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ISOMORPHISM PROPERTIES OF OPTIMALITY AND EQUILIBRIUM
SOLUTIONS UNDER EQUIVALENT INFORMATION STRUCTURE

TRANSFORMATIONS: STOCHASTIC DYNAMIC GAMES AND TEAMS ∗

SINA SANJARI, TAMER BAŞAR, AND SERDAR YÜKSEL

Abstract. Static reduction of information structures (ISs) is a method that is commonly adopted in stochastic
control, team theory, and game theory. One approach entails change of measure arguments, which has been cru-
cial for stochastic analysis and has been an effective method for establishing existence and approximation results
for optimal policies. Another approach entails utilization of invertibility properties of measurements, with further
generalizations of equivalent IS reductions being possible. In this paper, we demonstrate the limitations of such
approaches for a wide class of stochastic dynamic games and teams, and present a systematic classification of static
reductions for which both positive and negative results on equivalence properties of equilibrium solutions can be
obtained: (i) those that are policy-independent, (ii) those that are policy-dependent, and (iii) a third type that we will
refer to as static measurements with control-sharing reduction (where the measurements are static although control
actions are shared according to the partially nested IS). For the first type, we show that there is a bijection between
Nash equilibrium (NE) policies under the original IS and their policy-independent static reductions, and establish
sufficient conditions under which stationary solutions are also isomorphic between these ISs. For the second type,
however, we show that there is generally no isomorphism between NE (or stationary) solutions under the original
IS and their policy-dependent static reductions. Sufficient conditions (on the cost functions and policies) are ob-
tained to establish such an isomorphism relationship between Nash equilibria of dynamic non-zero-sum games and
their policy-dependent static reductions. For zero-sum games and teams, these sufficient conditions can be further
relaxed. In view of the equivalence between policies for dynamic games and their static reductions, and closed-
loop and open-loop policies, we also present three classes of multi-stage games and teams with partially nested ISs,
where we establish connections between closed-loop, open-loop, and control-sharing Nash and saddle point equilib-
ria. By taking into account a player-wise concept of equilibrium, we introduce two further classes of “player-wise”
static reductions: (i) independent data reduction under which the policy-independent reduction holds through players
and time, and (ii) player-wise (partially) nested independent reduction under which measurements are independent
through players but (partially) nested through time for each player.

1. Introduction. Stochastic teams and games entail a collection of decision makers
(DMs) taking actions based on their available information to optimize their individual cost
functions under a particular notion of equilibrium. At each time stage, each DM has only par-
tial access to the global information, which is characterized by the IS of the problem. If there
is a pre-defined order in which DMs act, we will call the game sequential. The specific form
of an IS has been shown to have subtle impact on (different types of) equilibria in games, as
well as on their existence, uniqueness, and characterization (see for example [34, 5, 4]).

Static reduction of dynamic ISs has been a powerful method that has been commonly
adopted in stochastic control, team theory and game theory. One static reduction method
based on change of measure techniques, in particular, has been utilized extensively in classical
stochastic control since Girsanov’s method [21] has been applied to control by Beneš [9] (for
partially observed control these were considered in [19, 10] and in discrete time in [11],
[12], and in decentralized stochastic control [37] among others). Another commonly studied
reduction method, for partially nested ISs, builds on invertibility properties [22, 23].

In this paper, we demonstrate the limitations of such approaches for a wide class of
stochastic dynamic games (DGs) and teams, also building on and generalizing the earlier
developments on deterministic games in [35, 30, 2, 1, 5] as well as linear quadratic stochas-
tic games [3] (see [15] for a more recent study). More operationally, we present sufficient
conditions under which some reduction is feasible and preserves equilibrium properties for
stochastic DGs and teams.
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Significance, main results, and contributions.

The question of when isomorphism properties for NE and stationarity for stochastic DGs
hold between an original IS and its static reduction is mathematically subtle and practically
important to address. On the practical side, we can list several important applications:

For optimal stochastic control in both continuous time and discrete time, change of mea-
sure arguments have been critical for arriving at optimality and existence results (see e.g.,
[9, 19, 11]).

In decentralized stochastic control theory, to establish the optimality of linear policies
in the setup of linear quadratic Gaussian (LQG) stochastic teams under partially nested ISs,
static reduction to a convex static LQG teams has been utilized in [22, 23]. In addition, to-
ward studying the existence of optimal solutions in stochastic team theory and their approx-
imations, static reduction methods have been shown to be effective (see e.g., [38, 29, 39]).
Further, in studying the existence and approximations of a saddle-point equilibrium (SPE) for
zero-sum (ZS) DGs, static reduction methods have been shown to be critical (see e.g., [24])

Questions on equivalences of Nash equilibria under different ISs are also important
in establishing convergence results and limit theorems (as the number of players drives
to infinity), because the desired compactness and convexity for analysis often hold under
more relaxed conditions for open-loop policies (when compared with closed-loop policies)
[32, 18, 13, 26, 27]. Along this line, for the existence of Nash equilibria in stochastic game
theory, static reduction turns out to be a powerful method that associates with the general
analysis provided in [6], which is applicable to static Bayesian games with incomplete in-
formation. In this context, in the stochastic game theory literature, closed-loop policies are
defined as measurable functions of (local) history of states or observations, and open-loop

policies are measurable functions of (local) history of noise processes for each player (which
can be viewed as policies for DGs under a static reduction). In (continuous time) game the-
ory, closed-loop policies are control processes adapted to the filtration generated by local
measurements and past actions, and open-loop policies1 are adapted processes to the filtra-
tion generated by Brownian motions obtained possibly via Girsanov-reduction (see e.g., [13,
Section 2.1]).

Equivalence properties of Nash equilibria under different ISs arise prominently in
stochastic non-zero-sum (NZS) DGs with weakly coupled players [4] and mean-field games
where the population of players is large or infinite [14, 26, 13, 16, 20]. For both classes of
games, roughly speaking, closeness of performance under open-loop and closed-loop Nash
equilibria is a result of diminishing strategic interactions among the players, due to weak cou-
pling in the former class and each player having only an infinitesimal role in the latter class
[14, 26, 13, 16, 20]. For NZS DGs with a finite number of players, closed-loop and open-loop
Nash equilibria are generally not equivalent, although asymptotically in the number of agents,
they might be equivalent; e.g., in [14], an example of a weakly-interacting finite-player game
with a classical IS has been provided such that a unique open-loop NE (constructed using
Pontryagin’s stochastic maximum principle) and a unique closed-loop (pure-feedback no
memory) NE (constructed using dynamic programming) (see [14, Eqs. (3.16) and (3.31)])
are distinct but converge to the same limit as the number of players goes to infinity (see also
[13, Section 2.1]).

The subtle dependence of solutions as well as computational solution techniques on ISs
were pointed out first in the context of deterministic ZS DGs, toward establishing connections
between open-loop and closed-loop SP equilibria, particularly by Witsenhausen, who has
established critical relations between ISs and values of SPs [34] (see also later works in
[35, 7]). Also building on [34] and the ordered interchangeability property of multiple SPs

1In more precise terms, such policies have the qualifier “adapted”, while plain “open-loop” terminology is more
commonly used to refer to policies that are just functions of time and also of the initial state (if it is available to the
players). In the paper, we will continue using the terminology ”open-loop” for both, where the distinction will be
clear from context.
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[4], for deterministic ZS DGs, [2] established connections between open-loop (where policies
are functions of only initial states), closed-loop and pure-feedback SPs. For deterministic
NZS DGs, on the other hand, it has been shown in [1] that the preceding connections (for
deterministic ZS DGs) are no longer valid in general.

In view of these applications of static reductions, it is important to establish the most gen-
eral conditions under which equilibrium solutions, stationary solutions, and optimal solutions
are isomorphic under static reductions of ISs.

In the paper, we provide a systematic characterization of static reduction techniques for
equivalent ISs and introduce several new ones. We categorize static reductions as those that
are “policy-independent” and those that are “policy-dependent” to emphasize the important
distinction between these two reductions. As it has been shown in the paper, this dependency
on policies has a consequential impact on the isomorphism properties of Nash equilibria for
NZS DGs (person-by-person optimality for teams and SP equilibria for ZS DGs) and those
under their reductions: a NE for a DG does not correspond to, in general, a NE for the corre-
sponding game obtained through the policy-dependent static reduction (the converse has also
been shown to be true). We emphasize that the ISs of a game and its reduction are isomor-
phic under both reductions (e.g., when one views the IS using the sigma-field generated by
random variables); however, one of our contributions in the paper is to demonstrate that this
does not imply any isomorphic connection between NE policies. It appears that this impor-
tant difference regarding static reduction methods and its subtle impact on the isomorphism
of equilibrium solutions have not been studied in the literature and appears for the first time
in this paper.

In the paper, in addition to these negative results, we also provide sufficient conditions
for positive results; these also appear for the first time in the literature in precise terms.

In the following, we provide a list of our contributions in the paper (see also Fig. 2.1 and
Fig. 2.2 for a visual summary of some of our contributions):

(i) We show that there is a bijection between Nash equilibria (SP equilibria) of stochastic
NZS DGs (stochastic ZS DGs) and their policy-independent static reductions (Theorem 3.1
and Fig. 2.1).

(ii) For NZS DGs with partially nested ISs, we show that the isomorphism relations
between their Nash equilibria and Nash equilibria of their policy-dependent static reductions
fail to hold in general (Proposition 3.1). Then, we present sufficient conditions for such
relations to hold (Theorem 3.2 and Fig. 2.2).

(iii) We define the reduction of NZS DGs with control-sharing IS to ones with static
measurements with control-sharing IS as static measurements with control-sharing reduction.
We show that this reduction is independent of policies (see Theorems 3.3), and study the
subtle impact of static measurements with control-sharing reductions (where IS is expanded
via control-sharing according to partially nested IS) on the equivalence relationships of Nash
equilibria (Theorems 3.3, 3.4, and Fig. 2.2).

(iv) For ZS DGs, we show that the sufficient conditions above can be relaxed. Using the
ordered interchangeability property of multiple SPE policies, we establish stronger results on
an equivalence relationship, existence and uniqueness of SPs of DGs and SPs of games under
policy-dependent static reductions (Proposition 4.1 and Theorem 4.1) and static measure-
ments with control-sharing reductions (Theorem 4.2, and Corollary 4.4) (see Fig. 2.2). We
also establish equivalence relationships between person-by-person optimal (globally optimal)
policies of teams under policy-dependent static reductions (see Proposition 5.1 and Corollary
5.2).

(v) For a class of multi-stage games, we establish relations between closed-loop, open-
loop, control-sharing policies and their reductions: 1) We study multi-stage ZS DGs (Corol-
lary 6.2), where we establish various results on the connections between closed-loop, open-
loop, and control-sharing Nash equilibria. 2) Under uniqueness of Nash equilibria for LQG
games under the policy-dependent static reductions, we establish stronger results for LQG
games in Corollary 4.4, which generalize the results in [15] for ZS DGs with mutually
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NE under PI Static Reduc-
tions

Stationary Policy under PI
Static Reductions

NE for PStationary Policy for P
Theorem 3.1 ×

Fig. 2.1: A chart of the connections between two optimality concepts in DGs and their policy-
independent (PI) static reductions.

NE/SPE for
PS,CS
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NE/SPE for
PD

NZS
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Theorem 3.2Theorem 4.1 Theorems 3.4 and 4.2××

Fig. 2.2: A chart of the connections between Nash equilibrium (NE) (stationary) policies for
NZS DGs PS

NZS
, PD

NZS
(also saddle-point equilibrium (SPE) for ZS DGs).

quadratic invariant IS. 3) Finally, in view of the results in [3] for stochastic NZS DGs, we
study the structure, existence and uniqueness of Nash equilibria for LQG games with one-
step-delay sharing and one-step-delay observation sharing (Corollary 7.2). In addition, we
study multi-stage teams under two classes of static reductions: (i) independent data reduc-
tion under which the policy-independent reduction holds through players and time, and (ii)
player-wise (partially) nested independent reduction under which measurements are indepen-
dent through players, but (partially) nested through time.

We list below, for convenience, some of the acronyms frequently used in the paper:

Information Structure IS
Decision Maker, Player DM, PL

Non-Zero-Sum Dynamic Game (Zero-Sum Dynamic Game) NZS DG (ZSG DG)
Decision-Maker-wise Nash (Saddle-Point) Equilibrium DM-NE (DM-SPE)

Player-wise Nash (Saddle-Point) Equilibrium PL-NE (PL-SPE)
Policy-Independent (-Dependent) PI (PD)

Static Measurements with Control-Sharing SMCS

2. ISs and PI and PD Static Reductions of Sequential Dynamic Games.

2.1. An Intrinsic Model for Sequential DGs (Generalizing Witsenhausen’s One-

Shot-DM Formulation). Consider the class of games where DMs act in a pre-defined or-
der. Following Witsenhausen’s formulation for teams, such games will be called sequential

games, for which we introduce an intrinsic model, as in Witsenhausen’s formulation for teams
[36]. In this model (described in discrete time), any action applied at any given time is re-
garded as applied by an individual DM, who acts only once.

