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Abstract

Using a nonlocal second-order traffic flow model we present an approach to control the

dynamics towards a steady state. The system is controlled by the leading vehicle driving

at a prescribed velocity and also determines the steady state. Thereby, we consider both,

the microscopic and macroscopic scales. We show that the fixed point of the microscopic

traffic flow model is asymptotically stable for any kernel function. Then, we present

Lyapunov functions for both, the microscopic and macroscopic scale, and compute the

explicit rates at which the vehicles influenced by the nonlocal term tend towards the

stationary solution. We obtain the stabilization effect for a constant kernel function and

arbitrary initial data or concave kernels and monotone initial data. Numerical examples

demonstrate the theoretical results.
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1 Introduction

Progress in autonomous driving brings new challenges for the modelling of traffic flow. To
deal with those, approaches such as the classical Lighthill-Whitham-Richards (LWR) model
[34, 35] have been extended to include more information on the surrounding traffic, see for
example [6, 22, 24, 30, 36]. These are nonlocal traffic flow models. While local models are
governed by conservation laws, where the fundamental diagram gives the relation between
flux and density, the flux function of nonlocal models depends on an integral evaluation of
the density or velocity. In case of autonomous vehicles, the integration area allows for an
interpretation as a connection radius.

Nonlocal traffic flow models have been introduced in [1, 6]. Most commonly macroscopic
first order models are studied regarding, e.g. existence and well-posedness [11, 22, 30, 32,
33], numerical schemes [6, 8, 21, 22, 24], its singular limit behavior [15, 16, 31] or modeling
extensions such as multi-class models [12], time delay models [31], multilane models [5, 20] or
network formulations [10, 14]. Recently also microscopic modeling approaches [9, 14, 23, 36]
have been investigated. In [9], starting from a microscopic approach a class of nonlocal second-
order models similar to the local generalized Aw-Rascle-Zhang [2, 19, 38] has been derived. In
this work, we will focus on this nonlocal second order model.
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†University of Mannheim, Department of Mathematics, 68131 Mannheim, Germany (goettlich@uni-
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Even though nonlocal traffic flow models have been studied in various research directions
over the years, there are only a few works concerning control problems [4, 26, 27]. In [4], a
very general result concerning the exact boundary controllability is obtained. While in [26] a
Lyapunov function on a ring road with a linear velocity function is studied. Also, [27] considers
a Lyapunov function on a ring road, but introduces a different model. Nevertheless, all these
references only cover macroscopic models.

In contrast to that, various local traffic flow models have been studied concerning stability
and the asymptotic behavior in time: macroscopic models are studied in e.g. [3, 7], microscopic
models in e.g. [17, 28], while in [29] both a microscopic and a corresponding macroscopic
model are considered. For all models stationary solutions are investigated, e.g., all cars move
with a constant velocity or the traffic density stays constant. Therefore, the system is in an
equilibrium state. Analytical results on whether the solution reaches its stationary solution
over time are shown.

The aim of this work is to obtain Lyapunov functions and an exponential decay rate for
nonlocal second-order models [9]. As a direct consequence we will also obtain the results for
the nonlocal first-order model of [22]. Since microscopic and macroscopic models are directly
related by the number of cars, meaning that for an infinite number of cars, a microscopic
model should approximate a macroscopic solution, we study both scales. Thereby, we will
consider rather general velocity functions.

Note that we only consider microscopic and macroscopic scales. Future work could also
consider the mesoscopic description [25]. For nonlocal traffic flow models the mesoscopic
description was just recently derived in [13].

The upcoming work is structured as follows: Section 2 introduces the considered traffic
flow model on the microscopic and macroscopic scale. Section 3 contains our main results on
stationary solutions, their stability, and asymptotic behavior. Further, we compute explicit
rates on the decay rate. In the last section, we present numerical examples which demonstrate
the theoretical results. Further, the numerical results probably hold under less restrictive
conditions than we assume in the theory.

2 Nonlocal second order traffic flow models

We recall the nonlocal second order traffic flow model considered in [9].

2.1 The microscopic model

On the microscopic scale, we consider the description of N + 1 individual drivers. First-order
nonlocal microscopic traffic flow models were introduced in [23, 36]. Here, the speed of the
i−th driver depends on a weighted mean downstream velocity (or downstream density). On
average only cars are considered which are at most η > 0 far away from the driver i. If xi(t)
is the position of driver i at time t, all cars in the interval [xi(t), xi(t) + η] are taken into
account for the driver i to decide about the speed. Furthermore, we assume that each driver
has an individual empty road velocity that does not change over time and is expressed by a
Lagrangian marker ωi. This results in the following microscopic equations for N + 1 vehicles
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considered in [9]:


















d
dtxi(t) =

∑Nη−1
j=0 γi,j(t)Vi,j(t), i = 0, . . . , N − 1,

d
dtxN (t) = v̄,

d
dtωi(t) = 0, i = 0, . . . , N − 1,

(2.1)

where the velocity Vi,j is defined as follows

Vi,j(t) =







v
(

1
N(xi+1+j(t)−xi+j (t))

, ωi+j(t)
)

, for i+ j ≤ N − 1

v (0, v̄) = v̄, for i+ j > N − 1,

with positive weights satisfying
∑Nη−1

j=0 γi,j(t) = 1 for all i = 0, . . . , N − 1 and t > 0, and
where xi(t) represents the position of the i-th car at time t, N + 1 is the number of cars, v is
a suitable velocity function and v̄ > 0 is the velocity of the leader. Here, Nη is chosen in such
a way that xi+Nη(t) − xi(t) ≥ η with η > 0, e.g. Nη can be the smallest integer such that
Nη ≥ (N + 1)η. We note that there is a degree of freedom in modeling the leading vehicle.
We will later comment on the choice of v̄, as the velocity of the leading vehicle can be used
as a control input to the system.

For strictly positive constants ω0, . . . , ωN−1, we write the model as follows

d

dt
xi(t) =

Nη−1
∑

j=0

γi,j(t)Vi,j(t), i = 0, . . . , N (2.2)

and the velocity Vi,j simplifies to

Vi,j(t) =

{

v
(

1
N(xi+1+j(t)−xi+j (t))

, ωi+j

)

, for i+ j ≤ N − 1

v̄, for i+ j > N − 1.

Remark 2.1. If the Lagrangian markers coincide ωi = v̄ for i = 0, . . . , N −1, the microscopic
model reduces to the first order model considered in [36].

Let us now specify the precise formulas for the weights γi,j and the assumptions on v. To
define the weights we introduce the kernel function Wη which is defined as

Wη(x) =

{

Wη(x), if x ∈ [0, η],

0, else.
(2.3)

Here, the assumptions on Wη are

Wη ∈ C1([0, η];R+) with W ′
η ≤ 0,

∫ η

0
Wη(x)dx = 1 ∀ η > 0. (2.4)

Now we define the relation between the kernel function Wη and the weights γ. It is expressed
by the following equation:

γi,j(t) :=



















∫ xi+j+1(t)

xi+j(t)
Wη(y − xi(t))dy , if i+ j ≤ N − 1,

∫ xi(t)+η
min{xN (t),xi(t)+η} Wη(y − xi(t))dy , if i+ j = N,

0, if i+ j > N.

(2.5)
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Due to the definition of Wη in (2.3) the weights can be zero for j large, even if i + j ≤ N .
In particular, the weights are the evaluation of the function Wη over a grid given by the

position of the individual cars. By definition of Wη, it is obvious that
∑Nη−1

j=0 γi,j(t) = 1 for
all i = 0, . . . , N − 1 and t > 0 holds.

Next, we state the assumptions on the velocity function. We assume (ρ, ω) → v(ρ, ω) to
be a twice continuously differentiable function in ρ and a continuously differentiable function
in ω. As in [9, 19], the following additional assumptions on the velocity function v(ρ, ω) are
considered:

v(ρ, ω) ≥ 0, v(0, ω) = ω, v(ρ, 0) = 0, (2.6a)

for f(ρ, ω) = ρv(ρ, ω) we have
∂2f

∂ρ2
(ρ, ω) < 0 for ω > 0, (2.6b)

∂v

∂ω
(ρ, ω) > 0. (2.6c)

The first assumption in (2.6a) ensures that vehicles never travel backward, while the second
one shows why ω can be interpreted as the empty road velocity. Condition (2.6b) implies
∂v
∂ρ (ρ, ω) < 0 for ω > 0, since v is a C2 function in ρ, see also [19, Lemma 1]. The assumption
(2.6c) implies that a faster empty road velocity results in a faster velocity for all possible
densities. Additionally to (2.6) we assume

∀ ω > 0 ∃ ρmax
ω > 0 : v(ρmax

ω , ω) = 0. (2.7)

The latter assumption is needed to ensure a maximum principle.

