Refined list version of Hadwiger's Conjecture

Yangyan $\mathrm{Gu}^{\ddagger} \quad$ Yiting Jiang ${ }^{\ddagger}$ David R. Wood ${ }^{\dagger}$ Xuding Zhu ${ }^{\ddagger}$

Abstract

Assume $\lambda=\left\{k_{1}, k_{2}, \ldots, k_{q}\right\}$ is a partition of $k_{\lambda}=\sum_{i=1}^{q} k_{i}$. A λ-list assignment of G is a k_{λ}-list assignment L of G such that the colour set $\cup_{v \in V(G)} L(v)$ can be partitioned into $|\lambda|=q$ sets $C_{1}, C_{2}, \ldots, C_{q}$ such that for each i and each vertex v of $G,\left|L(v) \cap C_{i}\right| \geqslant k_{i}$. We say G is λ-choosable if G is L-colourable for any λ-list assignment L of G. The concept of λ-choosability is a refinement of choosability that puts k-choosability and k-colourability in the same framework. If $|\lambda|$ is close to k_{λ}, then λ-choosability is close to k_{λ}-colourability; if $|\lambda|$ is close to 1 , then λ choosability is close to k_{λ}-choosability. This paper studies Hadwiger's Conjecture in the context of λ-choosability. Hadwiger's Conjecture is equivalent to saying that every K_{t}-minor-free graph is $\{1 \star(t-1)\}$-choosable for any positive integer t. We prove that for $t \geqslant 5$, for any partition λ of $t-1$ other than $\{1 \star(t-1)\}$, there is a K_{t}-minor-free graph G that is not λ-choosable. We then construct several types of K_{t}-minor-free graphs that are not λ-choosable, where $k_{\lambda}-(t-1)$ gets larger as $k_{\lambda}-|\lambda|$ gets larger. In partcular, for any q and any $\epsilon>0$, there exists t_{0} such that for any $t \geqslant t_{0}$, for any partition λ of $\lfloor(2-\epsilon) t\rfloor$ with $|\lambda|=q$, there is a K_{t}-minor-free graph that is not λ-choosable. The $q=1$ case of this result was recently proved by Steiner, and our proof uses a similar argument. We also generalize this result to (a, b)-list colouring.

Keywords: Hadwiger's Conjecture, λ-choosablity, (a, b)-list colouring.

1 Introduction

Given graphs H and G, we say H is a minor of G (or G has an H-minor) if a graph isomorphic to H can be obtained from a subgraph of G by contracting edges. Let K_{t} be the t-vertex complete graph. A graph G is K_{t}-minor-free if G has no K_{t}-minor. In 1943, Hadwiger [8] conjectured the following upper bound on the chromatic number of K_{t}-minor-free graphs:

[^0]Conjecture 1 (Hadwiger's Conjecture). For every integer $t \geqslant 1$, every K_{t}-minor-free graph is $(t-1)$-colourable.

This conjecture is a deep generalization of the Four Colour Theorem, and has motivated many developments in graph colouring and graph minor theory. Hadwiger [8] and Dirac [6] independently showed that Hadwiger's Conjecture holds for $t \leqslant 4$. Wagner [27] proved that for $t=5$ the conjecture is equivalent to the Four Colour Theorem, which was subsequently proved by Appel, Haken and Koch [2,3] and Robertson, Sanders, Seymour and Thomas [20], both using extensive computer assistance. Robertson, Seymour and Thomas [21] went one step further and proved Hadwiger's Conjecture for $t=6$, also by reducing it to the Four Colour Theorem. The conjecture for $t \geqslant 7$ is open and seems to be extremely challenging. For more on Hadwiger's Conjecture, see the survey of Seymour [23].

The evident difficulty of Hadwiger's Conjecture has inspired many researchers to study the following natural weakening (cf. [9, 10, 19]):
Conjecture 2 (Linear Hadwiger's Conjecture). There exists a constant $C>0$ such that for every integer $t \geqslant 1$, every K_{t}-minor-free graph is $C t$-colourable.

For many decades, the best general upper bound on the chromatic number of $K_{t^{-}}$ minor-free graphs was $O(t \sqrt{\log t})$, which was proved independently by Kostochka [12,13] and Thomason [24] in the 1980s. In 2019, Norine, Postle and Song [15] broke this barrier, and proved that the maximum chromatic number of K_{t}-minor-free graphs is in $O\left(t(\log t)^{1 / 4+o(1)}\right)$. Following a series of improvements [14,16-18], the best known bound is $O(t \log \log t)$ due to Delcourt and Postle [5].

A list assignment of a graph G is a mapping L that assigns to each vertex v of G a set $L(v)$ of permissible colours. An L-colouring of G is a proper colouring f of G such that for each vertex v of $G, f(v) \in L(v)$. We say G is L-colourable if G has an L-colouring. A k-list assignment of G is a list assignment L with $|L(v)| \geqslant k$ for each vertex v. We say G is k-choosable if G is L-colourable for any k-list assignment L of G. The choice-number of G is the minimum integer k such that G is k-choosable.

Hadwiger's Conjecture is also widely considered in the setting of list colourings. Voigt [26] constructed planar graphs (hence K_{5}-minor-free) with choice-number 5. Hence the list version of Hadwiger's Conjecture is false. Nevertheless, the list version of Linear Hadwiger's Conjecture, proposed by Kawarabayashi and Mohar [10] in 2007, remains open.

Conjecture 3 (List Hadwiger's Conjecture). There exists a constant $C>0$ such that for every integer $t \geqslant 1$, every K_{t}-minor-free graph is $C t$-choosable.

The current state-of-the-art upper bound on the choice-number of K_{t}-minor-free graphs is $O\left(t(\log \log t)^{2}\right)$ [5].

If Conjecture 3 is true, then a natural problem is to determine the minimum value of C. Barát, Joret and Wood [4] constructed K_{t}-minor-free graphs that are not $4(t-3) / 3-$ choosable, implying $C \geqslant \frac{4}{3}$ in Conjecture 3. Improving upon this result, Steiner [22]
recently proved that the maximum choice-number of K_{t}-minor-free graphs is at least $2 t-o(t)$, and hence $C \geqslant 2$ in Conjecture 3 .

