−2
2

)
on ∂B1(0) ∩Bc

1(en).

By using instead the isometry τ2(x) = x+ en = x− (−en), we see in an analogous way that

z2,δ = O

(
δ

4−n
2

(1 + |x′

δ |)n−3

)
on ∂B1(0) ∩B1(−en), z2,δ = O

(
δ

n−2
2

)
on ∂B1(0) ∩Bc

1(−en).

Combining the previous estimates, we conclude that

∂νζδ(x) = O

(
δ

4−n
2

(1 + |x′

δ |)n−3

)
in ∂B1(0)∩B1(±en), ∂νζδ(x) = O(δ

n−2
2 ) in B1(0)∩Bc

1(±en) (A.16)

and, by the expansion (A.5), actually

∂νζδ(x) = O

(
δ

4−n
2

(1 + |x∓en|
δ )n−3

)
in ∂B1(0) ∩B1(±en), ∂νζδ(x) = O(δ

n−2
2 ) in B1(0) ∩Bc

1(±en).

In particular,

∂νζδ(x) = O

(
δ

4−n
2

(1 + |x−en|
δ )n−3

+
δ

4−n
2

(1 + |x+en|
δ )n−3

)
in ∂B1(0). (A.17)

We claim that

ζδ(x) = O

(
δ

4−n
2

(1 + |x−en|
δ )n−3

+
δ

4−n
2

(1 + |x+en|
δ )n−3

)
in B1(0), (A.18)

which, combined with the first estimate in (A.2) for ϕ0, yields the same estimate for |PWδ(x)−Wδ(x)|.
This way, (2.9) in Lemma 2.2 is proved.

To show (A.18), let Ωδ := δ−1(en − B1) and let ζ̂δ(x) := δ
n−2
2 ζδ(en − δx) for x ∈ Ωδ. By (A.17), we

have that

∂ν ζ̂δ(x) = O

(
δ2

(1 + |x− 2δ−1en|)n−3
+

δ2

(1 + |x|)n−3

)
in ∂Ωδ. (A.19)

If Gδ is the Green’s function for the rescaled ball Ωδ := δ−1(en −B1), then

Gδ(x, y) = G(en − δx, en − δy)δn−2 for x ∈ Ωδ, y ∈ ∂Ωδ, y 6= x.

In the following we use C to denote possibly different positive constants independent of δ.
By (A.15), there is C > 0 such that, for x ∈ Ωδ,

ζ̂δ(x) =

∫

∂Ωδ

Gδ(x, y)∂ν ζ̂δ(y) dy ≤ C

∫

∂Ωδ

|x− y|2−n∂ν ζ̂δ(y) dy.

Let

U+ = ∂Ωδ ∩B 1
δ
(0), U− = ∂Ωδ ∩B 1

δ

(
2en
δ

)
, U0 = ∂Ωδ\(ω+ ∪ ω−),

then ∂Ωδ = U+ ∪ U− ∪ U0. We estimate each of these subdomains separately.
23



Note that ∫

U0

|x− y|2−n∂ν ζ̂δ(y) dy ≤ Cδn−1

∫

U0

|x− y|2−n dy = C

∫

δU0

|x− δ−1z|2−n dz

≤ Cδn−2 sup
w∈B

∫

∂B

|w − z|2−n dz = O(δn−2). (A.20)

Moreover, if x ∈ U0, then 2δ−1 > |x|, which implies that 1
1+|x| >

δ
2+δ , therefore,

δ

(1 + |x|)n−3
> δ

δn−3

(2 + δ)n−3
=

δn−2

(2 + δ)n−3
,

and thus

δn−2 ≤ C

(
δ

(1 + |x− 2δ−1en|)n−3
+

δ

(1 + |x|)n−3

)
for x ∈ U0.

Next we do the estimate for U+ (the estimate for U− is analogous and also follows by symmetry). For
x ∈ Ωδ,
∫

U+

|x− y|2−n∂ν ζ̂δ(y) dy ≤ C

∫

U+

|x− y|2−n δ2

(1 + |y|)n−3
dy = C

∫

U+

|x− y|2−n δ2

(1 + |y|)1+(n−4)
dy.