Remark 2.2. Note that the maximum principle in (2.2) is kept and cars are not overtaking
each other for every v̄ > 0. In [9, Proposition 1] the maximum principle is only proven for
the case v̄ ≥ ωN−1. Nevertheless, the result can be extended. It is obvious that in the case of
v̄ < ωN−1 the proof of [9, Proposition 1] remains valid for i = 1, . . . , N − 2. Assume that as
in the proof of [9, Proposition 1] we are at a time t at which the distance of car N − 1 to the
N -th car is minimal. Then, we have

d

dt
(xN (t)− xN−1(t)) =v̄ − γN−1,0(t)v

(

1

N (xN (t)− xN−1(t))
, ωN−1

)

− (1− γN−1,0(t))v̄

=γN−1,0(t)

(

v̄ − v

(

1

N (xN (t)− xN−1(t))
, ωN−1

))

= γN−1,0(t)v̄ ≥ 0.

Due to the minimum distance between the N -th and N − 1-th car and Assumption (2.7) on v
the last equality holds. Therefore, the distance is increasing and the cars are not overtaking
each other.

2.2 The macroscopic model

In [9] it is proven that the solution of the microscopic model (2.2) converges for N → ∞
towards the weak solution of the following nonlocal system for (t, x) ∈ R

+ × R:

{

∂tρ+ ∂x (ρV (t, x)) = 0,

∂tω + V (t, x) ∂xω = 0,
(2.8)

4



where

V (t, x) := (Wη ∗ v(ρ, ω)) (t, x) =

∫ x+η

x
Wη(y − x)v(ρ(t, y), ω(t, y))dy η > 0. (2.9)

Note that the flux depends explicitly on x through the convolution product. The notation
V (t, x) is just used as an abbreviation. Here, Wη fulfills the assumptions (2.4) and v the
assumptions (2.6) and (2.7). The model is strongly inspired by the local GARZ model [19].
This model generalizes the relations between density, Lagrangian marker, and velocity, to
ensure a unique maximum density, which is not usual for most of the commonly known second-
order traffic flow models such as the ARZ model. Hence, we will refer to (2.8) as the nonlocal
GARZ model. The equation needs to be accompanied by the initial conditions:

ρ(0, x) = ρ0(x) ∈ BV(R), ρ0(x) ≤ ρmax := max
ω

ρωmax, supp(ρ0) compact and connected,

ω(0, x) = ω0(x) ∈ BV(R).
(2.10)

The last assumption on ρ0 ensures that the initial density for x ∈ supp(ρ0) is strictly greater
than zero. This assumption is needed to prove the limit from the microscopic to the macro-
scopic model to ensure that cars are (in the limit) always present on the road.

Remark 2.3. Similar to the microscopic case, the model (2.8) reduces to the first order model
considered in [22] by choosing a constant Lagrangian marker ω(t, x) = ω ∀(t, x) ∈ R

+ × R.

Setting q = ρω, the model can be written in conservative form for ρ 6= 0 as

{

∂tρ+ ∂x (ρV (t, x)) = 0

∂tq + ∂x (q V (t, x)) = 0,
(2.11)

where the convolution product is defined as above and ω = q/ρ.

3 Lyapunov stabilization

3.1 Stability of the microscopic models

For deducing the stability of the nonlinear ordinary differential equations (2.2) we will consider
the corresponding linearized ODE first.

To determine a linearized ODE we define the distance between two cars

yi(t) := xi+1(t)− xi(t), for i = 0, . . . , N − 1. (3.1)

As the Lagrangian marker is directly given by the initial conditions we consider the system
(2.1). Then, we obtain an equilibrium point, if the distance between two cars is constant
over the time, i.e. yi(t) = L̄i for some L̄i > 0 and i = 0, . . . , N − 1. A constant distance
between all pairs of cars means that all cars move at the same speed, which will be denoted
as the equilibrium speed v̄. There is a direct relation to compute the distance L̄i from a given
equilibrium velocity v̄, i.e.

v

(

1

NL̄i
, ωi

)

= v̄ ∀ i = 0, . . . , N − 1.
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Hence, for a suitable and given equilibrium velocity we can compute the equilibrium distance
L̄i. As the Lagrangian marker is the maximum velocity of each individual driver, we have
a restriction on v̄, i.e. v̄ ≤ mini=1,...,N−1 ωi needs to hold. Further, we need to impose the
following assumption:

Assumption 3.1. We assume that an upper bound on the derivative of v with respect to ρ
exists, i.e.

max
ωi={0,...,N−1}

∂ρv(ρ, ωi) ≤ v′max < 0.

Next, we state the following result for the stability of the equilibrium states.

Theorem 3.2. Under Assumption 3.1 the stationary solution yi(t) = L̄i, i = 0, . . . , N − 1 for
the dynamics given by (2.1) is (locally) asymptotically stable.

Proof. Let us at first consider the cars i for which xi(t) < xN (t) − η holds, i.e. the cars
which do not see the leading vehicle. We denote those cars by i = 0, . . . ,J − 1∗. Since
d
dtyi(t) =

d
dt(xi+1(t)− xi(t)) = 0, we obtain

d

dt
yi(t) =

Nη−1
∑

j=0

γi+1,j(t)v

(

1

Nyi+j+1(t)
, ωi+j+1

)

− γi,j(t)v

(

1

Nyi+j(t)
, ωi+j

)

=

Nη−1
∑

j=1

(γi+1,j−1(t)− γi,j(t)) v

(

1

Nyi+j(t)
, ωi+j

)

− γi,0(t)v

(

1

Nyi(t)
, ωi

)

+ γi+1,Nη−1(t)v

(

1

Nyi+Nη(t)
, ωi+Nη

)

.

Now, we need to determine the weights (2.5) depending on yi(t):

γi,j(t) =

∫ xi+j+1(t)

xi+j(t)
Wη(y − xi(t))dy =

∫ xi+j+1(t)−xi(t)

xi+j(t)−xi(t)
Wη(y)dy =

∫

∑j
k=0

yi+k(t)

∑j−1

k=0
yi+k(t)

Wη(y)dy .

This gives us

Fi(y) :=
d

dt
yi(t)

=

Nη−1
∑

j=1

(

∫

∑j
k=1

yi+k(t)

∑j−1

k=1
yi+k(t)

Wη(y)dy −

∫

∑j
k=0

yi+k(t)

∑j−1

k=0
yi+k(t)

Wη(y)dy

)

v

(

1

Nyi+j(t)
, ωi+j

)

−

∫ yi(t)

0
Wη(y)dyv

(

1

Nyi(t)
, ωi

)

+

∫

∑Nη−1

k=1
yi+k(t)

∑Nη−2

k=1
yi+k(t)

Wη(y)dyv

(

1

Nyi+Nη(t)
, ωi+Nη

)

.

As we want to consider a linear ODE by linearizing F around the equilibrium yi = L̄i for all
i = 0, . . . , N − 1, we first compute for i = 1, . . . ,J − 1

∂yiFi(y) =−

Nη−1
∑

j=1

(

Wη

(

j
∑

k=0

yi+k(t)

)

−Wη

(

j−1
∑

k=0

yi+k(t)

))

v

(

1

Nyi+j(t)
, ωi+j

)

−Wη(yi(t))v

(

1

Nyi(t)
, ωi

)

+

∫ yi(t)

0
Wη(y)dy ∂ρv

(

1

Nyi(t)
, ωi

)

1

Nyi(t)2

∗Note that J = N is possible here, then we only have to consider the cars i = 0, . . . ,J − 1.
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Now we repeat the calculations above for i = J , . . . , N − 1 and obtain:

Fi(y) =
N−2−i
∑

j=0

γi+1,j(t)Vi+1,j(t) +



1−
N−2−i
∑

j=0

γi+1,j(t)



 v̄

−





N−1−i
∑

j=0

γi,j(t)Vi,j(t) +



1−
N−1−i
∑

j=0

γi,j(t)



 v̄





=

N−1−i
∑

j=1

(γi+1,j−1(t)− γi,j(t))

(

v

(

1

Nyi+j
, ωi+j

)

− v̄

)

− γi,0(t)

(

v

(

1

Nyi
, ωi

)

− v̄

)

(3.2)

and

∂yiFi(y) =−

Nη−1
∑

j=1

(

Wη

(

j
∑

k=0

yi+k(t)

)

−Wη

(

j−1
∑

k=0

yi+k(t)

))

(

v

(

1

Nyi+j(t)
, ωi+j

)

− v̄

)

−Wη(yi(t))

(

v

(

1

Nyi(t)
, ωi

)

− v̄

)

+

∫ yi(t)

0
Wη(y)dy ∂ρv

(

1

Nyi(t)
, ωi

)

1

Nyi(t)2
.