• There exists a collection of measurable spaces {(Ω,F), (Ui,U i), (Yi,Yi), i ∈ N},
specifying the system’s distinguishable events, control spaces, and measurement spaces. The
set N := {1, 2, . . . , N} denotes the set of all DMs; the pair (Ω,F) is a measurable space; the
pair (Ui,U i) denotes the Borel space from which the action ui of DMi is selected; the pair
(Yi,Yi) denotes the Borel observation/measurement space.

• There is a measurement constraint that governs the connections between the observa-
tions and the system’s distinguishable events. The Yi-valued observation variables are given
by yi = hi(ω, u1:i−1), where his are measurable functions. We denote {1, . . . , p} by 1 : p.

• There is a set Γ of admissible control laws γ = {γi}i∈N , also called designs or

policies (pure strategies), which are measurable control functions, so that ui = γi(yi). Let
Γi be the set of all admissible policies for DMi, and thus Γ :=

∏
i∈N Γi.

4



• There is a probability measure P on (Ω,F), making the triple a probability space.

2.2. A Player-wise Intrinsic Model for Games with Players Acting Multiple Times.

Under the intrinsic model for sequential games, every DM acts separately and only once.
However, depending on the IS and cost functions, it may be convenient (and more appropriate
depending on the desired equilibrium concepts) to consider a collection of DMs as a single
player acting as a team (when collections of teams take part in the game). To formalize
this formulation for sequential games where collections of DMs cooperate among themselves
as a team (also called player) to play sequentially against other collections of DMs (other
teams/players), we introduce N -player games, where each player is a collection of (one-shot)
DMs. We emphasize that (one-shot) DMs act sequentially in our setup for games. Hence, we
have, as a formal description, the following:

• Let N := {1, 2, . . . , N} denote the set of players and for each i ∈ N , introduce a

subset TEi of a set M := {1, 2, . . . ,M} denoting a collection of DMs, DMk for k ∈ TEi,
acting as player i (PLi) (said another way, PLi encapsulates the collection of DMs indexed
by TEi acting |TEi| times, where | · | denotes the cardinality of the set TEi).

• The observation and action spaces are standard Borel spaces for each PLi (i ∈ N ),
denoted by Y

i :=
∏

k∈TEi Yi
k and U

i :=
∏

k∈TEi Ui
k, respectively.

• The Yi
k-valued observation variables are given by yik = hi

k(ω, {up
s}(s,p)∈Li

k
), where

Li
k denotes the set of all DMs acting before DMk of PLi (i.e., (s, p) ∈ Li

k if DMs of PLp acts

before DMk of PLi for all p ∈ N and s ∈ TEp).
• An admissible policy for each PLi is denoted by γiγiγi := {γi

k}k∈TEi ∈ ΓΓΓi with ui
k =

γi
k(y

i
k), where the set of admissible policies for each player is denoted by Γ

i :=
∏

k∈TEi Γi
k

for i ∈ N . An admissible policy tuple for all players in the game is denoted by γγγ := γγγ1:N =

{γγγ1, . . . , γγγN} ∈ ΓΓΓ, where ΓΓΓ :=
∏

i∈N ΓΓΓi.

2.3. Stochastic NZS DGs under PI Static Reductions. Let the action and observation
spaces be subsets of appropriate dimensional Euclidean spaces. i.e., Ui

k ⊆ Rnk
i and Yi

k ⊆
Rmk

i , for i ∈ N and k ∈ TEi, where nk
i and mk

i are positive integers. We formally introduce
a dynamic sequential (player-wise) game as follows:

Problem P: Consider a sequential game within the intrinsic model as follows:
(i) Observations of DMs are given by

yik = hi
k(ω0, ω

i
k, {up

s, y
p
s}(s,p)∈Li

k
),(2.1)

where ωi
k : (Ω,F , P ) → (Ωi

k,F i
k) is an exogenous random variable for i ∈ N and k ∈ TEi,

where Ωi
k is a Borel space with its Borel σ-field F i

k. Here ω0 is a common Ω0-valued cost
function-relevant exogenous random variable.

(ii) IS of DMk of PLi is given by Iik = {yik} (or Iik = {yps}(p,s)∈Ki
k

for Ki
k ⊆ Li

k).

(iii) A possibly different expected cost function (to minimize under a particular notion
of equilibrium) for each PLi, under a policy tuple γγγ := γγγ1:N ∈ ΓΓΓ, is given by

J i(γγγ) := Eγγγ
[
ci(ω0,uuu

1:N)
]

(2.2)

for some Borel measurable cost functions ci : Ω0 ×
∏N

j=1 U
j → R. ✷

In view of Witsenhausen’s static reduction for teams (see [37, 38]), we introduce an
absolute continuity condition that guarantees the existence of PI static reduction.

ASSUMPTION 2.1. For any DMk of PLi, there exists a probability measure Qi
k on Yi

k

and a function f i
k such that for any Borel set Ai

k,

P (yik ∈ Ai
k

∣∣ω0, {up
s, y

p
s}(s,p)∈Li

k
)=

∫

Ai
k

f i
k(y

i
k, ω0, {up

s, y
p
s}(s,p)∈Li

k
)Qi

k(dy
i
k).(2.3)
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Let P be the joint distribution of (ω0,uuu
1:N , yyy1:N ), and P0 be the distribution of ω0. If

Assumption 2.1 holds, for every Borel set A, we have

P (A) =

∫

A

dP

dQ
Q(dω0, duuu

1:N , dyyy1:N ),(2.4)

Q(dω0, duuu
1:N , dyyy1:N ) := P0(dω0)

N∏

i=1

∏

k∈TEi

Qi
k(dy

i
k)1{γi

k
(yi

k
)∈dui

k
},(2.5)

dP

dQ
:=

N∏

i=1

∏

k∈TEi

f i
k(y

i
k, ω0, {up

s, y
p
s}(s,p)∈Li

k
).(2.6)

DEFINITION 2.1 (Policy-Independent (PI) Static Reduction). For a stochastic game

P with cost functions ci for i ∈ N and a given IS under Assumption 2.1, a PI static reduc-

tion is a change of measure (2.4) under which measurements yik in (2.1) have independent

distributions Qi
k and the expected cost functions are given by

J i(γ):= E
γ

Q

[
c̃i(ω0,uuu

1:N , yyy1:N )
]
,(2.7)

where the new cost functions under the reduction for all i = 1, . . . , N are

c̃i(ω0,uuu
1:N , yyy1:N ):= ci(ω0,uuu

1:N )
dP

dQ
.(2.8)

We now recall definitions of NE and stationary policies for P .

DEFINITION 2.2. For a stochastic game P with a given IS, and cost functions ci:
• A policy γγγ∗ ∈ ΓΓΓ is PL-NE, if for all βββi ∈ ΓΓΓi and i ∈ N ,

J i(γγγ∗) ≤ J i(γγγ−i∗,βββi) := E
(γγγ−i∗,βi)

P [ci(ω0,uuu
1:N )],

where (γγγ−i∗,βββi) := (γγγ1∗:i−1∗,βββi, γγγi+1∗:N∗);

• A policy γγγ∗ ∈ ΓΓΓ is DM-NE, if for all βi
k ∈ Γi

k and i ∈ N and k ∈ TEi,

J i(γγγ∗) ≤ J i(γγγ−i∗, (γγγi∗
−k, β

i
k)) := E

(γγγ−i∗,γγγi∗
−k,β

i
k)

P

[
ci(ω0,uuu

1:N )
]
,

where (γγγi∗
−k, β

i
k) := (γi∗

1:k−1, β
i
k, γ

i∗
k+1:|TEi|);

• A policy γγγ∗ ∈ ΓΓΓ is a (DM-wise) stationary policy, if for all i ∈ N ,

∇ui
k
EP

[
ci
(
ω0, γγγ

i∗
−k(yyy

i
−k), u

i
k, γγγ

−i∗(yyy−i)

)∣∣∣∣y
i
k

]∣∣∣∣
ui
k
=γi∗

k
(yi

k
)

= 0 P -a.s.

We can provide a description of NE and stationary policies of games under PI static
reductions similar to (2.2) by replacing the cost functions ci with c̃i and considering expec-
tations with respect to the measure Q. One of our goals is to study the connections between
NE and stationary policies in Definition 2.2 and those under the PI reductions (see Fig 2.1).

2.4. Stochastic NZS DGs under PD Static Reductions. Consider dynamic NZS DGs
with partially nested ISs, and with observations of DMs defined as

yD
i,k :=

{
yD
↓(i,k), ŷ

D
i,k := gi,k(hi,k(ζ), u

D
↓(i,k))

}
,(2.9)

6



where ζ := {ω0,ωωω
1:N} denotes the set of all relevant random variables (with ωωωi :=

(ωi
k)k∈TEi), and gi,k and hi,k are measurable functions. In the above, ↓ (i, k) :=

{(j, l)| ŷD
i,k is affected by uj

l }. Denote the IS of DMk of PLi by ID
i,k = {yD

i,k}, and the

IS of PLi by IIID
i := {yyyD

i }, where yyyDi := {yD
i,k}k∈TEi , with the space of admissible policies

denoted by ΓΓΓD. Define NZS DGs with a partially nested ISs as follows:
Problem PD

NZS
: Consider a stochastic dynamic NZS DG with a partially nested IS,

IIID
i = {yyyD

i } for all i ∈ N , and with the expected cost functions under γγγD ∈ ΓΓΓD given

by J i(γγγD) := E
[
ci(ω0, γγγ

D
1 (yyy

D
1 ), . . . , γγγ

D
N (yyyD

N ))
]
, for some Borel measurable cost functions

ci : Ω0 ×
∏N

j=1 U
j → R. Obtain a policy γγγD∗ ∈ ΓΓΓD which is a PL-NE (DM-NE) for PD

NZS
.✷

We note that for 2-player games, if J1 ≡ −J2, then we have a ZS DG, in which case
PL-NE is known as player-wise saddle-point equilibrium (PL-SPE).

ASSUMPTION 2.2. For all i ∈ N , k ∈ TEi and for every fixed uD
↓(i,k), the function

gi,k(·, uD
↓(i,k)) : hi,k(ζ) 7→ ŷD

i,k is invertible for all realizations of ζ.

Based on [22, 23] for teams, under Assumption 2.2, given the policy γγγD, we can define
the observations within the policy-dependent reduction as follows:

yS
i,k =

{
yS
↓(i,k), ŷ

S
i,k := hi,k(ζ)

}
.(2.10)

Let the IS of DMk of PLi be IS
i,k = {yS

i,k}, and the IS of PLi be IIIS
i = {yyyS

i } where yyyS
i =

{yS
i,k}k∈TEi with the corresponding space of admissible policies ΓΓΓS.

Problem PS
NZS

: Consider a NZSG with IIIS
i = {yyyS

i } for all i ∈ N , and with the expected

cost functions under γγγS ∈ ΓΓΓS given by J i(γγγS) := E
[
ci(ω0, γγγ

S
1(yyy

S
1 ), . . . , γγγ

S
N (yyyS

N ))
]
. Find a

policy γγγS∗ ∈ ΓΓΓS that is a PL-NE (DM-NE) for PS
NZS

. ✷

DEFINITION 2.3 (Policy-Dependent (PD) Static Reduction). Consider a partially

nested stochastic DG PD
NZS

with a given IS, IIID
i , where Assumption 2.2 holds. A PD static

reduction is defined as the reduction of a stochastic DG PD
NZS

to a static one PS
NZS

(which

has an equivalent IS, IIIS
i ), where under the reduction, the cost functions are unaltered and

measurements are static), and for a given admissible policy γγγD ∈ ΓΓΓD, an admissible policy

γγγS ∈ ΓΓΓS can be constructed through a relation

ui
k = γS

i,k

(
yS
i,k

)
= γD

i,k

(
yD
↓(i,k), gi,k

(
hi,k(ζ), γ

D
↓(i,k)(y

D
↓(i,k))

))
P -a.s.,(2.11)

for all i ∈ N and k ∈ TEi.

One question to be addressed is the following: Given a PL-NE (DM-NE) policy γγγS∗ ∈ ΓΓΓS

for PS
NZS

, is a policy γγγD∗ ∈ ΓΓΓD satisfying (2.11) also a PL-NE (DM-NE) policy for PD
NZS

?

Further, is the converse statement true? In Section 3.1, we provide examples to show that the
answer to this question is negative in general. Then, we introduce sufficient conditions for
NZS DGs, where positive results can be established (see Fig. 2.2). Fig. 2.2 also illustrates
some of our results for ZS DGs.