(A.21)

Then, by Lemma A.2,
∫

U+

|x− y|2−n δ2

(1 + |y|)1+(n−4)
dy ≤ Cδ2(log δ)τ

(1 + |x|)n−4
, (A.22)

where τ = 1 if n = 4, and τ = 0 if n ≥ 5. By (A.20), (A.21), and (A.22), we obtain that ζ̂δ =

O(δ2(log δ)τ ), which implies ζδ = O(δ
6−n
2 (log δ)τ ). On the other hand, since δ < 2

1+|y| for y ∈ U+, again

by Lemma A.2 (since n ≥ 4) we have
∫

U+

|x− y|2−n δ2

(1 + |y|)1+(n−4)
dy ≤ C

∫

U+

|x− y|2−n δ

(1 + |y|)1+(n−3)
dy ≤ Cδ

(1 + |x|)n−3
, (A.23)

Estimates (A.20), (A.21), and (A.23) yield (A.18). For the results regarding ∂δPWδ, the proofs follow
precisely the previous reasoning, based this time on the boundary estimates (A.4) from Lemma A.1. �

Remark A.3. If, instead of B, we consider a general bounded smooth domain Ω with the symmetries
(1.10), then we may assume without loss of generality that en = (1, 0, . . . , 0) ∈ ∂Ω is a point of positive
mean curvature. We let ϕ0 be the solution of

−∆ϕ0 = 0 in R
n
+,

∂ϕ0

∂xn
= αn

n− 2

2

n−1∑

j=1

ρjx
2
j

(1 + |x′|2)n
2

on ∂Rn
+, ϕ0 → 0 as |x| → ∞. (A.24)

This function satisfies (A.2), and the expansion of Lemma 2.2 holds true, with a similar proof. See [26,
Lemma A.1] for a similar expansion related to positive solutions for a similar Neumann problem with a
potential. Using this expansion, it is possible to adapt the proofs of Theorems 1.1 and 1.2 to the case of
other symmetric domains. Some small changes are highlighted in Remarks B.5 and B.9.

Appendix B. Asymptotic estimates for Lq norms of bubbles

In this appendix we collect several expansion for Lq norms of the bubbles Uδ,ξ in different domains.
We start with the following auxiliary statement.

Lemma B.1. For every q > 1 there exists C > 0 such that

||a+ b|q − |a|q| ≤ C(|a|q−1|b|+ |b|q) ∀a, b ∈ R.

Moreover, for g(t) := |t|q−1t with q ≥ 1, there exists C > 0 such that

|g(a+ b)− g(a)| ≤ C(|a|q−1b+ |b|q) ∀a, b ∈ R

while, for all a, b ∈ R,

|g(a+ b)− g(a)− g′(a)b| ≤
{
C(|a|q−2b2 + |b|q) if q ≥ 2,

C|b|q if 1 < q < 2.
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Finally, for every q > 1 and γ ∈ (0, 1) there exists C > 0 such that

||a+ b|q log |a+ b| − |a|q log |a|| ≤ C(|a|q−1−γ |b|+ |a|q−1+γ |b|+ |b|q−γ + |b|q+γ) ∀a, b ∈ R. (B.1)

Proof. The proof of the first three statements follows directly from a Taylor expansion with Lagrange
remainder. As for the fourth (the case 1 < q < 2), it is equivalent to proving that the function

h(x) := ||x+ 1|q−1(x+ 1)− |x|q−1x− q|x|q−1|

is bounded in R. Since h is continuous in R, one just needs to check it is bounded at infinity. For x > 0
large, we have, by Taylor expansion, for some ξ ∈ (x, x + 1) that

h(x) = q(q − 1)|ξ|q−2 ≤ q(q − 1)

|x|2−q
→ 0 as x→ ∞,

and similarly of x < 0 large, hence the claim follows. Finally, for (B.1) we take i(x) = |a|q log |a| and
have:

i(a+ b)− i(a) = i′(s)b, for some s between a and b.

Then

|i′(s)b| ≤ |s|q−2(|s|+ |s log |s||)|b| ≤ c|s|q−2(|s|+ |s|1−γ + |s|1+γ)|b|
≤ c(|s|q−1−γ + |s|p−1+γ)|b| ≤ C(|a|q−1−γ |b|+ |a|q−1+γ |b|+ |b|q−γ + |b|q+γ)

�

For ε > 0 and t ∈ R, let

fε(t) := |t|p−1+εt.

Lemma B.2. For t ∈ R,

fε(t) = |t|p−1t+ ε|t|p−1t log |t|+ ε2r1,ε(t), (B.2)

and

f ′
ε(t) = p|t|p−1 + ε(|t|p−1 + p|t|p−1 log |t|) + ε2r2,ε(t),

where |r1,ε(t)| ≤ 1
2 (|t|p + |t|p+ε) (log |t|)2 and |r2,ε(t)| ≤ 2(p+ 1)

(
|t|p−1 + |t|p−1+ε

)
(log |t|+ (log |t|)2).

