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THE NATURAL MATROID OF AN INTEGER POLYMATROID

JOSEPH E. BONIN, CAROLYN CHUN, AND TARA FIFE

ABSTRACT. The natural matroid of an integer polymatroid was introduced to show that a

simple construction of integer polymatroids from matroids yields all integer polymatroids.

As we illustrate, the natural matroid can shed much more light on integer polymatroids.

We focus on characterizations of integer polymatroids using their bases, their circuits, and

their cyclic flats along with the rank of each cyclic flat and each element; we offer some

new characterizations and insights into known characterizations.

1. INTRODUCTION

A polymatroid is a pair P = (E, ρ) where E is a finite set and the real-valued function

ρ : 2E → R, the rank function of P , has the following properties:

(1) ρ is normalized, that is, ρ(∅) = 0,

(2) ρ is non-decreasing, that is, if A ⊆ B ⊆ E, then ρ(A) ≤ ρ(B), and

(3) ρ is submodular, that is, ρ(A∪B) + ρ(A∩B) ≤ ρ(A) + ρ(B) for all A,B ⊆ E.

Less formally, we often talk about a polymatroid ρ on E. A k-polymatroid, where k ∈ R

and k > 0, is a polymatroid (E, ρ) for which ρ(e) ≤ k for all e ∈ E. For much of this

paper, we are concerned with integer polymatroids (also called discrete polymatroids), that

is, polymatroids ρ where the rank ρ(A) of each set A is in the set N of nonnegative integers.

Intuitively, a matroid (an integer 1-polymatroid) can be thought of as a configuration of

points, lines, planes, and so on, in which each of the elements that make up these objects

has rank 0 (loops) or 1 (points). An integer polymatroid is the natural generalization in

which the elements are not limited to points and loops; we also allow, as the elements,

lines (elements of rank 2), planes (elements of rank 3), and so on. Not surprisingly, every

integer polymatroid comes from a matroid, as the following result of [14, 18, 20] states.

Theorem 1.1. A function ρ : 2E → N is an integer polymatroid if and only if there is a

matroid M on a set E′ and a function φ : E → 2E
′

with ρ(A) = rM
(
⋃

e∈A φ(e)
)

for all

A ⊆ E.

Helgason [14] introduced the natural matroid to prove this result. Geometrically, we get

the natural matroid by, for each element e of E, replacing e by a set φ(e) of ρ(e) points

that are placed freely in e; thus, a line is replaced by two points that are put freely on the

line, and a plane by three points that are placed freely on the plane, and so on. (Section

2 has a precise definition of the natural matroid.) Many important properties of integer

polymatroids are closely linked to properties of its natural matroid. For instance, Oxley,

Semple, and Whittle [22] showed that an integer 2-polymatroid is 3-connected if and only

if it has no loops and its natural matroid is 3-connected. We study the natural matroid in

its own right.

In Section 2, we review the definition of the natural matroid and prove two results that

make it easy to verify that a matroid M is the natural matroid of an integer polymatroid ρ.
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We show that, for an integer polymatroid ρ on E that is the sum of the rank functions of

matroids M1,M2, . . . ,Mk on E, the natural matroid of ρ is the matroid union of certain

extensions of M1,M2, . . . ,Mk by loops and elements parallel to those in these matroids.

Herzog and Hibi [15] treat characterizations of integer polymatroids using bases and

exchange properties. In Section 3, we show how these results follow easily by observing

that the bases of an integer polymatroid are the type vectors of the bases of its natural

matroid.

Viewing the bases of an integer polymatroid as the type vectors of the bases of its natural

matroid suggests developing an analogous theory for circuits. We do this in Section 4,

where, in Theorem 4.3, we introduce circuit axioms for integer polymatroids.

Cyclic flats of matroids, along with their ranks, provide relatively compact descriptions

of matroids that allow one to focus on crucial features when, for instance, defining certain

matroid constructions (e.g., see [1, 2, 7, 11]); this perspective is also useful in applications

such as coding theory (e.g., see [13]). In Section 5, we show that some results about cyclic

flats lift from the natural matroid of an integer polymatroid to the polymatroid. In the

case of integer polymatroids, this gives another perspective on recent work by Csirmaz

[10] characterizing all polymatroids via their cyclic flats and the ranks of these flats and of

singleton sets. A key result behind this characterization is the formula that gives the rank

function of a polymatroid ρ on E using only its values on cyclic flats and singleton sets,

namely,

ρ(A) = min{ρ(X) +
∑

i∈A−X

ρ(i) : X ∈ Zρ},

where Zρ is the lattice of cyclic flats of ρ. For a subset A of E, we consider the set Rρ(A)
of cyclic flats X that yield this minimum. We show that Rρ(A) is a sublattice of Zρ, we

identify its least and greatest elements, and we show that each pair of flats in Rρ(A) is a

modular pair.

Our matroid notation follows Oxley [21]. For a positive integer n, let [n] be the set

{1, 2, . . . , n}. We often take the ground set of an integer polymatroid ρ to be [n] since this

provides a natural correspondence between the elements of ρ and the entries in n-tuples.

For n ∈ N, the set of nonnegative integers, let [n]0 be the set {0, 1, 2, . . . , n}.

For a polymatroid ρ on E and for A ⊆ E, the deletion ρ\A and contraction ρ/A, both

on E − A, are defined by ρ\A(X) = ρ(X) and ρ/A(X) = ρ(X ∪ A) − ρ(A) for all

X ⊆ E − A. The minors of ρ are the polymatroids of the form (ρ\A)/B (equivalently,

(ρ/B)\A) for disjoint subsets A and B of E. The k-dual ρ∗ of a k-polymatroid ρ on E is

the k-polymatroid that is given by ρ∗(X) = k|X | − ρ(E) + ρ(E − X) for all X ⊆ E.

The direct sum ρ1 ⊕ ρ2 of polymatroids ρ1 and ρ2 on disjoint sets E1 and E2 is defined by

(ρ1 ⊕ ρ2)(X) = ρ1(X ∩E1) + ρ2(X ∩ E2) for X ⊆ E1 ∪E2. A polymatroid that is not

a direct sum of two polymatroids on nonempty sets is connected.

2. THE NATURAL MATROID OF AN INTEGER POLYMATROID

The construction of the natural matroid uses Theorem 2.1 below, due to McDiarmid

[20], which strengthens an earlier result of Edmonds and Rota. (Theorem 2.1 is treated in

[21, 28].) Consider a collection L of subsets of a set E that includes E and ∅, and that is

closed under intersection; thus, under inclusion, L is a lattice, and for A,B ∈ L, their meet

A ∧B is A ∩B, but their join A ∨ B need not be A ∪ B. For such a lattice L, a function

σ : L → N is submodular if σ(A ∨B) + σ(A ∩B) ≤ σ(A) + σ(B) for all A,B ∈ L.
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Theorem 2.1. Let L be a lattice of subsets of E that contains ∅ and E, and is closed under

intersection. Let σ : L → N be submodular with σ(∅) = 0. Define r : 2E → N by

(2.1) r(Y ) = min{σ(S) + |Y − S| : S ∈ L},

for Y ⊆ E. The function r is the rank function of a matroid on E; its independent sets are

the subsets I of E for which |I ∩ S| ≤ σ(S) for all S ∈ L.

Given an integer polymatroid ρ on a set E, its natural matroid Mρ is defined as follows.

For each i ∈ E, let Xi be a set of ρ(i) elements so that the sets Xi, for all i ∈ E, are

pairwise disjoint. For A ⊆ E, set

XA =
⋃

i∈A

Xi

and let E′ = XE . Let L = {XA : A ⊆ E}. Now L is a lattice of subsets of E′ with

∅, E′ ∈ L, XA∨XB = XA∪XB = XA∪B, and XA∧XB = XA∩XB = XA∩B. Define

σ : L → N by σ(XA) = ρ(A). Since ρ is submodular, so is σ. The natural matroid of

ρ, denote Mρ, is the matroid on E′ whose rank function is given by Equation (2.1). The

choice of the sets Xi is not unique, but the natural matroid is well-defined up to relabeling

the elements in E′.

Corollary 2.2. A subset I of E′ is independent in Mρ if and only if |I ∩XA| ≤ ρ(A) for

every A ⊆ E.