2.5. Stochastic NZS DGs under Static Measurements with Control-Sharing Reduc-
tion. We now expand partially nested ISs such that controls are shared whenever observations
are, i.e., for each DMk of PLi, we define

yD,CS
i,k :=

{
yD
↓(i,k), u

↓(i,k), ŷD
i,k

}
(2.12)
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with ID,CS
i,k := {yD,CS

i,k } and IIID,CS
i := {yyyD,CS

i }, where yyyD,CS
i := {yD,CS

i,k }k∈TEi with the space

of admissible policies ΓΓΓD,CS.

Problem PD,CS
NZS

: For a stochastic NZS DG with IIID,CS
i (with measurements as (2.12)) for

all i ∈ N , consider expected cost functions (to be minimized under the NE concept) as in
(2.2) under policy γγγD,CS ∈ ΓΓΓD,CS. ✷

The invertibility condition (Assumption 2.2) allows us to reduce the original DG to an-
other one where measurements are static as

yS,CS
i,k :=

{
yS
↓(i,k), u

↓(i,k), ŷS
i,k

}
(2.13)

with IS,CS
i,k := {yS,CS

i,k } and IIIS,CS
i := {yyyS,CS

i }, where yyyS,CS
i := {yS,CS

i,k }k∈TEi with the space

of admissible policies denoted by ΓΓΓS,CS. ✷

Problem PS,CS
NZS

: For a stochastic NZS DG with IIIS,CS
i , with measurements (2.13) for all

i ∈ N , consider expected cost functions (to be minimized under the NE concept) as in (2.2)
under policy γγγS,CS. ✷

We refer to PS,CS

NZS
as static measurements with control-sharing stochastic NZS DGs.

DEFINITION 2.4 (Static Measurements with Control-Sharing (SMCS) Reduction).

Consider a stochastic NZS DG PD,CS

NZS
with a given IS IIID,CS

i , where Assumption 2.2 holds.

SMCS reduction is the reduction of PD,CS

NZS
to PS,CS

NZS
with IS, IIIS,CS

i , where under the reduction

the costs are unaltered and the measurements are static, and for a given admissible policy

γγγD,CS for PD,CS

NZS
, an admissible policy γγγS,CS for PS,CS

NZS
can be constructed for each i ∈ N

and k ∈ TEi, through the relation

γD,CS
i,k (yD,CS

i,k ) = γS,CS
i,k (yS,CS

i,k ) for all u↓(i,k) P -a.s.(2.14)

In Section 3.2, we establish various results on connections between NE policies of PD
NZS

,

PS
NZS

, PS,CS
NZS

, and PD,CS
NZS

using SMCS reductions.

2.6. Stochastic Teams and ZS DGs under PD Static Reductions. In this paper, we
also consider stochastic teams and ZS DGs, where we establish stronger results compared to
those for NZS DGs.

2.6.1. Stochastic Teams. Along the same lines as PD
NZS

, PS
NZS

, PD,CS
NZS

, and PS,CS
NZS

, we

define team problems PD
TE

, PS
TE

, PD,CS
TE

, and PS,CS
TE

by letting the cost functions be identical,

ci = c for all players i ∈ N . To simplify our presentation, we assume that each player
consists of a single DM. We now recall the definition of globally optimal policies for PD

TE.

DEFINITION 2.5 (Global optimality concept for PD
TE). For a stochastic team PD

TE with

a given IS, and cost function c, a policy γD∗ is globally optimal if

J(γD∗) = inf
γD∈ΓD

E
[
c(ω0, γ

D
1 (y

D
1 ), . . . , γ

D
N (yD

N ))
]
.

To be consistent with the terminology of teams used in the literature, we refer to NE
policies for teams as person-by-person (PBP) optimal policies.

2.6.2. Stochastic ZS DGs. ZS DGs enjoy some stronger properties not shared with NZS
DGs, but shared with teams; for example, they typically have (saddle-point) values which can
be used to partially ordered ISs as in teams, and also they feature some regularity properties.
We show that sufficient conditions presented for NZS DGs can be relaxed (see Fig. 2.2). For
ZS DGs, we also establish stronger results compared to NZS DGs using the interchangeability
property of multiple player-wise saddle points.
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Problem PD
ZS

: Consider a 2-player sequential stochastic ZS DG with a partially

nested IS, IIID
i = {yyyD

i } (with measurements yyyD
i = {yD

i,k}k∈TEi defined in (2.9)), and

with an expected cost function under a policy γD := (γγγD
1 , γγγ

D
2 ) ∈ ΓΓΓD given by

J(γγγD) := E[c(ω0, γγγ
D
1 (yyy

D
1 ), γγγ

D
2 (yyy

D
2 ))] for some Borel measurable cost function c : Ω0×U

1×
U

2 → R. Obtain a policy γγγD∗ ∈ ΓΓΓD which is a PL-SPE for PD
ZS

, that is

J(γγγD∗) = inf
γγγD
1
∈ΓΓΓD

1

J(γγγD
1 , γγγ

D∗
2 ), J(γγγD∗) = sup

γγγD
2
∈ΓΓΓD

2

J(γγγD
2 , γγγ

D∗
1 ).

Further, obtain a policy γγγD∗ that is a DM-SPE for PD
ZS

, that is for all k ∈ TE1 and j ∈ TE2

J(γγγD∗) = inf
γD
1,k

∈ΓD
1,k

J(γD∗γD∗γD∗
1,−k, γ

D
1,k, γ

D∗
2γ
D∗
2γ
D∗
2 ), J(γγγD∗) = sup

γD
2,j

∈ΓD
2,j

J(γD∗γD∗γD∗
2,−k, γ

D
2,j, γ

D∗
1γ
D∗
1γ
D∗
1 ).

✷

Problem PS
ZS

: Consider a 2-player sequential stochastic ZS DG with IS IIIS
i = {yyyS

i }
(with measurements yyyS

i = {yS
i,k}k∈TEi defined in (2.10)), and with an expected cost function

under a policy γγγS := (γγγS
1 , γγγ

S
2 ) ∈ ΓΓΓS given by J(γγγS) := E[c(ω0, γγγ

S
1 (yyy

S
1 ), γγγ

S
2 (yyy

S
2 ))]. Obtain a

policy γγγS∗ which is a PL-SPE (DM-SPE) for PS
ZS

. ✷

2.7. Multi-Stage Stochastic Games. We introduce in this sub-section multi-stage
stochastic games. As in the player-wise setting, depending on the IS and cost functions,
it may be convenient to consider a collection of DMs as a single player acting multiple times,
at different time instants. In the multi-stage setting, this leads to the notion of a “player”,
which is a collection of DMs acting over time.

Problem PM: Consider the following formulation of multi-stage stochastic games:
(i) The state dynamics and observations are given, respectively, by

xt+1 = ft(x0:t, u
1:N
0:t , wt),(2.15)

yit = hi
t(x0:t, u

1:N
0:t−1, v

i
t),(2.16)

for t ∈ T := {0, . . . , T − 1} and i ∈ N , where ft and hi
t are measurable functions2. x0:t :=

(x0, . . . , xt), and wt, v
1:N
t for all t ∈ T are random variables taking values in standard Borel

spaces. We let u1:N
0:t := (u1

0:t, . . . , u
N
0:t), and introduce appropriate collections of DMs as

players, with PLi for i ∈ N , acting at different time instants t ∈ T and comprised of DMi
0 to

DMi
T−1.

(ii) The observation and action spaces are standard Borel spaces with Y
i :=

∏T−1
t=0 Yi

t

and U
i :=

∏T−1
t=0 Ui

t, respectively.

(iii) An admissible policy for PLi is γiγiγi ∈ Γ
i where γiγiγi := (γi

0:T−1) and Γ
i :=

∏T−1
t=0 Γi

t.
(iv) A multi-stage expected cost function for i ∈ N is given by

J i(γγγ) = Eγγγ

[ T−1∑

t=0

cit(ω0, xt, u
1:N
t ) + ciT (xT )

]
,(2.17)

for some Borel measurable cost functions ci : Ω0 × Xt ×
∏N

j=1 U
j
t → R, where γγγ =

γ1:Nγ1:Nγ1:N , and ω0 is a common Ω0-valued cost function-relevant exogenous random variable,
ω0 : (Ω,F , P ) → (Ω0,F0), where Ω0 is a Borel space with its Borel σ-field F0.

2Here, ft can depend on history (possibly a partial history) of states in addition to the current state xt. Although
some of our results in Section 6 hold also for this general model, we will not study this model explicitly. We refer
the reader to [8] which has studied NZS DGs with such state dynamics.
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DEFINITION 2.6. For a multi-stage stochastic game, a policy γγγ∗ is PL-NE if for all i ∈
N and for all βββi ∈ Γ

i, J i(γγγ∗) ≤ J i(γγγ−i,∗,βββi). Also, a policy γγγ∗ is (one-shot) DM-NE if for

all i ∈ N and k ∈ T and for all βi
t ∈ Γi

t, J
i(γγγ∗) ≤ J i(γγγ−i,∗, (γi∗

−t, β
i
t)).

3. Main Results for NZS DGs.

3.1. NE for NZS DG under PI and PD Static Reductions. We first establish connec-
tions between PL-NE, DM-NE, and stationary policies for DGs and their PI static reductions.

THEOREM 3.1. Consider a stochastic DG P with a PI static reduction (2.3).
(i) A policy γγγ∗ is PL-NE (DM-NE) for P if and only if γγγ∗ is PL-NE (DM-NE) for a PI

static reduction of P;

(ii) Let a policy γγγ∗ satisfy P -a.s., for all i ∈ N and k ∈ TEi,

∇ui
k
E

(γγγ−i∗,γγγi∗
−k)

Q

[
dP

dQ

∣∣∣∣y
i
k

]∣∣∣∣
ui
k
=γi∗

k
(yi

k
)

= 0.(3.1)

Then, γγγ∗ is stationary for P if and only if γγγ∗ is stationary for a PI static reduction of P .

Proof. Proof is provided in the Appendix.

Next, we study the connections between NE policies of NZS DGs and their PD static
reductions, and present both positive and negative results. Consider the setting of Section
2.4, and note again that for results on the PD static reduction we will only consider pure
strategies since the PD static reduction is ill-defined for randomized policies (unless control
actions are shared).

We first show that a policy γD∗ may be stationary (also NE) for PD
NZS

, but γS∗ under the

PD static reduction it may not be a NE for PS
NZS

.

EXAMPLE 1. Consider a 2-PL stochastic NZS DG (where each player has only one as-

sociated DM, denoted by DM1 and DM2 for PL1 and PL2, respectively) with ID
1 = {yD

1 } and

ID
2 = {yD

2 } := {yD
1 , ŷ

D
2 } where ŷD

2 = ω2 + u1, and yD
1 = yS

1 := ω1 and ω2 are primitive

random variables. With B a given positive number, let

J1(γD
1 , γ

D
2 ) = E(γD

1
,γD

2
)[(u1 + u2 −B + ω2)

2], J2(γD
1 , γ

D
2 ) = E(γD

1
,γD

2
)[(u1 + u2 + ω2)

2].

For this game, we note the following two results:

• γD∗ = (γD∗
1 , γD∗

2 ) := (0, (0,−I)) (where I is the identity map, and (0, (0, I)) denotes

the policy such that γD∗
1 ≡ 0, γD∗

2,1 ≡ 0 and γD∗
2,2 is the identity map multiplied by −1, that is,

u2 = γD∗
2 (yD

1 , ŷ
D
2 ) = −ŷD

2 for u1 = γD∗
1 (yD

1 ) = 0) is stationary (also DM-NE (PL-NE)) for

PD
NZS

. This follows because for every u1, fixing the policy of DM2 to γD∗
2 := (0, I) implies

that every arbitrary policy of DM1 satisfies the stationarity criterion for DM1 and is also a

best response.

• A policy γS∗ = (γS∗
1 , γS∗

2 ) = (0, (−γD∗
1 ,−I)) (where γS∗

1 ≡ 0, γS∗
2,1 = −γD∗

1 and

γD∗
2,2 is the identity map multiplied by −1 with u1 = γS∗

1 (yS
1 ) = 0 and u2 = −ω2− γS∗

1 (yS1 )),

satisfying (2.11), is not stationary for PS
NZS

. In fact, there is no stationary policy (and hence

no DM-NE) for PS
NZS

since for every fixed policy γS
2 , the stationarity criterion for DM2 im-

plies that u2 = γS
2 (y

S
2 ) = −γS

1 (y
S
1 )− ŷS

2 , and the stationarity criterion for DM1 implies that

u1∗ − γS
1 (y

S
1 )−B = 0, which fails to hold since B 6= 0.

Next, we show that if a policy γS∗ is stationary (also NE) for PS
NZS

, γD∗, satisfying the

PD static reduction, need not be a NE for PD
NZS

.