Note that we are not dealing with the case γi,j(t) = 0 for some i, j and hence we have Wη

instead of Wη.
Since the cars are only forward looking the Jacobi matrix of F is a upper triangular

matrix with eigenvalues given by the entries of its diagonal. Hence, we set yi = L̄i to obtain
the eigenvalues of the linearized ODE, i.e. for i = 0, . . . ,J − 1

∂yiFi(L̄) =−

Nη−1
∑

j=1

(

Wη

(

j
∑

k=0

L̄i+k

)

−Wη

(

j−1
∑

k=0

L̄i+k

))

v̄

−Wη(L̄i)v̄ +

∫ yi(t)

0
Wη(y)dy ∂ρv

(

1

NL̄i
, ω̄i

)

1

NL̄2
i

=



Wη

(

L̄i

)

−Wη





Nη−1
∑

k=0

L̄i+k







 v̄ −Wη(L̄i)v̄

+

∫ L̄i

0
Wη(y)dy ∂ρv

(

1

NL̄i
, ω̄i

)

1

NL̄2
i

=−Wη





Nη−1
∑

k=0

L̄i+k



 v̄ +

∫ Li

0
Wη(y)dy ∂ρv

(

1

NL̄i
, ω̄i

)

1

NL̄2
i

< 0

and for i = J , . . . , N − 1

∂yiFi(L̄) =

∫ Li

0
Wη(y)dy ∂ρv

(

1

NL̄i
, ω̄i

)

1

NL̄2
i

< 0

due to the assumptions on ∂ρv. As the fixed point of the linear ODE is asymptotically stable,
so is the fixed point of the nonlinear ODE.

After having seen that the microscopic traffic model can be stabilized, we define an appro-
priate Lyapunov function and determine the rate of convergence towards the steady state.
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3.2 Lyapunov function for the density

We will consider a Lyapunov function measuring the L2 distance of the density.

3.2.1 The microscopic level

We consider the microscopic system (2.2) and a given equilibrium velocity v̄ ≤ mini=0,...,N−1 ωi.
In particular, this velocity of the leading vehicle should control the system towards the corre-
sponding equilibrium. As the leading vehicle has only an influence on the cars in the distance
η behind it, we cannot prove a stabilization result for all cars. For a set of specific cars we
are able to obtain the following stronger maximum principle:

Lemma 3.3 (Maximum principle). Let the initial placement of cars and the equilibrium ve-
locity v̄ be chosen such that J ∈ {0, . . . , N − 1} being the smallest integer satisfying

N−1
∑

i=J

max{yi(0), L̄i} ≤ η (3.3)

exists. Further, let Assumption 3.1 hold and the dynamics given by equation (2.2). In addition,
we assume either

a) the kernel function is constant, i.e. Wη(x) =
1
η , or

b) the kernel function is concave, ωi = ω for i = J, . . . ,N − 1, ω > 0 and the initial
data satisfies either yJ(0) ≥ · · · ≥ yN−1(0) ≥ L̄ or yJ(0) ≤ · · · ≤ yN−1(0) ≤ L̄ with
v(L̄, ω) = v̄.

Then, a maximum principle holds, i.e.,

yi(t) ∈ [min{yi(0), L̄i},max{yi(0), L̄i}] ∀t > 0, i = J , . . . , N − 1. (3.4)

Proof. We define

B := {i ∈ {1, . . . , N − 1}|xi(t) ∈ [xN (t)− η, xN (t)] ∀t ≥ 0}. (3.5)

Here, B is the set of cars that are at maximum η behind the leading vehicle for all times
t ≥ 0. Note that the set B may be empty. If it is not empty, we set J := minB. This gives
the integer of the car being the ”last” car which is always in the interval [xN (t) − η, xN (t)].
Now, we are able to provide a stricter maximum principle with respect to the distance and
the microscopic density, respectively, for the set B.
Let us assume B 6= ∅. We prove the claim by induction and starting at car N − 1:

d

dt

(

yN−1(t)− L̄N−1

)

=v̄ − γN−1,0(t)v

(

1

NyN−1(t)
, ωN−1

)

− (1− γN−1,0(t))v̄

=γN−1,0(t)

(

v

(

1

NL̄N−1
, ωN−1

)

− v

(

1

NyN−1(t)
, ωN−1

))

,

where we use the definition of the equilibrium velocity. Now, we apply the mean value theorem:

once for v(·, ωN−1) and once for γN−1,0(t) =
∫ yN−1(t)
0 Wη(y)dy = Wη(ζN−1(t)) yN−1(t). This

leaves us with

=Wη(ζN−1(t)) yN−1(t) ∂ρv(ξN−1(t), ωN−1)

(

1

NL̄N−1
−

1

NyN−1(t)

)

=Wη(ζN−1(t)) ∂ρv(ξN−1(t), ωN−1)
1

NL̄N−1

(

yN−1(t)− L̄N−1

)

.
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A solution to the ordinary differential equation is given by

yN−1(t)− L̄N−1 =
(

yN−1(0)− L̄N−1

)

exp

(

∫ t
0 Wη(ζN−1(s)) ∂ρv(ξN−1(s), ωN−1)ds

NL̄N−1

)

. (3.6)

Due to the negative sign of the derivative of v we bound the exponential term by one. Let us
consider yN−1(0) ≤ L̄N−1, then (3.6) is estimated from above by zero, such that yN−1(t) ≤
L̄N−1 holds. Further, we estimate the term from below by yN−1(0)− L̄N−1. Hence, yN−1(t) ∈
[yN−1(0), L̄N−1] holds. The case yN−1(0) > L̄N−1 works analogously. This proves the claim
for the car N − 1:

yN−1(t) ∈ [min{yN−1(0), L̄N−1},max{yN−1(0), L̄N−1}].

Now, we consider a car i ∈ {J , . . . , N − 2} and suppose the claim holds for all cars j =
i+ 1, . . . , N − 1. Following the calculations to obtain (3.2) in Theorem 3.2, we obtain

d

dt

(

yi(t)− L̄i

)

=

N−1−i
∑

j=1

(γi+1,j−1(t)− γi,j(t))

(

v

(

1

Nyi+j(t)
, ωi+j

)

− v̄

)

(3.7)

− γi,0(t)

(

v

(

1

Nyi(t)
, ωi

)

− v̄

)

.

We need to distinguish the two cases a) and b) and start with the consideration of the constant
kernel. In this case,

d

dt
(yi(t)− L̄i) = −

yi(t)

η

(

v

(

1

Nyi(t)
, ωi

)

− v̄

)

. (3.8)

Again, using the mean value theorem, where ξi(t) denotes the corresponding value between
1/(Nyi(t)) and 1/(NL̄i), we see that

d

dt
(yi(t)− L̄i) =

1

NL̄i η
∂ρv (ξi(t), ωi) (yi(t)− L̄i),

such that we obtain

yi(t)− L̄i = (yi(0)− L̄i) exp

(

1

NL̄i η

∫ t

0
∂ρv (ξi(s), ωi) ds

)

.

Following the same arguments as for the car N − 1, we deduce the maximum principle (3.4).
This finishes the proof for the case a) and all cars which are contained in the set B.
The proof of the maximum principle in the case b) is more involved. For simplicity, we only
outline the main steps for the case yJ(0) ≤ · · · ≤ yN−1(0) ≤ L̄. The details can be found in
Lemma A.1 in the Appendix.

1. We start by proving the upper bound L̄ on yi(t).

2. Using the upper bound, we show that the monotonicity of the initial data is preserved,
if the kernel function is concave.

3. Finally, this allows to prove the lower bound yi(0) ≤ yi(t).
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In case of monotone decreasing initial data, a similar proof applies. Hence, we have established
the maximum principle under the assumption that B 6= ∅ and J ≥ J . It remains to prove that
those assumptions are valid. The upper bounds on the distances yi(t) for i = J , . . . , N − 1
yield

N−1
∑

i=J

yi(t) ≤
N−1
∑

i=J

max{yi(0), L̄i}.