1.1λ-Choosability

In general, k-colourability and k-choosability behave very differently. Indeed, bipartite graphs can have arbitrary large choice-number. Zhu [28] introduced a refinement of the concept of choosability, λ-choosability, that puts k-choosability and k-colourability in the same framework and considers a more complex hierarchy of colouring parameters.

Definition 1. Let $\lambda=\left\{k_{1}, k_{2}, \ldots, k_{q}\right\}$ be a multiset of positive integers. Let $k_{\lambda}=\sum_{i=1}^{q} k_{i}$ and $|\lambda|=q$. A λ-list assignment of G is a list assignment L such that the colour set $\cup_{v \in V(G)} L(v)$ can be partitioned into q sets $C_{1}, C_{2}, \ldots, C_{q}$ such that for each i and each vertex v of $G,\left|L(v) \cap C_{i}\right| \geqslant k_{i}$. We say G is λ-choosable if G is L-colourable for any λ-list assignment L of G.

Note that for each vertex $v,|L(v)| \geqslant \sum_{i=1}^{q} k_{i}=k_{\lambda}$. So a λ-list assignment L is a k_{λ}-list assignment with some restrictions on the set of possible lists.

For a positive integer a, let $m_{\lambda}(a)$ be the multiplicity of a in λ. If $m_{\lambda}(a)=m$, then instead of writing m times the integer a, we write $a \star m$. For example, $\lambda=\left\{1 \star k_{1}, 2 \star k_{2}, 3\right\}$ means that λ is the multiset consisting of k_{1} copies of $1, k_{2}$ copies of 2 and one copy of 3 . If $\lambda=\{k\}$, then λ-choosability is the same as k-choosability; if $\lambda=\{1 \star k\}$, then λ-choosability is equivalent to k-colourability. So the concept of λ-choosability puts k-choosability and k-colourability in the same framework.

For $\lambda=\left\{k_{1}, k_{2}, \ldots, k_{q}\right\}$ and $\lambda^{\prime}=\left\{k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{p}^{\prime}\right\}$, we say λ^{\prime} is a refinement of λ if $p \geqslant q$ and there is a partition $I_{1}, I_{2}, \ldots, I_{q}$ of $\{1,2, \ldots, p\}$ such that $\sum_{j \in I_{t}} k_{j}^{\prime}=k_{t}$ for $t=1,2, \ldots, q$. We say λ^{\prime} is obtained from λ by increasing some parts if $p=q$ and $k_{t} \leqslant k_{t}^{\prime}$ for $t=1,2, \ldots, q$. We write $\lambda \leqslant \lambda^{\prime}$ if λ^{\prime} is obtained from a refinement of λ by increasing some parts. It follows from the definitions that if $\lambda \leqslant \lambda^{\prime}$, then every λ-choosable graph is λ^{\prime}-choosable. Conversely, Zhu [28] proved that if $\lambda \nless \lambda^{\prime}$, then there is a λ-choosable graph that is not λ^{\prime}-choosable. In particular, λ-choosability implies k_{λ}-colourability, and if $\lambda \neq\left\{1 \star k_{\lambda}\right\}$, then there are k_{λ}-colourable graphs that are not λ-choosable.

All the partitions λ of a positive integer k are sandwiched between $\{k\}$ and $\{1 \star k\}$ in the above order. As observed above, $\{k\}$-choosability is the same as k-choosability, and $\{1 \star k\}$-choosability is equivalent to k-colourability. By considering other partitions λ of k, λ-choosability provides a complex hierarchy of colouring parameters that interpolate between k-colourability and k-choosability.

The framework of λ-choosability provides room to explore strengthenings of colourability and choosability results. For example, Kermnitz and Voigt [11] proved that there are planar graphs that are not $\{1,1,2\}$-choosable. This result strengthens Voigt's result that there are non-4-choosable planar graphs, and shows that the Four Colour Theorem is sharp in the sense that for any partition λ of 4 other than $\{1 \star 4\}$, there is a planar graph that is not λ-choosable.

This paper considers Hadwiger's Conjecture in the context of λ-choosability. Conjectures 1, 2 and 3 can be restated in the language of λ-choosability as follows:

Conjecture 1'. For every integer $t \geqslant 1$, every K_{t}-minor-free graph is $\{1 \star(t-1)\}$ choosable.

Conjecture 2'. There exists a constant $C>0$ such that for every integer $t \geqslant 1$, every K_{t}-minor-free graph is $\{1 \star C t\}$-choosable.

Conjecture 3 '. There exists a constant $C>0$ such that for every integer $t \geqslant 1$, every K_{t}-minor-free graph is $\{C t\}$-choosable.

1.2 Results

This paper constructs several examples of K_{t}-minor-free graphs that are not λ-choosable where $k_{\lambda} \geqslant t-1$ and q is close to k_{λ}. In particular, if the multiplcity of 1 in λ is large enough, then the number of parts of λ will be close to k_{λ}.

First we strengthen the above-mentioned result of Kermnitz and Voigt to K_{t}-minorfree graphs for $t \geqslant 5$ as follows:

Theorem 1. For every integer $t \geqslant 5$, there exists a K_{t}-minor-free graph that is not $\{1 \star(t-3), 2\}$-choosable.

If λ is a partition of $t-1$ other than $\{1 \star(t-1)\}$, then $\{1 \star(t-3), 2\}$ is a refinement of λ. Hence we have the following corollary.

Corollary 2. If λ is a partition of $t-1$ other than $\{1 \star(t-1)\}$, then there is a K_{t} -minor-free graph that is not λ-choosable.

For a multiset λ of positive integers, let $h(\lambda)$ be the maximum t such that every K_{t}-minor-free graph is λ-choosable. Since $K_{k_{\lambda}+1}$ is not k_{λ}-colourable and hence not λ-choosable, we know that $h(\lambda) \leqslant k_{\lambda}+1$.

For a multiset λ of positive integers, $k_{\lambda}-|\lambda|$ measures the "distance" of λ-choosability from k_{λ}-colourability. Hadwiger's Conjecture says that if $k_{\lambda}-|\lambda|=0$, then $h(\lambda)=k_{\lambda}+1$. By Theorem 1, if $k_{\lambda}-|\lambda| \geqslant 1$, then $h(\lambda) \leqslant k_{\lambda}$, provided that $k_{\lambda} \geqslant 5$. It seems natural that if $k_{\lambda}-|\lambda|$ gets bigger, then $k_{\lambda}-h(\lambda)$ also gets bigger, provided that k_{λ} is sufficiently large. The next result shows this is true for various λ.

