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Abstract

The adjacency matrix of a graph G is the Hamiltonian for a continuous-
time quantum walk on the vertices of G. Although the entries of the
adjacency matrix are integers, its eigenvalues are generally irrational
and, because of this, the behaviour of the walk is typically not periodic.
In consequence we can usually only compute numerical approximations
to parameters of the walk. In this paper, we develop theory to exactly
study any quantum walk generated by an integral Hamiltonian. As a
result, we provide exact methods to compute the average of the mixing
matrices, and to decide whether pretty good (or almost) perfect state
transfer occurs in a given graph. We also use our methods to study geo-
metric properties of beautiful curves arising from entries of the quantum
walk matrix, and discuss possible applications of these results.

Keywords
continuous-time quantum walk; pretty good state transfer;

average mixing matrix

1 Introduction

We will study continuous-time quantum walks on finite, undirected, unweighted
graphs G. The Hamiltonian H for such walks is defined by

H =
1

2

∑
ab∈E(G)

(XaXb + YaYb).

∗gabriel@dcc.ufmg.br — remaining affiliations in the end of the manuscript.
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This Hamiltonian acts on C2n , with Xa and Ya denoting the operators that
apply the Pauli matrices X and Y on the qubit located at vertex a (and leave
the other qubits invariant).

The k-excitation subspace is spanned by vectors |s〉 with s ∈ {0, 1}n with
k entries equal to 1. Here |s〉 is to be understood as the Kronecker product of
|0〉s and |1〉s, where {|0〉, |1〉} is the standard basis of C2. The Hamiltonian H
leaves each of the k-excitation subspaces invariant, and if A = A(G), its action
on the 1-excitation subspace is determined by A. It follows (from Schrödinger’s
equation) that if the initial state of the walk in the 1-excitation subspace is
given by the unit vector |u〉, the state time t is (essentially) exp(itA)|u〉.

Since the adjacency matrix is finite, real and symmetric it has real eigenval-
ues {θ0, . . . , θd}. If Er represents orthogonal projection onto the θr-eigenspace
of A, then A has the orthogonal projection

A =
d∑
r=0

θrEr.

Thus, the quantum walk is completely described by its transition matrix

exp(itA) =
d∑
r=0

eitθrEr.

For most graphs the eigenvalues θr are irrational, and so are the entries of
the projectors Er, thus forcing, in principle, that one deals with numerical
approximations when concretely observing quantum walks. Yet, because the
characteristic polynomial of A is always monic and integral, it is possible to
study the properties of the quantum walk over its splitting field. This is the
main topic of this paper.

In Section 2, we recall basic facts about algebraic extensions of the ra-
tionals, followed by the presentation of a result due to Landau [13] which
guarantees a relatively efficient complete factorization of a polynomial with
integer coefficients over its splitting field. We use this to provide an algorithm
that computes the entries of the average mixing matrix of the walk. It follows
from a Galois theoretic argument that the entries of this matrix are rational,
but no algorithm to compute its entries was known. (We defer the definition of
the average mixing matrix, but note that it provides a guide to the long-term
behaviour of continuous quantum walks.)

Section 3 is devoted to the study of pretty good state transfer. This occurs
when the probability of state transfer between two qubits in the continuous-
time quantum walk network can be found to be arbitrarily close to 1 at different
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(and increasingly large) times; it is the epsilon variant of perfect state transfer.
Perfect state transfer has been extensively studied, and there is a (polynomial
time) algorithmic characterization of when it occurs (see [4]). However, the
best known tool to decide the existence of pretty good state transfer in a
network relies on Kronecker’s Theorem (see for instance the recent works [19,
2, 12, 7, 18, 9]), for which an algorithmic version has not yet been found, to
the best of our knowledge. Landau’s algorithm from Section 2 allows us to
use the Smith Normal Form to check Kronecker’s condition, thus providing us
an exact method that checks whether the condition in Kronecker’s Theorem
is satisfied, and thus whether pretty good state transfer occurs in a graph.

It U(t) is the transition matrix exp(itA) and a, b ∈ V (G), then U(t)a,b
describes a curve in the complex plane. In Sections 4, 4.2 and 4.3 we discuss
the application of the results from the previous sections to describe geometric
properties of these curves. We focus our examples and results on the cases
where G is an odd prime cycle, but the techniques generalize to any graph,
and we see another example in Section 4.4. In particular, we describe a method
that determines the rotational symmetries and the caustics of the regions of
C where the curves are dense. In Section 5 we show how to apply this theory
to find the supremum of the probabilities of transfer in any quantum walk.