Proof. For every t ∈ R, we make the expansion around ε = 0: there exists σ ∈ (0, ε) such that

fε(t) = f0(t) + ε
∂

∂ε
fε(t)|ε=0 +

ε2

2

∂2

∂ε2
fε(t)|ε=σ

= |t|p−1t+ ε|t|p−1t log |t|+ ε2t|t|p−1+σ(log |t|)2,

and use the estimate |t|p+σ ≤ |t|p + |t|ε. The expansion for f ′
ε(t) is similar. �

Lemma B.3. Let αn := [n(n− 2)]
n−2
4 . For ξ ∈ R

n and δ > 0, recall that

Uδ,ξ(x) = αn
δ

n−2
2

(δ2 + |x− ξ|2)n−2
2

, and define Vδ,ξ(x) :=
δ

n−2
2

(δ + |x− ξ|)n−3
.

For R > 0, as δ → 0+ we have

∫

BR(ξ)

U q
δ,ξ =





O(δq
n−2
2 ) if 0 < q < n

n−2 ,

O(δ
n
2 | log δ|) if q = n

n−2 ,

O(δn−q n−2
2 ) if n

n−2 < q <∞,

and

∫

BR(ξ)

V q
δ,ξ =






O(δq
n−2
2 ) if 0 < q < n

n−3 ,

O(δ
n(n−2)
2(n−3) | log δ|) if q = n

n−3 ,

O(δn−q n−4
2 ) if n

n−3 < q <∞.

In particular, if ξ ∈ B, |Uδ,ξ|2∗+O(δ) = O(1) as δ → 0.
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Proof. The proof of the statement for Uδ,ξ can be found for instance in [20, Lemma A.3]. As for Vδ,ξ, by
making the change of variables x = ξ + δy, we see that

∫

BR(ξ)

V q
δ,ξ = δn−q n−4

2

∫

BR
δ
(0)

1

(1 + |y|)q(n−3)
dy.

If q > n/(n − 3), the last integral is bounded as δ → 0, hence
∫
BR(ξ)

V q
δ,ξ = O(δn−q n−4

2 ). In case

q ≤ n/(n− 3), by using generalized polar coordinates,

∫

BR(ξ)

V q
δ,ξ ≤ Cδn−q n−4

2

(
1 +

∫ R
δ

1

rn−1−q(n−3) dr

)
=

{
O(δq

n−2
2 ) if q < n

n−3

O(δ
n(n−2)
2(n−3) | log δ|) if q = n

n−3

�

Recall that B := B1(0), and denote

ω+ := B ∩B 1
2
(en) and ω− := B ∩B 1

2
(−en).

In particular,

δ2 + |x∓ en|2 ≥ δ2 + (12 )
2 ≥ 1

4 for x ∈ B\ω±. (B.3)

Namely,

|Uδ,±en | ≤ αn
δ

n−2
2

(δ2 + |x∓ en|2)
n−2
2

≤ αn2
n−2δ

n−2
2 for x ∈ B\ω±.

We follow the ideas in [1] to prove the following result. Since we use a different notation and for the
ball the computations are explicit, we include the proof for completeness.

Lemma B.4. If n ≥ 4, then
∫

B

Up+1
δ,en

=

∫

B

Up+1
δ,−en

=
A

2
− B

2
δ + o(δ) as δ → 0+,

where A and B are given in (4.1).

Proof. Note that
∫

ω+

Up+1
δ,en

=
1

2

∫

B 1
2
(en)

Up+1
δ,en

︸ ︷︷ ︸
(I)

−
∫

Σ

Up+1
δ,en

︸ ︷︷ ︸
(II)

, (B.4)

where

Σ := B−
1
2

(en) \ ω+, B−
1
2

(en) = {y ∈ B 1
2
(en) : yn < 1}.

Let ∆ := {x′ ∈ R
n−1 : |x′| <

√
15/8} be the projection of the set ∂B ∩ B 1

2
(en) in the variables

x′ := (x1, . . . , xn−1), so that Σ = {x′ ∈ ∆ :
√
1− |x′|2 < xn < 1}.

On the one hand, we have

(I) =
1

2

∫

Rn

Up+1
δ,en

− 1

2

∫

Rn\B 1
2
(en)

Up+1
δ,en

=
1

2

∫

Rn

αp+1
n

(1 + |x|2)n dx+O(δn) =
A

2
+O(δn).

Likewise,

(II) =

∫

∆

∫ 1

√
1−|x′|2

αp+1
n δn

(δ2 + |x− en|2)n
dxndx

′.

Using now the change of variables yn = 1−xn√
δ2+|x′|2

, so that δ2 + |x − en|2 = (δ2 + |x′|2)(1 + y2n), we see

that

(II) =

∫

∆

αp+1
n δn

(δ2 + |x′|2)n− 1
2

∫ 1−
√

1−|x′|2√
δ2+|x′|2

0

1

(1 + y2n)
n
dyndx

′.