Theorem 3. For each integer $a \geqslant 0$, there exists an integer $t_{1}=t_{1}(a)$ such that for every integer $t \geqslant t_{1}$, there exists a K_{t}-minor-free graph that is not $\{1 \star(t-2 a-6), 3 a+6\}$ choosable.

For the λ in Theorem 3, $k_{\lambda}=t+a, h(\lambda) \leqslant t-1$ and $|\lambda|=t-(2 a+5)$. As $k_{\lambda}-|\lambda|=3 a+5$ tends to infinity, the difference $k_{\lambda}-h(\lambda) \geqslant a+1$ also tends to infinity, provided that $k_{\lambda} \geqslant \phi\left(k_{\lambda}-|\lambda|\right)$, where ϕ is a certain given function. It remains open whether such a conclusion holds for all λ. We conjecture a positive answer.

Conjecture 4. There are functions $\phi, \psi: \mathbb{N} \rightarrow \mathbb{N}$ for which the following hold:

- $\lim _{n \rightarrow \infty} \psi(n)=\infty$.
- For any multiset λ of positive integers, if $k_{\lambda} \geqslant \phi\left(k_{\lambda}-|\lambda|\right)$, then $k_{\lambda}-h(\lambda) \geqslant \psi\left(k_{\lambda}-|\lambda|\right)$.

It is easy to see that if $k_{\lambda}-|\lambda|=b$, then $\left\{1 \star\left(k_{\lambda}-2 b^{\prime}\right), 2 \star b^{\prime}\right\}$ is a refinement of λ, where $b \geqslant b^{\prime} \geqslant b / 2$. Thus to prove Conjecture 4 , it suffices to prove it for λ of the form $\left\{1 \star k_{1}, 2 \star k_{2}\right\}$.

Theorem 4 below shows that Conjecture 4 holds for any λ of the form $\left\{1 \star k_{1}, 3 \star k_{2}\right\}$.
Theorem 4. For each integer $a \geqslant 0$, there exists an integer $t_{2}=t_{2}(a)$ such that for every integer $t \geqslant t_{2}$, there exists a K_{t}-minor-free graph that is not $\{1 \star(t-5 a-9), 3 \star(2 a+3)\}$ choosable.

As $|\lambda|$ becomes very small compared to k_{λ}, say $|\lambda|$ is constant and k_{λ} tends to infinity, then λ-choosability becomes very close to k_{λ}-choosability. The following result, which generalizes the main result of Steiner [22], deals with such λ.

Theorem 5. For every $\varepsilon \in(0,1)$ and $q \in \mathbb{N}$, there exists an integer $t_{3}=t_{3}(q, \varepsilon)$ such that for every integer $t \geqslant t_{3}$ and $k_{1}, k_{2}, \ldots, k_{q} \in \mathbb{N}$ satisfying

$$
\sum_{j=1}^{q} k_{j} \leqslant(2-\varepsilon) t
$$

there exists a K_{t}-minor-free graph G that is not $\left\{k_{1}, k_{2}, \ldots, k_{q}\right\}$-choosable.
The $q=1$ case of Theorem 5 was proved by Steiner [22].

1.3 Fractional Colouring

Next we consider the fractional version of Hadwiger's Conjecture. A b-fold colouring of a graph G is a mapping ϕ that assigns to each vertex v of G a set $\phi(v)$ of b colours, so that adjacent vertices receive disjoint colour sets. An (a, b)-colouring of G is a b-fold colouring ϕ of G such that $\phi(v) \subseteq\{1,2, \ldots, a\}$ for each vertex $v \in V(G)$. The fractional chromatic number of G is

$$
\chi_{f}(G):=\inf \left\{\frac{a}{b}: G \text { is }(a, b) \text {-colourable }\right\} .
$$

The fractional version of Hadwiger's Conjecture was studied by Reed and Seymour [19], who proved that every K_{t}-minor-free graph G has fractional chromatic number at most $2 t$.

An a-list assignment of G is a mapping L that assigns to each vertex v a set $L(v)$ of a permissible colours. A b-fold L-colouring of G is a b-fold colouring ϕ of G such that
$\phi(v) \subseteq L(v)$ for each vertex v. We say G is (a, b)-choosable if for any a-list assignment L of G, there is a b-fold L-colouring of G. The fractional choice-number of G is

$$
\operatorname{ch}_{f}(G):=\inf \left\{\frac{a}{b}: G \text { is }(a, b) \text {-choosable }\right\} .
$$

Alon, Tuza and Voigt [1] proved that for any graph G, if G is (a, b)-colourable, then G is $(a m, b m)$-choosable for some integer m. So for any graph $G, \chi_{f}(G)=\operatorname{ch}_{f}(G)$, and moreover the infimum in the definition of $\operatorname{ch}_{f}(G)$ is attained and hence can be replaced by minimum.

We prove the following result by an argument parallel to the proofs in [22].
Theorem 6. Let $\varepsilon \in(0,1)$ be fixed. For every positive integer m, there exists $t_{0}=$ $t_{0}(\varepsilon)$ such that for every integer $t \geqslant t_{0}$ there exists a K_{t}-minor-free graph G that is not ($(2-\varepsilon) t m, m)$-choosable.

Note that the graph G in Theorem 6 depends on m (as well as on ϵ). The result of Reed and Seymour implies that for every K_{t}-minor-free graph G, there is a constant m such that G is $(2 t m, m)$-choosable. Here the integer m depends on G. Theorem 6 has no implication for the fractional choice number of G.

2 A key lemma

Let G_{1} and G_{2} be graphs, and S_{i} be a k-clique in G_{i} for $i=1,2$. We say a graph G is a k-clique-sum of G_{1} and G_{2} (on S_{1} and S_{2}), if G is obtained from the disjoint union of G_{1} and G_{2} by identifying pairs of the vertices of S_{1} and S_{2} to form a single shared clique and then possibly deleting some of the clique edges. The lemma is well-known and easily proved.
Lemma 7. Let G_{1} and G_{2} be K_{t}-minor-free graphs. If G is a k-clique-sum of G_{1} and G_{2} (on cliques S_{1} of G_{1} and S_{2} of G_{2}), then G is K_{t}-minor-free.
Definition 2. Assume $\lambda=\left\{k_{1}, k_{2}, \ldots, k_{q}\right\}$ is a multiset of positive integers, G is a graph and $K=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is a clique in G, and $\mathcal{C}=\left(C_{1}, C_{2}, \ldots, C_{q}\right)$ is a q-tuple of disjoint colour sets. A (λ, \mathcal{C})-list assignment of G is a list assignment L of G such that for each vertex $v,\left|L(v) \cap C_{i}\right| \geqslant k_{i}$.