2 Factoring polynomials

This section assumes basic knowledge about field extensions of rationals. We
recommend the main reference [8] for an introductory treatment, for example
as a reference to Theorem 1. Following, we review algorithmic aspects of the
theory, based mainly on [17, 13].

If α is a real number, root of a polynomial with rational coefficients, then α
is an algebraic number. If the polynomial has integer coefficients and is monic,
then α is an algebraic integer. Its minimal polynomial is the polynomial of
smallest degree having α as a root. The field extension Q[α] contains Q and
all rational linear combinations of powers of α all the way up to the degree
of its minimal polynomial minus one. Given a monic polynomial p(x) with
coefficients in Z, its splitting field is the smallest field extension of Q over
which p(x) factors completely.

Theorem 1 (Primitive Element Theorem). If p(x) is a monic polynomial with
integer coefficients, then there exists α ∈ C so that the splitting field of p(x) is
Q[α].

For us, p(x) will be the minimal polynomial of A(G), for some graph G.
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Its roots are the eigenvalues {θ0, . . . , θd} of A, which play a major role in the
behaviour of exp(itA). Our goal in this section is to describe how to find
polynomials p0, ..., pd, with rational coefficients, so that if α∗ is a primitive
element for the splitting field of p(x), we have pr(α

∗) = θr, for each r. This is
equivalent to the task of completely factoring p(x) over Q[α∗].

In [13], an algorithm of relative efficiency to completely factor a polyno-
mial over its splitting field is presented. It consists of a clever application of
the famous L3 algorithm [14] in conjunction with techniques to compute and
factor the norm of polynomials over extension fields of the rationals. As a con-
sequence of their work, we state a theorem for later reference that summarizes
what we need in this paper. It is essentially [13, Theorem 2.1].

Theorem 2. Given A(G) with eigenvalues θ0, ..., θd, it is possible to recover
polynomials p0, ..., pd, with rational coefficients so that, for some primitive el-
ement α of the splitting field of the characteristic polynomial φ(x) of A, we
have pr(α) = θr. Moreover, the complexity of this procedure is polynomial on
the degree of the splitting field of φ(x) over Q and the logarithm of its largest
coefficient.

As a first application of this result to quantum walks, we show below that
the entries of the average mixing matrix can be computed with exact precision.
The average mixing matrix has been introduced in [1], and extensively studied
in [11, 5]. It is the matrix that gives the average of the probabilities of the
quantum walk, that is

M̂ = lim
T→∞

1

T

∫ T

0

exp(itA) ◦ exp(−itA) dt,

where ◦ stands for what is known as the entrywise, Hadamard or Schur product
of matrices. Recalling that A =

∑d
r=0 θrEr is the spectral decomposition of

A, it is easy to derive that

M̂ =
d∑
r=0

Er ◦ Er,

and in [11, Lemma 2.4], it is proved that the average mixing matrix is rational,
with Lemma 3.1 therein giving an upper bound to the denominator of the
entries. Here we show how to explicitly compute these rational numbers in
exact arithmetics.

It is possible to express the entries of the idempotents using only the eigen-
values of the graph and of its vertex-deleted subgraphs (see [6, Section 2.3]
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and [10, Chapter 4]). In what follows, we are denoting arbitrary vertices in
the graph G by a and b, and by φH(x) the characteristic polynomial of a graph
H. Then,

〈a|Er|a〉 =
(x− θr)φG\a(x)

φG(x)

∣∣∣∣
x=θr

, (1)

and

〈a|Er|b〉 =
(x− θr)

√
φG\a(x)φG\b(x)− φG(x)φG\ab(x)

φG(x)

∣∣∣∣
x=θr

. (2)

It is also known that the square root is indeed a polynomial, which we
denote by φab(x) when a 6= b. For ease of notation in the argument, let
φaa(x) = φG\a(x).

Theorem 3. The integers in the numerators and denominators of the rational
entries of M̂ are computable in exact arithmetics.

Proof. Let α be a primitive element to the splitting field of φ(x), and consider
polynomials pr(x) with pr(α) = θr. Let a and b be vertices, possibly equal.
First, divide numerator and denominator of the ratio (x − pr(α))φab(x)/φ(x)
by their gcd, computed over Q[α]. Then, make x = pr(α). Thus, 〈a|Er|b〉
is written as a polynomial with rational coefficients on the variable α, and
because

〈a|M̂ |b〉 =
d∑
r=0

〈a|Er|b〉2,

it follows that entries of M̂ will be expressed as polynomials in α as well.
However this matrix is rational, as we mentioned, and thus, upon computing
these polynomials over Q[α], we will have recovered the rational numbers.