Observe that
∫ s

0

1

(1 + y2n)
n
dyn = s+O(s3) and 1−

√
1− |x′|2 =

|x′|2
2

+O(|x′|4)
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uniformly for s ∈ R and for x′ ∈ ∆, respectively. So

(II) =

∫

∆

αp+1
n δn

(δ2 + |x′|2)n− 1
2



1−
√
1− |x′|2√

δ2 + |x′|2
+O

(
1−

√
1− |x′|2√

δ2 + |x′|2

)3


 dx′

=

∫

∆

αp+1
n δn

(δ2 + |x′|2)n
( |x′|2

2
+O(|x′|4)

)
dx′

=
(x′=δy′)

∫

∆/δ

αp+1
n δ−1

(1 + |y′|2)n
(
δ2|y′|2

2
+O(δ4|y′|4)

)
dy′

= δ
αp+1
n

2

∫

∆/δ

|y′|2
(1 + |y′|2)n dy

′ +O(δ3)

∫

∆/δ

|y′|4
(1 + |y′|2)n dy

′

= δ
αp+1
n

2

∫

Rn−1

|y′|2
(1 + |y′|2)n dy

′ + δ
αp+1
n

2

∫

Rn−1\(∆/δ)

|y′|2
(1 + |y′|2)n dy

′ + o(δ)

= δ
αp+1
n

2

∫

Rn−1

|y′|2
(1 + |y′|2)n dy

′ + o(δ) =
B

2
δ + o(δ),

where O(δ3)
∫
∆/δ

|y′|4
(1+|y′|2)n dy

′ = o(δ) since
∫

∆/δ

|y′|4
(1 + |y′|2)n dy

′ →
∫

Rn−1

|y′|4
(1 + |y′|2)n dy

′ <∞ for n ≥ 4.

The claim now follows, since
∫

B\ω+

Up+1
δ,en

=

∫

B\ω+

δn

(δ2 + |x+ en|2)n
≤ |B|4nδn.

The proof for Uδ,−en follows by symmetry. �

Remark B.5. If, instead of B, we consider a general smooth bounded domain Ω and ξ0 ∈ ∂Ω, then we
would have the expansion

∫

Ω

Up+1
δ,ξ0

=
A

2
−H(ξ0)

B

2
δ + o(δ) as δ → 0+,

where H(ξ0) is the mean curvature of ∂Ω at ξ0. The proof can be found in [1]: up to a rotation and
translation, we can assume that ξ0 = 0 and that, for sufficiently small R > 0,

Ω ∩BR = {(x′, xn) : xn > ρ(x′)}, ρ(x′) =
n−1∑

j=1

ρjx
2
j +O(|x′|3), H(ξ0) =

2
∑n−1

j=1 ρj

n− 1
.

With respect to the proof of the previous lemma, in the general case the quantity (I) has the same
expansion, while

(II) =

∫

∆

∫ ϕ(x′)

0

αp+1
n δn

(δ2 + |x− en|2)n
dxn dx

′ =

∫

∆

αp+1
n δn

(δ2 + |x′|2)n




n−1∑

j=1

ρjx
2
j + O(|x′|3)



 dx′

= δαp+1
n

n−1∑

j=1

ρj

∫

∆

|x′|2
(δ2 + |x′|2)n dx

′ + o(δ) = H(0)
B

2
δ + o(δ).

Next, we focus on the interaction between bubbles centered at different points.

Lemma B.6. We have∫

B

Uδ,enU
p
δ,−en

=

∫

B

Uδ,−enU
p
δ,en

= O(δn−2) as δ → 0+.

Proof. Note that

∫

B

Uδ,enU
p
δ,−en

= αp+1
n

∫

B

δ
n−2
2

(δ2 + |x− en|2)
n−2
2

(
δ

n−2
2

(δ2 + |x+ en|2)
n−2
2

) n+2
n−2

dx

= αp+1
n

∫

B

δn

(δ2 + |x− en|2)
n−2
2 (δ2 + |x+ en|2)

n+2
2

dx.
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Let D := ω+ − en. Then
∫

ω+

δn

(δ2 + |x− en|2)
n−2
2 (δ2 + |x+ en|2)

n+2
2

dx ≤ 2n+2

∫

D

δn

(δ2 + |x|2)n−2
2

dx

≤ 2n+2

∫

D/δ

δn+2

(1 + |y|2)n−2
2

dy ≤ C2n+2δn+2

(
1 +

∫ 1
2δ

1

rn−1

(1 + r2)
n−2
2

dr

)

≤ C2n+2δn+2

(
1 +

∫ 1
2δ

1

r dr

)
= C2n+2δn+2

(
1

2
+

1

8δ2

)
= O(δn).