Since ρ is submodular and non-decreasing, if A,S ⊆ E, then

ρ(A) ≤ ρ(A ∩ S) +
∑

i∈A−S

ρ(i) ≤ ρ(S) +
∑

i∈A−S

ρ(i).

It follows that rMρ(XA) = ρ(A) for all A ⊆ E. Theorem 1.1 follows by letting M be Mρ

and defining φ : E → 2E
′

by φ(i) = Xi.

The next lemma simplifies proving that a matroid is the natural matroid of ρ. Recall that

two elements a and b of a matroid M on E are clones if the permutation of E given by the

2-cycle (a, b) (i.e., switching a and b) is an automorphism of M . We say that X ⊆ E is a

set of clones if a, b ∈ X are clones whenever a 6= b. A cyclic set of M is a set X that is

a union of circuits, that is, M |X has no coloops. A cyclic flat is a flat that is cyclic. It is

easy to prove that, for the set ZM of cyclic flats of M , we have, for Y ⊆ E,

(2.2) rM (Y ) = min{rM (Z) + |Y − Z| : Z ∈ ZM}.

Lemma 2.3. Let ρ, E, E′, Xi, and XA be as above. A matroid M on E′ is the natural

matroid Mρ of ρ if and only if ZM ⊆ {XA : A ⊆ E} and rM (XA) = ρ(A) whenever

XA ∈ ZM .

Proof. Above we showed that rMρ(XA) = ρ(A) for all A ⊆ E. Also, Xi is a set of clones

of Mρ, so if C is a circuit of Mρ and a ∈ C ∩Xi, then (C − a) ∪ b, for each b ∈ Xi −C,

is a circuit of Mρ, and so Xi ⊆ clMρ(C). Thus, ZMρ ⊆ {XA : A ⊆ E}.

To prove the converse, assume that ZM ⊆ {XA : A ⊆ E} and rM (XA) = ρ(A)
whenever XA ∈ ZM . By construction, the rank function of Mρ is given by

rMρ(Y ) = min{ρ(A) + |Y −XA| : A ⊆ E}

= min{rM (XA) + |Y −XA| : A ⊆ E}

for all Y ⊆ E′. Now

• if Y,W ⊆ E′, then rM (Y ) ≤ rM (W ) + |Y −W |,
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• for each Y , some cyclic flat W yields equality in that inequality, and

• ZM ⊆ {XA : A ⊆ E}.

Thus, Equation (2.2) gives

rM (Y ) = min{rM (XA) + |Y −XA| : A ⊆ E}.

Thus, M and Mρ have the same rank function and so are equal, as claimed. �

The containment ZMρ ⊆ {XA : A ⊆ E} is proper since each set Xi is independent.

Two elements are clones in M if and only if they are in exactly the same cyclic flats of

M , so we get the following corollary.

Corollary 2.4. Let ρ, E, E′, Xi, and XA be as above. A matroid M on E′ is Mρ if and

only if each set Xi is a set of clones and rM (XA) = ρ(A) for all XA ∈ ZM .

With Corollary 2.4, it follows that the natural matroid defined above is the same as that

obtained by the construction of iterated principal extensions followed by deletion that is

given in the proof of [21, Theorem 11.1.9], and which justifies the geometric view of the

natural matroid that is mentioned after Theorem 1.1.

It follows easily from Corollary 2.4, or from the rank functions, that the operations

of deletion and taking the natural matroid commute: if i ∈ E, then Mρ\i
= Mρ\Xi.

The same is not true of contraction. For i ∈ E and each j ∈ E − i, fix a subset Yj

of any ρ({i, j}) − ρ(i) elements of Xj , and let E′
/i be the union of all such sets Yj . It

follows from Corollary 2.4 that Mρ/i
= Mρ/Xi|E′

/i. From Corollary 2.4, we also get

Mρ1⊕ρ2
= Mρ1

⊕ Mρ2
for integer polymatroids ρ1 and ρ2; so an integer polymatroid ρ

on E with |E| > 1 is connected if and only if ρ has no loops and Mρ is connected. The

number of elements in the natural matroid is the sum of all terms ρ(i) for i ∈ E, so, for a

positive integer k, the natural matroid of the k-dual of an integer k-polymatroid ρ can have

fewer, the same number of, or more elements compared to the natural matroid of ρ.

Theorem 2.1, which we used to construct the natural matroid, is the key to defining an

important matroid operation, namely, matroid union (see [21, 28]). Let M1,M2, . . . ,Mk

be matroids on E. Their matroid union, denoted M1 ∨M2 ∨ · · · ∨Mk, is the matroid on

E having the rank function r′ where, for Y ⊆ E,

r′(Y ) = min{rM1
(X) + rM2

(X) + · · ·+ rMk
(X) + |Y −X | : X ⊆ Y }.

The independent sets of M1∨M2∨· · ·∨Mk are the sets of the form I1∪I2∪· · ·∪Ik where

Ij is independent in Mj . The matroids M1,M2, . . . ,Mk also give an integer polymatroid

on E: the function ρ on 2E where, for X ⊆ E,

ρ(X) = rM1
(X) + rM2

(X) + · · ·+ rMk
(X),

is an integer k-polymatroid on E. We write this as ρ = rM1
+ rM2

+ · · · + rMk
for

brevity. We call the multiset {M1,M2, . . . ,Mk} a decomposition of ρ and we say that

ρ is decomposable. Not all integer polymatroids are decomposable. (See [3] for more

on this topic.) The next theorem identifies the natural matroid of a decomposable integer

polymatroid as a particular matroid union.

Theorem 2.5. Let {M1,M2, . . . ,Mk} be a decomposition of an integer polymatroid ρ on

E. Let the sets E′, Xi, and XA be as above. For each j ∈ [k], construct M ′
j from Mj by,

for each i ∈ E, adding the elements of Xi parallel to i, or as loops if rMj (i) = 0, and then

deleting i. Then the natural matroid Mρ is the matroid union M ′
1 ∨M ′

2 ∨ · · · ∨M ′
k.
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Proof. For X,Y ⊆ E′, note that rM ′
j
(Y ∩ X) ≤ rM ′

j
(X) for each j ∈ [k], and that

|Y − (Y ∩X)| = |Y −X |. Given how M ′
j is defined, if XA is the union of all sets Xi such

that Xi ∩X 6= ∅, then rM ′
j
(XA) = rM ′

j
(X), for each j ∈ [k]; also, |Y −XA| ≤ |Y −X |.

It follows that the rank r′(Y ) of Y in M ′
1 ∨M ′

2 ∨ · · · ∨M ′
k is given by

r′(Y ) = min{rM ′
1
(XA) + rM ′

2
(XA) + · · ·+ rM ′

k
(XA) + |Y −XA| : A ⊆ E}.

Since ρ = rM1
+ rM2

+ · · ·+ rMk
, we get r′(Y ) = min{ρ(A) + |Y −XA| : A ⊆ E},

that is, r′(Y ) = rMρ(Y ). Thus, Mρ is M ′
1 ∨M ′

2 ∨ · · · ∨M ′
k. �

An integer polymatroid and its natural matroid may have very different connections to

important classes of matroids. For instance, for the binary integer polymatroid on the set

of seven lines of the projective plane PG(2, 2) using the construction in Theorem 1.1, the

natural matroid is U3,14, which is not binary. (The integer 2-polymatroids having natural

matroids that are binary are characterized in [8].) In contrast, the next example and result

give links between transversal, or Boolean, polymatroids and transversal matroids.

Example 1. If ρ = rM1
+rM2

+· · ·+rMk
where r(Mh) ≤ 1 for all h ∈ [k], then ρ is called

a Boolean polymatroid. Helgason [14] introduced Boolean polymatroids, calling them

covering hypermatroids. Some authors call them transversal polymatroids [9, 16, 27]. The

class of Boolean polymatroids is closed under minors; Matúš [19] found their excluded

minors. By Theorem 2.5 and the result that a matroid is transversal if and only if it is a

matroid union of rank-1 matroids (see, e.g., [21, Proposition 11.3.7]), it follows that the

natural matroid of a Boolean polymatroid is transversal.