3 Deciding pretty good state transfer

Pretty good state transfer between vertices a and b in a graph occurs whenever,
for all ε > 0, it is possible to find t so that∣∣〈a| exp(itA)|b〉

∣∣ > 1− ε.

If there is a t for which |〈a| exp(itA)|b〉| = 1, then we say perfect state transfer
occurs. Given a graph, an algorithm that decides whether or not it admits
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perfect state transfer was shown in [4]. Prior to our work, no algorithm that
decides whether or not pretty good state transfer occurs was known. The
difference between the two phenomenon is not insignificant: there are infinitely
many examples of graphs that admit pretty good state transfer but not perfect,
and the capability to identify more examples, or rule out candidates, is key
to the design of new communication protocols within a quantum information
framework.

Recall that A =
∑
θrEr is the spectral decomposition of A. From [2,

Lemma 3], we know that pretty good state transfer implies that, whenever
Er|a〉 6= 0, it must be that

Er|a〉 = σrEr|b〉,

with σr = ±1. This conditions is named strong cospectrality between vertices
a and b.

A characterization of pretty good state transfer was provided in [2] using
Kronecker’s theorem on Diophantine approximations, building upon previous
works. However, this characterization does not provide an algorithm that
decides the existence of pretty good state transfer. Our goal below is to provide
this algorithm. For the next lemma, we follow [9, Lemmas 2.5 and 2.8].

Lemma 4. Let A be the adjacency matrix of a graph G, and assume vertices
a and b are strongly cospectral. Assume φ(x) is the characteristic polynomial
of A. Then φ(x) factors over Z[x] as

φ(x) = φ+(x) φ−(x) φ0(x),

and, moreover,

(a) The roots of φ+ and φ− are simple.

(b) For each λ root of φ+, there is eigenvector |v〉 of A with 〈a|v〉 = 〈b|v〉 6= 0.

(c) For each λ root of φ−, there is eigenvector |v〉 of A with 〈a|v〉 = −〈b|v〉 6= 0.

(d) For each root λ of φ0 of multiplicity k, there are k linearly independent
eigenvectors of A which are 0 at a and b.

(e) φ+ and φ− share no common root.

Moreover, φ+ is the minimal polymomial of A in the module generated by
|a〉 + |b〉, and φ− is the minimal polynomial of A in the module generated by
|a〉 − |b〉.
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With this lemma, Kronecker’s theorem (see for instance [15, Chapter 3])
gives us the right tool to characterize pretty good state transfer (see [2, The-
orem 2] or [9, Lemma 2.10]).

Theorem 5 (Kronecker’s theorem). Let θ0, ..., θd and ζ0, ..., ζd be arbitrary real
numbers. All systems of inequalities

|θry − ζr| < ε (mod 2π), (r = 0, ..., d),

obtained for all ε > 0 admit a solution y ≥ 0 (depending on ε) if and only if
whenever integers `0, ..., `d satisfy

`0θ0 + ...+ `dθd = 0,

they also satisfy
`0ζ0 + ...+ `dζd ≡ 0 (mod 2π).

Corollary 6 (Pretty good state transfer characterization). Given a graph G
with adjacency matrix A, characteristic polynomial φ, and vertices a and b,
then there is pretty good state transfer between a and b if and only if both
conditions below hold.

(1) Vertices a and b are strongly cospectral (consider the factorization of φ as
in Lemma 4).

(2) Let {λi} be the roots of φ+ and {µj} be the roots of φ−. For all integers
`i and mj satisfying∑

i

`iλi +
∑
j

mjµj = 0 and
∑
i

`i +
∑
j

mj = 0,

it also holds that ∑
j

mj is even.

It is also known that condition (1) above can be tested in time polynomial
on the number of vertices of G (see for instance [4], but also as consequence
of Lemmas 2.5 and 2.8 in [9]). We are ready to present our pretty good state
transfer algorithmic characterization.

Theorem 7. There exists an algorithm that tests whether condition (2) of
Corollary 6 holds or not. It works in time polynomial on the number of vertices
and on the degree of the splitting field of φ(x).
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Proof. From Theorem 2, we know that we have polynomials pr(x) so that
pr(α) = θr, for all eigenvalues θr of the graph, and α a primitive element
to the splitting field of φ(x). We may of course assume the degrees of the
polynomials are smaller than the degree of the minimal polynomial of α.