EXAMPLE 2. Consider a 2-PL identical interest NZS DG (where each player has only

one associated DM, denoted by DM1 and DM2 for PL1 and PL2, respectively) with ID
1 =
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{yD
1 } and ID

2 := {yD
2 } = {yD

1 , ŷ
D
2 }, where ŷD

2 = ω2 + u1, and ω2 =: ŷS
2 and yD

1 =: yS
1 = ω1

are primitive random variables. Let the identical expected cost function be given by

E[c(ω2, u
1, u2)] := E[(u1 − u2 + ω2)

2 − α(u1)2],(3.2)

for a given α ∈ (0, 1).
• A policy γS∗ = (γS∗

1 , γS∗
2 ) = (0, (0, I)) (where the policy (0, (0, I)) denotes

γS∗
1 ≡ 0, γS∗

2,1 ≡ 0, and γS∗
2,2 is the identity map, I , that is, u1∗ = γS∗

1 (yS
1 ) = 0 and

u2∗ = γS∗
2 (yS

1 , ŷ
S
2 ) = ŷS

2 ) is a NE for PS
NZS

.

• However, a policy γD∗ = (γD∗
1 , γD∗

2 ) = (0, (−γS∗
1 , I)) constructed under a relation

(2.11) (where the policy (0, (−γS∗
1 , I)) denotes γD∗

1 ≡ 0, γD∗
2,1 = −γS∗

1 , and γD∗
2,2 is the

identity map, that is, u1∗ = γD∗
1 (yD

1 ) = 0 and u2∗ = ŷD
2 − γS∗

1 (yD
1 )) is not a NE for PD

NZS

since fixing a policy of DM2 to γD∗
2 such that u2∗ = ŷD

2 −γS∗
1 (yD

1 ), the expected cost function

will be concave in u1 (c(u1, u2∗) = −α(u1)2) and the value will be unbounded from below.

We note, however, that γD∗ is a stationary policy for PD
NZS

.

Now, we introduce a regularity and convexity assumption on the cost functions:

ASSUMPTION 3.1. For every i ∈ N and ω0,

(a) the cost function ci is continuously differentiable in uuu1:N ;

(b) the cost function ci is (jointly) convex in uuu1:N .

Next, we introduce a condition that is critical in the results to follow.

CONDITION (C) 1. A policy γγγD satisfies Condition (C) if for all i ∈ N and k ∈ TEi,

γD
i,k

(
{gj,k(hj,k(ζ), u

↓(j,l))}(j,l)∈↓(i,k), gi,k(hi,k(ζ), u
↓(i,k))

)
is affine in u↓(i,k).

We note that if gj,k are affine in actions, then any policies γγγD affine in actions satisfy
Condition (C). Next, in view of Example 1, we readily have the following result for NZS
DGs.

PROPOSITION 3.1. Consider a stochastic NZS DG PD
NZS

with a partially nested IS.

Then:

(i) If a policy γγγD∗ is PL-NE (DM-NE, stationary) for PD
NZS

, then γγγS∗ under policy de-

pendent static reduction (2.11), is not necessarily PL-NE (DM-NE, stationary) for PS
NZS

;

(ii) If a policy γγγS∗ is PL-NE (DM-NE, stationary) for PS
NZS

, then γγγD∗ satisfying (2.11),

is not necessarily PL-NE (DM-NE, stationary) for PD
NZS

.

(iii) Statement of part (i) is valid even if Assumptions 2.2 and 3.1 hold, and γγγD∗ satisfies

Condition (C).

Proof. Parts (i) and (iii) follow from Example 1, and part (ii) follows from Example 2.

Now, we introduce a condition under which we can establish connections between PL-
NE (DM-NE, stationary) policies for NZS DGs and their PD static reductions.

ASSUMPTION 3.2. There exists a constantαij such that ci(·) = αijcj(·) for all i, j ∈ N
with {i} ∈ {↓ j}.

ZS DGs and teams are important special classes of games where Assumption 3.2 holds.

THEOREM 3.2. Consider a stochastic NZS DG PD
NZS

with a partially nested IS. Let As-

sumptions 2.2, 3.1, and 3.2 hold. Then, a policy γγγD∗ satisfying Condition (C) is stationary

(DM-NE) for PD
NZS

if and only if γγγS∗, satisfying (2.11), is stationary (DM-NE) for PS
NZS

.

Proof. This follows from an argument similar to that in [31, Theorem 4.2].

We next show that these sufficient conditions can be relaxed under the SMCS reductions.
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3.2. NE for NZS DGs under SMCS Reductions. Here, we study the impact of the
expansion of IS via control-sharing (see (2.13)), and establish isomorphism relations between

NE policies of PD
NZS

, PS
NZS

, PD,CS
NZS

, and PS,CS
NZS

. We first have the following result.

THEOREM 3.3. For stochastic NZS DGs with partially nested IS, where Assumption 2.2

holds, SMCS reduction is policy-independent.

Proof. Since Assumption 2.2 holds and each DMk of PLi has access to u↓(i,k), SMCS

reduction to PS,CS
NZS

for each DM is independent of precedent DMs’ policies: given γγγD,CS, a

policy γγγS,CS can be constructed through (2.14), i.e., for every i ∈ N and k ∈ TEi, ui
k =

γD,CS
i,k (yD

↓(i,k), u
↓(i,k), gi,k(hi,k(ζ), u

↓(i,k))) = γS,CS
i,k (yS

↓(i,k), u
↓(i,k), ŷS

(i,k)) for every u↓(i,k)

P -a.s. The fact that the expected cost functions do not change under the above reduction
completes the proof.

In view of Theorem 3.3, we obtain that since SMCS reduction is policy-independent, the
isomorphism between NE policies can be relaxed compared to those in Theorem 3.2 for PD
static reductions.

THEOREM 3.4. Consider a stochastic NZS DG with a partially nested IS.

(i) If Assumption 2.2 holds, then a policy γγγD,CS∗ is PL-NE (DM-NE, stationary) if and

only if γγγS,CS∗ is a PL-NE (DM-NE, stationary) policy for PS,CS

NZS
under the SMCS reduction

(see (2.14)).
(ii) Any PL-NE (DM-NE, stationary) policy γγγD∗ constitutes a PL-NE (DM-NE, station-

ary) policy on the enlarged space ΓD,CS for PD,CS

NZS
; however, in general, if γγγD,CS∗ is PL-NE

(DM-NE, stationary) for PD,CS

NZS
, then γγγD∗ satisfying γD∗

i,k(y
D
i,k) = γD,CS,∗

i,k (yD,CS
i,k ) P -a.s. for

all i ∈ N and k ∈ TEi, is not necessarily PL-NE (DM-NE, stationary) for PD
NZS

.

(iii) Any PL-NE (DM-NE, stationary) policy γγγS∗ constitutes a PL-NE (DM-NE, sta-

tionary) policy on the enlarged space ΓS,CS for PS,CS

NZS
; however, in general, if γγγS,CS∗ is

PL-NE (DM-NE, stationary) for PS,CS

NZS
, then γγγS∗ satisfying for all i ∈ N and k ∈ TEi,

γS∗
i,k(y

S
i,k) = γS,CS∗

i,k (yS,CS
i,k ) P -a.s. is not necessarily PL-NE (DM-NE, stationary) for PS

NZS
.

(iv) Under Assumptions 2.2, 3.1(a) and 3.2, if a stationary policy γγγS,CS∗ for PS,CS

NZS
is

affine in actions, then γγγS∗ is a stationary policy for PS
NZS

, where for every i ∈ N and k ∈ TEi,

γS,∗
i,k (y

S
i,k) = γS,CS,∗

i,k (yS,CS
i,k ) P -a.s.

Proof. The proof is provided in the Appendix.

4. Main Results for ZS DGs.

4.1. SPs for ZS DGs under PD Static Reduction. In this section, we study ZS DGs
under PD static reductions. We establish results similar to those for NZS DGs, but without
imposing Assumption 3.2. Furthermore, we establish stronger results due to the ordered
intechangeability property of multiple PL-SPE policies. First, we provide two examples,
clearly capturing a subtlety of the connection between PL-SPE (DM-SPE) for ZS DGs, and
their PD static reductions.

EXAMPLE 3. Consider a 2-DM stochastic ZS DG PD
ZS

with ID
1 = {yD

1 } and ID
2 :=

{yD
2 } := {yD

1 , ŷ
D
2 }, where ŷD

2 = ω2 + u1, and ω2 =: ŷS
2 and yD

1 =: yS
1 = ω1

(IS
2 = {ω1, ω2}) are primitive random variables. Assume that DM1 is the minimizer and

DM2 is the maximizer, and the expected cost function is given for a given α ∈ (0, 1) as

E[c(ω2, u
1, u2)] := E[α(u1)2 − (u1 − u2 + ω2)

2].
• Then, a policy γD∗ := (γD∗

1 , γD∗
2 ) = (0, (0, I)) (where γD∗

1 ≡ 0, γD∗
2,1 ≡ 0 and γD∗

2,2 is

the identity map with u1 = γD∗
1 (yD

1 ) = 0 and u2 = ŷD
2 ) is PL-SPE (DM-SPE) for PD

ZS
. This

is true, because, with α ∈ (0, 1), when u2 = ŷD
2 , the best response strategy for DM1 is zero.
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Note that by fixing the policy of DM2 to (0, I), the expected cost will be convex in u1, and

hence, stationary policy (0, I) will minimize the conditional expected cost function for DM1.

• A policy γS∗ := (γS∗
1 , γS∗

2 ) = (0, (γS∗
1 , I)) (where γS∗

1 ≡ 0, γS∗
2,1 = γD∗

2,1 and γD∗
2,2 is

the identity map with u1 = γS∗
1 (yS

1 ) = 0 and u2 = ŷS
2 + γS∗

1 (yS
1 )), satisfying (2.11), is not

SPE for PS
ZS

. This is true, because, by fixing the policy of DM2 to u2 = ŷD
2 + γS∗

1 (yS
1 ) = ω2,

the expected cost function will be concave in u1, and hence, the above stationary policy will

actually maximize (and not minimize) the conditional expected cost function for DM1.

EXAMPLE 4. Consider a 2-DM stochastic ZS DG PD
ZS

with ID
1 = {yD

1 } and ID
2 :=

{yD
2 } := {yD

1 , ŷ
D
2 }, where ŷD

2 := ω2 + u1 and ŷS
2 := ω2, and yD

1 =: yS
1 = ω1 are primitive

random variables. Let the expected cost function be given as

E[c(ω2, u
1, u2)] := E[(u1 − u2 + ω2)

2 − α(u1)2 − β(u2 − ω2)
2],(4.1)

with α ∈ (0, 1) and β > 1. Let DM1 be the minimizer and DM2 is the maximizer. Then:

• A policy γS∗ := (γS∗
1 , γS∗

2 ) = (0, (0, I)) (where γS∗
1 ≡ 0, γS∗

2,1 ≡ 0 and γS∗
2,2 is the

identity map with u1 = γS∗
1 (yS

1 ) = 0 and u2 = γS∗
2 (yS

1 , ŷ
S
2 ) = ŷS

2 ) is PL-SPE (DM-SPE) for

PS
ZS

. This is true, because fixing a policy of DM2 to u2 = γS∗
2 (yS

1 , ŷ
S
2 ) = ŷS

2 , the expected

cost function will be convex in u1 (c(u1, u2) = (1 − α)(u1)2). On the other hand, fixing

a policy of DM1 to u1 = γS∗
1 (yS

1 ) = 0, the expected cost function will be concave in u2

(c(u1, u2) = (1 − β)(u2 − ω2)
2). Hence, γS∗ is PL-SPE (DM-SPE).

• However, γD∗ := (γD∗
1 , γD∗

2 ) = (0, (−γS∗
1 , I)) (where γD∗

1 ≡ 0, γD∗
2,1 = −γS∗

2,1 and

γD∗
2,2 is the identity map with u1 = γD∗

1 (yD
1 ) = 0 and u2 = ŷD

2 − γS∗
1 (yD

1 )), satisfying (2.11),

is not a PL-SPE (DM-SPE) for PD
ZS

since fixing the policy of DM2 to u2∗ = ŷD
2 − γD∗

1 (yD
1 ),

the expected cost function will be concave in u1 (c(u1, u2∗) = −(α+ β)(u1)2).

In view of Examples 3 and 4, we can state the following negative result for ZS DGs.

PROPOSITION 4.1. Consider a stochastic ZS DG PD
ZS

with a partially nested IS. Then:

(i) If a policy γγγD∗ is PL-SPE (DM-SPE, stationary) for PD
ZS

, then γγγS∗ is not necessarily

PL-SPE (DM-SPE, stationary) for PS
ZS

;

(ii) If a policy γγγS∗ is PL-SPE (DM-SPE, stationary) for PS
ZS

, then γγγD∗ is not necessarily

PL-SPE (DM-SPE, stationary) for PD
ZS

.

(iii) Statements of parts (i) and (ii) hold even if Assumptions 2.2 and 3.1(a) hold.

Proof. Part (i) follows from Example 3, part (ii) follows from Example 4, and part (iii)
follows from both Examples 3 and 4.

Next, we introduce a convexity condition for ZS DGs which will be instrumental in
obtaining some positive results.