This motivates the choice of the initial conditions in (3.3). In fact, J is an a priori upper
bound on J . Hence, under condition (3.3) also J exists and B 6= ∅ is guaranteed.

Remark 3.4. Under the assumptions of Lemma 3.3 we obtain a lower bound on the micro-
scopic density for the cars behind the leading vehicle, i.e.,

ρmin := min
i=J,...,N

min

{

1

Nyi(0)
,

1

NL̄i

}

. (3.9)

This maximum principle is one of the keys to prove the following stabilization results:

Theorem 3.5 (Lyapunov stabilization: constant kernel). Let the initial placement of cars be
as in Lemma 3.3. Further, let Assumption 3.1 hold and the dynamics given by equation (2.2).
The kernel function shall be constant, i.e. Wη(x) =

1
η . We define the Lyapunov function

L(t) :=
N−1
∑

i=J

yi(t)

(

1

Nyi(t)
−

1

NL̄i

)2

. (3.10)

Then, we have

L(t) ≤ L(0) exp

(

2

η
v′max ρmin t

)

∀t ≥ 0,

where ρmin is given by (3.9) and L̄i is the equilibrium distance v
(

1
NL̄i

, ωi

)

= v̄.

Proof. The time derivative of the Lyapunov function L(t) is given by

d

dt
L(t) =

N−1
∑

i=J

2yi(t)

(

1

Nyi(t)
−

1

NL̄i

)(

−
1

Nyi(t)2

)

d

dt
yi(t) +

(

1

Nyi(t)
−

1

NL̄i

)2 d

dt
yi(t)

=
N−1
∑

i=J

(

1

Nyi(t)
+

1

NL̄i

)(

1

NL̄i
−

1

Nyi(t)

)

d

dt
yi(t).

By plugging in the derivative (3.8) of yi(t) as well as using the mean value theorem with the
corresponding value ξi(t) we obtain

=
1

η

N−1
∑

i=J

∂ρv(ξi(t), ωi)

(

1

Nyi(t)
+

1

NL̄i

)

yi(t)

(

1

Nyi(t)
−

1

NL̄i

)2

.
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Finally, we estimate this using the maximum principle

≤
2

η
v′max ρminL(t).

Applying Grönwall’s inequality yields

L(t) ≤ L(0) exp

(

2

η
v′max ρmint

)

.

Note that the rate is negative due to the sign of v′max.

We note that a constant convolution kernel can, e.g. model connected autonomous vehi-
cles, which have the same degree of accuracy on information about the downstream traffic,
independent of the distance. In the case of non-constant kernels the accuracy of information
decreases with the distance. For concave kernels we obtain a similar stabilization result:

Theorem 3.6 (Lyapunov stabilization: concave kernel). Let the initial placement of cars be
as in Lemma 3.3 and additionally we assume ωi = ω for i = J, . . . ,N − 1 and the initial
datum satisfies either yJ(0) ≥ · · · ≥ yN−1(0) ≥ L̄ or yJ(0) ≤ · · · ≤ yN−1(0) ≤ L̄ with
v(L̄, ω) = v̄. Further, let Assumption 3.1 hold and the dynamics given by equation (2.2). The
kernel function shall be concave. Then, we obtain for the Lyapunov function (3.10)

L(t) ≤ L(0) exp

(

2 v′max ρmin

∫ t

0
Wη(xN (s)− xJ(s))ds

)

∀ t ≥ 0.

Proof. As in the proof of Theorem 3.5, we have

d

dt
L(t) =

N−1
∑

i=J

(

1

Nyi(t)
+

1

NL̄

)(

1

NL̄
−

1

Nyi(t)

)

d

dt
yi(t).

We start again with considering the case yJ(0) ≤ · · · ≤ yN−1(0) ≤ L̄. For simplicity, we drop
the dependence of v on ω. Starting form the derivative (3.7) and adding a zero, we obtain

d

dt
yi(t) =

N−1−i
∑

j=1

(γi+1,j−1(t)− γi,j(t))

(

v

(

1

Nyi+j(t)

)

− v

(

1

Nyi(t)

))

+





N−1−i
∑

j=1

γi+1,j−1(t)−
N−1−i
∑

j=0

γi,j(t)





(

v

(

1

Nyi(t)

)

− v̄

)

.

We use that the monotonicity is kept (see the proof of Lemma A.1) and the definition of the
weights to get

≥−

∫ xi+1(t)

xi(t)
Wη(xN − y)dy

(

v

(

1

Nyi(t)

)

− v̄

)

= yi(t)Wη(ζ
N
i (t))

(

v̄ − v

(

1

Nyi(t)

))

,

where ζNi (t) ∈ [xN (t) − xi+1(t), xN (t) − xi(t)]. We apply the mean value theorem in v with
the corresponding value ξi(t) to obtain

≥− yi(t)Wη(ζ
N
i (t)) ∂ρv (ξi(t))

(

1

Nyi(t)
−

1

NL̄

)

.
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Due to the maximum principle we can estimate

d

dt
L(t) ≤

N−1
∑

i=J

(

1

Nyi(t)
+

1

NL̄

)

Wη(ζ
N
i (t)) ∂ρv (ξi(t)) yi(t)

(

1

Nyi(t)
−

1

NL̄

)2

≤2Wη(xN (t)− xJ(t))v
′
max ρminL(t).

In the case that the initial distances are decreasing we can proceed analogously. Further,
applying Grönwall’s inequality finishes the proof.

We note that the case of increasing distances which are lower than the equilibrium distance
is more relevant for applications. For instance, think of a traffic jam in which the leader steers
the whole traffic towards free flow with a desired velocity.

Remark 3.7. The stabilization results of the Theorems 3.5 and 3.6 include the cars J, . . . ,N−
1. If we consider the condition (3.3) from a different point of view, it designates how large
η should be such that our proof provides the stabilization of all cars. This is achieved by
choosing

η ≥
N−1
∑

j=0

max{yi(0), L̄i}.

Nevertheless, we note that the numerical results demonstrate that the stabilization of all cars
is obtained for every η > 0.

The main ingredients to the previous proofs are the maximum principle (3.4) and addition-
ally for the concave kernel that the solutions are monotonicity preserving. The latter allows
us to treat the concave case very similar to the constant case by using the identity (3.8). In
particular, in both proofs we rely on the relation between the velocity function evaluated at
yi(t) and the equilibrium velocity v̄. Unfortunately, for non-concave kernels and general initial
data such a direct comparison is not possible as we need to treat the nonlinear term in (3.7).
Further, the stricter maximum principle (3.4) might be no longer valid. This makes it chal-
lenging to generalize the obtained results. Nevertheless, the numerical simulations support a
similar result for non-concave kernels, see Section 4.
The maximum principle provides a sufficient condition to guarantee that a certain number of
cars is influenced by the leading vehicle, too. This avoids the use of the technical set B that
might be empty. If we assume however, that B 6= ∅ holds, we can generalize the results above:

Corollary 3.8. Assume B 6= ∅ with B defined by (3.5). Consider a subset B ⊂ B and suppose
that either

a) the kernel function is constant, i.e. Wη(x) =
1
η , or

b) the kernel function is concave, ωi = ω for i ∈ B and the initial data are monotone
increasing (decreasing) in the distances with yi(0) ≤ L̄ (yi(0) ≥ L̄) for i ∈ B.

Then, the stabilization result of the Theorems 3.5 and 3.6 hold for a Lyapunov function defined
as in (3.10), where the summation spans the set B.

Remark 3.9. Note that this includes the results from the Theorems 3.5 and 3.6.
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3.2.2 The macroscopic level

In the following we consider the macroscopic system (2.8) and obtain similar results as for
the microscopic one. To control and compare the two scales, we need appropriate boundary
conditions for system (2.8), such that the system behaves similarly to the microscopic one.
In particular, in the microscopic case the cars are initially placed on some interval, we have
a dynamic for the leading vehicle and no car is entering or leaving the road over time. We
mimic this on the macroscopic level.
Consider an initial interval [a, b] with b > a + η. At the left boundary a we prescribe zero
inflow conditions such that no cars enter the road as in the microscopic case, i.e.,

(ρ(t, a), ω(t, a)) = (0, ω0(a)).