Upon factoring φ as in Lemma 4, and because φ+ and φ− share no common
factor, we can identify which of the polynomials pr correspond to roots of φ+,
and which correspond to roots of φ−.

A linear combination of these polynomials evaluated at α will be equal to 0
if and only if the linear combination of the polynomials is the zero polynomial,
because their degrees are smaller than the degree of the minimal polynomial
of α. Thus, the equations from condition (2) in Corollary 6,∑

i

`iλi +
∑
j

mjµj = 0 and
∑
i

`i +
∑
j

mj = 0,

give rise to a homogeneous linear system with rational coefficient matrix, which
can be scaled to a linear system with integer coefficients, each equation having
the gcd of its coefficients equal to 1. Assume Mx = 0 expresses this system for
some matrix M and vector of variables x, and let U and V be invertible integral
matrices, with integral inverses, of convenient size so that UMV is the Smith
normal form of matrix M . As a consequence, (UMV )y = 0 is trivial to solve,
having the first ` variables in y equal to 0, with ` = rankM , and the remaining
variables of free choice. Now V y ∈ Zm if and only if y ∈ Zm, because V −1 is
also an integral matrix, thus V y is a complete integral parametrization of the
solution set of Mx = 0, with x ∈ Zm. With it, we can write

∑
jmj as a sum

of free integral variables with integer coefficients, and it is easy to verify that
this sum is always even if and only if all coefficients are even.

The complexity of finding polynomials pr is given by Theorem 2, and the
complexity of computing the Smith normal form is well known to be poly-
nomial on the order of the matrix with bounded coefficients (see for instance
[16]).

4 Geometry of a quantum walk

In the previous section we showed how to use Theorem 2 to decide whether
pretty good state transfer occurs. This is equivalent to asking whether the
curve in the complex plane given by an off-diagonal entry of exp(itA) ap-
proaches the unit circle.

In this section we describe how Theorem 2 provides the necessary tools to
understand the geometry of these curves in general.
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Recall the notation U(t) = exp(itA), and that A =
∑d

r=0 θrEr denotes
the spectral decomposition of A = A(G). We begin with an example. Let
G = C5, the cycle graph on five vertices. The curves in the complex plane
given by U(t)1,1 and U(t)1,2, with t ∈ [0, 100π], are, respectively shown in
Figure 1.

Figure 1: Entries U(t)1,1 and U(t)1,2 for C5, t ∈ [0, 100π]. Note that U(t)1,1
starts at the point (1, 0) and therefore, as it is an almost periodic function, it
approaches the unit circle arbitrarily often. On the other hand, pretty good
state transfer does not happen between 1 and 2, as the closure of U(t)1,2 is
contained in circle of diameter smaller than 1.

We are mostly interested in understanding some of the geometric features
of these plots.

Recall that

〈a|U(t)|b〉 =
d∑
r=0

〈a|Er|b〉eitθr .

This is an almost periodic function of t (see [15]). Its behaviour depends
crucially on rational dependences between the frequencies θr or, more precisely,
between those θr for which 〈a|Er|b〉 6= 0. There are two extreme cases: On one
extreme, all θr are integer up to a common factor, and the function is strictly
periodic. At the other extreme the θr are rationally independent. Note that
even though all eigenvalues of the graph sum to 0, it could be that those for
which 〈a|Er|b〉 6= 0 are indeed rationally independent, for some a and b vertices
of the graph.

By Kronecker’s Theorem, all these cases are covered by specifying the
subgroup of the torus on which the tuple (eitθ0 , ..., eitθd) lies. This gives us two
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complementary ways of looking the value distribution of this function, which
are visualized by Fig. 1 and Fig. 2, respectively. The first figure just follows
the values 〈a|U(t)|b〉 as traced out with varying t in the complex plane. By
almost periodicity, the proportion of time spent on average in any region of
the plane is a probability measure, called the sojourn measure. The second
perspective looks at this as the image of a similarly defined distribution in the
torus group: In the group the sojourn measure is clearly translation invariant,
hence equal to the Haar measure. Therefore if we plot the image of a regular
grid in the appropriate subgroup, we get a more direct representation of the
sojourn measure (cp. Fig. 2). In fact, when the θr are very nearly dependent,
the direct orbit picture (run for a finite time) will be indistinguishable from
the rational case, and hence an inaccurate representation of the infinite time
limit.