Reasoning in the same way,

∫

ω−

δn

(δ2 + |x− en|2)
n−2
2 (δ2 + |x+ en|2)

n+2
2

dx ≤ C2n−2δn−2

(
1 +

∫ 1
2δ

1

rn−1

(1 + r2)
n+2
2

dr

)
= O(δn−2),

and ∫

B\(ω+∪ω−)

δn

(δ2 + |x− en|2)
n−2
2 (δ2 + |x+ en|2)

n+2
2

dx ≤ |B|4nδn = O(δn). �

Recall that, by (A.1) and (A.2), for x ∈ R
n
+,

ϕ0(x) :=
αn

ωn

∫

Rn−1

|y|2
(1 + |y|2)n

2 |x− y|n−2
dy, |ϕ0(x)| ≤

C

(1 + |x|)n−3
. (B.5)

Lemma B.7. We have

δ−
n−4
2

∫

B

ϕ0

(en − x

δ

)
Up
δ,−en

= δ−
n−4
2

∫

B

ϕ0

(en + x

δ

)
Up
δ,en

= O(δn−2) as δ → 0.

Proof. Let D := ω+ − en. Using (B.3) and (B.5),and making the change of variable x 7→ x− en:

δ−
n−4
2

∫

ω+

ϕ0

(en − x

δ

)
Up
δ,−en

= δ−
n−4
2 αp

n

∫

ω+

ϕ0

(en − x

δ

) δ
n+2
2

(δ2 + |x+ en|2)
n+2
2

≤ αp
n2

n+2δ3
∫

D

ϕ0

(−x
δ

)
≤ αp

n2
n+2δn+3

∫

1
δD

C

(1 + |x|)n−3

≤ Cαp
n2

n+2δn+3ωn

(
1 +

∫ 1
2δ

1

r2

)
= O(δn),

where we recall that ωn denotes the measure of the unit sphere of Rn. On the other hand, ifK := ω−+en,

δ−
n−4
2

∫

ω−

ϕ0

(en − x

δ

)
Up
δ,−en

= δ1−nαp
n

∫

K

ϕ0

(2en − x

δ

) 1

(1 + |xδ |2)
n+2
2

= δαp
n

∫

1
δK

ϕ0

(2en
δ

− x
) 1

(1 + |x|2)n+2
2

≤ Cδn−2αp
n

(
2

3

)n−3 ∫

1
δK

1

(1 + |x|2)n+2
2

= O(δn−2),

since |2enδ−1 − x| ≥ 2δ−1 − (2δ)−1 = 3
2δ

−1 for x ∈ δ−1K and therefore, by (B.5),

|ϕ0

(
2en
δ

− x

)
| ≤ C

(1 + |2enδ−1 − x|)n−3
≤ C

(
2

3

)n−3

δn−3, x ∈ δ−1K.

Finally,

δ−
n−4
2

∫

B\(ω+∪ω−)

ϕ0

(en − x

δ

)
Up
δ,−en

≤
(
δ−

n−4
2

) (
C2n−3δn−3

) (
|B|2n+2δ

n+2
2 αp

n

)
= O(δn),

because, for x ∈ B\(ω+ ∪ ω−), we have |x± en| ≥ 1
2 and

∣∣∣∣ϕ0

(
en − x

δ

)∣∣∣∣ ≤
C

(1 + 1
2δ

−1)n−3
≤ C2n−3δn−3, Up

δ,−en
=

(
δ

δ2 + |x+ en|2
)n+2

2

≤ 2n+2δ
n+2
2 (B.6)

�
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Lemma B.8. As δ → 0+,

δ−
n−4
2

∫

B

ϕ0

(en − x

δ

)
Up
δ,en

= δ−
n−4
2

∫

B

ϕ0

(en + x

δ

)
Up
δ,−en

= −n− 2

2
αnδ

∫

Rn−1

|y|2
(1 + |y|2)n−1

+ o(δ)

= −n− 2

2
Cδ + o(δ),

where we recall that C was introduced in (4.1).