ASSUMPTION 4.1. For every ω0, the cost function c is (jointly) convex in the actions of

minimizers and (jointly) concave in the actions of maximizers.

THEOREM 4.1. Consider a stochastic ZS DG PD
ZS

with a partially nested IS. Let As-

sumptions 2.2, 3.1(a), and 4.1 hold. Then, a policy γγγD∗ satisfying Condition (C) is stationary

(DM-SPE) for PD
ZS

if and only if γγγS∗ is a stationary (DM-SPE) policy for PS
ZS

under PD static

reduction (see (2.11)).

Proof. The proof follows from similar steps as those of [31, Theorem 4.2]. We note that
Assumption 3.2 holds, but since the cost function is not convex in the maximizer’s actions, the
proof does not directly follow from that of Theorem 3.2. However, since the cost is concave
in that case, it can be shown that the limit and expectation can be interchanged in the analysis,
and similar analysis as that in the proof of [31, Theorem 4.2] completes the proof.

13



4.2. SPs for ZS DGs under SMCS Reductions. We study the impact of the expansion
of IS via control-sharing on SPE and stationary policies for ZS DGs.

THEOREM 4.2. Given a stochastic ZS DG PD
ZS

with a partially nested IS, identical con-

nections as that for NZS DG in Theorem 3.4 (i-iv) hold for PD
ZS

, PS
ZS

, PD,CS
ZS

, and PS,CS
ZS

.

Proof. The proof follows from an argument similar to that used in Theorem 3.4.

Now, as a corollary to Theorems 4.1 and 4.2, we present a result on uniqueness as well
as essential non-uniqueness of PL-SPE (DM-SPE) policies for ZS DGs, their PD static re-
ductions, and their SMCS reductions, which are useful, in particular, for LQG models. First,
we recall the definition of strong uniqueness of policies from [4, p. 300].

DEFINITION 4.3. Given a space of admissible policies ΓΓΓ1 × ΓΓΓ2, a PL-SPE policy pair

(γγγ1∗, γγγ2∗) is strongly unique on ΓΓΓ1 ×ΓΓΓ2 if (γγγ1∗, γγγ2∗) is the unique PL-SPE in ΓΓΓ1 ×ΓΓΓ2, and

γγγ1∗ is the unique best response to γγγ2∗, and γγγ2∗ is the unique best response to γγγ1∗.

COROLLARY 4.4. Consider a stochastic ZS DG (PD
ZS

) with partially nested IS. Let As-

sumption 2.2 hold. Then:

(i) If there exists a unique PL-SPE (DM-SPE) policy γγγS∗ for PS
ZS

, then there exists a

policy γγγS,CS∗, satisfying, for all i ∈ N and k ∈ TEi, γS∗
i,k(y

S
i,k) = γS,CS∗

i,k (yS,CS
i,k ) P -a.s.,

which is PL-SPE (DM-SPE) for PS,CS

ZS
, but not necessarily essentially unique;

(ii) If there exists a strongly unique PL-SPE policy γγγS∗ for PS
ZS

, then a policy γγγS,CS∗,

satisfying, for all i ∈ N and k ∈ TEi, γS∗
i,k(y

S
i,k) = γS,CS∗

i,k (yS,CS
i,k ) P -a.s., is an essentially

unique PL-SPE policy for PS,CS
ZS

.

(iii) Let γγγS∗ be a strongly unique PL-SPE for PS
ZS

. If there exists a PL-SPE policy γγγD∗

for PD
ZS

, then it is essentially unique and satisfies (2.11).

(iv) Let γγγS,CS∗ be an essentially unique PL-SPE (DM-SPE) policy for PS,CS

ZS
. If there

exists a PL-SPE (DM-SPE) policy γγγS∗ for PS
ZS

, then it is unique and for every i ∈ N and

k ∈ TEi, γS∗
i,k(y

S
i,k) = γS,CS∗

i,k (yS,CS
i,k ) P -a.s.;

Proof. Proof is provided in the Appendix.

SMC reductions lead to non-unique representations of policies. This non-uniqueness has
a subtle impact on the isomorphism of NE policies. Corollary 4.4 yields that the uniqueness of
NE policies might not be preserved under SMC reductions for ZS DGs, but strong uniqueness
implies uniqueness of NE policies (up the representation) under the expanded control-sharing
IS. Applications of this set of results to multi-stage ZS DGs will be studied in Section 6.

5. Main results for Dynamic Teams. Results identical to those for NZGs under PI
static reductions can be established for teams.

THEOREM 5.1. Consider a stochastic dynamic team PD
TE with partially nested IS. Let

Assumption 2.2 hold. Then, γD∗ is a globally optimal policy for PD
TE if and only if γS∗ is a

globally optimal policy for PS
TE

under the PD static reduction and/or SMCS reduction.

Although the main notion of optimality for teams is global optimality, stationarity (pbp
optimality) are important for computation of globally optimal policies via variational analysis
(see e.g., [25]). In the following, we provide two examples that serve to demonstrate that the
subtlety of the connections between stationary (pbp optimal) policies of PD

TE and PS
TE

remains
true for teams. These are counterexamples which show that, in contrast to the case of globally
optimal policies, the isomorphism relations between stationary (pbp optimal) policies of PD

TE

and PS
TE

are no longer true, in general (under Assumption 2.2).

EXAMPLE 5. Consider a 2-DM stochastic team PD
TE with ID

1 = {yD
1 } and ID

2 := {yD
2 } =

{yD
1 , ŷ

D
2 }, where ŷD

2 = ω2 + u1, and ω2 =: ŷS
2 = ω1 and yD

1 =: yS
1 are primitive random
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variables. Let the expected cost function be given as

E[c(ω2, u
1, u2)] := E[α(u1)2 + β(u2 − ω2)

2 − (u1 − u2 + ω2)
2],(5.1)

for a given α ∈ (0, 1) and β > 1.

• A policy γD∗ = (γD∗
1 , γD∗

2 ) = (0, (0, I)) (where γD∗
1 ≡ 0, γD∗

2,1 ≡ 0 and γD∗
2,2 is the

identity map, that is, u1∗ = γD∗
1 (yD

1 ) = 0 and u2∗ = ŷD
2 ) is pbp optimal for PD

TE since

fixing the policy of DM2 to γD∗
2 , the expected cost function will be convex in u1 (c(u1, u2) =

(α+β)(u1)2), and fixing the policy of DM1 to γD∗
1 such that u1 = γD∗

1 (yD
1 ) = 0, the expected

cost function will be convex in u2 (c(u1, u2) = (β − 1)(u2 − ω2)
2).

• However, under the PD static reduction, the policy γS∗ = (γS∗
1 , γS∗

2 ) = (0, (−γD∗
1 , I))

constructed under a relation (2.11), is not pbp optimal for PS
TE

since fixing the policy of DM2

to γS∗
2 such that u2 = γS∗

2 (yS
1 , ŷ

S
2 ) = ŷS

2 − γD∗
1 (yD

1 ), the expected cost function will be

concave in u1 (c(u1, u2) = (α− 1)(u1)2).

EXAMPLE 6. Consider a 2-DM stochastic team PD
TE with ID

1 = {yD
1 } and ID

2 = {yD
2 } :=

{yD
1 , ŷ

D
2 }, where ŷD

2 = ω2+
√
u1, andω2 and yD

1 = yS
1 := ω1 are primitive random variables.

Let U1 = R+ and the expected cost function be given by

E[c(ω2, u
1, u2)] := E[(

√
u1 − u2 + ω2)

2].(5.2)

• A policy γD∗ = (γD∗
1 , γD∗

2 ) = (0, (0, I)) (where γD∗
1 ≡ 0, γD∗

2,1 ≡ 0 and γD∗
2,2 is the

identity map, that is, u1∗ = 0 and u2∗ = ŷD
2 ) is stationary for PD

TE.

• However, under the PD static reduction, the corresponding policy γS∗ = (γS∗
1 , γS∗

2 ) =

(0, (
√
γD∗
1 , I)) constructed under the relation (2.11) (where γS∗

1 ≡ 0, γS∗
2,1 =

√
γD∗
1 , and γS∗

2,2

is the identity map, that is, u1 = 0 and u2 = ω2 +
√
γD∗
1 (yS

1 )) is not stationary (although

it is pbp optimal) for PS
TE

. Since fixing the policy of DM2 to γS∗
2 such that u2 = ω2, the

derivative of the expected cost function with respect to u1 is always 1. Hence, the criterion

for stationarity does not lead to a solution.

Hence, in view of the preceding examples, we have the following negative result.

PROPOSITION 5.1. Consider a stochastic dynamic team PD
TE with partially nested IS.

Let Assumption 2.2 hold. Then:

(i) If γD∗ is stationary (pbp optimal) for PD
TE, then γS∗ is not necessarily stationary (pbp

optimal) for PS
TE

under the PD static reduction;

(ii) If γS∗ is a stationary (pbp optimal) policy for PS
TE

, then γD∗, satisfying the PD static

reduction relation (2.11), is not necessarily pbp optimal for PD
TE

.

Proof. This is a direct consequence of the examples above, where Examples 5 and 6
imply part (i), and Example 2 implies part (ii).

Since teams constitute a special class of NZS DGs where Assumption 3.2 holds, The-
orems 3.2 and 3.4 establish connections between pbp optimal (globally optimal, stationary)

policies of PD
TE, PS

TE
, PD,CS

TE
, and PS,CS

TE
. In the following, we first establish results on the

connections between uniqueness of pbp optimal policies for PS
TE

and PD
TE, which is useful in

particular for LQG models. The following result is a corollary to Theorems 5.1, 3.2, and 3.4.

COROLLARY 5.2. Consider a stochastic dynamic team PD
TE with partially nested IS. As-

sume that for all i ∈ N , gi is linear in u↓i for all ζ (hence, Assumption 2.2 holds). Let

Assumption 3.1 hold, and let γS∗ ∈ ΓS be the unique pbp optimal policy for PS
TE

(hence,

globally optimal). Then:
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(i) If γD∗ ∈ ΓD satisfying (2.11) is affine, then γD∗ is an essentially unique affine pbp

optimal policy for PD
TE (unique in the class of affine policies). Moreover, if γ̂D ∈ ΓD is any

nonlinear stationary (pbp optimal) policy for PD
TE

(if it exists), then J(γD∗) ≤ J(γ̂D).

(ii) If there exists an affine policy γS,CS∗ for PS,CS
TE

with representation γS,CS∗
i (yS,CS

i ) =

γS∗
i (yS

i ) for i ∈ N P -a.s., then γS,CS∗ is an essentially unique affine pbp optimal policy for

PS,CS
TE

(there might exist other affine representations of the policy). Moreover, if γ̂S,CS is any

nonlinear pbp optimal policy for PS,CS
TE

(if it exists), then J(γS,CS∗) ≤ J(γ̂S,CS).

Proof. The policy γD∗ and gi are affine in actions, and thus γD∗ satisfies Condition

(C). Hence, by Theorem 3.2, γD∗ is a stationary policy (also pbp optimal) for PD
TE. If

there exists another linear stationary policy γ̃D∗ for PD
TE, then by Theorem 3.2, γ̃S∗ with

γ̃S∗
i (yS

i ) = γ̃D∗
i (yD

i ) must be a stationary policy for PS
TE

, which contradicts the uniqueness of

the stationary policy for PS
TE

. The second part of (i) follows from Theorem 5.1. Part (ii) can
be shown similarly using Theorem 3.4.

6. Multi-Stage ZS DGs and Teams under Reductions. In this section, we study multi-
stage deterministic and stochastic ZS DGs and teams.

6.1. Multi-Stage Deterministic ZS DGs. Consider the class of multi-stage determinis-
tic ZS DGs, where the dynamics are described for t ∈ T by

xt+1 = ft(xt, u
1
t , u

2
t ),(6.1)

for some function ft : Xt × U2
t × U2

t → Xt+1, where ui
t is the control of PLi, i = 1, 2

at time t. Using (6.1) recursively, we can generate uniquely functions f̃t and ht such that

xt+1 = f̃t(ht(ζ), u
1
0:t, u

2
0:t), where ht(ζ) := ζ := x0, the initial state. Let JDET =

cT (xT ) +
∑T−1

t=0 ct(xt, u
1
t , u

2
t ), where the first player is the minimizer, and the second one

is the maximizer. Consider the following ISs: for i ∈ {1, 2} and t ∈ T : Open-loop:

IOL,i
t := {x0}; Closed-loop no memory (amnesic or pure-feedback): IF,i

t := {xt}; Closed-

loop (full memory path-dependent feedback): ICL,i
t := {x0:t}. Now, we recall the following

results from [2, 34], reworded to fit the current framework.

THEOREM 6.1. [2, 34] Consider a deterministic ZS DG as formulated above. Then:

(i) Any PL-SPE policy pair for a game with IOL,i
t or IF,i

t as an IS constitutes a PL-SPE

policy for the corresponding game with IS ICL,i
t , i.e., PL-SPE policies remain PL-SPE under

the expanded CL IS ICL,i
t (but not every CL representation of policies is PL-SPE).