Another way to see this is via graphs. A Boolean polymatroidρ = rM1
+rM2

+· · ·+rMk

has the following reformulation using a bipartite graph Gρ. Assume that E ∩ [k] = ∅. The

vertex set of Gρ is E∪[k], and Gρ has an edge eh if and only if rMh
(e) = 1. The rank ρ(A)

of a set A ⊆ E is the cardinality of the set N(A) of neighbors of A. The natural matroid is

the transversal matroid that is obtained from Gρ by replacing each element e ∈ E by ρ(e)
elements, each of which is adjacent to all neighbors of e. (See Figure 1.)

Loopless Boolean 2-polymatroids have received much attention, in part due to another

connection with graphs. Given such a polymatroid ρ = rM1
+ rM2

+ · · ·+ rMk
, the graph

G has an edge e ∈ E incident with a vertex h ∈ [k] if and only if rMh
(e) = 1. Then ρ(A),

for A ⊆ E, is the number of vertices that are incident with at least one edge in A. The

natural matroid of ρ is the bicircular matroid of the graph G′ that is obtained from G by

putting a new edge parallel to each nonloop edge of G.

Using Gρ, we see that an integer polymatroid (E, ρ) is Boolean if and only if, for some

k, there is a map N : E → 2[k] with ρ(X) =
∣

∣

⋃

x∈X N(x)
∣

∣ for all X ⊆ E. (This is

Helgason’s definition in [14].) Given a set of subsets of [k], there is an isomorphism from

the lattice of all unions of those sets onto the lattice of cyclic flats of a transversal matroid

so that the size of each union is the rank of its image. This gives the following variant of

Theorem 1.1.

Theorem 2.6. A polymatroid ρ on E is Boolean if and only if there is a transversal matroid

M and map φ : E → ZM with ρ(X) = rM (
⋃

i∈X φ(i)) for all X ⊆ E.

Most transversal matroids, such as U2,3, are not Boolean polymatroids, so the codomain

of the map φ : E → ZM cannot be extended to the lattice of flats of M .
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1 2 3

e1 e2 e3 e4 e5 e6 e7

(a)

1 2 3

x1 x2 x3 y3 x4 y4 x5 y5 x6 y6 x7

(b)

e1

e2
e3

e4

e7

e5

e6

ρ
(c)

x1

x2

x3

x4

y3

y4

x7

y6
x6

y5
x5

Mρ

(d)

FIGURE 1. For the Boolean polymatroid ρ shown in part (c), part (a)

shows its associated bipartite graph Gρ, as in Example 1. Part (b) shows

the bipartite graph that gives the transversal matroid that is the natural

matroid Mρ, which is shown in part (d).

3. BASES OF AN INTEGER POLYMATROID AND ITS NATURAL MATROID

Independent vectors and bases of integer polymatroids are discussed, for instance, by

Herzog and Hibi in [15]. In this section, where we focus solely on integer polymatroids,

we show how relating the bases of an integer polymatroid to the bases of its natural matroid

makes transparent some characterizations of integer polymatroids that use bases.

A basis B of a matroid M on E = [n] is a subset of [n] and so can be represented by

its characteristic vector b, the n-tuple of 0s and 1s in which entry i, denoted bi, is 1 if and

only if i ∈ B. No basis contains a loop, so bi ≤ r(i). Let ei be the characteristic vector of

the singleton {i}. For the characteristic vector b of a basis B and a basis B′ = (B− i)∪ j
obtained by an exchange, the characteristic vector of B′ is b− ei + ej .

The norm of v ∈ Nn is |v| = v1 + v2 + · · ·+ vn. For u and v in Nn, we write u ≤ v

if ui ≤ vi for all i ∈ [n]; also, u < v if u ≤ v and u 6= v. With this order, Nn is a lattice;

meet and join are given by component-wise min and max, respectively.

A definition of an integer polymatroid that is equivalent to the definition in Section 1 is

that an integer polymatroid P is a nonempty finite subset I of Nn, for some n, for which

(I1) if v ∈ I and u ∈ Nn with u ≤ v, then u ∈ I, and

(I2) if u,v ∈ I with |u| < |v|, then there is a w in I with u < w ≤ u ∨ v.

(To extend this to all polymatroids, replace N by R≥0 = {x ∈ R : x ≥ 0} and require

I to be compact, rather than finite.) The vectors in I are the independent vectors of P . A

basis of P is a vector v ∈ I for which there is no u ∈ I with v < u. Property (I2) gives

|v| = |u| for all bases v and u of P .

We now relate this notion to the definition given in Section 1. Let E = [n]. For v ∈ Nn

and X ⊆ E, let |v|X be
∑

i∈X vi, the sum of the entries in v that are indexed by the

elements in X . The rank function ρ : 2E → N of an integer polymatroid P on E whose

set of independent vectors is I and whose set of bases is B is given by

(3.1) ρ(X) = max{|u|X : u ∈ I} = max{|u|X : u ∈ B}
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1 2 3 4

3 4 5 6

5 6 7

FIGURE 2. A lattice path diagram for the Boolean polymatroid in Figure

1. In the notation of Example 2, we have a1 = 1, a2 = 3, a3 = 5,

b1 = 4, b2 = 6, and b3 = 7. The highlighted path corresponds to the

basis (0, 0, 0, 2, 0, 1, 0).

for X ⊆ E. The function ρ satisfies properties (1)–(3) in Section 1 and so is the rank

function of an integer polymatroid. Conversely, given an integer polymatroid ρ : 2E → N,

the set

(3.2) I = {u ∈ Nn : |u|X ≤ ρ(X) for all X ⊆ E}

satisfies properties (I1) and (I2). (For a proof, see [28, p. 340, Lemma 5].) Also, the maps

I 7→ ρ and ρ 7→ I are inverses of each other. (See [23, Corollaries 44.3f and 44.3g].)

Given an integer polymatroid ρ on E = [n], let E′, Xi, and XA, for i ∈ E and A ⊆ E,

and the natural matroid Mρ be defined as above. The type vector of a subset V of E′ is the

vector v ∈ Nn with vi = |V ∩Xi| for all i ∈ E. We use T(V ) to denote the type vector

of V . By Corollary 2.2 and Equation (3.2), a subset V of E′ is independent in Mρ if and

only if T(V ) is an independent vector of ρ, and so V is a basis of Mρ if and only if T(V )
is a basis of ρ.

Example 2. Consider a Boolean polymatroid ρ = rM1
+ rM2

+ · · · + rMk
on [n] where

each Mh has rank 1 and its rank-1 elements are consecutive integers ah, ah + 1, . . . , bh,

with a1 ≤ a2 ≤ · · · ≤ ak and b1 ≤ b2 ≤ · · · ≤ bk. The matroids M1,M2, . . . ,Mk

correspond to the rows in a lattice path diagram, where north steps are labeled by their first

coordinate, the lower left corner is (1, 0), and the upper right corner is (n, k). (See Figure

2.) Bases correspond to lattice paths: entry ui in a basis u is the number of north steps in

the corresponding path that are labeled i. An elementary argument (as in the proof of [5,

Theorem 3.3]) shows that the correspondence between bases and lattice paths is bijective.

Schweig [24, 25] introduced these lattice path polymatroids. The description of the natural

matroid of a Boolean polymatroid in Example 1 along with the ideas in [6, Section 6.1]

show that the natural matroid of a lattice path polymatroid is a lattice path matroid (see [5]

for these matroids). Like the class of lattice path matroids, that of lattice path polymatroids

is closed under minors; the excluded minors for lattice path polymatroids are found in [4].

Unlike the class of lattice path matroids, that of lattice path polymatroids is not closed

under duality. Also, most lattice path matroids are not lattice path polymatroids.

The following characterizations of integer polymatroids by bases are known (see, e.g.,

[15]). We provide a transparent way to see this and similar results using the natural matroid.