Proof. Let D := ω+ − en and observe that, after a change of variables,

δ−
n−4
2

∫

ω+

ϕ0

(en − x

δ

)
Up
δ,en

= αp
nδ

∫

1
δD

ϕ0(−x)
(1 + |x|2)n+2

2

= αp
nδ

∫

R
n
+

ϕ0(x)

(1 + |x|2)n+2
2

+ o(δ)

= δ

∫

R
n
+

ϕ0(x)(−∆U1,0) + o(δ) = δ

∫

∂Rn
+

(∂νϕ0)U1,0 + o(δ)

= −δ
∫

Rn−1

αn
n− 2

2

|y|2

(1 + |y|2)n
2 (1 + |y|2)n−2

2

+ o(δ) = −n− 2

2
Cδ + o(δ), (B.7)

where we have used the decay of ϕ0, U1,0 to integrate by parts, together with the fact that ∂νU1,0 = 0
on ∂Rn

+. On the other hand, using that |x − en| ≥ 1
2 for x ∈ B\ω+, we have that (B.6) holds true and

that Uδ,en ≤ 2n+2δ
n+2
2 . Therefore,

δ−
n−4
2

∫

B\ω+

ϕ0

(en − x

δ

)
Up
δ,en

≤
(
C2n−3δn−3

) (
2n+2δ

n+2
2

)
= O(δn+

n−4
2 ) = o(δ). (B.8)

The final claim now follows by (B.7), (B.8), and by symmetry of the integrand functions. �

Remark B.9. If, instead of B, we consider a general smooth bounded domain Ω with the symmetries
(1.10), then we may assume without loss of generality that en = (1, 0, . . . , 0) ∈ ∂Ω is a point of positive
mean curvature. Then similar versions of Lemmas B.7 and B.8 hold true for ϕ0 as in (A.24) (recall
Remark A.3), with the only difference that in the expansion of the second lemma one has −n−2

2 H(en)Cδ+
o(δ).

Next we collect some asymptotic estimates for integral normal of

Wδ := Uδ,en − Uδ,−en and wδ := PWδ,

which for convenience we recall to be the solution of

−∆PWδ = −∆Uδ,en +∆Uδ,−en in B, ∂νPWδ = 0 on ∂B,

∫

B

PWδdx = 0.

Lemma B.10. We have, as δ → 0+,

‖δ∂δwδ‖2 =

(
n− 2

2

)2 ∫

Rn

αp+1
n (|x|2 − 1)2

(1 + |x|2)n+2
dx+ o(1).

Proof. Integrating by parts,

‖δ∂δwδ‖2 = −δ2
∫

B

(∆∂δwδ)∂δwδ =

∫

B

δ∂δ

(
Up
δ,en

− Up
δ,−en

)
δ∂δwδ

= p

∫

B

(Up−1
δ,en

(δ∂δUδ,en)
2 + Up−1

δ,−en
(δ∂δUδ,−en)

2) + ψ(δ),

where

ψ(δ) = −2p

∫

B

(Up−1
δ,en

+ Up−1
δ,en

)(δ∂δUδ,en)(δ∂δUδ,−en)

+ p

∫

B

(Up−1
δ,en

(δ∂δUδ,en)− Up−1
δ,−en

(δ∂δUδ,−en))(δ∂δ(wδ −Wδ)).

Observe that, by Lemma 2.2 we have

|δ∂δ(wδ −Wδ)| ≤ C(Vδ,en + Vδ,−en),

where Vδ,ξ are as in Lemma B.3. Taking in consideration (2.4), we see that

|ψ(δ)| ≤ C

∫

B

(Up−1
δ,en

+ Up−1
δ,−en

)(Uδ,enUδ,−en + Vδ,en + Vδ,−en) = o(1),
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by Lemma B.3. Moreover,

∫

B

Up−1
δ,en

(δ∂δUδ,en)
2 =

(
n− 2

2

)2 ∫

B

αp+1
n δn(|x− en|2 − δ2)2

(δ2 + |x− en|2))n+2
dx =

(
n− 2

2

)2 ∫

B−en
δ

αp+1
n (|y|2 − 1)2

(1 + |y|2)n+2
dy

=

(
n− 2

2

)2 ∫

R
n
+

αp+1
n (|y|2 − 1)2

(1 + |y|2)n+2
dy + o(1).

The conclusion for the term ∫

B

Up−1
δ,−en

(δ∂δUδ,−en)
2

and the conclusion of the lemma follows by symmetry. �

Lemma B.11. For γ ≥ 0 small we have, as δ → 0+:

|f0(wδ)− f0(Wδ)| (p+1)(1+γ)
p

=





O(δ| log δ| 14 ) if n = 4, γ = 0,

O(δ) if n ≥ 5, γ = 0,

O(δ1−
(n+2)γ
2(1+γ) ) if n ≥ 4, γ > 0,

and

|f0(Wδ)− f0(Uδ,en) + f0(Uδ,−en)| (p+1)(1+γ)
p

=





O(δn−2) if 4 ≤ n < 6, γ ≥ 0,

O(δ4| log δ| 23 ) if n = 6, γ = 0,

O(δ
n+2
2 ) if n = 6, γ > 0 or n > 6, γ ≥ 0.