Let the ZS DG under the IS IF,i
t admit a unique pure-feedback PL-SPE (γγγf,1, γγγf,2). Then:

(ii) If (γγγo,1, γγγo,2) is any OL PL-SPE, then (γγγo,1, γγγo,2) is the unique OL PL-SPE, and

γf,i
t (xt) = γo,i

t (x0) for all i ∈ {1, 2} and t ∈ T ;

(iii) If (γγγc,1, γγγc,2) is any PL-SPE in CL policies, then γf,i
t (xt) = γc,i

t (x0:t) for all i ∈
{1, 2} and t ∈ T .

In the following subsection, we obtain analogous results for stochastic ZS DGs.

6.2. Multi-Stage Stochastic ZS DGs. Let the state dynamics be given by

xt+1 = ft(xt, u
1
t , u

2
t , wt),(6.2)

for some measurable function ft : Xt × U2
t × U2

t × Wt → Xt+1, where {wt}t∈T are

primitive random variables. Using (6.2), we can generate recursively functions f̃t and ht

with ζ = {x0, w0:T−1}. Let ŷDt := xt and ŷSt := ht(ζ). Let the expected cost func-

tion (to be minimized by player 1 (PL1) and maximized by PL2) be given by JSTO(γγγ) =

Eγγγ
[
cT (xT ) +

∑T−1
t=0 ct(xt, u

1
t , u

2
t )
]
.
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Next we introduce the following assumption, to be utilized in Corollary 6.2.

ASSUMPTION 6.1. For every t ∈ T ,

(a) For fixed {u1
0:t, u

2
0:t}, the function f̃t : ht(ζ) 7→ xt+1 is invertible for all ζ;

(b) Function ft : Xt × U1
t × U2

t × Wt → Xt+1 is affine in U1
t × U2

t ;

(c) Function ct : Xt × U1
t × U2

t → R is continuously differentiable on Xt × U1
t × U2

t .

Before we present our results in view of those in Sections 4.1 and 4.2, we intro-
duce the following partially nested ISs: For i ∈ {1, 2} and t ∈ T : Partially nested OL:

IPNOL,i
t := {IPNOL,i

↓t , ŷS
t }; Partially nested CL: IPNCL,i

t := {IPNCL,i
↓t , ŷD

t }; Dynamic partially

nested control-sharing: ID,PNCS,i
t := {IPNCL,i

t , u1:2
↓t }; Partially nested with control-sharing:

IPNCS,i
t := {IPNOL,i

t , u1:2
↓t }; Classical (centralized) with control-sharing: ICEN,CS,i

t :=

{ŷD
0:t, u

1:2
0:t−1}; Classical (centralized) OL with control-sharing: ICEN,OCS,i

t := {ŷS
0:t, u

1:2
0:t−1};

Classical (centralized) OL: ICEN,OP,i
t := {ŷS

0:t}.
The following result is a corollary to Theorems 4.1, 4.2, and Corollary 4.4.

COROLLARY 6.2. Consider the preceding classes of stochastic ZS DGs.

(i) Any PL-SPE (DM-SPE) policy pair for a game with IS IPNOL,i
t (with IPNCL,i

t ) is PL-

SPE (DM-SPE) for the corresponding game with IS IPNCS,i
t (with ID,PNCS,i

t ).

(ii) Under Assumption 6.1(a), (γγγdpncs,1, γγγdpncs,2) is PL-SPE (DM-SPE) for a game with

IS ID,PNCS,i
t if and only if (γγγpncs,1, γγγpncs,2) is PL-SPE (DM-SPE) for the corresponding game

with IS IPNCS,i
t and for all i ∈ {1, 2} and t ∈ T , γdpncs,i

t (ID,PNCS,i
t ) = γpncs,i

t (IPNCS,i
t ) for

u1:2
↓t P -a.s.;

(iii) If there exists a strongly unique pure-feedback PL-SPE policy pair (γγγf,1, γγγf,2) for a

game with IS IF,i
t , then a policy pair (γγγc,cs,1, γγγc,cs,2) is an essentially unique PL-SPE for the

corresponding game with IS ICEN,CS,i
t , and γc,cs,i

t (ICEN,CS,i
t ) = γ f,i

t (IF,i
t ) P -a.s., i ∈ {1, 2}

and t ∈ T . Further, this remains true if (γγγc,cs,1, γγγc,cs,2) is replaced with a PL-SPE policy

pair (γγγcl,1, γγγcl,2) for the corresponding game with IS ICL,i
t , and γcl,i

t (ICL,i
t ) = γ f,i

t (IF,i
t )

P -a.s.

(iv) If there exists a strongly unique pure-feedback PL-SPE policy pair (γγγf,1, γγγf,2) for a

game with IS IF,i
t , then a policy pair (γγγc,ocs,1, γγγc,ocs,2) is an essentially unique PL-SPE for

the corresponding game with IS ICEN,OCS,i
t , and γc,ocs,i

t (ICEN,OCS,i
t ) = γ f,i

t (IF,i
t ) P -a.s. for

i ∈ {1, 2} and t ∈ T . Moreover, if there exists an OL PL-SPE policy pair (γγγc,op,1, γγγc,op,2)

for a game with IS ICEN,OP,i
t , then it is unique and γc,op,i

t (ICEN,OP,i
t ) = γ f,i

t (IF,i
t ) P -a.s., for

i ∈ {1, 2} and t ∈ T .

Let Assumptions 4.1 and 6.1 hold, and let there exist a unique OL PL-SPE policy pair

(γγγpnol,1, γγγpnol,2) for ZS DGs with IS IPNOL,i
t . Then:

(v) If, for a ZS DG, a CL policy pair (γγγpncl,1, γγγpncl,2), satisfying P -a.s. for all i ∈ {1, 2}
and all t ∈ T , γpnol,i

t (IPNOL,i
t ) = γpncl,i

t (IPNCL,i
t ), is affine in states, then it is stationary for

the corresponding game with IS IPNCL,i
t and essentially unique in the class of policies affine

in states;

(vi) Let (γγγpncs,1, γγγpncs,2) be any PL-SPE policy pair for a game with IS IPNCS,i
t , which is

affine in actions. Then, γpnol,i
t (IPNOL,i

t ) = γpncs,i
t (IPNCS,i

t ) holds P -a.s. for all i ∈ {1, 2} and

all t ∈ T (affine PL-SPE policy pair for games with IPNCS,i
t are essentially unique);

(vii) PL-SPE policy pairs (γγγpncl,1, γγγpncl,2), (γγγpncs,1, γγγpncs,2), and (γγγdpncs,1, γγγdpncs,2) for a

game with ISs IPNCL,i
t , IPNCS,i

t , or ID,PNCS,i
t , achieve the value of expected cost as that under

(γγγpnol,1, γγγpnol,2) for the corresponding game.

Proof. Proof is provided in the Appendix.
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6.2.1. Multi-Stage Stochastic Teams. In this section, we introduce a new reduction
concept building on the one introduced by Witsenhausen (called independent-data reduction)
[37, Section 2.4] and another one in [33, Section 3.2]. The underlying idea is to view DMs
acting in a sequence with increasing information as a single player with a larger action space.
This facilitates our optimality analysis.

ASSUMPTION 6.2. For every i ∈ N and every t ∈ T , there exists a probability measure

Q̃i
t on Yi

t and a function φi
t such that for all Borel sets A =

∏N

i=1 Ai with Ai ∈ Yi
t,

P
(
y1:Nt ∈ A | ω0, Ht

)
=

N∏

i=1

∫

Ai

φi
t(y

i
t, ω0, Ht)Q̃

i
t(dy

i
t),(6.3)

where Ht := {x0, v
1:N
0:t−1, w

1:N
0:t−1, y

1:N
0:t−1, u

1:N
0:t−1}.

Let P̃ be the joint distribution on (ω0, x0,www,vvv,uuu,yyy), and µ be the fixed joint distribution

on (ω0, x0,www,vvv). Let zzz := zzz1:N and zzzi := zi0:T−1 for z = u, y, w, v and i ∈ N . Hence,

under the preceding change of measure (6.3), there exists a reference distribution Q̃ such that

P̃(B) =

∫

B

dP̃

dQ̃
Q̃(dω0, dx0, dwww, dvvv, duuu, dyyy),(6.4)

Q̃(dω0, dx0, dwww, dvvv, duuu, dyyy) := µ(dω0, dx0, dwww, dvvv)
T−1∏

t=0

N∏

i=1

Q̃i
t(dy

i
t)1{γi

t(y
i
t)∈dui

t}
,(6.5)

dP̃

dQ̃
:=

T−1∏

t=0

N∏

i=1

φi
t(y

i
t, ω0, x0, v

1:N
0:t−1, w

1:N
0:t−1, y

1:N
0:t−1, u

1:N
0:t−1).(6.6)

ASSUMPTION 6.3. For every i ∈ N , there exists Q̂i such that for every Borel set B

P̃(B) =

∫

B

dP̃

dQ̂
Q̂(dω0, dx0, dwww, dvvv, duuu, dyyy),(6.7)

Q̂(dω0, dx0, dwww, dvvv, duuu, dyyy) :=

N∏

i=1

Q̂i(duuui, dyyyi, dwwwi)µ0(dω0, dx0).

DEFINITION 6.3 (Independent-Data and PL-wise (Partially) Nested Independent

Reductions). Consider a multi-stage stochastic team PM
TE with a given IS. Introduce the fol-

lowing two player-wise reductions for it:

(i) (Independent-data reduction) Let Assumption 6.2 hold. An independent-data reduc-

tion is a change of measure (6.4) under which the measurements have distributions Q̃i
t, and

the expected cost function can be written as follows:

J(γγγ) := E
γγγ

P̃

[ T−1∑

t=0

ct(ω0, xt, u
1:N
t ) + cT (xT )

]
= E

γγγ

Q̃

[
ĉ(ω0, x0,www,vvv,uuu,yyy)

]
,(6.8)

where the new cost function is ĉ(ω0, x0,www,vvv,uuu,yyy) := [
∑T−1

t=0 ct(ω0, xt, u
1:N
t )+ cT (xT )]

dP̃

dQ̃
.

The team problem under this static reduction can be viewed as the one that Witsenhausen

referred to as a static problem with independent data [37];

(ii) (PL-wise (partially) nested independent reduction) Let Assumption 6.3 hold. PL-

wise nested independent reduction is a reduction under which for each PLi through t ∈ T ,
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the IS is nested (i.e., σ(yit) ⊂ σ(yit+1)), and J(γγγ) = E
γγγ

Q̂
[c(ω0,uuu,yyy,www)

dP̃

dQ̂
]. If for each PLi

through t ∈ T , the IS is only partially nested, the reduction is called a PL-wise partially

nested independent reduction. ✷

We note that one scenario where the PL-wise (partially) nested independent reduction
arises is when each player has a nested private IS and the PI reduction can be applied through
players (or only through dynamics and not necessarily for observations through time) such
that under the reduction, Assumption 6.3 holds. We also note that the independent-data re-
duction does not require the IS to be nested, and on the other hand, the PL-wise (partially)
nested independent reduction does not require Assumption 6.2 to hold. In particular, the PL-
wise (partially) nested independent reduction can be applied even in the presence of common
noise (or common random shocks to all players through states or dynamics) without any fur-
ther assumptions on the noise processes or the structures of the dynamics and observations.
Furthermore, the PL-wise (partially) nested independent reduction also allows noiseless con-
trol and/or state sharing through time for each player (where yit = hi

t(x
i
0:t, u

i
0:t−1)). Later on,

in Corollary 6.4, we show that PL-wise pbp optimal policies for (multi-stage) dynamic teams
remain PL-wise pbp optimal policies for the teams under independent-data and PL-wise (par-
tially) nested independent reductions; however, DM-wise pbp optimal policies only remain
DM-wise pbp optimal policies under independent-data static reductions and not necessarily
under PL-wise (partially) nested independent reductions.

The following corollary to Theorems 3.1(i) and 5.1 establishes connections between
PL-wise and DM-wise pbp optimal policies of dynamic multi-stage teams and those under
independent-data and PL-wise (partially) nested independent reductions.

COROLLARY 6.4. Consider a multi-stage stochastic dynamic team PM
TE.

(i) If there exists an independent-data static reduction, then, γγγ∗ is a PL-wise (DM-wise)

pbp optimal policy for PM
TE if and only if it is a PL-wise (DM-wise) pbp optimal policy under

independent-data static reduction.

(ii) If there exists a PL-wise (partially) nested independent reduction, then, γγγ∗ is a PL-

wise pbp optimal policy for PM
TE if and only if it is a PL-wise pbp optimal policy under PL-wise

(partially) nested independent reduction.

Part (ii) is not necessarily true for DM-wise pbp optimal policies, that is, although PL-wise
pbp optimal policies for (multi-stage) dynamic teams remain PL-wise pbp optimal under
independent-data and PL-wise (partially) nested independent reductions, DM-wise pbp opti-
mal policies only remain DM-wise pbp optimal under independent-data static reductions.