Theorem 3.1. A nonempty set B ⊆ Nn is the set of bases of an integer polymatroid on

E = [n] if and only if either of the following equivalent conditions holds:

(B) if u,v ∈ B with ui > vi for some i ∈ [n], then there is a j ∈ [n] for which

uj < vj and u− ei + ej is in B,

(B′) if u,v ∈ B with ui > vi for some i ∈ [n], then there is a j ∈ [n] for which

uj < vj and both u− ei + ej and v − ej + ei are in B.
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Proof. First let B be the set of bases of an integer polymatroid ρ. We prove property (B′),

which implies property (B). Fix u,v ∈ B with ui > vi for some i ∈ [n]. Let U and V
be bases of the natural matroid Mρ of ρ with T(U) = u and T(V ) = v. Since each set

Xt is a set of clones, we may assume that V ∩ Xt ⊆ U ∩ Xt whenever vt ≤ ut. Fix

x ∈ (U − V ) ∩ Xi. By the symmetric basis exchange property for matroids, there is an

element y ∈ V −U , say in Xj , so that both (U − x)∪ y and (V − y)∪ x are bases of Mρ,

so u− ei + ej and v− ej + ei are in B. Now V ∩Xj 6⊆ U ∩Xj , so, as needed, uj < vj .

To finish the proof, we show that a nonempty subset B of Nn that satisfies property (B)

is the set of bases of an integer polymatroid. For each i ∈ E, set mi = max{ui : u ∈ B}
and let Xi be a set of mi elements where Xi ∩Xj = ∅ if i 6= j. Set XA = ∪i∈AXi, for

A ⊆ E, and E′ = XE . Let B = {B : B ⊆ E′ and T(B) ∈ B}. Take U, V ∈ B with

x ∈ U −V ; say x ∈ Xi. If there is an element y in (V −U)∩Xi, then (U −x)∪y has the

same type vector as U and so is in B. Now assume that V ∩Xi ( U ∩Xi. Let u = T(U)
and v = T(V ). Thus, ui > vi. By property (B), there is a j ∈ [n] for which uj < vj and

w = u− ei + ej is in B. Thus, (V − U) ∩Xj 6= ∅. For any y ∈ (V − U) ∩Xj , the set

W = (U − x) ∪ y has type vector w, so W ∈ B. Thus, B is the set of bases of a matroid

M on E′. Define ρ : 2E → N by ρ(A) = rM (XA). Thus, ρ is an integer polymatroid on

E. Also, Xi is a set of clones in M . It now follows from the definition of ρ and Corollary

2.4 that M is the natural matroid of ρ. From the definition of M and the comments before

Example 2, we have that B is the set of bases of ρ, as needed. �

The strategy we used above adapts to prove integer-polymatroid counterparts of other

axiom schemes for matroids that use bases or independent sets. We cite just one example,

for the middle basis property.

Theorem 3.2. A nonempty set B ⊆ Nn is the set of bases of an integer polymatroid on

E = [n] if and only if the following two conditions hold:

• if u,v ∈ B with u 6= v, then u 6≤ v and v 6≤ u, and

• whenever x,y ∈ Nn with x ≤ y and there are u,v ∈ B with x ≤ u and v ≤ y,

then there is some w ∈ B with x ≤ w ≤ y.

For a positive integer k, certain properties of the k-dual ρ∗ of an integer k-polymatroid

ρ highlight how natural k-duality is. For instance, generalizing a result of Kung [17] for

matroids, Whittle [29] showed that the map ρ 7→ ρ∗ is the only involution on the class of

integer k-polymatroids that switches deletion and contraction, i.e., (ρ\i)
∗ = (ρ∗)/i and

(ρ/i)
∗ = (ρ∗)\i for all i ∈ E. The set of bases of the dual of a matroid M on E is given

by {E −B : B ∈ B} where B is the set of bases of M ; the next result generalizes this to

the k-dual of an integer k-polymatroid.

Theorem 3.3. Let k be a positive integer and let ρ be an integer k-polymatroid on E = [n],
with B its set of bases. The set B∗ of bases of the k-dual ρ∗ is {u∗ : u ∈ B} where

u∗ = (k, k, . . . , k)− u.

Proof. Note that |u| = ρ(E) if and only if |u∗| = k|E| − ρ(E) = ρ∗(E). With this, the

equivalence of the following statements shows that u ∈ B if and only if u∗ ∈ B∗:

• |u|A ≤ ρ(A) for all A ⊆ E,

• |u|E−A ≤ ρ(E −A) for all A ⊆ E,

• ρ(E)− |u|A ≤ ρ(E −A) for all A ⊆ E,

• k|A| − |u|A ≤ k|A| − ρ(E) + ρ(E −A) for all A ⊆ E,

• |u∗|A ≤ ρ∗(A) for all A ⊆ E. �
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FIGURE 3. The circuits of this rank-3 integer polymatroid are (2, 0, 2),
(2, 1, 1), and (0, 1, 2).

4. CIRCUITS OF AN INTEGER POLYMATROID AND ITS NATURAL MATROID

We next develop a theory of circuits for integer polymatroids that is analogous to that

for bases in Section 3. Just as the bases of an integer polymatroid ρ are the type vectors of

the bases of the natural matroid Mρ, so the circuits of ρ are the type vectors of the circuits

of Mρ, with one exception: loops of ρ map to the empty set in Mρ. This is addressed

by the ambient set U that we consider below. Another issue that we must address so that

the circuits determine the integer polymatroid is that we need the rank of each element i
for which Xi is a set of coloops of Mρ; the set U also takes care of this. (In matroids,

such elements have rank one, but in integer polymatroids, the rank could be any positive

integer.) Recall that [n]0 denotes the set {0, 1, . . . , n}.

The circuits of an integer polymatroid ρ on E = [n] are the vectors u in the set

U = [ρ(1)]0 × [ρ(2)]0 × · · · × [ρ(n)]0

that are not independent and each vector w with w < u is independent. Thus, from the set

C of circuits of ρ, the set of independent vectors of ρ is

(4.1) I = {u ∈ U : there is no c ∈ C with c ≤ u}.

By the remarks before Example 2, a vector u ∈ U is a circuit of ρ if and only if some

(equivalently, every) set C in the natural matroid Mρ with u = T(C) is a circuit of Mρ.

See Figure 3 for an example. The set C is an antichain in Nn. Recall that all antichains in

Nn are finite.

While U gives the rank of each element, the next lemma shows how, from C alone, to

get the rank of any element i for which there is a c ∈ C with ci > 0.

Lemma 4.1. Let ρ be an integer polymatroid on E = [n]. For i ∈ E with ρ(i) > 0, the set

Xi is a subset of a circuit of the natural matroid Mρ if and only if ρ(E) < ρ(E− i)+ρ(i).
In this case, ρ(i) = max{ci : c ∈ C}.

Proof. First assume that ρ(E) < ρ(E − i)+ ρ(i). Fix a ∈ Xi. Since Xi is independent in

Mρ, so is Xi − a. Extend Xi − a to a basis B of Mρ\a, which, by the assumed inequality,

is a basis of Mρ. Let C be the fundamental circuit of a with respect to the basis B of Mρ.

Then Xi ⊆ C, for if b ∈ Xi −C, the subset (C − a) ∪ b of the basis B would be a circuit

of Mρ since a and b are clones, but that is a contradiction.

To prove the contrapositive of the converse, assume that ρ(E) = ρ(E− i)+ρ(i). Thus,

rMρ(E
′) = rMρ(E

′ −Xi) + rMρ(Xi), from which we get Mρ = (Mρ\Xi) ⊕ (Mρ|Xi).
With this direct sum decomposition and the fact that Xi is independent in Mρ, it follows

that Xi is disjoint from all circuits of Mρ. �

The following result will be used in the next section.

Lemma 4.2. Let ρ be an integer polymatroid on E = [n]. For A ⊆ E and i ∈ A, we have

ρ(A) < ρ(A− i) + ρ(i) if and only if there is a circuit u ∈ C with ui > 0 and uj = 0 for

all j ∈ E −A.
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Proof. Given u ∈ C with ui > 0 and uj = 0 for all j ∈ E − A, for each a ∈ Xi there

is a circuit C of Mρ with u = T(C) and a ∈ C. Thus, a is not a coloop of M |XA, so

ρ(A) < ρ(A− i) + ρ(i). The converse follows by applying Lemma 4.1 to ρ\E−A. �

Lemma 4.1 and the remarks before it lead to the following setting for characterizations

of integer polymatroids via circuits, as in Theorem 4.3: the set of circuits is a subset of a

set of the form U = [m1]0 × [m2]0 × · · · × [mn]0 where each mi is a nonnegative integer.