Figure 2: Images of the uniform grid of the 2-torus onto the complex plane,
under the map (z1, z2) 7→

∑2
r=0〈a|Er|b〉eif

r(z), where Er are the idempotents
of A(C5), f

0(z1, z2) = −2(z1 +z2), f
1(z1, z2) = z1, f

2(z1, z2) = z2, and we have
respectively a = b and a and b distinct neighbours.

In the following subsection we present an explicit description of how to
compute these functions fx described in Figure 2 and therefore how to obtain
this measure.

4.1 The Haar measure of a quantum walk

As before, assume φ(x), the characteristic polynomial of A, has been com-
pletely factored over its splitting field, and rational polynomials pr(x) as in

10



Theorem 2 have been computed. We will assume that 〈a|Er|b〉 6= 0 for all r,
but if this is not the case, the set of indices for which this holds can be exactly
determined using Equation 2, and we can restrict the treatment that follows
to those indices.

Let P be a matrix whose columns correspond to the polynomials pr, and
let m ∈ Z so that mP is integral. Assume the rank of P is equal to the
integer k. Upon computing the Smith normal form m−1S = UPV , it follows
that the non-zero columns of m−1U−1S form a basis for the column space of
P that generates each column of P as an integral linear combination, given
by the columns of V −1. Thus, the non-zero columns of m−1U−1S correspond
to algebraic numbers w1, ..., wk, which are rationally independent, and so that
there are integral linear combinations of these giving each θr, that we denote
by

θr =
k∑
`=1

f r`w` = f r(w). (3)

Theorem 2 therefore guarantees that the integer coefficients f r` can be com-
puted somewhat efficiently (they appear exactly in the first rows of V −1). Note
in particular that the linear space of rational combinations of the eigenvalues
that are equal to 0 is exactly generated by the last (n− k) columns of V .

It follows from Kronecker’s Theorem (Theorem 5) that {tw : t ∈ R+} is
dense on the k-dimensional torus Tk = Rk/2πZk, and as tj, for j → ∞, are
then chosen so that tjw approximates the point z ∈ Tk, it must be that tjθr,
for r = 0, ..., d, will approximate the point

ζr = f r(z) (mod 2π).

The consequence is that there is a subspace of dimension k in the (d+1)-torus
where the curve

t 7→ t(θ0, ..., θd) (mod 2π)

is dense. Moreover, a theorem due to Weyl, which extends Kronecker’s Theo-
rem, asserts that the curve tw covers the k-torus Tk uniformly, thus, if χS is
the characteristic function of a Jordan measurable subset S of Tk, we have

lim
T→∞

1

T

∫ T

0

χS(tw) dt =

∫
S

χS dV,

where the right hand side is clearly the volume of S. For more details, see [3,
Chapter 1]. For this reason, in order to understand the region covered by the
curve 〈a|U(t)|b〉 in C2 and also how densely this happens in each subregion,
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we can introduce coordinate variables z1, ..., zk to the k-torus and consider the
map given by

F : (z1, ..., zk) = z 7→
d∑
r=0

〈a|Er|b〉eif
r(z). (4)

To exemplify, let us look again to the cycle C5. Let γ = ei(2π/5). The distinct
eigenvalues of C5 are 2, γ2 + γ3 and −1 − γ2 − γ3, thus, with w1 = γ2 + γ3

and w2 = −1−w1, which are rationally independent, we have the eigenvalues
−2(w1+w2), w1, w2. Upon examining the map described just above, the image
of the uniform grid of the 2-torus is quite similar to what we saw in Figure 1,
as can be seen in Figure 2.

One observation about these pictures is that they will always be symmetric
about the real axis, even for t ∈ R+ only. This is an immediate consequence
of Theorem 5, because if the condition in its statement holds for {ζ0, ..., ζd},
then it also holds for {−ζ0, ...,−ζd}.

Corollary 8. Let G be a graph, and A = A(G). Then the closure of the curve
in the complex plane described by any entry of exp(itA) with t ≥ 0 and as
t→∞ is invariant under complex conjugation.

4.2 The uninteresting cases

Given the spectral decomposition of the graph, A =
∑d

r=0 θrEr, it could occur
that 〈a|Er|b〉 6= 0 implies θr ∈ Z. In this case, the image of U(t)a,b in the
complex plane will coincide with the image of the 1-torus under an injective
map, and therefore it will result in a closed curve, with period 2π. Some of
these curves might be interesting on their own, but the questions are certainly
going to be more simply addressed. An interesting exercise is to plot the curves
obtained from the well-known Petersen graph.