Assume $K^{\prime}=\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{p}^{\prime}\right\}$ is a p-clique (disjoint from G), and ψ^{\prime} is a proper colouring of K^{\prime}. A (λ, \mathcal{C})-list assignment L of G is a ψ^{\prime}-obstacle for (G, K, \mathcal{C}) if the colouring ψ of K defined as $\psi\left(v_{i}\right)=\psi^{\prime}\left(v_{i}^{\prime}\right)$ is an L-colouring of K that cannot be extended to a proper L-colouring of G.

The following lemma will be used in some of our proofs.
Lemma 8. Let t be a positive integer and $\lambda=\left\{k_{1}, k_{2}, \ldots, k_{q}\right\}$ be a multiset of positive integers. Assume there are K_{t}-minor-free graphs H_{1} and H_{2}, a clique $K=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ in H_{1}, a q-tuple of disjoint colour sets $\mathcal{C}=\left(C_{1}, C_{2}, \ldots, C_{q}\right)$ and a (λ, \mathcal{C})-list assignment L of H_{2}, for which the following holds:

- for any L-colouring ψ of H_{2}, there is a p-clique $K_{\psi}=\left\{v_{\psi, 1}, v_{\psi, 2}, \ldots, v_{\psi, p}\right\}$ in H_{2}, such that there exists a $\left.\psi\right|_{K_{\psi}}$-obstacle L_{ψ} for $\left(H_{1}, K, \mathcal{C}\right)$.

Then there is a K_{t}-minor-free graph G that is not λ-choosable.
Proof. We shall construct a graph G and a λ-list assignment L^{\prime} of G so that G is $K_{t^{-}}$ minor-free and G is not L^{\prime}-colourable. Let H_{1}, H_{2} be graphs, K be a p-clique in H_{1}, and L be a (λ, \mathcal{C})-list assignment of H_{2}, satisfying the assumption of the lemma.

Now we start the construction of G and L^{\prime}. First we take a copy of H_{2}, and let L be the (λ, \mathcal{C})-list assignment of H_{2} as above.

For each proper L-colouring ψ of H_{2}, choose a p-clique $K_{\psi}=\left\{v_{\psi, 1}, v_{\psi, 2}, \ldots, v_{\psi, p}\right\}$ in H_{2}, for which there is a $\left.\psi\right|_{K_{\psi}}$-obstacle L_{ψ} for $\left(H_{1}, K, \mathcal{C}\right)$. Take a copy H_{ψ} of H_{1}. Let $K_{\psi}^{\prime}=\left\{v_{\psi, 1}^{\prime}, v_{\psi, 2}^{\prime}, \ldots, v_{\psi, p}^{\prime}\right\}$ be the copy of K in H_{ψ} (where $v_{\psi, i}^{\prime}$ is the copy of $v_{i} \in V(K)$ in $\left.K_{\psi}^{\prime}\right)$. Identify K_{ψ} with K_{ψ}^{\prime} in such a way that $v_{\psi, i}$ is identified with $v_{\psi, i}^{\prime}$. Extend the list assignment L to $V\left(H_{\psi}\right)-K_{\psi}^{\prime}$ by letting $L^{\prime}\left(v_{\psi}\right)=L_{\psi}(v)$, where v_{ψ} is the copy of $v \in H_{1}$ in H_{ψ}.

This completes the construction of the graph G and the list assignment L^{\prime} of G. Observe that for each proper L-colouring ψ of H_{2}, we have chosen a p-clique $K_{\psi}=$ $\left\{v_{\psi, 1}, v_{\psi, 2}, \ldots, v_{\psi, p}\right\}$ in H_{2}. A vertex v of H_{2} may be contained in many copies of p cliques, say v is contained in $K_{\psi_{1}}, K_{\psi_{2}}, \ldots, K_{\psi_{s}}$. Then v has different names in these copies of cliques. The name for v in K_{ψ} is only used to find its partner vertex (the vertex to be identified with v) in H_{ψ}. So this leads to no confusion.

It follows from Lemma 7 that G is K_{t}-minor-free, and L^{\prime} is a (λ, \mathcal{C})-list assignment of G.

Now we show that G is not L^{\prime}-colourable. Assume to the contrary that there is a proper L^{\prime}-colouring ϕ of G. Let ψ be the restriction of ϕ to H_{2}. The restriction of ϕ to H_{ψ} is an L_{ψ}-colouring of H_{ψ}. But L_{ψ} is a $\left.\psi\right|_{K_{\psi}}$-obstacle for $\left(H_{1}, K, \mathcal{C}\right)$, a contradiction.

3 Proofs of the theorems

Theorem 1. For every integer $t \geqslant 5$, there exists a K_{t}-minor-free graph that is not $\{1 \star(t-3), 2\}$-choosable.

Proof. The proof is by induction on t. For $t=5$, a non- $\{1,1,2\}$-choosable planar graph (hence a K_{5}-minor-free graph) was constructed in [11]. Assume $t \geqslant 6$ and there exists a K_{t-1}-minor-free graph G_{t-1} that is not λ-choosable, where $\lambda=\{1 \star(t-4), 2\}$.

Let L be a λ-list assignment of G_{t-1}, such that G_{t-1} is not L-colourable. Let $\mathcal{C}=$ $\left(C_{1}, C_{2}, \ldots, C_{t-3}\right)$ be a $(t-3)$-tuple of disjoint colour sets so that for each vertex v of $G_{t-1},\left|L(v) \cap C_{i}\right|=1$ for $1 \leqslant i \leqslant t-4$ and $\left|L(v) \cap C_{t-3}\right|=2$. Zhu [28] showed that we may assume $C_{i}=\left\{c_{i}\right\}$ for $i=1,2, \ldots, t-4$.