Recording mi is the only way we get ρ(i) when all elements of Xi (if there are any) are

coloops of Mρ. Two circuits in the natural matroid may have different type vectors or the

same type vector; therefore there are two circuit elimination properties, (C3) and (C4).

Theorem 4.3. Let m1,m2, . . . ,mn be nonnegative integers and let C be a subset of

[m1]0 × [m2]0 × · · · × [mn]0 where, for each i ∈ [n], if ui > 0 for some u ∈ C, then

mi = max{ui : u ∈ C}. The set C is the set of circuits of an integer polymatroid on

E = [n] if and only if C satisfies properties (C1)–(C4):

(C1) each vector in C has at least two positive entries,

(C2) if u,v ∈ C with u 6= v, then u 6< v and v 6< u,

(C3) if u,v ∈ C with u 6= v and if ui, vi > 0, then there is a z ∈ C so that z < u ∨ v

and zi < max(ui, vi), and

(C4) if u ∈ C, and i ∈ E with 0 < ui < mi, and j ∈ E − i with 0 < uj , then there is

a v ∈ C with vi = ui + 1, with vh ≤ uh for all h 6= i, and with vj < uj .

Thus, an integer polymatroid on [n] is a pair (U,C) where

(i) U = [m1]0 × [m2]0 × · · · × [mn]0, for some m1,m2, . . . ,mn in N,

(ii) C ⊆ U and C satisfies properties (C1)–(C4), and

(iii) if i ∈ E and ui > 0 for some u ∈ C, then mi = max{ui : u ∈ C}.

If ρ is the rank function of the integer polymatroid given by the pair (U,C), then ρ(i) = mi

for all i ∈ E.

Proof. Let C be the set of circuits of an integer polymatroid ρ on E. By Lemma 4.1, if

u ∈ C and ui > 0, then mi = ρ(i). Property (C1) holds since each set Xi is independent

in Mρ. If u,v ∈ C and u < v, then a circuit V of Mρ with v = T(V ) and a subset U of

V with u = T(U) would be comparable circuits of Mρ; this contradiction proves property

(C2).

For property (C3), take u,v ∈ C with u 6= v and ui, vi > 0. Let U and V be circuits

of Mρ with u = T(U) and v = T(V ). Each set Xj is a set of clones in Mρ, so we may

assume that if uj ≤ vj , then U ∩Xj ⊆ V ∩Xj , and if vj ≤ uj , then V ∩Xj ⊆ U ∩Xj .

Thus, U ∩ V ∩Xi 6= ∅. For any a ∈ U ∩ V ∩Xi, circuit elimination applied to U and V
gives a circuit C of Mρ with C ⊆ (U ∪ V )− a. The inclusions that we have assumed give

|C ∩Xj | ≤ max(uj , vj) for all j ∈ E, and |C ∩Xi| < max(ui, vi), as needed.

For property (C4), consider u ∈ C and i ∈ E with 0 < ui < ρ(i). Let C be a circuit of

Mρ with T(C) = u. Fix a ∈ C ∩Xi and b ∈ Xi −C, and set C′ = (C − a)∪ b, which is

a circuit of Mρ since a and b are clones. For j ∈ E − i with uj > 0, fix c ∈ C ∩Xj . By

circuit elimination, Mρ has a circuit D with D ⊆ (C ∪ C′) − c = (C ∪ b) − c. Property

(C2) applied to u and T(D) forces (C ∪ b) ∩ Xi ⊆ D. Thus, |D ∩ Xi| = ui + 1 and

|D ∩Xh| ≤ uh for all h 6= i, and the inequality is strict for h = j, so property (C4) holds.

For the converse, assume that the pair (U,C) satisfies properties (i)–(iii). For each

i ∈ E, let Xi be a set of size mi with Xi ∩Xj = ∅ whenever i 6= j. We use XA and E′

as above. Let C = {C : C ⊆ E′ and T(C) ∈ C}. Now ∅ 6∈ C by property (C1). For

two sets C and C′ in C, either (i) T(C) = T(C′), so for at least one i ∈ E, the subsets



THE NATURAL MATROID OF A POLYMATROID 11

C ∩Xi and C′ ∩Xi of Xi are different but have the same size, or (ii) T(C) 6= T(C′), so

by property (C2), there are i, j ∈ E with |C ∩Xi| < |C′ ∩Xi| and |C′ ∩Xj | < |C ∩Xj |;
thus, neither C nor C′ contains the other.

We next show that C satisfies the circuit elimination property. Take two sets U, V ∈ C
and a ∈ U ∩ V ; say a ∈ Xj . Let u = T(U) and v = T(V ). If u 6= v, then by property

(C3), there is a z ∈ C with z < u ∨ v and zj < max(uj , vj). Clearly (U ∪ V ) − a has

a subset C with T(C) = z, as needed. Now assume that u = v. If U ∩ Xj 6= V ∩ Xj ,

then there is an element b ∈ (V − U) ∩Xj , and the set C = (U − a) ∪ b has T(C) = u,

so C ∈ C, as needed. If U ∩Xj = V ∩Xj , then U ∩Xi 6= V ∩Xi for some i ∈ E − j,

and so 0 < ui < mi. By property (C4), since uj > 0, there is an x ∈ C with xi = ui + 1,

with xh ≤ uh for all h 6= i, and with xj < uj . Clearly (U ∪ V ) − a has a subset C with

T(C) = x, as needed.

Thus, C is the set of circuits of a matroid M on E′. As in the proof of Theorem 3.1,

from M , we get an integer polymatroid ρ whose natural matroid is M . Since C is the set

of circuits of ρ, this completes the proof. �

The set C = {(4, 1), (2, 2)} satisfies all properties except (C4), so property (C4) does

not follow from properties (C1)–(C3).

Let k be a positive integer. Let H be the set of the type vectors of the hyperplanes of

the natural matroid of an integer k-polymatroid. Let C∗ = {(k, k, . . . , k)− u : u ∈ H}.

In contrast to Theorem 3.3, C∗ might not be the set of circuits of an integer polymatroid.

For instance, for the integer 2-polymatroid ρ in Figure 3, we have

C∗ = {(2, 1, 0), (0, 2, 2), (1, 1, 2), (1, 2, 1)},

and properties (C3) and (C4) fail.

For an integer polymatroid ρ on E = [n] and any i ∈ E, since ρ/i(j) = ρ({i, j})−ρ(i)
for all j ∈ E − i, the circuits of the contraction ρ/i are contained in the Cartesian product

U/i =
∏

j∈E−i

[ρ({i, j})− ρ(i)]0.

Let C′ be the set of circuits of ρ with the ith entry deleted from each vector. Since the

circuits of a contraction M/Y of a matroid M are the minimal nonempty sets of the

form C − Y as C ranges over the circuits of M , and the natural matroid Mρ/i
of ρ/i

is Mρ/Xi|E
′
/i (in the notation used after Corollary 2.4), it follows that the circuits of ρ/i

are the minimal vectors in C′ ∩U/i that have at least two positive entries.

We noted in Section 2 that an integer polymatroid ρ on E with |E| > 1 is connected if

and only if ρ has no loops and Mρ is connected. Thus, an integer polymatroid ρ on [n] is

connected if and only if for each pair of distinct integers i, j ∈ [n], there is a circuit u of ρ
with ui > 0 and uj > 0.

5. FLATS, CYCLIC SETS, AND CYCLIC FLATS IN POLYMATROIDS

While some results in this section apply only to integer polymatroids, many apply to

all polymatroids. To describe what we do in this section, we first need some definitions.

Flats in a polymatroid ρ on E are defined as in matroids: a subset A of E is a flat of ρ if

ρ(A ∪ i) > ρ(A) for all i ∈ E − A. Let Fρ denote the set of flats of ρ. Unless we are

focusing only on matroids, Fρ does not determine ρ since, for instance, ρ and c ρ, for any

positive real c, have the same flats.

There are various equivalent ways to say that a set X in a matroidM is cyclic, including:

(i) X is a union of circuits;
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(ii) M |X has no coloops;

(iii) r(X) < r(X − y) + r(y) for each y ∈ X that is not a loop.