Proof. a) Estimate of |f0(wδ) − f0(Wδ)| (p+1)(1+γ)
p

for γ ≥ 0. Using the second statement of Lemma B.1

with q := p, a :=Wδ and b := wδ −Wδ, followed by Hölder’s inequality,
∫

B

|f0(wδ)− f0(Wδ)|
(p+1)(1+γ)

p =

∫

B

∣∣|wδ|p−1Wδ − |Wδ|p−1Wδ

∣∣ (p+1)(1+γ)
p

≤ C

∫

B

(
|Wδ|p−1|wδ −Wδ|+ |wδ −Wδ|p

) (p+1)(1+γ)
p

≤ C′
∫

B

|Wδ|
(p−1)(p+1)(1+γ)

p |wδ −Wδ|
(p+1)(1+γ)

p + C′
∫

B

|wδ −Wδ|(p+1)(1+γ)

≤ C′′
(∫

B

|Wδ|(p+1)(1+γ)

) p−1
p
(∫

B

|wδ −Wδ|(p+1)(1+γ)

) 1
p

+ C′
∫

B

|wδ −Wδ|(p+1)(1+γ).

Now, recalling that p+ 1 = 2n
n−2 and using Lemma B.3:

∫

B

|Wδ|(p+1)(1+γ) ≤ C

∫

B

(
|Uδ,en |(p+1)(1+γ) + |Uδ,−en |(p+1)(1+γ)

)
=

{
O(1) if γ = 0,

O(δ−nγ) if γ > 0.

Moreover, a consequence of Lemma 2.2 combined with Lemma B.3:

∫

B

|wδ −Wδ|(p+1)(1+γ) =






O(δ4| log δ|) if n = 4, γ = 0,

O(δ
2n

n−2 ) if n > 4, γ = 0,

O(δ
2n−nγ(n−4)

n−2 ) if n ≥ 4, γ > 0.

In conclusion,

∫

B

|f0(wδ)− f0(Wδ)|
(p+1)(1+γ)

p =






O(δ
p+1
p | log δ| 13 ) if n = 4, γ = 0

O(δ
p+1
p ) if n ≥ 5, γ = 0,

O
(
δ

p+1
p (1−nγ

2 )
)

if n ≥ 4, γ > 0.

b) Estimate of |f0(Wδ)− f0(Uδ,en) + f0(Uδ,−en)| (p+1)(1+γ)
p

. We use the notation

ω+ := B ∩B 1
2
(en) and ω− := B ∩B 1

2
(−en).
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Observe that
∫

ω+

|f0(Wδ)− f0(Uδ,en)+f0(Uδ,−en)|
(p+1)(1+γ)

p =

∫

ω+

∣∣∣|Wδ|p−1Wδ − Up
δ,en

+ Up
δ,−en

∣∣∣
(p+1)(1+γ)

p

≤ C

∫

ω+

∣∣∣|Wδ|p−1Wδ − Up
δ,en

∣∣∣
(p+1)(1+γ)

p

+ C

∫

ω+

U
(p+1)(1+γ)
δ,−en

. (B.9)

Now, since |x+ e1| ≥ 1 in ω+,

∫

ω+

U
(p+1)(1+γ)
δ,−en

=

∫

ω+

(
αp+1
n δn

(δ2 + |x+ e1|2)n
)1+γ

dx ≤ α(p+1)(1+γ)
n |ω+|δn(1+γ) = O(δn(1+γ)). (B.10)

Applying the second statement of Lemma B.1 with q := p, a := Uδ,en and b := −Uδ,−e2 , we obtain

∫

ω+

∣∣∣|Wδ|p−1Wδ − Up
δ,en

∣∣∣
(p+1)(1+γ)

p ≤ C

∫

ω+

(
|Uδ,en |p−1Uδ,−en + |Uδ,−en |p

) (p+1)(1+γ)
p (B.11)

≤ C′
∫

ω+

U
(p−1)(p+1)

p

δ,en
U

(p+1)(1+γ)
p

δ,−en
+ C′

∫

ω+

|Uδ,−en |(p+1)(1+γ)

≤ O(δ
n(n−2)(1+γ)

n+2 )

∫

ω+

|Uδ,en |
8n(1+γ)

(n+2)(n−2) +O(δn(1+γ)). (B.12)

By Lemma B.3 with R = 2, q := 8n
(n+2)(n−2) , and observing that 0 < q < 2n

n−2 , and that q < n
n−2 if and

only if n > 6, we have

∫

ω+

U
8n

(n+2)(n−2)

δ,en
=






O(δ
n(n−2)

n+2 ) if 4 ≤ n < 6,

O(δ3| log δ|) if n = 6,

O(δ
4n

n+2 ) if n > 6.