Proof. Part (i) follows from Theorem 3.1, and the fact that the independent-data static re-
duction is PI. Part (ii) follows from the fact that in the PL-wise (partially) nested independent
reduction, following from Assumption 6.3, the team problem can be static through players via
PI static reduction, and hence, every PL-wise pbp optimal policy will be PL-wise pbp optimal
under the reduction (since fixing policies of other players, a PL-wise pbp optimal policy is
globally optimal for the player through time which will be PL-wise pbp optimal under PI, PD
static reductions, and SMCS reduction).

7. Connections to Results from the Stochastic Games Literature.

7.1. Connections to Results on LQG ZS DGs with a Mutually Quadratic Invariant
IS [15]. A notable reference here is [15], where a result similar to Corollary 4.4 has been
established toward the connections of PL-SPE of PD

ZS
and PS

ZS
for a specific class of LQG

ZS DGs with mutually quadratic invariant ISs. In the following, we summarize the relevant
results of [15] and discuss connections to the results of Corollary 4.4. We are given a linear
state dynamics: xt+1 = Axt + B1u

1
t + B2u

2
t + wt, where x0 ∼ N (0,Σ0) and wt ∼

N (0,Σt) are independent, with Σt > 0, which can also be expressed as (in compact form)
xxx = Hζ +D1u

1u1u1 +D2u
2u2u2, where ζ := {x0, w0:T−1}, xxx := {x0:T }, and uiuiui := {ui

0:T−1} for
i = 1, 2 with appropriate dimensional matrices H,D1 and D2.
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Let PL1 be the minimizer, and PL2 be the maximizer with the cost function given by∑T−1
t=0 x′

tMtxt + (u1
t )

′R1
tu

1
t + (u2

t )
′R2

tu
2
t + x′

TMTxT , where x′
t denotes the transpose of

xt, and Ri
t and Mt are appropriate dimensional symmetric matrices for all i = 1, 2 and

t ∈ {0, . . . , T }, where Ri
t are positive-definite and Mt are positive semi-definite. Consider

causal linear state-feedback policies, taken as those with control actions of the form uiuiui =
Kixxx, where Ki satisfies Ki ∈ Si for i = 1, 2, and Si is an algebraic structure representing
the information available to PLi (that is, [si]jk ∈ {0, 1} where [si]ps = 0 signifies that at
time p, PLi does not have access to xs, with some p, s ∈ {0, . . . , T }).

Let the causal linear disturbance feedforward policies be those that map disturbance to
actions. We note that causal state-feedback policies are closed-loop policies (which corre-
spond to policies in DGs) and causal disturbance feedforward policies are open-loop policies
(which correspond to policies under (PD) static reductions).

ASSUMPTION 7.1. [Mutual Quadratic Invariance [15]] S1 × S2 is mutually quadratic

invariant under
[
D1 D2

]
if for any (K1,K2) ∈ S1 × S2, we have K1D1K

1 ∈ S1,

K1D2K
2 ∈ S1, K2D1K

1 ∈ S2, and K2D2K
2 ∈ S2.

We note that quadratic invariant IS is equivalent to the partially nested IS [28], and hence,
this setting can be considered as a special case of the setup introduced in Section 6. [15,
Theorem 2 and 5] have shown that if (Q∗,1, Q∗,2) is the unique disturbance feedforward
PL-SPE, which is also linear, then the policy pair (K∗,1,K∗,2) obtained via

[
K∗,1

K∗,2

]
=

(
I +

[
Q∗,1

Q∗,2

] [
D1 D2

] )−1 [
Q∗,1

Q∗,2

]
,(7.1)

provides a unique linear state-feedback PL-SPE in the class of linear state-feedback policies.
Moreover, the policy pair (u1 = K∗,1

x, u2 = K∗,2
x) remains PL-SPE if the players are

allowed to use state-feedback nonlinear strategies. The proof builds on first showing that
linear stationary state-feedback and disturbance feedforward policies satisfy (7.1), and then
using the uniqueness and linearity of disturbance feedforward PL-SPE to establish the result.

• By the fact that the mutually quadratic invariant condition implies partial nestedness
[28], since for the LQG ZS DGs with a partially nested IS, PL-SPE under the PD static re-
duction is unique and linear, Corollary 4.4(vi) leads to [15, Theorem 2 and 5]. Moreover,
Theorem 4.1 and Corollary 6.2 generalize [15, Theorem 2 and 5] to ZS DGs with continu-
ously differentiable cost functions satisfying Assumption 4.1.

• In view of Theorem 4.1, one can conclude that the result of [15, Lemma 1] (showing
that (7.1) holds for linear stationary state-feedback and disturbance feedforward policies, see
[15, Eqs. (16) and (17)]) holds because of the convexity and regularity of the cost function,
and the fact that the PL-SPE under the PD static reduction for LQG games with a partially
nested IS, is unique and linear.

• Finally, Proposition 3.1 had shown the gap between PL-NE of NZS DGs and their
PD static reductions, which explains the counterexample in [15, Section V. A] for LQG NZS
DGs with a partially nested IS. Theorem 3.2 introduces sufficient conditions under which
some positive results can be established for NZS DGs (Assumption 3.2).

7.2. Multi-Stage LQG NZS DGs with One-Step-Delay Sharing and One-Step-Delay

Observation Sharing ISs. In this section, we consider multi-stage LQG NZS DGs with one-
step-delay sharing and one-step-delay observation sharing ISs, as introduced and discussed
in [3]. Consider the class of N -player LQG NZS DGs with state dynamics given by xt+1 =

Atxt +
∑N

i=1 B
i
tu

i
t + wt, where At and Bi

t are appropriate dimensional matrices and {wt}t
are zero-mean mutually independent Gaussian random vectors also independent of a zero-
mean Gaussian random vector x0, the initial state. Observations of each player over time are
defined by yit = Hi

txt + vit, where Hi
t is an appropriate dimensional matrix, and {vit}t are

zero-mean mutually independent Gaussian random vectors, and also independent of {wt}t
and x0. Covariances are assumed to be positive definite. Let y

0:t
:= y1:N0:t and u0:t := u1:N

0:t .
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The expected cost function for player i is defined as J i(γγγ) := E[
∑T−1

t=0 (x′
tQ

i
txt +∑N

j=1(u
j
t)

′Rj,i
t uj

t ) + x′
TM

i
TxT ]. Let the corresponding observations under the PD static

reduction be as follows: yS,i
t = H̃i

tζ, where ζ := {x0,www,vvv
1:N}, and H̃i

t is an appropriate

dimensional matrix which can be obtained recursively. Let yS

0:t
:= (yS,1

0:t , . . . , y
S,N
0:t ).

Consider the following partially nested ISs: One-step-delay observation sharing:

Ii,DOS
t := {y

0:t−1
, yit}; One-step-delay sharing: Ii,DS

t := {y
0:t−1

, u0:t−1, y
i
t}; One-step-

delay observation sharing under the PD static reduction: Ii,SDOS
t := {yS

0:t−1
, yS,i

t }; One-

step-delay sharing under SMCS reduction: Ii,SDS
t := {yS

0:t−1
, yS,i

t , u0:t−1}.

THEOREM 7.1. [3] Consider the class of LQG NZS DGs introduced above.

(i) [3, Theorems 4 and 5] If the IS is Ii,DOS
t for all t ∈ T and i ∈ N , then, under some

sufficient (contraction) conditions on the cost functions of players (see [3]), there exists a

unique PL-NE, which turns out to be linear (affine if the random vectors have nonzero-mean).

(ii) If the IS is Ii,DS
t , then PL-NE policies are essentially non-unique [3, Example 1],

which is true even when the contraction conditions of part (i) holds.

The proof builds on establishing the best-response maps in the single-stage case as a
contraction mapping in a Banach space of properly defined square-integrable policies, where
sufficient conditions for the contraction have been introduced in [3, Eq. (13)]. Crucial in
this analysis is the fact that conditional expectation itself is a non-expansive map, which is
employed in an appropriate way at every stage of the decision process for the multi-stage
setting (see [3, Section IV]). Here, we address the preceding class of NZS DGs under PD and
SMCS reductions, and we compare our results to those of Theorem 7.1. The following result
is a corollary to Theorems 3.2 and 3.4.

COROLLARY 7.2. Consider the preceding class of LQG NZS DGs. Suppose that there

exists a PL-NE policy γγγS∗ for such a game with IS Ii,SDOS
t . Then:

(i) The policy γγγS∗ is the unique PL-NE for the corresponding game with IS Ii,SDOS
t ,

which is also affine;

(ii) If Assumption 3.2 holds, then an affine policy γγγD∗ is the unique affine PL-NE for the

corresponding game with IS Ii,DOS
t , where γD,i∗

t (Ii,DOS
t ) = γS,i∗

t (Ii,SDOS
t ) P -a.s.

(iii) There exists an affine PL-NE policy γγγS,CS∗ for the corresponding game with IS

Ii,DS
t , satisfying γS,CS,i∗

t (Ii,DS
t ) = γS,i∗

t (Ii,SDOS
t ) P -a.s. Moreover, if Assumption 3.2 holds,

then γγγS,CS∗ is an essentially unique affine PL-NE under Ii,DS
t .

(iv) If Assumption 3.2 does not hold, then an affine PL-NE γγγS,CS∗ for the corresponding

game with IS Ii,DS
t , satisfying γS,CS,i∗

t (Ii,DS
t ) = γS,i∗

t (Ii,SDOS
t ) P -a.s., is essentially non-

unique PL-NE (there exist non-unique affine (and possibly a plethora of nonlinear) PL-NEs

with distinct characterizations under Ii,SDOS
t ).

Proof. Part (i) follows essentially from [3, Theorem 4] and part (ii) follows from Theo-
rem 3.2. Part (iii) follows from Theorem 3.4(iii), and part (iv) follows from Theorem 3.4(iv).

In comparison to the results in Theorem 7.1, we note that: 1) Corollary 7.2(i) is essen-
tially from Theorem 7.1(i); 2) The result of Theorem 7.1(ii) is stronger than Corollary 7.2(ii)
since Assumption 3.2 has not been imposed, and uniqueness has been established (using the
contraction condition) among all admissible policies (and not only linear ones) for the game

with IS Ii,DOS
t ; 3) Corollary 7.2(iii) is a new result compared to Theorem 7.1 as it introduces

sufficient conditions for essential uniqueness of linear PL-NE for the game with IS Ii,DS
t ;

4) The counterexample showing the existence of essentially non-unique PL-NE policies has
been presented in [3, Example 1]. Corollary 7.2(iv) suggests the possibility of the existence
of essentially non-unique affine and/or nonlinear PL-NE policies, when Assumption 3.2 fails,

21



and hence, offers an explanation for the negative result.

8. Conclusion. In this paper, we have studied (equivalence) connections between NE
of DGs and their reductions. We have discussed these connections under three classes of re-
ductions: policy-independent, policy-dependent static, and static measurements with control-
sharing.

9. Appendix.

9.1. Proof of Theorem 3.1. We first recall sufficient conditions for the Bayes Formula

(e.g., [17, p. 216]) which is used in the proof of Theorem 3.1.

LEMMA 9.1. Consider a probability space (Ω̂, F̂ , P̂) where P̂ is absolutely continuous

with respect to some probability measure Q̂. Given a sub σ-field G ⊂ F̂ , and a random

variable X on the probability space, which is integrable (E
P̂
[|X |] < ∞), then the Bayes

formula holds, that is, P̂-a.s E
P̂
[X |G] = E

Q̂
[X dP̂

dQ̂
|G]/E

Q̂
[ dP̂

dQ̂
|G].

Proof of Theorem 3.1. Since policies do not change under the reduction, the result for
NE policies follows from (2.7). Next, we prove the result for stationary policies. Let γγγ∗ be
a stationary policy for P . In the following, we show that if γγγ∗ satisfies (3.1), then it is also
stationary under a PI static reduction. Since γγγ∗ is a stationary policy for P , using Lemma 9.1

0 = ∇ui
k
E

γ
−i∗

−k

P [ci(ω0,uuu
1:N)|yi] = ∇ui

k

{
E

γ
−i∗

−k

Q [c̃i(ω0,uuu
1:N , yyy1:N )|yik]

E
γ−i∗

k

Q [dP
dQ

|yik]

}
P -a.s.

at ui
k = γi∗

k (yik), where the second equality follows from Lemma 9.1. Hence,

{(
∇ui

k
E

γ
−i∗

k

Q [c̃i(ω0,uuu
1:N , yyy1:N )|yik]

)
E

γ
−i∗

k

Q [
dP

dQ
|yik]

/(
E

γ
−i∗

k

Q [
dP

dQ
|yik]

)2

(9.1)

− E
γ−i∗

k

Q [c̃i(ω0,uuu
1:N , yyy1:N )|yik]

(
∇ui

k
E

γ−i∗

k

Q [
dP

dQ
|yik]

)/(
E

γ−i∗

k

Q [
dP

dQ
|yik]

)2}
= 0

at ui
k = γi∗

k (yik). Since γγγ∗ satisfies (3.1), the second line of (9.1) is equal to zero P -a.s. Since
dP
dQ

> 0 P -a.s., the first line of (9.1) must be zero P -a.s., which implies that γγγ∗ is a stationary

policy for P under PI static reductions. For the converse statement, suppose a policy γγγ∗ is
stationary for P under a PI static reduction and satisfies (3.1). Then, (9.1) is equal to zero
P -a.s., which implies that γγγ∗ is a stationary policy for P , and this completes the proof.