Let H_{1} be the graph obtained from G_{t-1} by adding a vertex u adjacent to every vertex of G_{t-1}. Let

$$
\mathcal{C}^{\prime}=\left(C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{t-2}^{\prime}\right)
$$

where $C_{i}^{\prime}=C_{i}$ for $i=1,2, \ldots, t-4, C_{t-3}^{\prime}=\left\{c_{i-3}\right\}$ and $C_{t-2}^{\prime}=C_{t-3}$. Let a, b be two colours from C_{t-3}. Let $\lambda^{\prime}=\{1 \star(t-3), 2\}$ and let L^{\prime} be the $\left(\lambda^{\prime}, \mathcal{C}^{\prime}\right)$-list assignment of H_{1} defined as

$$
L^{\prime}(v)= \begin{cases}L(v) \cup\left\{c_{t-3}\right\}, & \text { if } v \in V\left(G_{t-1}\right) \\ \left\{c_{1}, c_{2}, \ldots, c_{t-3}, a, b\right\}, & \text { if } v=u\end{cases}
$$

Let $K=\{u\}$ be the 1-clique in H_{1}. If ψ is an L^{\prime}-colouring of a copy of $K_{1}=\left\{u^{\prime}\right\}$ with $\psi\left(u^{\prime}\right)=c_{i}$ for some $1 \leqslant i \leqslant t-3$, then L^{\prime} is a ψ-obstacle for $\left(H_{1}, K, \mathcal{C}^{\prime}\right)$.

Let H_{2} be a triangle and $L^{\prime \prime}$ be the $\left(\lambda^{\prime}, \mathcal{C}^{\prime}\right)$-list assignment of H_{2}, defined as $L^{\prime \prime}(v)=$ $\left\{c_{1}, c_{2}, \ldots, c_{t-3}, a, b\right\}$ for each vertex v of H_{2}. Then for any proper $L^{\prime \prime}$-colouring ψ of H_{2}, there is a vertex v (a copy of K_{1}) such that $\psi(v)=c_{i}$ for some $1 \leqslant i \leqslant t-3$. Hence L^{\prime} is a $\left.\psi\right|_{\{v\}}$-obstacle for $\left(H_{1}, K, \mathcal{C}^{\prime}\right)$.

By Lemma 8, there is a K_{t}-minor-free graph G_{t} that is not λ^{\prime}-choosable.
Theorem 3. For each integer $a \geqslant 0$, there exists an integer $t_{1}=t_{1}(a)$ such that for every integer $t \geqslant t_{1}$, there exists a K_{t}-minor-free graph that is not $\{1 \star(t-2 a-6), 3 a+6\}$ choosable.

Proof. Assume a is a positive integer. Let

$$
m:=\binom{2 a+5}{a+3} \quad \text { and } \quad t_{1}:=(2 a+5) m+2 .
$$

Assume $t \geqslant t_{1}$. We shall construct a K_{t}-minor-free graph G that is not $\{1 \star(t-2 a-$ 6), $3 a+6\}$-choosable by using Lemma 8 .

First, let H_{1} be a graph with vertex set $A \cup B$ such that $A \cap B=\varnothing$ and

- A induces a $(2 a+5)$-clique, B induces a $(t-2)$-clique,
- each vertex in B has exactly $a+3$ neighbours in A, and
- for each $(a+3)$-subset X of A, if $B_{X}:=\left\{v \in B: N_{H_{1}}(v) \cap A=X\right\}$, then

$$
\left|B_{X}\right| \geqslant\left\lfloor\frac{t-2}{m}\right\rfloor .
$$

It is easy to see that such a graph H_{1} exists.
Claim 1. The graph H_{1} is K_{t}-minor-free.
Proof. Assume that H_{1} has a K_{t}-minor. Then there exists a collection \mathcal{Z} of t non-empty and pairwise disjoint subsets of $V\left(H_{1}\right)$ such that for each $Z \in \mathcal{Z}, H_{1}[Z]$ is connected, and for any two distinct $Z, Z^{\prime} \in \mathcal{Z}$, there exists at least one edge in H_{1} joining a vertex in Z to a vertex in Z^{\prime}. In particular, for any $Z \in \mathcal{Z}$, there are at least $(t-1)$ vertices in $V\left(H_{1}\right)-Z$ adjacent to vertices in Z.

Since $|B|=t-2$, there are at least two subsets $Z \in \mathcal{Z}$ that are contained in A. As $|A|=2 a+5$, there exists $Z \in \mathcal{Z}$ such that $Z \subseteq A$ and $|Z| \leqslant a+2$.

Let X be an $(a+3)$-subset of $A-Z$. Then

$$
\begin{aligned}
\left|N_{H_{1}}(Z)\right| \leqslant\left|V\left(H_{1}\right)\right|-\left|B_{X}\right| & \leqslant(2 a+5)+(t-2)-\left\lfloor\frac{t-2}{m}\right\rfloor \\
& <t+2 a+4-\frac{t-2}{m} \\
& =t+2 a+4-\frac{t-2}{\binom{2 a+5}{a+3}} \\
& \leqslant t+2 a+4-(2 a+5) \\
& =t-1,
\end{aligned}
$$

a contradiction.
Label the vertices in A as $v_{1}, v_{2}, \ldots, v_{2 a+5}$. Let

$$
\left\{a_{i}: i \in[3 a+6]\right\}, \quad\left\{b_{i}: i \in[t-2 a-6]\right\}, \quad\left\{c_{i}: i \in[2 a+3]\right\}
$$

be pairwise disjoint colour sets. Let $\psi: A \rightarrow\left\{a_{i}: i \in[3 a+6]\right\}$ be a injective mapping. Let L_{ψ} be the list assignment of H_{1} defined as follows:
(LA) $L_{\psi}(v)=\left\{b_{i}: i \in[t-2 a-6]\right\} \cup\left\{a_{i}: i \in[3 a+6]\right\}$ for $v \in A$.
$(\mathrm{LB}) L_{\psi}(v)=\psi\left(N_{A}(v)\right) \cup\left\{b_{i}: i \in[t-2 a-6]\right\} \cup\left\{c_{i}: i \in[2 a+3]\right\}$ for $v \in B$.
Let