A second uninteresting case is that of a bipartite graph. In this case, the
adjacency matrix can be written as

A =

(
0 B
BT 0

)
,

where B is a 01 matrix of appropriate size. Then

A2k =

(
(BBT )k 0

0 (BTB)k

)
, A2k+1 =

(
0 (BBT )kB

(BTB)kBT 0

)
and

U(t) = exp(itA) =

(
cos(t

√
BBT ) i sin(t

√
BBT )B

i sin(t
√
BTB)BT cos(t

√
BTB)

)
.
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As a consequence, for all times t and any two vertices a and b, either U(t)a,b
is always real or always purely imaginary. The plots of these curves on the
complex plane will hence be entirely contained in the coordinate axis, and not
much will be seen. If the graph is not bipartite, then the largest eigenvalue
has strictly larger absolute value than any other eigenvalue, and therefore any
entry of U(t) will attain values which are neither real nor purely imaginary.

Fortunately, most graphs are neither bipartite nor have integer spectrum,
so one should expect that the typical case is interesting.

4.3 Odd prime cycles

Figure 1 displays a rotational symmetry. Despite a first guess, this symmetry is
not related to a graph automorphism of the cycle, but rather to the fact that
adding a certain constant angle to the free independent variables described
in Equation (3) results in adding the same constant to all eigenvalues. This
phenomenon is common to all odd prime cycles.

Theorem 9. Let G = Cp, with p an odd prime, and A = A(G). Then any
entry of exp(itA), as t→∞, is dense in a region R of C2 that admits a p-fold
rotational symmetry of the plane.

Proof. Let ω = exp(2πi/p). Distinct eigenvalues of A(Cp) are θr = ωr + ωp−r,
for r ∈ {0, 1, · · · , (p−1)/2}. All have multiplicity equal to 2, except for θ0 that
is simple. First note that Q[ω] contains all eigenvalues, and that the minimal
polynomial of ω is the pth cyclotomic polynomial φp(x) =

∑p−1
i=0 x

i. From the
eigenvalue expressions, it is immediate that θ = {θ1, · · · , θ(p−1)/2} form a basis
for the extension, with θ0 equal to −2 times their sum.

As shown in Section 4, the region R is determined by the map from the
torus to the complex plane shown in Equation (4). If we add 2π/p to each
torus coordinate, then each f r(z) gets added by the same 2π/p. This is readily
seen for r > 0 as f r is a coordinate projection, and it is true for f 0, because
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f 0(z + (2π/p)1) ≡2π −2

(p−1)/2∑
i=1

(
zi +

2π

p

)

≡2π −
2(p− 1)π

p
− 2

(p−1)/2∑
i=1

zi

≡2π
2π

p
− 2

(p−1)/2∑
i=1

zi

≡2π
2π

p
+ f 0(z).

Note that the result above does not hold for other odd cycles, as more
rational dependences occur amongst their eigenvalues. For example, the entries
of U(t) for the cycle C9 only exhibit 3-fold rotational symmetry. For a graph
in general, we note that an n-rotational symmetry arises whenever, for all r,
we have

k∑
`=1

f r` ≡ 1 (mod n), (5)

with f r` the coefficients described in Equation (3).
Another distinguished geometric feature of the pictures in Figure 2 is re-

lated to the singularities of the map from the torus to the plane. The distin-
guished borders appearing in Figure 2 and resembling star like contours are
the caustics of this map. They are the images under F (described in Equation
(4)) of the curves in the torus which are the points where the Jacobian matrix
of F does not have full rank.

For the cycle C5, we first analyze the diagonal entries. Here, Equation (4)
reduces to

F (z1, z2) =
1

5
e−2i(z1+z2) +

2

5
eiz1 +

2

5
eiz2 ,

thus ∂F/∂z1 is (real) parallel to ∂F/∂z2 precisely when z1 = z2 or 2z1 = −3z2
(and equivalently −3z1 = 2z2). These solutions describe the hypocycloids in
Figure 3.