As in [10], we adapt condition (iii) to define cyclic sets in a polymatroid ρ on E: a subset

A of E is cyclic if ρ(A) < ρ(A− i) + ρ(i) for all i ∈ A with ρ(i) > 0. We let Yρ denote

the set of all cyclic sets of ρ.

Of greatest interest are the cyclic flats, that is, the flats that are cyclic. The set of cyclic

flats of ρ is denoted Zρ, or ZM for a matroid M . As in the case of matroids, Zρ is a lattice

under inclusion. (See the comment after Lemma 5.14.) The next result, from [26, 7],

characterizes matroids in terms of their cyclic flats and the ranks of those sets.

Theorem 5.1. For a pair (Z, r), where Z ⊆ 2E and r : Z → N, there is a matroid M for

which Z = ZM and r(Z) = rM (Z) for all Z ∈ Z if and only if

(Z0) ordered by inclusion, Z is a lattice,

(Z1) r(0̂Z) = 0, where 0̂Z is the least element of Z ,

(Z2) 0 < r(B) − r(A) < |B −A| for all sets A,B in Z with A ( B, and

(Z3) r(A ∨B) + r(A ∧B) + |(A ∩B)− (A ∧B)| ≤ r(A) + r(B) for all A,B in Z .

Csirmaz [10] extended this theorem. His result, stated next, characterizes polymatroids

using cyclic flats and the value of the rank function on each of those flats as well as on

each singleton set. The rank of each element must be given since, while in a matroid each

element that is not in the least cyclic flat (the set of loops) has rank 1, in a polymatroid,

such an element may have any positive rank.

Theorem 5.2. For a pair (Z, ρ′), where Z ⊆ 2E and ρ′ : Z ∪ E → R≥0, there is a

polymatroid ρ on E with Z = Zρ and ρ(x) = ρ′(x) for all x ∈ Z ∪E if and only if

(PZ0) ordered by inclusion, Z is a lattice,

(PZ1) the least element of Z , denoted 0̂Z , is {i ∈ E : ρ′(i) = 0}, and ρ′(0̂Z) = 0,

(PZ2) for all sets A,B in Z with A ( B,

0 < ρ′(B)− ρ′(A) <
∑

i∈B−A

ρ′(i),

(PZ3) for all sets A,B in Z ,

ρ′(A ∨B) + ρ′(A ∧B) +
∑

i∈(A∩B)−(A∧B)

ρ′(i) ≤ ρ′(A) + ρ′(B),

and

(PZ4) if A ∈ Z and i ∈ A, then ρ′(i) ≤ ρ′(A).

We will show how, in the case of an integer polymatroid ρ, Theorem 5.2 follows from

Theorem 5.1; we do this by relating the flats of ρ to those of its natural matroid, and

likewise for cyclic sets and for cyclic flats. The proof of Theorem 5.2 in [10] has the same

general outline as the proof of Theorem 5.1 that Sims [26] gave. In particular, for the more

involved implication, assuming that the properties above hold for (Z, ρ′), one defines a

function ρ : 2E → R, checks that the defining properties of a polymatroid hold, and shows

that its cyclic flats are precisely the sets in Z , and that ρ and ρ′ have the same values on

the sets in Z and the elements of E. The function ρ is defined by

ρ(A) = min{ρ′(X) +
∑

i∈A−X

ρ′(i) : X ∈ Z}.
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This makes it natural to consider, for a polymatroid ρ on E and subset A of E, the set

(5.1) Rρ(A) = {B ∈ Zρ : ρ(A) = ρ(B) +
∑

i∈A−B

ρ(i)}.

For a matroidM , we write this set as RM (A). Our main new result is Theorem 5.17, where

we show that Rρ(A) is a sublattice of Zρ, we identify its least and greatest elements, and

we show that each pair of elements in Rρ(A) is a modular pair. To prepare for that, we

develop basic results about flats and cyclic sets, and two operators related to them. (While

some of these results may be known, we include proofs for completeness.)

We start with flats. The flats of an integer polymatroid are related to those of its natural

matroid in the simplest possible way, as the next lemma states.

Lemma 5.3. For an integer polymatroid ρ on E, let 0̂ρ be {i ∈ E : ρ(i) = 0}. A subset

A of E is a flat of ρ if and only if 0̂ρ ⊆ A and XA is a flat of the natural matroid Mρ.

Proof. Assume that 0̂ρ ⊆ A and that XA is a flat of Mρ. If i ∈ E − A, then there are

elements b ∈ Xi, and rMρ(XA∪i) ≥ rMρ(XA ∪ b) > rMρ(XA), so ρ(A ∪ i) > ρ(A), as

needed. We now prove the contrapositive of the converse. If 0̂ρ 6⊆ A, then clearly A is not

a flat of ρ. Assume that XA is not a flat of Mρ, so rMρ (XA ∪ b) = rMρ(XA) for some

b ∈ E′ −XA; say b ∈ Xi. Then rMρ(XA ∪ c) = rMρ (XA) for all c ∈ Xi since Xi is a set

of clones. From this, repeatedly applying submodularity gives rMρ(XA∪i) = rMρ(XA),
so ρ(A ∪ i) = ρ(A), so A is not a flat of ρ. �

Corollary 5.4. The set Fρ of flats of an integer polymatroid ρ, ordered by inclusion, is

isomorphic to a sublattice of the lattice FMρ . The meet of two flats of ρ is their intersection.

By [7, Theorem 2.1], every finite lattice is isomorphic to the lattice of cyclic flats of

a matroid. With that and the construction in Theorem 1.1, it follows that, in contrast to

matroids, every finite lattice is isomorphic to the lattice of flats of an integer polymatroid.

Lemma 5.5. For a polymatroid ρ on E, the intersection of two flats is a flat, so, ordered

by inclusion, Fρ is a lattice.

Proof. Fix A,B ∈ Fρ and e ∈ E − (A ∩ B); say e 6∈ A. From submodularity and these

assumptions, ρ
(

(A ∩B) ∪ e
)

− ρ(A ∩B) ≥ ρ(A ∪ e)− ρ(A) > 0, as needed. �

This lemma justifies extending the definition of the closure operator from matroids to

polymatroids. The closure operator clρ : 2E → 2E of a polymatroid ρ on E is given by

(5.2) clρ(A) =
⋂

{F : F ∈ Fρ and A ⊆ F}

for A ⊆ E; equivalently, clρ(A) is the minimum flat (with respect to inclusion) that is a

superset of A. Several results follow immediately: clρ(A) ∈ Fρ by Lemma 5.5, the image

of clρ is Fρ, and clρ is a closure operator in the general sense, that is, (i) A ⊆ clρ(A) for

all A ⊆ E, (ii) if A ⊆ B ⊆ E, then clρ(A) ⊆ clρ(B), and (iii) clρ(clρ(A)) = clρ(A) for

all A ⊆ E. The MacLane-Steinitz exchange property of matroid closure operators fails

for most polymatroids; for instance, in the integer polymatroid ρ in Figure 1, (c), we have

e2 ∈ clρ(e3)− clρ(∅) but e3 6∈ clρ(e2).

Lemma 5.6. Let ρ be a polymatroid onE. If A ⊆ E, then clρ(A) = {i : ρ(A∪i) = ρ(A)}
and ρ(A) = ρ(clρ(A)).
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Proof. Let X = {i : ρ(A ∪ i) = ρ(A)}. Now A ⊆ X . Repeated use of submodularity

gives ρ(A) = ρ(X). If i ∈ E −X , then ρ(X ∪ i) ≥ ρ(A ∪ i) > ρ(A) = ρ(X), so X is a

flat. Let F be a flat with A ⊆ F . Now X ⊆ F since, for any i ∈ X , from ρ(A∪ i) = ρ(A)
we get ρ(F ∪ i) = ρ(F ) by submodularity. Thus, clρ(A) = X . �

We next give properties of the closure operator that are special to integer polymatroids.

Lemma 5.7. For an integer polymatroid ρ on E, let 0̂ρ be {i : ρ(i) = 0}. For A ⊆ E,

(1) clρ(A) = B if and only if 0̂ρ ⊆ B and clMρ(XA) = XB , and

(2) clρ(A) = A ∪ 0̂ρ ∪ CA where CA is the set of all i ∈ E for which some circuit u

of ρ has ui = 1 and uj = 0 for all j ∈ E − (A ∪ i).