9.2. Proof of Theorem 3.4.

Part (i): This follows from Theorem 3.3 since the SMCS reduction (2.14) is policy in-
dependent, and the cost function remains unchanged under the SMCS reduction. For the
connections between stationary policies, we have P -a.s.,

0 = ∇ui
k
E

[
c

(
ω0, (γ

D,CS∗
−i,−k

(yD,CS
−i,−k), u

i
k)

)∣∣∣∣y
D,CS
i,k

]∣∣∣∣
ui
k
=γD,CS∗

i
(yD,CS

i,k
)

(9.2)

= ∇ui
k
E

[
c

(
ω0, (γ

S,CS∗
−i,−k

(yS,CS
−i,−k), u

i
k)

)∣∣∣∣y
S
i,k, γ

S,CS∗
↓(i,k) (y

S,CS

↓(i,k))

]∣∣∣∣
ui
k
=γS,CS∗

i,k
(yS,CS

i,k
)

= ∇ui
k
E

[
c

(
ω0, (γ

S,CS∗
−i,−k

(yS,CS
−i,−k), u

i
k)

)∣∣∣∣y
S,CS
i,k

]∣∣∣∣
ui
k
=γ

S,CS∗

i,k
(yS,CS

i,k
)

.

The second line of (9.2) follows from the relation (2.14) since the SMCS reduction sat-
isfying this relation is PI. The third line of (9.2) follows from Assumption 2.2 since there is a
bijection between yD

i,k and yS
i,k, and this completes the proof.
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Part (ii): Let γγγD∗ be a PL-NE policy for PD
NZS

, and let γγγD,CS∗ ∈ ΓD,CS be such that for

all i ∈ N and k ∈ TEi, γD∗
i,k(y

D
i,k) = γD,CS∗

i,k (yD,CS
i,k ) for all u↓(i,k) P -a.s. A representation

of policy γγγD,CS∗ is γγγD∗ itself, where the extra information u↓(i,k) has not been used. In the

following, we show that γγγD∗ is also a PL-NE for PD,CS

NZS
. Suppose that it is not; then there is

an index i ∈ N and a policy βββi ∈ ΓD,CS
i (with (βββi, γ

D∗
−i) ∈ ΓD,CS) such that

E

[
ci
(
ω0, γ

D∗
−i
(yD

−i),βββ
i(yD

i , γ
D∗
↓i (yyy

D
↓i)))

)]
< E

[
ci
(
ω0, γ

D∗
−i
(yD

−i), γ
D∗
i (yyyD

i )

)]
.(9.3)

Since for a policy (βββi, γD∗
−i) ∈ ΓD,CS, there exists a policy (γ̂̂γ̂γD

i , γ
D∗
−i) ∈ ΓD such that

ui = βββi(yyyD
i , γ

D∗
↓i (y

D
↓i)) = γ̂̂γ̂γD

i (yyy
D
i ) P -a.s. We note that γD∗

−i remains unchanged since the

construction γD,CS∗
−i from γγγD∗ is independent of policies and only depends on actions which

remain unchanged by the construction. Hence, (9.3) contradicts the assumption that γγγD∗ is

a PL-NE for PD
NZS

. Similarly, we can show the connections hold for DM-NE and stationary
policies as well, and the negative result follows from Example 2.

Part (iii): Let γγγS∗ be PL-NE (DM-NE, stationary) for PS
NZS

, and let a policy γγγS,CS∗ ∈
ΓS,CS be such that for all i ∈ N and k ∈ TEi, γS∗

i,k(y
S
i,k) = γS,CS∗

i,k (yS,CS
i,k ) P -a.s. A repre-

sentation of policy γγγS,CS∗ is γγγS∗ itself, where the extra information u↓(i,k) has not been used.

Similar to part (ii), γγγS∗ is also a PL-NE (DM-NE, stationary) for PS,CS
NZS

. ✷

9.3. Proof of Corollary 4.4. Part (i) follows from Theorem 4.2(iii) and Proposition
4.1(ii). Now, we show part (ii). Suppose that a policy pair (γγγS∗

1 , γγγS∗
2 ) is the strongly unique

PL-SPE for PS
ZS

. Following from Theorem 4.2(iii), (γγγS∗
1 , γγγS∗

2 ) is also PL-SPE for PS,CS

ZS
.

Let (γγγS,CS∗
1 , γγγS,CS∗

2 ) be any other PL-SPE for PS,CS

ZS
. By the ordered interchangeability of

multiple pairs of PL-SPE policies of (PS,CS
ZS

), policy pairs (γγγS∗
1 , γγγS,CS∗

2 ) and (γγγS,CS∗
1 , γγγS∗

2 ) are

PL-SPE for PS,CS

ZS
. Since the IS is partially nested, there exists a policy pair (γ̃̃γ̃γS∗

1 , γγγS∗
2 ) ∈ ΓS

(which is also unique since the static reduction representation of any control-sharing policy is

unique) such that γ̃̃γ̃γS∗
1 (yyyS

1) = γγγS,CS∗
1 (yyyS,CS

1 ) P -a.s., and J(γ̃̃γ̃γS∗
1 , γγγS∗

2 ) = J(γγγS,CS∗
1 , γγγS∗

2 ). We

note that the representation of γγγS∗
2 remains unchanged for (γ̃̃γ̃γS∗

1 , γγγS∗
2 ) since it is independent

of the precedent policies. But since J(γγγS,CS∗
1 , γγγS∗

2 ) = J(γγγS∗
1 , γγγS∗

2 ), and γγγS∗
1 is the unique

best response to γγγS∗
2 under the policy dependent static reduction (in ΓΓΓS), the policy γ̃̃γ̃γS∗

1 must

be identical to γγγS∗
1 , which implies that γγγS,CS∗

1 (yyyS,CS
1 ) = γγγS∗

1 (yyyS
1 ) for P -a.s. Similarly, we can

show that γγγS,CS∗
2 (yyyS,CS

2 ) = γγγS
2 (yyy

S
2 ) P -a.s. Since a policy pair (γγγS,CS

1 , γγγS,CS
2 ) is an arbitrary

PL-SPE for PS,CS
ZS

, the proof is completed. Part (iii) follows from part (ii) and Theorem
4.2(ii). Part (iv) follows from Theorem 4.2(iii), and part (v) follows from Theorem 4.2(iii)(iv)

and the ordered interchangeability property of multiple pairs of PL-SPE policies of PS,CS
ZS

.
Part (vi) follows from Theorem 4.1 and the ordered interchangeability property of multiple
PL-SPE policy pairs since Condition (C) holds.

9.4. Proof of Corollary 6.2. Part (i) follows from Theorem 4.2(ii)(iii), and part (ii)
follows from Theorem 4.2. Parts (v) and (vi) follow from an argument similar to that used in
the proof of Corollary 4.4(v)(vi) using Theorem 4.1(i). In the following, we prove part (iii)
and part (iv). We use a similar argument as that of [2, Proposition 2] and [4, p. 300] with a
slight change of argument since we have a stochastic game.

Part (iii): Fix policy of PL2 to γγγf,2; then, we have xt+1 = f̂t(xt, u
1
t , wt) and

ĴSTO(γγγc,cs,1) = E[ĉT (xT ) +
∑T−1

t=0 ĉt(xt, u
1
t )], where f̂t and ĉt are known to PL1 since

under ICEN,CS,i
t , PL1 has access to the history of actions and observations of PL2. From

standard stochastic control theory, since the problem is a Markov chain for PL1, we know
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that for the above problem for PL1, there is no loss in restricting policies to be pure-feedback

(Markov), and hence, a globally optimal policy under ICEN,CS,i
t is of pure-feedback form, and

it can be obtained by dynamic programming. Following from the hypothesis that (γγγf,1, γγγf,2)
is the strongly unique policy in the class of feedback no-memory policies, the best response
of PL1 to γγγf,2 for PL2 is γγγf,1. Similarly, by fixing the policy of PL1 to γγγf,1, the best response

of PL2 to γγγf,1 for PL1 is γγγf,2. Hence, (γγγf,1, γγγf,2) is PL-SPE for games with ICEN,CS,i
t .

To show the essential uniqueness, first suppose that there exists another essential non-

unique PL-SPE policy pair (γ̂̂γ̂γc,cs,1, γ̂̂γ̂γc,cs,2) for a game with IS ICEN,CS,i
t . By the ordered

interchangeability property of multiple pairs of PL-SPE policies, we have that (γγγf,1, γ̂̂γ̂γc,cs,2)
and (γ̂̂γ̂γc,cs,1, γγγf,2) are also PL-SPE. But by fixing policies of PL2 to γγγf,2 and using standard
stochastic control theory as above, every globally optimal solution for PL1 is obtained by
dynamic programming (we note that not all the representations of globally optimal solutions
are obtained by dynamic programming). Also, following from an argument similar to that
in [31, Theorem 4.1], all other representations γ̂̂γ̂γc,cs,1 of the pure-feedback globally optimal
policy for PL1 are globally optimal for PL1 by fixing policies of PL2 to γγγf,2, and hence, they
all are best responses to γγγf,2. Hence, since the pure-feedback PL-SPE policy pair is strongly
unique, any best response of PL1 to γγγf,2 must be a representation of γγγf,1, which implies that

γ̂c,cs,i
t (ICEN,CS,i

t ) = γf,i
t (IF,i

t ) P -a.s., i ∈ {1, 2} and t ∈ T , and this completes the proof
of the first claim. To prove the second claim, we first note that there exists a pure-feedback
representation of (γγγc,cs,1, γγγc,cs,2), and this representation is admissible for the game with IS

ICL,i
t . Denote this representation by (γγγcl,1, γγγcl,2), where γc,cs,i

t (ICEN,CS,i
t ) = γcl,i

t (ICL,i
t )

P -a.s., i ∈ {1, 2}. But (γγγcl,1, γγγcl,2) is also PL-SPE for games with ICL,i
t since if it is not

then, for i = 1 or i = 2, we have for βββcl,i, J i(γγγcl,1, γγγcl,2) ≥ J i(βββcl,−i, γγγcl,i), and this

contradicts the fact that (γγγcl,1, γγγcl,2) is PL-SPE for the corresponding game with IS ICEN,CS,i
t

(since (βββcl,−i, γγγcl,i) is an admissible policy for games with ICEN,CS,i
t ).

Part (iv): Following Theorem 4.2(i), a policy pair (γ̂̂γ̂γc,cs,1, γ̂̂γ̂γc,cs,2) is PL-SPE for a game

with IS ICEN,CS,i
t if and only if (γ̂̂γ̂γc,ocs,1, γ̂̂γ̂γc,ocs,2) is PL-SPE for the corresponding game with

IS ICEN,OCS,i
t with γc,cs,i

t (ICEN,CS,i
t ) = γc,ocs,i

t (ICEN,OCS,i
t ) P -a.s. Hence, following part

(iii), we have γc,ocs,i
t (ICEN,OCS,i

t ) = γf,i
t (IF,i

t ) P -a.s., which implies that (γ̂̂γ̂γc,ocs,1, γ̂̂γ̂γc,ocs,2)

is essentially unique under IS ICEN,OCS,i
t . For the second claim, by hypothesis, there exists

an OL PL-SPE policy pair (γγγc,op,1, γγγc,op,2) for a game with IS ICEN,OP,i
t . Since by Theorem

4.2(iii), (γγγc,op,1, γγγc,op,2) is PL-SPE under IS ICEN,OCS,i
t , by the first claim of part (iv), we

have γc,op,i
t (ICEN,OP,i

t ) = γf,i
t (IF,i

t ) P -a.s. Since all representations of (γ̂̂γ̂γc,cs,1, γ̂̂γ̂γc,cs,2) admit

a unique OL representation (γ̂̂γ̂γc,op,1, γ̂̂γ̂γc,op,2), (γγγc,op,1, γγγc,op,2) is unique under IS ICEN,OP,i
t .
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[7] T. Başar. On the saddle-point solution of a class of stochastic differential games. Journal of Optimization

Theory and Applications, 33(4):539–556, 1981.
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[32] S. Sanjari, N. Saldi, and S. Yüksel. Optimality of independently randomized symmetric policies for exchange-
able stochastic teams with infinitely many decision makers. Mathematics of Operations Research, 2022.
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