As aforementioned we need a corresponding formulation to the leading vehicle at the right
boundary. This vehicle moves with speed v̄ and hence the right boundary should move in
time with velocity v̄. Therefore, the right boundary is described by β(t) = b + tv̄. Due to
the nonlocality of the flux we also need to prescribe the density and Lagrangian marker for
the area [β(t), β(t) + η]. In the microscopic case, no cars are present ahead of the leader such
that only the velocity of the leader is taken into account. To achieve this, we choose constant
boundary conditions in such a way that the Lagrangian marker for y ∈ [β(t), β(t) + η] is
determined by the initial condition at the right boundary, i.e. ω(t, y) = ω0(b). Then, the
equilibrium velocity v̄ together with the Lagrangian marker gives us the equilibrium density
for ρ(t, y) and y ∈ [β(t), β(t)+η]. We will denote this density by ρ̄b. To sum up, initial values
(ρ0, ω0) fulfilling (2.10) on the interval [a, b] and the boundary conditions

{

(ρ(t, a), ω(t, a)) = (0, ω0(a))

(ρ(t, y), ω(t, y)) = (ρ̄b, ω0(b)) y ≥ β(t) = b+ tv̄,
(3.11)

where ρ̄b is determined such that v(ρ̄b, ω0(b)) = v̄, are given.

Remark 3.10. Note that we do not study system (2.8) with boundary conditions (3.11) for
its well-posedness. Nevertheless, the problem (2.8) and (3.11) on [a, β(t)] can also be viewed
as an initial value problem on R by considering the modified initial conditions

ρ̃0(x) =











0, if x < a,

ρ0(x), if x ∈ [a, b],

ρ̄b, if x > b

, ω̃0(x) =











ω0(a), if x < a,

ω0(x), if x ∈ [a, b],

ω0(b), if x > b.

(3.12)

The waves induced by this initial value problem create the same waves as the boundary
conditions (3.11). Well-posedness for similar systems as (3.12) is analyzed in [9].

After having defined the boundary conditions, which provide comparable results to the
microscopic system, we also derive the equilibrium density defined by ρ̄(t, x). In general, the
equilibrium density ρ̄(t, x) at (t, x) can be computed, for a given ω(t, x), by the relationship
v(ρ̄(t, x), ω(t, x)) = v̄. Furthermore, we observe that ω(t, x) fulfills a transport equation, see
(2.8). Hence, ρ̄ satisfies the same partial differential equation, i.e.

∂tρ̄(t, x) + V (t, x)∂xρ̄(t, x) = 0,

with initial conditions ρ̄0, which satisfy v(ρ̄0(x), ω0(x)) = v̄. This alternative formulation will
be useful later on.
Now we can turn to an appropriate Lyapunov function and our main result of this section:
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Theorem 3.11. Let ρ ∈ C1(R+;H2(R)) and Assumption 3.1 hold. Further, we assume either

a) a constant kernel function, or

b) a concave kernel function, where for x ∈ [b − η, b] the initial data shall satisfy that
ω0(x) = ω, ρ0(x) ≥ ρ̄ (ρ0(x) ≤ ρ̄), ρ0 monotone decreasing (increasing) on [b− η, b].

We define

L(t) :=

∫ β(t)

α(t)
(ρ(t, x)− ρ̄(t, x))2dx, (3.13)

with

α(t) := sup{x ≥ β(t)− η :

∫ β(t)

x
ρ(t, y)dy ≥ cρ}, (3.14)

where cρ := mint≥0

∫ β(t)
β(t)−η ρ(t, x)dx. Then, we obtain the following bound

L(t) ≤ L(0) exp

(

2 v′max ρmin

∫ t

0
Wη(β(s) − α(s))ds

)

,

where ρmin := infx∈[α(0),b]min{ρ0(x), ρ̄(0, x)}.

Before turning to the proof of Theorem 3.11 we want to discuss the lower boundary α(t)
given by (3.14) in the Lyapunov function (3.13) in more detail. To this end we consider
the Lyapunov function (3.10) of the Theorems 3.5 and 3.6. Here, the number of cars is
constant. Hence, similar to the boundary data, a macroscopic equivalent is needed. This

yields a constant mass, i.e.
∫ β(t)
β(t)−η ρ(t, x)dx = c with c > 0. However, the mass in the interval

[β(t)−η, β(t)] is changing over time and therefore we need to consider a boundary which yields
a subinterval [α(t), β(t)] ⊂ [β(t) − η, β(t)] such that its mass is cρ. This is exactly achieved
by the boundary α(t) as defined in (3.14).
We can also reformulate the boundary in an intuitive way as seen in the following lemma:

Lemma 3.12. Let α(t) be defined by (3.14) and assume α ∈ C1(R+). Then, it is given by
the solution of the ordinary differential equation

d

dt
α(t) = V (t, α(t)), (3.15)

with initial condition

α(0) := sup{x ≥ b− η :

∫ b

x
ρ0(y)dy ≥ cρ}.

Proof. First note that due to the continuity of the integral we have
∫ β(t)
x ρ(t, y)dy = cρ for all

t ≥ 0 and x ≥ β(t)− η. Hence, we obtain

∫ β(t)

α(t)
ρ(t, x)dx = cρ and

d

dt

∫ β(t)

α(t)
ρ(t, x)dx = 0.
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On the other hand we have

d

dt

∫ β(t)

α(t)
ρ(t, x)dx =

d

dt
β(t)ρ(t, β(t)) −

d

dt
α(t)ρ(t, α(t)) −

∫ β(t)

α(t)
∂x (V (t, x)ρ(t, x)) dx

=v̄ ρ(t, β(t))−
d

dt
α(t)ρ(t, α(t)) − v̄ρ(t, β(t)) + V (t, α(t))ρ(t, α(t))

=

(

V (t, α(t)) −
d

dt
α(t)

)

ρ(t, α(t)).

Since α(t) is defined as the supremum the density ρ(t, α(t)) cannot be zero. Hence, the claim
follows.

The meaning of the latter lemma is that α(t) moves with the nonlocal speed V (t, α(t)). In
contrast to that, the left boundary β(t) moves with the speed v̄ (as the leading vehicle xN (t)
in the microscopic case). Note that even with this reformulation we need the knowledge of the
solution of ρ for the whole time horizon to determine cρ. We will comment on specific cases
which allow to simplify this assumption.

Proof of Theorem 3.11. First note that the boundary conditions simplify the nonlocal term
(2.9) and its spatial derivative for x ∈ [β(t)− η, β(t)]. Here, we have

V (t, x) =

∫ β(t)

x
Wη(y − x)(v(ρ(t, y), ω(t, y)) − v̄)dy ,

∂xV (t, x) = −

∫ β(t)

x
W ′

η(y − x)(v(ρ(t, y), ω(t, y)) − v̄)dy +Wη(0) (v̄ − v(ρ(t, x), ω(t, x))) .

This derivative will play a key role for proving our stabilization results.
Turning now to the Lyapunov function (3.13), we directly obtain

d

dt
L(t) =v̄ (ρ(t, β(t)) − ρ̄(t, β(t)))2 −

d

dt
α(t)(ρ(t, α(t)) − ρ̄(t, α(t)))2

+ 2

∫ β(t)

α(t)
(ρ(t, x)− ρ̄(t, x))

d

dt
(ρ(t, x) − ρ̄(t, x))dx.

Due to the boundary conditions, we have ρ(t, β(t)) = ρ̄(t, β(t)). This leaves us with

d

dt
L(t) =−

d

dt
α(t)(ρ(t, α(t)) − ρ̄(t, α(t)))2

+ 2

∫ β(t)

α(t)
(ρ(t, x)− ρ̄(t, x))(∂tρ(t, x)− ∂tρ̄(t, x))dx.

As ∂tρ(t, x) = −∂x(ρ(t, x)V (t, x)) and ∂tρ̄(t, x) = −V (t, x)∂xρ̄(t, x), we have

d

dt
L(t) =−

d

dt
α(t)(ρ(t, α(t)) − ρ̄(t, α(t)))2

+ 2

∫ β(t)

α(t)
(ρ(t, x)− ρ̄(t, x))(−V (t, x))(∂xρ(t, x)− ∂xρ̄(t, x))dx

− 2

∫ β(t)

α(t)
(ρ(t, x)− ρ̄(t, x))ρ(t, x)∂xV (t, x)dx.
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For the middle term a partial integration using the boundary conditions yields

∫ β(t)

α(t)
−V (t, x)∂x(ρ(t, x) − ρ̄(t, x))2dx =V (t, α(t))(ρ(t, α(t)) − ρ̄(t, α(t)))2

+

∫ β(t)

α(t)
∂xV (t, x)(ρ(t, x) − ρ̄(t, x))2dx.