In general, for a diagonal entry of exp(itA(Cp)), p an odd prime, the fol-
lowing hypocycloids are obtained:

1

p

(
ke−i(p−k)t + (p− k)eikt

)
,

14



Figure 3: Cycloids e−i4t + 4eit (red, outer curve) and 3e2it + 2e−3it (blue, inner
curve), up to scalling.

for k between 1 and (p− 1)/2.
For the off-diagonal entries, the solutions cannot be so easily expressed. For

instance, for the cycle C5 and an entry corresponding to neighbours, Equation
(4) reduces to

F (z1, z2) =
1

5

(
e−2i(z1+z2) +

−1 +
√

5

2
eiz1 +

−1−
√

5

2
eiz2

)
,

and an expression for the exact solution to ∂F/∂z1 = γ ·∂F/∂z2 with γ ∈ R is
not available, although it is always possible to obtain a numerical approxima-
tion of the curve. The problem however becomes significantly less tractable
for larger cycles or other graphs.

4.4 More graphs

Let G be the graph K4 minus one of its edges1. Figure 4 displays four distinct
entries of exp(itA(G)) for t in [0, 100], with the insets at top left displaying
which.

The graph has characteristic polynomial φ(t) = t(t + 1)(t2 − t − 4). The
eigenvector for the eigenvalue 0 is nonzero only at the two vertices of degree

1The graphs Kn, where n vertices are all connected to each other, have integer eigenval-
ues, and therefore the plots of the curves exp(itA(Kn))a,b will be uninteresting.
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Figure 4: Sketches of various matrix element functions of the quantum walk
on the graph K4 minus one edge.

2, so the term corresponding to it only plays a role in the bottom left picture,
leading to the translation of the center of mass. Having 0 as an eigenvalue and
the entry in its eigenprojector nonzero is the only circumstance these picture
will not be centered at the origin.

The eigenvalues simultaneously in the support of the vertices of degree 2
and 3 are precisely the roots of (t2− t− 4). Thus they are rationally indepen-
dent, and this is quite special. It implies Equation (5) holds for all n, thus the
(closure of the) picture in the bottom right is fully rotationally symmetric.

Finally, the picture in the top is an example of pretty good state transfer,
that we discussed in Theorem 7. The three-fold symmetry arises from the
fact that the eigenvalues in the support of the two vertices are the roots of
(1 + t)(t2 − t − 4), and Equation (5) and the fact that two of them sum to
minus the third implies the rotational symmetry.

This shows that a crucial role is played by the rational dependences of
the eigenvalues of the graph. In other terms, let us call Γ the closure of the
subgroup generated by all the tuples (tθk), k = 0, ..., d in the (d + 1)-torus.
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Clearly, the map sending this to exp(itA)a,b can be thought of as a continuous
function on Γ, and since the average of a function of time is invariant under
time translations, the averaging process corresponds to a translation invariant
average on Γ, i.e., to the Haar measure. Now by duality of locally compact
groups the group Γ is uniquely characterized by the set of characters vanishing
on it, i.e., by the integer tuples (nk) such that

∑
k nkθk = 0. These are just

the rational dependences of the eigenvalues.
At this point a natural question is whether these rational dependences are

always trivially obtained by factoring the characteristic polynomial over the
integers and considering only the sums of eigenvalues corresponding to each
factor. This is false for bipartite graphs, as any eigenvalue comes coupled
with its negative even if they belong to factors of large degree. We display a
non-bipartite example in Figure 5.

Figure 5: The characteristic polynomial admits a factorization over the inte-

gers as (t − 1)2(t4 − 2t3 − 5t2 + 6t + 4), and
1±
√

13±4
√
5

2
are the roots of the

degree 4 term. They are paired into eigenvalues that sum to 1, so there are
dependences which do not require summing all roots of every factor.

5 The supremum of probabilities and even mo-

ments

Given a graph G and two vertices a and b, what is the supremum of the prob-
abilities of transfer of state from a to b during a quantum walk? Equivalently,
what is the radius of the smallest unit disk in the complex plane that contains
{exp(itA)a,b : t ∈ R+} ?

It is a well known fact that if M is the maximum value attained by
| exp(itA)a,b| with t ∈ [r1, r2], then

1

r2 − r1
· lim
m→∞

(∫ r2

r1

| exp(itA)a,b|mdt

)1/m

= M,
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Thus making [r1, r2] → [0,∞) and choosing large enough values of m, one
obtains progressively good approximations for M . Unfortunately however the
computation of | exp(itA)a,b|k is not efficient, and already for small graphs this
procedure will not lead to satisfactory results.

The theory we presented in Sections 3 and 4 allow for an alternative and
more effective approach (as long as we replace maximum for supremum).