Proof. Each set Xi is a set of clones of Mρ, so clMρ(XA) is the smallest flat XB that

contains XA. Part (1) follows from this observation and Lemma 5.3. For part (2), clearly

A∪0̂ρ ⊆ clρ(A). Fix i ∈ CA and a circuit u with ui = 1 and uj = 0 for all j ∈ E−(A∪i).
The circuits C of Mρ with T(C) = u show that Xi ⊆ clMρ(XA); thus, i ∈ clρ(A), and

so A∪ 0̂ρ ∪CA ⊆ clρ(A). For the other inclusion, fix a basis D of Mρ|XA, so D is also a

basis of Mρ| clMρ(XA). If i ∈ clρ(A) − (A ∪ 0̂ρ) and a ∈ Xi, then the type vector of the

fundamental circuit of a with respect to D shows that i ∈ CA. �

We now turn to cyclic sets. We first focus on integer polymatroids.

Lemma 5.8. Let ρ be an integer polymatroid on E. For A ⊆ E, statements (1)–(3) are

equivalent:

(1) A is a cyclic set of ρ,

(2) XA is a cyclic set of Mρ,

(3) for each i ∈ A, either ρ(i) = 0 or there is a circuit u of ρ for which ui > 0 and

uj = 0 for all j ∈ E −A.

Proof. Assume that statement (1) holds. For any a ∈ XA, there is an i ∈ A with ρ(i) > 0
and a ∈ Xi. If a were a coloop of Mρ|XA, then all elements of Xi would be coloops of

Mρ|XA, contrary to having ρ(A) < ρ(A− i) + ρ(i). Thus, statement (2) holds.

Assume that statement (2) holds. Fix i ∈ A with ρ(i) > 0. No a ∈ Xi is a coloop of

Mρ|XA, so some circuit C of Mρ has a ∈ C ⊆ XA. Statement (3) now follows.

By Lemma 4.2, statement (3) implies statement (1). �

We can expand the list of equivalent conditions for X being a cyclic set of a matroid M
(items (i)–(iii) in the second paragraph of this section):

(iv) X is a union of cocircuits of the dual M∗,

(v) E −X is an intersection of hyperplanes of M∗, and

(vi) E −X is a flat of M∗.

The flats of M∗, ordered by inclusion, form a geometric lattice, so the cyclic sets of M ,

ordered by inclusion, form a lattice, the order-dual of which is geometric. Thus, we have

the following corollary of Lemma 5.8.

Corollary 5.9. For an integer polymatroid ρ on E, its set Yρ of cyclic sets, ordered by

inclusion, is a lattice. The join of two cyclic sets is their union.

If ρ is not a matroid, then the order dual of Yρ need not be a geometric lattice, as one can

see from the 2-polymatroid counterpart of the Vámos matroid shown in Figure 4, where

the only sets not in Yρ are the singleton sets and {a, d}.
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a

b

c

d

FIGURE 4. A 2-polymatroid counterpart of the Vámos matroid. Each

pair of lines is coplanar except a, d.

Lemma 1 of [10] shows that every flat of a polymatroid contains a maximum cyclic flat.

By the next result and the discussion below it, a similar statement holds for all sets, and it

comes from a property that generalizes Corollary 5.9.

Lemma 5.10. Let ρ be a polymatroid on E.

(1) If X,Y ∈ Yρ, then X ∪ Y ∈ Yρ. Thus, under inclusion, Yρ is a lattice.

(2) If X ∈ Yρ, then clρ(X) ∈ Yρ, and so clρ(X) ∈ Zρ.

Proof. To prove part (1), fix X,Y ∈ Yρ and i ∈ X ∪ Y with ρ(i) > 0; say i ∈ X . By the

assumptions and submodularity, ρ(X ∪Y )− ρ
(

(X ∪Y )− i
)

≤ ρ(X)− ρ(X − i) < ρ(i),
so X∪Y ∈ Yρ. For part (2), take X ∈ Yρ and i ∈ clρ(X) with ρ(i) > 0. Then, as needed,

ρ
(

clρ(X)
)

−ρ
(

clρ(X)−i
)

< ρ(i) since the left side is 0 if i 6∈ X (since ρ(X) = ρ(X∪i)),
and at most ρ(X)− ρ(X − i) if i ∈ X (by submodularity). �

This lemma justifies making the following definition. For a polymatroid ρ on E, its

cyclic operator cyρ : 2E → 2E is given by, for A ⊆ E,

cyρ(A) =
⋃

{D : D ∈ Yρ and D ⊆ A}.

Thus, cyρ(A) is the maximum cyclic subset of A. If A ∈ Fρ, then cyρ(A) ∈ Fρ since

cyρ(A) ⊆ clρ(cyρ(A)) ⊆ A and clρ(cyρ(A)) is cyclic (by part (2) of Lemma 5.10) and so

must be cyρ(A). For a matroid M , the cyclic set cyM (A) is the union of the circuits that

are subsets of A. The operator cyM plays roles in recent papers, such as [12]. Note that

the image of cyρ is precisely Yρ. Also, (i) if A ⊆ E, then cyρ(A) ⊆ A, (ii) if A ⊆ B ⊆ E,

then cyρ(A) ⊆ cyρ(B), and (iii) if A ⊆ E, then cyρ(cyρ(A)) = cyρ(A).

Lemma 5.11. Let ρ be an integer polymatroid on E. For any set A ⊆ E, the set cyρ(A)
is the union of all subsets of A of either of the following forms:

(i) {i} with ρ(i) = 0, or

(ii) S(u) = {i : ui 6= 0} where u is a circuit of ρ and uj = 0 for all j ∈ E −A.

Also, cyρ(A) = B if and only if B is the maximum subset of A with cyMρ
(XA) = XB .

Proof. The first assertion follows from Lemma 5.8 and the definition of cyρ. That and the

connection between the circuits of ρ and those of Mρ give the second assertion. �

We state the next lemma, which is basic and well known, so that we can cite it.

Lemma 5.12. Let ρ be a polymatroid on E. Assume that A ⊆ E, that i ∈ A, and that

ρ(A) = ρ(A− i) + ρ(i). If Y ⊆ A and i ∈ Y , then ρ(Y ) = ρ(Y − i) + ρ(i).

Proof. By submodularity, ρ(i) ≥ ρ(Y )− ρ(Y − i) ≥ ρ(A)− ρ(A− i) = ρ(i). �
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The next lemma identifies the elements in A− cyρ(A) as the counterparts of coloops in

the deletion ρ\E−A.

Lemma 5.13. Let ρ be a polymatroid on E. For any set A ⊆ E,

(1) cyρ(A) = A− {i ∈ A : ρ(i) > 0 and ρ(A) = ρ(A− i) + ρ(i)}, and

(2) ρ(A) = ρ(cyρ(A)) +
∑

i∈A−cyρ(A)

ρ(i).

Proof. Let X = {i ∈ A : ρ(i) > 0 and ρ(A) = ρ(A − i) + ρ(i)}. By Lemma 5.12,

no cyclic subset of A contains any i ∈ X , so cyρ(A) ⊆ A − X . Part (1) will follow by

showing that A−X is cyclic. First note that repeatedly applying Lemma 5.12, adding one

element at a time to go from A−X to A, gives

(5.3) ρ(A) = ρ(A−X) +
∑

i∈X

ρ(i).

If there were a j ∈ A−X with ρ(j) > 0 and ρ(A−X) = ρ((A −X)− j) + ρ(j), then

this equality, Equation (5.3), and submodularity would give

ρ(A)− ρ(j) = ρ((A−X)− j) +
∑

i∈X

ρ(i) ≥ ρ(A− j).

This inequality is contrary to having j 6∈ X , so A−X is cyclic. Part (2) follows from part

(1) and Equation (5.3). �

The next lemma is like part (2) of Lemma 5.10, but switches flats and cyclic sets.

Lemma 5.14. For a polymatroid ρ on E, if A ∈ Fρ, then cyρ(A) ∈ Fρ, so cyρ(A) ∈ Zρ.