Now, putting everything together, we obtain

d

dt
L(t) =

(

V (t, α(t)) −
d

dt
α(t)

)

(ρ(t, α(t)) − ρ̄(t, α(t)))2

+

∫ β(t)

α(t)
∂xV (t, x)(ρ̄(t, x) + ρ(t, x))(ρ̄(t, x)− ρ(t, x))dx (3.16)

Due to (3.15) the first term is equal to zero. Now consider the cases a) and b) separately.
For a constant kernel the derivative of the nonlocal term simplifies to

∂xV (t, x) =
1

η
(v̄ − v(ρ(t, x), ω(t, x))) .

Hence, we apply the mean value theorem in the first argument of v, recall v̄ = v(ρ̄(t, x), ω(t, x)),
and obtain

d

dt
L(t) =

1

η

∫ β(t)

α(t)
∂ρv(ξ(t, x), ω(t, x)))(ρ̄(t, x) + ρ(t, x))(ρ(t, x) − ρ̄(t, x))2dx.

This term will be estimated from above. For the microscopic system we have the maximum
principle (3.4). As shown in [9], the microscopic system can be seen as a semi–discretization of
the macroscopic system which converges for N → ∞ towards the macroscopic solution. Hence,
(3.4) gives us a maximum principle for the macroscopic system in Lagrange coordinates, too.
This translates to ρ(t, x) ≥ ρmin for x ≥ α(t). Now, we obtain

d

dt
L(t) ≤

2ρmin v
′
max

η

∫ β(t)

α(t)
(ρ(t, x) − ρ̄(t, x))2dx.

Applying Grönwall’s inequality yields the result for the case a).
In case b) we obtain that also the monotonicity of the solution and ρ(t, x) ≥ ρ̄ as well as
ρ(t, x) ≤ ρ̄ respectively are kept for x ≥ α(t). Now, we consider the case of a monotone
decreasing initial density and ρ0(x) ≥ ρ̄. For simplicity and due to ω(t, x) = ω for x ∈
[α(t), β(t)], we drop the dependence of v on ω in the following. We rewrite the derivative of
the nonlocal term as

∂xV (t, x) =−

∫ β(t)

x
W ′

η(y − x)(v(ρ(t, y)) − v(ρ(t, x))dy

+

(

Wη(0) +

∫ β(t)

x
W ′

η(y − x)dy

)

(v̄ − v(ρ(t, x))) .

Since the monotonicity is preserved, we estimate

∂xV (t, x) ≥Wη(β(t) − x) (v̄ − v(ρ(t, x))) .
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Further, due to ρ(t, x) ≥ ρ̄ we are able to bound (3.16) by

(3.16) ≤

∫ β(t)

α(t)
∂ρv(ξ(t, x), ω(t, x)))Wη(β(t)− x)(ρ̄(t, x) + ρ(t, x))(ρ(t, x) − ρ̄(t, x))2dx

≤ Wη(β(t) − α(t)) ρmin v
′
max

∫ β(t)

α(t)
(ρ(t, x) − ρ̄(t, x))2dx.

For monotone increasing initial data the signs change such that we get the same estimate.
Hence, Grönwall’s inequality yields the result for the case b), too.

The exponential rates of the microscopic and the macroscopic Lyapunov function are equal
except for the computation of the densities.

Remark 3.13 (Micro-to-macro convergence). At least formally, the fact that the correspond-
ing Lyapunov function has the same rate is not surprising, as for N → ∞ the microscopic
Lyapunov function converges to the macroscopic one. Note that in the macroscopic problem,
we do not restrict the initial conditions. We discuss formally the limit of (3.10) in more detail.
Define the piecewise constant function

ρN (t, x) :=

N−1
∑

i=0

1

Nyi(t)
χ
[xi(t),xi+1(t))

(x), (3.17)

where χ
A
(x) is the characteristic function being one for x ∈ A and zero elsewhere. In [9],

it is shown that (3.17) converges for N → ∞ to a limit function ρ which is actually a weak
solution to system (2.8). Similarly, the microscopic equilibrium density 1/(NL̄i) converges
to the macroscopic quantity ρ̄. Furthermore, we rewrite the microscopic Lyapunov function
using (3.17) (and ρ̄N (t, x) defined accordingly):

(3.10) =
N−1
∑

i=J

∫ xi+1(t)

xi(t)

(

1

Nyi(t)
−

1

NL̄i

)2

dx =

∫ xN (t)

xJ (t)

(

ρN (t, x)− ρ̄N (t, x)
)2

dx.

By the choice of the boundary conditions, the correspondence from xN (t) to the left boundary
β(t) is obtained. For the other boundary, observe that

d

dt

∫ xN (t)

xJ (t)
ρN (t, x)dx =

d

dt

N−1
∑

i=J

yi(t)
1

Nyi(t)
= 0. (3.18)

Hence, the integral of the microscopic density between two specific cars stays constant over
time. Furthermore, we define

cNρ : = min
t≥0

∫ xN (t)

xN (t)−η
ρN (t, x)dx =

∫ xJ (t∗)

xN (t∗)−η
ρN (t, x)dx +

∫ xN (t∗)

xJ (t∗)
ρN (t, x)dx,

where t∗ is the time when the car J is the closest to the border xN (t)− η. If we now pass to
the limit N → ∞, the car J reaches position xN (t) − η, such that the first term disappears.
Using (3.18) we observe

cNρ →

∫ xN (t)

xJ (t)
ρN (t, x)dx
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for N → ∞ and further by construction also cNρ → cρ. Hence, by comparing to (3.14), we
have that xJ (t) converges towards the boundary α(t). This demonstrates that the rate in the
microscopic case for a concave kernel converges to its macroscopic equivalent as

∫ t

0
Wη(xN (s)− xJ (s))ds →

∫ t

0
Wη(β(s) − α(s))ds.

The value cρ depends on the knowledge of the whole solution over time. Hence, the the-
oretical boundary α(t) may not be useful in real-world applications. Nevertheless, in specific
cases we can determine its value a prior:
Consider a case where the density in the interval [β(t)− η, β(t)] is only increasing over time.

Lemma 3.14. Let the initial conditions for the Lagrangian marker be ω0(x) = ω, hence
v(ρ, ω) =: v(ρ) and the initial density either satisfies

a) ρ0(x) ≤ ρ̄ ∀x ∈ [a, b], or

b) the condition
V (0, b− η) ≥ v̄ (3.19)

for a constant kernel and a linear velocity function.

Then,

cρ =

∫ b

b−η
ρ0(x)dx

holds.

Proof. Similar to the proof of Lemma 3.12 we obtain

d

dt

∫ β(t)

β(t)−η
ρ(t, x)dx =(V (t, β(t) − η)− v̄) ρ(t, β(t) − η).

To prove the claim, the derivative needs to be positive. The density is already nonnegative. In
case a) we obtain the result as a direct consequence of the strong maximum principle in [22,
Theorem 2.2], which we can apply due to ω0(x) = ω. In particular, this maximum principle
holds for all kernels as in (2.4). This gives us ρ(t, x) ≤ ρ̄ or equivalently v(ρ(t, x)) ≥ v̄. In
particular, V (t, β(t) − η) ≥ v̄ follows.
The second case is more involved. First note that due to Assumption 3.1 and v being linear
in ρ we can set v′max := v′(ρ). Now, we study

d

dt
(V (t, β(t)− η)− v̄) =

1

η

(

v̄ [v̄ − v(ρ(t, β(t) − η))] + v′max

∫ β(t)

β(t)−η
∂tρ(t, y)dy

)

=
1

η

(

v̄ v′max [ρ̄− ρ(t, β(t)− η)] − v′max

∫ β(t)

β(t)−η
∂x (ρ(t, y)V (t, y)) dy

)

=
1

η
ρ(t, β(t) − η)v′max [V (t, β(t)− η)− v̄] .

This gives us an ordinary differential equations whose solution is given by

(V (t, β(t) − η)− v̄) = (V (0, b− η)− v̄) exp

(

v′max

η

∫ t

0
ρ(s, β(s)− η)ds

)

.
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Hence, if we assume (3.19), it follows that V (t, β(t) − η) ≥ v̄ for t ≥ 0 and therefore also
d
dt

∫ β(t)
β(t)−η ρ(t, x)dx ≥ 0. This yields the desired result.

Note that the condition a) prohibits to use Lemma 3.14 for decreasing initial data and a
concave kernel function in Theorem 3.11.
Alternatively we may find a lower bound on cρ that is determined a priori and then use a
modified left boundary as outlined in the following remark.