(B.13)

while, for γ > 0 sufficiently small:

∫

ω+

U
8n(1+γ)

(n+2)(n−2)

δ,en
=

{
O(δ

n(n−2)(1+γ)
n+2 ) if 4 ≤ n < 6,

O(δ
4n(1+γ)

n+2 ) if n ≥ 6.
(B.14)

Going back to (B.12) and combining it with (B.13)–(B.14), we see that

∫

ω+

∣∣∣|Wδ|p−1Wδ − Up
δ,en

+ Up
δ,−en

∣∣∣
(p+1)(1+γ)

p

=





O(δ
2n(n−2)(1+γ)

n+2 ) if 3 ≤ n < 6, γ ≥ 0 small,

O(δ6| log δ|) if n = 6, γ = 0

O(δn(1+γ)) if n > 6, γ > 0 or n > 6, γ ≥ 0.

Exchanging the roles of en and −en, we have precisely the same type of estimate for
∫

ω−

∣∣∣|Wδ|p−1Wδ − Up
δ,en

+ Up
δ,−en

∣∣∣
(p+1)(1+γ)

p

.

Finally, since |x− en|, |x+ en| ≥ 1
2 for x ∈ B\(ω+ ∪ ω−), we have

∫

B\(ω+∪ω−)

∣∣∣|Wδ|p−1Wδ − Up
δ,en

+ Up
δ,−en

∣∣∣
(p+1)(1+γ)

p ≤ C

∫

B\(ω+∪ω−)

(
U

(p+1)(1+γ)
δ,en

+ U
(p+1)(1+γ)
δ,−en

)

= O(δn(1+γ)),

which concludes the proof. �

Lemma B.12. For ℓ > 0 small, let η ∈ (0, 1), d > 0 and δ = dε. Then, for every γ ∈ (0, 1),

|fε(wδ)− f0(wδ)| (p+1)(1+ℓ)
p

= O(ε1−γ).

as ε→ 0, uniformly in d ∈ (1/η, η).

Proof. Consider the case ℓ = 0. Let σ > 0. Using the expansion (B.2),

fε(t) = f0(t) + ε|t|p−1t log |t|+ ε2rε(t),

|rε(t)| ≤ C(|t|p + |t|p+ε̄)(log |t|)2,
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where we take ε̄ such that (p+ ε̄)(p+1)/p < (2n+2σ)/(n−2). Then (recall that (p+1)/p = 2n/(n+2)),
∫

B

|fε(wδ)− f0(wδ)|
p+1
p =

∫

B

|εwδ|wδ|p−1 log |wδ|+ ε2rε(wδ)|
p+1
p

≤ Cε
p+1
p

∫

B

|wδ|p+1(log |wδ|)
p+1
p + Cε

2(p+1)
p

∫

B

|rε(wδ)|
p+1
p

≤ C′′ε
2n

n+2

(
1 +

∫

B

|wδ|
2n+2σ
n−2 + ε

2n
n+2

∫

B

|wδ|
2n+2σ
n−2

)
.

We can now conclude by recalling that |wδ| ≤ (Uδ,en +Uδ,−en) - see Lemma 2.2 - and by applying Lemma
B.3, which yields ∫

B

|wδ|
2n+2σ
n−2 ≤ C

∫

B

(
U

2n+2σ
n−2

δ,en
+ U

2n+2σ
n−2

δ,−en

)
= O(δ−σ). �

The case ℓ > 0 small is analogous, see the proof of Lemma B.11.

Lemma B.13. Let d > 0 and δ = dε. Then, for every γ ∈ (0, 1),

|f ′
0(wδ)|n2 = O(1), |f ′

ε(wδ)− f ′
0(wδ)|n2 ≤ o(ε1−γ).

Proof. The first estimate follows from Corollary 2.3 and Lemma B.3. For the second estimate, note that,
by Lemma B.2,

f ′
ε(t)− f ′

0(t) = ε(|t|p−1 + p|t|p−1 log |t|) + ε2r2,ε(t),

|r2,ε(t)| ≤ 2(p+ 1)
(
|t|p−1 + |t|p−1+ε

)
(log |t|+ (log |t|)2)

and therefore,
∫

B

|f ′
ε(wδ)− f ′

0(wδ)|
n
2 =

∫

B

∣∣∣|wδ|
4

n−2+ε − |wδ|
4

n−2

∣∣∣
n
2

≤ Cε

(∫

B

|wδ|p+1 + |wδ|p+1| log |wδ||
n
2 + ε

n
2 (|wδ |

4
n−2 + |wδ|

4
n−2+ε)

n
2 (| log |wδ||+ | log |wδ||2)

n
2 dx

)
.

Now the claim follows arguing as in Lemma B.12. �
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