Proposition 10. Assume coefficients f r are as given in Equation (3), and F
as in Equation (4). The supremum of | exp(itA)a,b| for t ∈ R+ is

1

(2π)k
· lim
m→∞

(∫
Tk

|F (z)|mdz

)1/m

The benefit of this approach is that form even, |F (z)|m is a sum of exponen-
tials, and for each term the exponent is an integer combination of independent
torus variables. Hence a term survives the integral only when the coefficient
of each variable in its exponent is equal to 0. Thus, from

|F (z)|2 =

(
d∑
r=0

〈a|Er|b〉eif
r(z)

)(
d∑
r=0

〈a|Er|b〉e−if
r(z)

)

=
d∑

r,s=0

〈a|Er|b〉〈a|Es|b〉ei(f
r−fs)(z),

it follows that the terms in |F (z)|2` whose exponents are equal to 0 correspond
to the solutions of p00 + p01 + · · ·+ pdd = `, with prs nonnegative integers, and
so that, for all i from 1 to k, we have∑

r,s

prs(f
r
i − f si ) = 0.

This approach provides an exact method to approximate the supremum of
probability of transfer in any quantum walk. Moreover, it allows us to draw
a connection to the average mixing matrix discussed in Theorem 3. With F
coming from the definition in Equation (4), note that

1

(2π)2

∫
Tk

|F (z)|2dz

is precisely equal to the ab-entry of M̂ , the matrix whose entries are the abso-
lute second moments of the entries of exp(itA). We show below that the even
moments are all rational.
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Theorem 11. Assume coefficients f r are as given in Equation (3), and F as
in Equation (4), and that ` ≥ 1 an integer. Then

1

(2π)2`

∫
Tk

|F (z)|2`dz

is rational.

Proof. In the expansion of |F (z)|2`, we consider the terms not multiplying
the exponentials. We would like to show that their sum is invariant under
all automorphisms of the splitting field of the characteristic polynomial of the
graph. As discussed above, each of these terms corresponds to a solution of
p00 + p01 + · · · + pdd = `, with prs nonnegative integers, and so that, for all i
from 1 to k, we have

∑
r,s prs(f

r
i − f si ) = 0. Assume the wi are as in Equation

3. Then
∑

r,s prs(f
r
i wi − f si wi) = 0, thus

0 =
∑
i

∑
r,s

prs(f
r
i wi − f si wi)

=
∑
r,s

prs

(∑
i

f ri wi −
∑
i

f si wi

)
=
∑
r,s

prs(θr − θs).

Let Ψ be a field automorphism of the splitting field of the characteristic poly-
nomial of the graph, and recall that Ψ induces a permutation on the (indices
of the) eigenvalues, whose inverse we shall denote by ψ. Then

0 = Ψ(0) = Ψ

(∑
r,s

prs(θr − θs)

)
=
∑
r,s

pψ(r)ψ(s)(θr − θs).

As a consequence, the set of terms not multiplying exponentials is preserved
by Ψ, and therefore so is their sum.

6 Conclusion

We are motivated by the task of understanding as much as possible about the
quantum walk in a given arbitrary graph.

A simple question such as what is the maximum probability of transfer
between two vertices is still not completely addressed. We provided a method

19



to decide whether the supremum is equal to 1 or not. We were able to do
this by exhibiting an algorithm that tests a special case of the well-known
Kronecker’s theorem on Diophantine approximations. In order to achieve this
result, we used known techniques that were yet strange in the analysis of
quantum walks in graphs.

Our investigation led to us to some deeper and more interesting questions
about the geometry of the curves drawn by the entries of exp(itA). We pro-
vided a thorough analysis of some geometric features, characterizing rotational
symmetry and singularities.

Following, we showed yet another improvement to the problem of finding
the best possible probability of transfer, exhibiting a method that approxi-
mates the supremum up to desired precision even when not equal to 1. This
was achieved by applying some observations about how to compute even ab-
solute moments, along with a result showing that these moments are rational.

We speculate that further analysis of the moments of the entries of exp(itA)
could lead to interesting theory — for instance, the torus is compact and
the function F defined in Equation (4) is continuous, thus in principle the
probability distribution of its image on the complex plane can be completely
recovered from the (a, b)-moments obtained upon averaging F (z)aF (z)b over
the torus.

Finally, a still unanswered question regarding pretty good state transfer is
how to compute times that achieve high probability of transfer. The interpre-
tation of this phenomenon as a map from torus to the complex plane might
lead to new advances regarding this question.
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