$$
\mathcal{C}=\left(C_{1}, C_{2}, \ldots, C_{t-2 a-5}\right)
$$

where $C_{i}=\left\{b_{i}\right\}$, for $i=1,2, \ldots, t-2 a-6, C_{t-2 a-5}=\left\{a_{i}: i \in[3 a+6]\right\} \cup\left\{c_{i}: i \in[2 a+3]\right\}$. Let $\lambda=\{1 \star(t-2 a-6), 3 a+6\}$. Then L_{ψ} is a (λ, \mathcal{C})-list assignment of H_{1} : For each vertex v of $H_{1},\left|L_{\psi}(v) \cap C_{i}\right|=1$ for $i=1,2, \ldots, t-2 a-6$, and $\left|L_{\psi}(v) \cap C_{t-2 a-5}\right|=3 a+6$. Moreover, ψ is an L_{ψ}-colouring of A.
Claim 2. ψ cannot be extended to an L_{ψ}-colouring of H_{1}.
Proof. Assume that H_{1} has an L-colouring ϕ_{ψ} which is an extension of ψ. Then $\phi(v)=$ $\psi(v)$ for each $v \in A$ and $\phi(v) \in\left\{b_{i}: i \in[t-2 a-6]\right\} \cup\left\{c_{i}: i \in[2 a+3]\right\}$ for every vertex $v \in B$. Thus the vertices of the $(t-2)$-clique induced by B are coloured by $(t-2 a-6)+(2 a+3)=t-3$ colours, a contradiction.

Let H_{2} be a $(t-1)$-clique and L^{\prime} be the $\{1 \star(t-2 a-6), 3 a+6\}$-list assignment defined as

$$
L^{\prime}(v)=\left\{b_{i}: i \in[t-2 a-6]\right\} \cup\left\{a_{i}: i \in[3 a+6]\right\},
$$

for each vertex v of H_{2}. Then for any proper L^{\prime}-colouring ψ of H_{2}, there is a $(2 a+5)$ clique $K_{\psi}=\left\{v_{\psi, 1}, v_{\psi, 2}, \ldots, v_{\psi, 2 a+5}\right\}$ in H_{2} such that $\psi\left(v_{\psi, i}\right) \in\left\{a_{j}: j \in[3 a+6]\right\}$ for $i \in[2 a+5]$.

By Claim 2, L_{ψ} is a $\left.\psi\right|_{K_{\psi}}$-obstacle for $\left(H_{1}, H_{1}[A], \mathcal{C}\right)$.
By Lemma 8, there is a K_{t}-minor-free graph G that is not $\{1 \star(t-2 a-6), 3 a+6\}$ choosable.

Theorem 4. For each integer $a \geqslant 0$, there exists an integer $t_{2}=t_{2}(a)$ such that for every integer $t \geqslant t_{2}$, there exists a K_{t}-minor-free graph that is not $\{1 \star(t-5 a-9), 3 \star(2 a+3)\}$ choosable.

Proof. Assume a is a positive integer. Let

$$
m:=3^{a+2} \quad \text { and } \quad t_{2}:=(2 a+5) m+a+3 .
$$

Assume $t \geqslant t_{2}$. We shall construct a K_{t}-minor-free graph G that is not $\{1 \star(t-4 a-$ $9), 3 \star(2 a+3)\}$-choosable by using Lemma 8 .

Let H_{1} be a graph with vertex set $(A \cup B)$ such that $A \cap B=\varnothing$ and

- A induces a $3(a+2)$-clique, B induces a $(t-a-3)$-clique.
- $\left\{A_{1}, A_{2}, \ldots, A_{a+2}\right\}$ is a partition of A with $\left|A_{i}\right|=3$ for $i \in[a+2]$ and $T=\{X \subseteq A$: $\left|X \cap A_{i}\right|=2$, for each $\left.i \in[a+2]\right\}$. For each vertex $v \in B, N_{A}(v) \in T$, and for each $X \in T$,

$$
\left|\left\{v \in B: N_{A}(v)=X\right\}\right| \geqslant\left\lfloor\frac{t-a-3}{|T|}\right\rfloor=\left\lfloor\frac{t-a-3}{m}\right\rfloor .
$$

It is easy to see that such a graph H_{1} exists.
Claim 3. The graph H_{1} is K_{t}-minor-free.
Proof. Assume that H_{1} has a K_{t}-minor. Then there exists a collection \mathcal{Z} of non-empty and pairwise disjoint subsets of $V\left(H_{1}\right)$ such that for each $Z \in \mathcal{Z}, H_{1}[Z]$ is connected, and for any two distinct $Z, Z^{\prime} \in \mathcal{Z}$, there exists at least one edge in H_{1} joining a vertex in Z to a vertex in Z^{\prime}. In particular, for any $Z \in \mathcal{Z}$, there are at least $(t-1)$ vertices in $V\left(H_{1}\right)-Z$ adjacent to vertices in Z.

Since $|B|=t-a-3$, there are at least $(a+3)$ subsets $Z \in \mathcal{Z}$ that are contained in A. As the partition of A has $(a+2)$ parts $A_{1}, A_{2}, \ldots, A_{a+2}$ and $\left|A_{i}\right|=3$ for $i \in[a+2]$, there exists $Z \in \mathcal{Z}$ such that $\left|Z \cap A_{i}\right| \leqslant 1$ for each $i \in[a+2]$.

Let X be a $2(a+2)$-subset of $A-Z$ such that $\left|X \cap A_{i}\right|=2$ for each $i \in[a+2]$. Let $B_{X}=\left\{v \in B: N_{A}(v)=X\right\}$. Then

$$
\begin{aligned}
\left|N_{H_{1}}(Z)\right| \leqslant\left|V\left(H_{1}\right)\right|-\left|B_{X}\right| & \leqslant 3(a+2)+(t-a-3)-\left\lfloor\frac{t-a-3}{m}\right\rfloor \\
& <t+2 a+4-\frac{t-a-3}{m} \\
& =t+2 a+4-\frac{t-a-3}{3^{a+2}} \\
& \leqslant t+2 a+4-(2 a+5) \\
& =t-1,
\end{aligned}
$$

a contradiction.