Remark 3.15. Let us again consider a first order model, i.e. ω0(x) = ω. If we view the
problem as an initial value problem on R, the initial conditions are given by

ρ̃0(x) =











ρ̄a, if x < a,

ρ0(x), if x ∈ [a, b],

ρ̄b, if x > b

, ω̃0(x) =











ω0(a), if x < a,

ω0(x), if x ∈ [a, b],

ω0(b), if x > b,

(3.20)

where ρ̄a is determined such that v(ρ̄a, ω0(a)) = v̄. Furthermore, the initial conditions must be
chosen in a way such that ρ̄a, ρ̄b, ρ0(x) > 0 holds. Then, by the maximum principle [22] we have
ρ(t, x) ≥ min{ρ̄a, ρ̄b, infx∈[a,b] ρ0(x)}. This allows to bound cρ by η min{ρ̄a, ρ̄b, infx∈[a,b] ρ0(x)}
from below. Finally, this can be used for a left boundary α̃(t) ≥ α(t) which depends on the
lower bound. Here, the same results as in Theorem 3.11 are obtained by simply replacing the
lower bound. In contrast to Lemma 3.14, there are no further assumptions on the initial data
or velocity function. Note that due to the different inflow the solution does not correspond
to the microscopic solution. Further, note that such a strategy is not possible for the second
order model, since the maximum principle does not provide a lower bound which is strictly
positive.

Let us close this section by comparing our results to other approaches considered in the
literature. As already mentioned in the introduction, [26] considers the stability of a first order
model with linear velocity on a ring road. Our model coincides with this model for a constant
Lagrangian marker and the corresponding velocity function. One of the main results in [26] is
that for a constant kernel, specific initial data and a specific nonlocal reach η traveling waves
can be created, such that no control is possible. In particular, this is the reason why in [27] a
different model is considered. Nevertheless, this is not in contradiction with our results as we
do not consider a ring road and such phenomena may not occur.

4 Numerical simulations

4.1 Numerical schemes

To illustrate the theoretical results we use numerical schemes to solve the microscopic equations
(2.1) and the macroscopic system (2.11).
To compare the microscopic and macroscopic approaches we will choose the same initial density
and Lagrangian marker for both scales. To construct the initial placement of the microscopic
cars for a given initial density and number of cars we use the approach outlined in [18]. The
microscopic equations (2.1) are a system of ordinary differential equations and solved by the
method ode23s of MATLAB.
For the macroscopic equations we discretize system (2.11) using a numerical scheme presented
in [9, 22] similar to the Roe scheme presented in [37]. The two equations in (2.11) are only
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coupled via the nonlocal term, that is computed at each time step. This leads to the following
numerical flux

Fn
j+ 1

2

= V n
j

(

ρnj
qnj

)

,

where

V n
j =

⌊η/∆x⌋−1
∑

k=0

γkV

(

ρnj+k+1,
qnj+k+1

ρnj+k+1

)

and γk =

∫ (k+1)∆x

k∆x
Wη(y − x)dy.

The full scheme is then given by

(

ρn+1
j

qn+1
j

)

=

(

ρnj
qnj

)

− λ
(

Fn
j+ 1

2

− Fn
j− 1

2

)

. (4.1)

At the boundaries the fluxes are given by (3.11). The CFL condition is chosen using an adap-
tive step size control determined by the maximal nonlocal velocity, i.e. ∆tn ≤ ∆x/maxj V

n
j .

4.2 Numerical example

We consider the starting interval [−1.5, 1.5]. In the microscopic case N = 500 cars are placed
in the interval according to the initial density ρ0(x) and in the macroscopic case we have
a = −1.5 and b = 1.5. The spatial step size is given by ∆x = 2.5 · 10−3. The constant η is
η = 0.5 and the initial conditions are given by

ρ0(x) =

{

0.5, if x < 0,

0.3, if x > 0,
and ω0(x) =

{

1, if x < 0,
5
8 , if x > 0.

The equilibrium velocity of the right boundary and the leading vehicle respectively is given by
v̄ = 0.5. The velocity function is chosen as v(ω, ρ) = ω(1− ρ). At t = 0 the system is already
at its stationary state is for data with x < 0. It will be driven away from the equilibrium due
to the traffic ahead. Furthermore, the initial densities are larger or equal to the equilibrium
density. Hence, in the microscopic case the distance between all cars in the set B and its
follower is always smaller or equal to the equilibrium distance due to the maximum principle
(3.4). In particular, this implies that J = J . In addition, the initial conditions are chosen
such that the assumptions of Theorems 3.5, 3.6 and 3.11 are fulfilled.
We consider first a constant kernel W const.

η = 1/η. Figure 1 shows the density in the mi-
croscopic and macroscopic case at different times. Note that due to the applied boundary
conditions, we have zero inflow at the left boundary of the macroscopic solution such that the
density drops to zero. The theoretical results demonstrate only the stabilization of the density
in the interval ahead of the red dotted lines. Nevertheless, also the density outside this area
seems to converge towards the steady state solution.
This is shown in Figure 2, too, which displays the logarithm of the Lyapunov functions (3.10)
and (3.13) respectively together with the theoretical upper bounds. Here, also the following
kernel functions, in line with (2.4), are considered:

W lin.
η (x) = 2

η − x

η2
, W lin2.

η (x) =
3η − 2x

2η2
, W conc.

η (x) = 3
η2 − x2

η3
.

20



−1 0 1 2

0.2

0.4

0.6

Micro, T = 1

−1 0 1 2

0.2

0.4

0.6

Macro, T = 1

0 1 2 3

0.2

0.4

0.6
T = 3

0 1 2 3

0.2

0.4

0.6
T = 2.25

1 2 3 4

0.2

0.4

0.6
T = 5

1 2 3 4

0.2

0.4

0.6
T = 5

8 9 10 11

0.2

0.4

0.6
T = 20

8 9 10 11

0.2

0.4

0.6
T = 20

Figure 1: Solution of the microscopic (left column) and macroscopic (right column) density
(blue dashed line) compared to the equilibrium density (black solid line). The vertical red line
gives the position of the car xN (t) (microscopic) or the boundary α(t) (macroscopic).
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η
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Figure 2: Microscopic and macroscopic Lyapunov functions (black) over time together with
the exponential upper bounds (gray) for different kernel functions.

Note that for the second linear kernel function W lin2.
η (η) > 0 holds. This plays a particular

role when we consider the theoretical upper bounds from the Theorems 3.6 and 3.11. Here,
the rates are only slightly decreasing for W lin.

η and W conc.
η . As the initial conditions are greater

than the equilibrium density, the distance between the last car of the bulk and the leading
vehicle will be η in the limit, i.e. limt→∞ xN (t) − xJ(t) = η and limt→∞ β(t) − α(t) = η. In
addition, we have W lin.

η (η) = W conc.
η (η) = 0 which results in a slight decrease. We note that

this only occurs, if Wη(η) = 0 and the initial data are larger than the equilibrium density. In
case of increasing initial data smaller than the equilibrium density the bounds presented in
Theorems 3.6 and 3.11 are sharper.

Remark 4.1. Note that the exponential bounds strongly depend on the values of ρmin and
hence on the choice of the initial conditions. Using the same parameters as before, but consider
the constant kernel function W const.

η and initial data

ρ0(x) =











0.5, if x < 0,

0.025, if x ∈ [0, 0.75],

0.05, if x > 0.75.

we observe the Lyapunov function and its upper bound in Figure 3, left. In particular, it is
obvious that the bound is not sharp, e.g., by comparing Figure 3 to Figure 2. Figure 3, right,
shows the Lyapunov function of Theorem 3.5 for all cars i = 0, . . . , N − 1. This function
has an increasing part at the beginning which demonstrates that generalizing the results of
Theorem 3.5 to all cars cannot be expected.

Finally, we consider the following example

ρ0(x) =











0.5, if x < 0,

0.3, if x ∈ [0, 0.5],

0.4, if x > 0.5,

and ω0(x) =











1, if x < 0,
5
8 , if x ∈ [0, 0.5],
3
4 , if x > 0.5.

with η = 2 and an initial placement of the cars in [−5, 1]. Note that in this situation our
stabilization results hold only for the constant kernel. Nevertheless, the convergence towards
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Figure 3: Example in which the exponential bound is not so sharp due to a low value of ρmin,
left, and the Lyapunov function for all cars, right.

the steady state in the micro- and macroscopic scale is also obtained for concave kernels and
even convex ones, i.e.