Proof. Fix A ∈ Fρ and i 6∈ cyρ(A). We must show that ρ(cyρ(A)∪ i) > ρ(cyρ(A)). This

holds by Lemmas 5.13 and 5.12 if i ∈ A− cyρ(A). If i 6∈ A, then the assumption A ∈ Fρ

and submodularity give ρ(cyρ(A) ∪ i)− ρ(cyρ(A)) ≥ ρ(A ∪ i)− ρ(A) > 0. �

With Lemmas 5.10 and 5.14, we see that Zρ is a lattice: for A,B ∈ Zρ, their meet is

A ∧B = cyρ(A ∩B) and their join is A ∨B = clρ(A ∪B).
The next lemma, along with Lemma 5.13, is a basic tool for investigating the sets

Rρ(A), which we defined in Equation (5.1).

Lemma 5.15. Let ρ be a polymatroid on E. For any subsets A and B of E, the equality

(5.4) ρ(A) = ρ(B) +
∑

i∈A−B

ρ(i)

holds if and only if

(1) ρ(A) = ρ(A− i) + ρ(i) for all i ∈ A−B, and

(2) ρ(A ∩B) = ρ(B) (equivalently, clρ(A ∩B) = clρ(B)).

Proof. First assume that properties (1) and (2) hold. Applying Lemma 5.12 to add one

element at a time going from A ∩B to A gives

ρ(A) = ρ(A ∩B) +
∑

i∈A−B

ρ(i)

and replacing ρ(A ∩B) by ρ(B), as (2) justifies, yields Equation (5.4).

Now assume that Equation (5.4) holds. Repeated uses of submodularity give

ρ(A) ≤ ρ(A ∩B) +
∑

i∈A−B

ρ(i).
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Also, ρ(A∩B) ≤ ρ(B). These inequalities and Equation (5.4) give ρ(A∩B) = ρ(B), so

property (2) holds. With this, for any i ∈ A−B, we have

ρ(A) = ρ(A ∩B) +
(

∑

j∈A−B,j 6=i

ρ(j)
)

+ ρ(i) ≥ ρ(A− i) + ρ(i) ≥ ρ(A),

from which we get ρ(A) = ρ(A− i) + ρ(i), so property (1) holds. �

We now consider the operators cl and cy together. Note that if B is a basis of a matroid

M that has neither loops nor coloops, then cl(cy(B)) = ∅ but cy(cl(B)) = E(M); thus,

cl and cy need not commute. Lemmas 5.3 and 5.8 give the following result.

Corollary 5.16. For an integer polymatroid ρ on E, let 0̂ρ be {i ∈ E : ρ(i) = 0}. For

A ⊆ E, we have A ∈ Zρ if and only if 0̂ρ ⊆ A and XA ∈ ZMρ .

For an integer polymatroid ρ, since all cyclic flats of Mρ have the form XA for some

A ⊆ E and the map φ : Zρ → ZMρ where φ(A) = XA is a bijection, properties that can

be described via cyclic flats lift from matroids to integer polymatroids. With these ideas,

the case of Theorem 5.2 for integer polymatroids follows from Theorem 5.1.

Not all properties of cyclic flats for matroids extend to polymatroids. For instance, for

matroids, the cyclic flats of the dual M∗ are the set complements of the cyclic flats of M ,

so ZM∗ is isomorphic to the order dual of ZM . The same is not true for k-polymatroids

and their k-duals, as one can check using the example in Figure 3 or 4.

To conclude, we use Lemmas 5.12, 5.13, and 5.15 to show that Rρ(A) is a sublattice of

Zρ (so the meet and join operations are the same as in Zρ), identify the least and greatest

elements of Rρ(A), and show that each pair (B,B′) of cyclic flats in Rρ(A) is a modular

pair of flats, that is, ρ(B) + ρ(B′) = ρ(B ∪ B′) + ρ(B ∩ B′). (That equality can fail if

only one of B or B′ is in Rρ(A).)

Theorem 5.17. Let ρ be a polymatroid on E. For any subset A of E,

(I) clρ(cyρ(A)) and cyρ(clρ(A)) are in Rρ(A),
(II) if B ∈ Rρ(A), then clρ(cyρ(A)) ⊆ B ⊆ cyρ(clρ(A)),

(III) Rρ(A) is a sublattice of Zρ, and

(IV) if B,B′ ∈ Rρ(A), then (B,B′) is a modular pair of flats.

Proof. When B is cyρ(A), property (1) in Lemma 5.15 holds by Lemma 5.13, as does

property (2) since B ⊆ A. Those properties then follow when B is clρ
(

cyρ(A)
)

since
(

clρ
(

cyρ(A)
))

∩ A = cyρ(A), so clρ
(

cyρ(A)
)

∈ Rρ(A). Those properties clearly also

hold when B is clρ(A). From this, when B is cyρ
(

clρ(A)
)

, we get property (1) by Lemma

5.12, and property (2) by applying Lemma 5.12 as elements of A − B are removed from

A and clρ(A). Thus, cyρ
(

clρ(A)
)

∈ Rρ(A), so part (I) holds.

Assume that B ∈ Rρ(A). Property (1) of Lemma 5.15 gives cyρ(A) ⊆ B, so, since B
is a flat, clρ(cyρ(A)) ⊆ B. Property (2) of Lemma 5.15 and the fact that B is a flat give

B = clρ(A ∩B) ⊆ clρ(A), so, since B is cyclic, B ⊆ cyρ(clρ(A)). Thus, part (II) holds.

For assertion (III), we start with an inequality that we will use below. Let A be any

subset of E and let B and B′ be in Zρ. We claim that
∑

i∈(B∩B′)−(B∧B′)

ρ(i)+
∑

i∈A−B

ρ(i)+
∑

i∈A−B′

ρ(i) ≥
∑

i∈A−(B∨B′)

ρ(i)+
∑

i∈A−(B∧B′)

ρ(i).

This inequality holds since

• A− (B ∨B′) is a subset of each of A− (B ∧B′), A−B, and A−B′ (so terms

ρ(i) coming from its elements appear twice on each side of the inequality), and
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•
(

A−(B∧B′)
)

−
(

A−(B∨B′)
)

⊆
(

(B∩B′)−(B∧B′)
)

∪(A−B)∪(A−B′)
(so terms ρ(i) that appear once on the right side also appear on the left side).

Now assume that B,B′ ∈ Rρ(A), so

ρ(B) +
∑

i∈A−B

ρ(i) = ρ(A) = ρ(B′) +
∑

i∈A−B′

ρ(i).

Then, using submodularity as formulated in property (PZ3) of Theorem 5.2, along with the

inequality above, we have

2 ρ(A) = ρ(B) + ρ(B′) +
∑

i∈A−B

ρ(i) +
∑

i∈A−B′

ρ(i)

≥ ρ(B ∨B′) + ρ(B ∧B′) +
∑

i∈(B∩B′)−(B∧B′)

ρ(i) +
∑

i∈A−B

ρ(i) +
∑

i∈A−B′

ρ(i)

≥ ρ(B ∨B′) + ρ(B ∧B′) +
∑

i∈A−(B∨B′)

ρ(i) +
∑

i∈A−(B∧B′)

ρ(i).

Since

ρ(B∨B′)+
∑

i∈A−(B∨B′)

ρ(i) ≥ ρ(A) and ρ(B∧B′)+
∑

i∈A−(B∧B′)

ρ(i) ≥ ρ(A),

the inequality above forces these inequalities to be equalities, which proves assertion (III).

Moreover, all inequalities in the argument above must be equalities, so equality holds in

(PZ3) for B and B′. Now ρ(B ∪B′) = ρ(clρ(B ∪B′)) = ρ(B ∨B′) and

ρ(B ∩B′) = ρ(B ∧B′) +
∑

i∈(B∩B′)−(B∧B′)

ρ(i)

by part (I) since B ∩ B′ ∈ Fρ and B ∧ B′ = cyρ(B ∩ B′) ∈ Rρ(B ∩ B′), so assertion

(IV) follows. �

While Rρ(A) is a sublattice of Zρ, it might not be an interval in Zρ, as taking A to be

a basis of the Fano plane shows. The corollary below is immediate from property (II).

Corollary 5.18. If A ∈ Zρ, then Rρ(A) = {A}.
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