Label the vertices in A_{i} as $A_{i}=\left\{u_{1}^{i}, u_{2}^{i}, u_{3}^{i}\right\}$ for each $i \in[a+2]$. Let

$$
\bigcup_{i \in[2 a+3]}\left\{d_{1}^{i}, d_{2}^{i}, d_{3}^{i}\right\},\left\{b_{i}: i \in[t-5 a-9]\right\},\left\{c_{i}: i \in[2 a+3]\right\}, \bigcup_{i \in[2 a+3]}\left\{c_{1}^{i}, c_{2}^{i}, c_{3}^{i}\right\}
$$

be pairwise disjoint colour sets.
Let $\psi: A \rightarrow \bigcup_{i \in[2 a+3]}\left\{d_{1}^{i}, d_{2}^{i}, d_{3}^{i}\right\}$ be an injective mapping such that for each $i \in[a+2]$ there exists $i_{0} \in[2 a+3], \psi\left(u_{j}^{i}\right)=d_{j}^{i_{0}}$ for $j \in[3]$. Let

$$
I(\psi)=\left\{i_{0} \in[2 a+3]: \text { there exists } i \in[a+2] \text { such that } \psi\left(u_{j}^{i}\right)=d_{j}^{i_{0}} \text { for } j \in[3]\right\} .
$$

Note that $|I(\psi)|=a+2$. Let L_{ψ} be the list assignment of H_{1} defined as follows:
$\left(\mathrm{LA}^{\prime}\right) L_{\psi}(v)=\bigcup_{j \in[2 a+3]}\left\{d_{1}^{j}, d_{2}^{j}, d_{3}^{j}\right\} \cup\left\{b_{i}: i \in[t-5 a-9]\right\}$ for $v \in A$;
$\left(\mathrm{LB}^{\prime}\right) L_{\psi}(v)=\psi\left(N_{A}(v)\right) \cup\left\{b_{i}: i \in[t-5 a-9]\right\} \cup\left\{c_{i}: i \in I(\psi)\right\} \cup \bigcup_{i \in[2 a+3] \backslash I(\psi)}\left\{c_{1}^{i}, c_{2}^{i}, c_{3}^{i}\right\}$, for $v \in B$.

Let

$$
\mathcal{C}=\left(C_{1}, C_{2}, \ldots, C_{t-3 a-6}\right)
$$

where $C_{i}=\left\{b_{i}\right\}$, for $i=1,2, \ldots, t-5 a-9, C_{t-5 a-9+j}=\left\{d_{1}^{j}, d_{2}^{j}, d_{3}^{j}, c_{j}, c_{1}^{j}, c_{2}^{j}, c_{3}^{j}\right\}$, for $j=$ $1,2, \ldots, 2 a+3$. Let $\lambda=\{1 \star(t-4 a-9), 3 \star(2 a+3)\}$. Then L_{ψ} is a (λ, \mathcal{C})-list assignment of H_{1} : For each vertex v of B, if $i=1,2, \ldots, t-5 a-9,\left|L_{\psi}(v) \cap C_{i}\right|=1$; If $j \in I(\psi)$, $\left|L_{\psi}(v) \cap C_{t-5 a-9+j}\right|=\left|\bigcup_{u_{j}^{i} \in N_{A}(v)} \psi\left(u_{j}^{i}\right) \cup\left\{c_{j}\right\}\right|=3$; If $j \in[2 a+3] \backslash I(\psi),\left|L_{\psi}(v) \cap C_{t-5 a-9+j}\right|=$ $\left|\left\{c_{1}^{j}, c_{2}^{j}, c_{3}^{j}\right\}\right|=3$. Moreover, ψ is an L_{ψ}-colouring of A.
Claim 4. ψ cannot be extended to an L_{ψ}-colouring of H_{1}
Proof. Assume that H_{1} has an L_{ψ}-colouring ϕ which is an extension of ψ. Then $\phi(v)=\psi(v)$, for $v \in A$, and hence $\phi(v) \in\left\{b_{i}: i \in[t-5 a-9]\right\} \cup\left\{c_{i}: i \in I(\psi)\right\} \cup$ $\bigcup_{i \in[2 a+3] \backslash \backslash(\psi)}\left\{c_{1}^{i}, c_{2}^{i}, c_{3}^{i}\right\}$ for every vertex $v \in B$. Thus the $(t-a-3)$-clique induced by B are coloured by $(t-5 a-9)+(a+2)+3(a+1)=t-a-4$ colours, a contradiction.

Let H_{2} be a $(t-1)$-clique and L^{\prime} be the $\{1 \star(t-5 a-9), 3 \star(2 a+3)\}$-list assignment defined as

$$
L^{\prime}(v)=\bigcup_{j \in[2 a+3]}\left\{d_{1}^{j}, d_{2}^{j}, d_{3}^{j}\right\} \cup\left\{b_{i}: i \in[t-5 a-9]\right\},
$$

for each vertex v of H_{2}.
Assume ψ is a proper L^{\prime}-colouring of H_{2}. At least $5 a+8$ vertices of H_{2} are coloured by colours from $\bigcup_{j \in[2 a+3]}\left\{d_{1}^{j}, d_{2}^{j}, d_{3}^{j}\right\}$. Hence there is a $3(a+2)$-clique $K_{\psi}=\bigcup_{i \in[a+2]}\left\{u_{\psi, 1}^{i}, u_{\psi, 2}^{i}, u_{\psi, 3}^{i}\right\}$ in H_{2} such that for each $i \in[a+2]$ there exists $i_{0} \in[2 a+3], \psi\left(u_{\psi, j}^{i}\right)=d_{j}^{i_{0}}$ and for $j \in[3]$.

By Claim $4, L_{\psi}$ is a $\left.\psi\right|_{K_{\psi}}$-obstacle for $\left(H_{1}, H_{1}[A], \mathcal{C}\right)$.
By Lemma 8, there is a K_{t}-minor-free graph G that is not $\{1 \star(t-5 a-9), 3 \star(2 a+3)\}$ choosable.

Next, we prove Theorems 5 and 6 by using a construction similar to that used by Steiner [22], who proved the following lemma using a probabilistic approach.

Lemma 9. For every $\varepsilon \in(0,1)$, there is $n_{0}=n_{0}(\varepsilon)$ such that for every $n \geqslant n_{0}$, there exists a graph H whose vertex set $V(H)$ can be partitioned into two disjoint sets A and B of size n, and such that the following properties hold:

1. Both A and B are cliques of H;
2. Every vertex in H has at most ε n non-neighbors in H;
3. For $t=\lceil(1+2 \varepsilon) n\rceil$, H does not contain K_{t} as a minor.