W conv.
η = 3

(η − x)2

η3
.

This is shown in Figure 4. Even though not covered by our theoretical results, the bounds
recovered in Theorems 3.6 and 3.11 are valid for the considered example and the linear kernel,
too.

5 Conclusion

In this work, we have presented suitable Lyapunov functions and explicit rates such that
a nonlocal second-order model on a single road tends to its equilibrium state. We have
considered the microscopic and macroscopic scales and the rates for both scales coincide.
For the theoretical analysis, we had to restrict ourselves to a constant kernel function or a
concave kernel with monotone initial data. Nevertheless, numerical examples suggest that
the asymptotic stabilization effect can be obtained for all cars and also in the case of convex
kernels. Future work may include extending the obtained results to those cases.
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Figure 4: The considered Lyapunov functions (black) together with the exponential upper
bounds (gray) for the microscopic and macroscopic scale. The assumptions are violated for
the kernels W lin2.

η and W conv.
η .

A Proof of the maximum principle for monotone initial data

and concave kernel functions

Lemma A.1. Let the initial placement of cars and the equilibrium velocity v̄ be chosen such
that J ∈ {0, . . . , N − 1} being the smallest integer satisfying (3.3) exists. Further, let As-
sumption 3.1 hold and the dynamics given by equation (2.2). We assume that the kernel
function is concave, ωi = ω for i = J, . . . ,N − 1 and the initial datum satisfies either
yJ(0) ≥ · · · ≥ yN−1(0) ≥ L̄ or yJ(0) ≤ · · · ≤ yN−1(0) ≤ L̄ with v(L̄, ω) = v̄. Then, the
maximum principle (3.4) holds.

Proof. Due to the assumption ωi = ω and for readability, we will drop the dependence of v
on ω in the following. As the proof works completely analogously, we concentrate on the case
yJ(0) ≤ · · · ≤ yN−1(0) ≤ L̄. Further, we assume J ≥ J . As already outlined in the proof
of Lemma 3.3 we start by proving the upper bound L̄ on yi(t). Recall that in the setting of
Lemma 3.3 we prove the claim by induction. The base case is already done in the proof of
Lemma 3.3. Hence, we proceed with the induction step and suppose that yj(t) ≤ L̄ holds

for j > i and therefore v
(

1
Nyj(t)

)

≤ v̄. Further, γi+1,j−1(t) − γi,j(t) ≥ 0 holds due to the

definition of the weights and the monotonicity of the kernel function Wη. We deduce from
(3.7)

d

dt
(yi(t)− L̄) ≤ −γi,0(t)

(

v

(

1

Nyi(t)

)

− v̄

)

= Wη(ζi(t)) ∂ρv(ξi(t))
1

NL̄

(

yi(t)− L̄
)

(A.1)

where we used γi,0(t) =
∫ yi(t)
0 Wη(y)dy = Wη(ζi(t))yi(t) and once more the mean value theo-

rem for v. By Grönwall’s inequality we obtain

yi(t)− L̄ ≤
(

yi(0)− L̄
)

exp

(

∫ t
0 Wη(ζi(s))∂ρv(ξi(s))ds

NL̄

)

≤ 0.
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This leads to the desired upper bound yi(t) ≤ L̄. To prove the lower bound, we first prove that
the monotonicity of the initial data is kept for t > 0, if yi(t) ≤ L̄ holds. Again, we consider
the time derivative

d

dt
(yi+1(t)− yi(t))

=

N−2−i
∑

j=1

(γi+2,j−1(t)− γi+1,j(t))

(

v

(

1

Nyi+j+1(t)

)

− v̄

)

− γi+1,0(t)

(

v

(

1

Nyi+1(t)

)

− v̄

)

−
N−1−i
∑

j=1

(γi+1,j−1(t)− γi,j(t))

(

v

(

1

Nyi+j(t)

)

+ v̄

)

+ γi,0(t)

(

v

(

1

Nyi(t)

)

− v̄

)

=γi,0(t)

(

v

(

1

Nyi(t)

)

− v̄

)

− γi+1,0(t)

(

v

(

1

Nyi+1(t)

)

− v̄

)

− (γi+1,0(t)− γi,1(t))

(

v

(

1

Nyi+1(t)

)

− v̄

)

+
N−1−i
∑

j=2

(γi+2,j−2 − 2γi+1,j−1(t) + γi,j(t))

(

v

(

1

Nyi+j(t)

)

− v̄

)

.

Due to γi+1,0(t) ≥ γi,0(t) and v
(

1
Nyi+1(t)

)

≤ v̄ we can drop the third term. Further, we add

a zero and obtain

≥γi,0(t)

(

v

(

1

Nyi(t)

)

− v

(

1

Nyi+1(t)

))

+ (γi,0(t)− γi+1,0(t))

(

v

(

1

Nyi+1(t)

)

− v̄

)

+

N−1−i
∑

j=2

(γi+2,j−2 − 2γi+1,j−1(t) + γi,j(t))

(

v

(

1

Nyi+j(t)

)

− v̄

)

.

Next, we need to estimate everything from below depending on the distance yi+1(t) − yi(t).
The first term can be handled by using the mean value theorem in a similar manner as in
(A.1). Further, we obtain

γi,0(t)− γi+1,0(t) =

∫ yi(t)

0
Wη(y)dy −

∫ yi+1(t)

0
Wη(y)dy =

∫ yi(t)

yi+1(t)
Wη(y)dy

= −Wη(ζi+1/2(t))(yi+1(t)− yi(t))

which allows to express the second term as desired. Finally, we consider

γi+2,j−1(t)− 2γi+1,j−1(t) + γi,j(t)

=

∫ xi+j+1(t)

xi+j(t)
Wη(y − xi+2(t))− 2Wη(y − xi+1(t)) +Wη(y − xi(t))dy

and use once more the mean value theorem by denoting with ζi(y, t) the corresponding value
in (y − xi+1(t), y − xi(t))

=

∫ xi+j+1(t)

xi+j(t)
−yi+1(t)W

′
η(ζi+1(y, t)) + yi(t)W

′
η(ζi(y, t))dy

= (yi+1(t)− yi(t))

∫ xi+j+1(t)

xi+j(t)
−W ′

η(ζi+1(y, t))dy + yi(t)

∫ xi+j+1(t)

xi+j(t)
W ′

η(ζi(y, t))−W ′
η(ζi+1(y, t))dy
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and since ζi(y, t) > ζi+1(y, t) and Wη is concave, we get

≤ (yi+1(t)− yi(t))

∫ xi+j+1(t)

xi+j(t)
−W ′

η(ζi+1(y, t))dy.

We are able to derive

d

dt
(yi+1(t)− yi(t)) ≥C(t) (yi+1(t)− yi(t)) ,

where C(t) collects all the estimates and again using Grönwall’s inequality

(yi+1(t)− yi(t)) ≥ (yi+1(0) − yi(0)) exp(

∫ t

0
C(s)ds) ≥ 0.

This proves that the monotonicity is kept. Furthermore, this allows to prove the lower bound
on yi(t). Therefore, we consider again the derivative (3.7) and add zero such that we obtain

d

dt
yi(t) =

N−1−i
∑

j=1

(γi+1,j−1(t)− γi,j(t))

(

v

(

1

Nyi+j(t)

)

− v

(

1

Nyi(t)

))

+





N−1−i
∑

j=1

γi+1,j−1(t)−
N−1−i
∑

j=0

γi,j(t)





(

v

(

1

Nyi(t)

)

− v̄

)

.

We use the monotonicity and the definition of the weights to get

≥−

∫ xi+1(t)

xi(t)
Wη(xN − y)dy

(

v

(

1

Nyi(t)

)

− v̄

)

= yi(t)Wη(ζ
N
i (t))

(

v̄ − v

(

1

Nyi(t)

))

,

where ζNi (t) ∈ [xN (t) − xi+1(t), xN (t) − xi(t)]. Keeping in mind that yi(t) ≤ L̄ holds and
using again Grönwall’s inequality yields

yi(t) ≥ yi(0) exp

(
∫ t

0
Wη(ζ

N
i (t))

(

v̄ − v

(

1

Nyi(t)

))

ds

)

≥ yi(0).

The case of monotone decreasing distances can be proven analogously. Here, most of the
inequalities switch their sign and one proves first yi(t) ≥ L̄, then that under this assumption
the monotonicity is kept and finally the upper bound.
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