Theorem 5. For every $\varepsilon \in(0,1)$ and $q \in \mathbb{N}$, there exists an integer $t_{3}=t_{3}(q, \varepsilon)$ such that for every integer $t \geqslant t_{3}$ and $k_{1}, k_{2}, \ldots, k_{q} \in \mathbb{N}$ satisfying

$$
\sum_{j=1}^{q} k_{j} \leqslant(2-\varepsilon) t
$$

there exists a K_{t}-minor-free graph G that is not $\left\{k_{1}, k_{2}, \ldots, k_{q}\right\}$-choosable.
Proof. Let $\varepsilon \in(0,1)$ and $q \in \mathbb{N}$ be given. Pick some $\varepsilon^{\prime} \in(0,1)$ such that $\frac{2-q \varepsilon^{\prime}}{1+2 \varepsilon^{\prime}} \geqslant 2-\frac{\varepsilon}{2}$. Let $n_{0}=n_{0}\left(\varepsilon^{\prime}\right) \in \mathbb{N}$ be as in Lemma 9, and define $t_{0}:=\max \left\{\left\lceil\left(1+2 \varepsilon^{\prime}\right) n_{0}\right\rceil,\left\lceil\frac{6}{\varepsilon}\right\rceil\right\}$. Let $t \geqslant t_{0}$ be any given integer. Define $n:=\left\lfloor\frac{t}{1+2 \varepsilon^{\prime}}\right\rfloor \geqslant n_{0}$ and then $t \geqslant\left(1+2 \varepsilon^{\prime}\right) n$.

Applying Lemma 9, there exists a graph H whose vertex set is partitioned into two sets A and B of size n, such that both A and B form cliques in H, every vertex in H has at most $\varepsilon^{\prime} n$ non-neighbors, and H is K_{t}-minor-free.

Let $X_{1}, X_{2}, \ldots, X_{q}, Y_{1}, Y_{2}, \ldots, Y_{q}$ be pairwise disjoint subsets of \mathbb{N}, with $\left|X_{j}\right|=k_{j},\left|Y_{j}\right|=$ $\varepsilon^{\prime} n$ for each $1 \leqslant j \leqslant q$. For each injection c from vertices in A to $X_{1} \cup X_{2} \cup \cdots \cup X_{q}$, let H_{c} be a copy of H with the vertex set $A_{c} \cup B_{c}$ and G be a graph obtained from all copies of H by identifying the different copies of $v \in A$ into a single vertex for each vertex $v \in A$. Denote the vertex set of G by $A \cup \bigcup_{c} B_{c}$. Since H is K_{t}-minor-free and the set A forms a clique of size n, G is K_{t}-minor-free by repeated application of Lemma 7 .

Consider an assignment $L: V(G) \rightarrow 2^{\mathbb{N}}$ as follows: For every vertex $x \in A$, we define $L(x):=\bigcup_{j=1}^{q} X_{j}$, and for every vertex $y \in B_{c}$ for some injection c from vertices in A to $X_{1} \cup X_{2} \cup \cdots \cup X_{q}$, define

$$
L(y):=\bigcup_{j=1}^{q}\left(X_{j} \cup Y_{j}\right) \backslash \bigcup_{x \in A, x y \notin E(G)} c(x)
$$

Let $C_{1}, C_{2}, \ldots, C_{q}$ where $C_{j}=X_{j} \cup Y_{j}$ for $1 \leqslant j \leqslant q$, and $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{q}\right\}$. Let $\lambda=\left\{k_{1}, k_{2}, \cdots, k_{q}\right\}$. Now we show that L is a (λ, \mathcal{C})-list assignment of G. For each $1 \leqslant j \leqslant q,\left|L(v) \cap C_{i}\right|=k_{i}$ if $v \in A$, and $\left|L(v) \cap C_{i}\right| \geqslant k_{i}-\varepsilon^{\prime} n+\varepsilon^{\prime} n=k_{i}$ if $v \in V(G) \backslash A$.

It remains to prove that G is not L-colourable. Assume to the contrary that there exist an L-colouring ϕ of G. Let c be the restriction of ϕ to A. Then c is an injection
c from vertices in A to $X_{1} \cup X_{2} \cup \cdots \cup X_{q}$. Consider the colouring restricted to H_{c}. Note that $\left|\bigcup_{v \in V\left(H_{c}\right)} L(v)\right|=\left|\bigcup_{j=1}^{q} X_{j} \cup Y_{j}\right|=\sum_{j=1}^{q} k_{j}+q \cdot \varepsilon^{\prime} n$. Since $\frac{2-q \varepsilon^{\prime}}{1+2 \varepsilon^{\prime}} \geqslant 2-\frac{\varepsilon}{2}$ and $n=\left\lfloor\frac{t}{1+2 \varepsilon^{\prime}}\right\rfloor \geqslant \frac{t}{1+2 \varepsilon^{\prime}}-1$,

$$
\sum_{j=1}^{q} k_{j} \leqslant(2-\varepsilon) t=\left(2-\frac{\varepsilon}{2}\right) t-\frac{\varepsilon}{2} t \leqslant \frac{2-q \varepsilon^{\prime}}{1+2 \varepsilon^{\prime}} t-\frac{\varepsilon}{2} t \leqslant\left(2-q \varepsilon^{\prime}\right)(n+1)-\frac{\varepsilon}{2} t
$$

Since $t \geqslant t_{0} \geqslant \frac{6}{\varepsilon}$,

$$
\left|\bigcup_{v \in V\left(H_{c}\right)} L(v)\right|=\sum_{j=1}^{q} k_{j}+q \varepsilon^{\prime} n \leqslant\left(2-q \varepsilon^{\prime}\right)(n+1)-\frac{\varepsilon}{2} t+q \varepsilon^{\prime} n<2(n+1)-\frac{\varepsilon}{2} t \leqslant 2 n-1 .
$$

Since $\left|V\left(H_{c}\right)\right|=2 n$ and $\left|\bigcup_{v \in V\left(H_{c}\right)} L(v)\right| \leqslant 2 n-1$, there are two vertices x, y in H_{c} for which $\phi(x)=\phi(y)$. Since A and B_{c} form cliques in H_{c}, we may assume that $x \in A$ and $y \in B_{c}$. Now $\phi(x)=\phi(y)$ implies that $x y \notin E(G)$. But then $\phi(x)=c(x) \notin L(y)$, a contradiction.

Theorem 6. Let $\varepsilon \in(0,1)$ be fixed. For every positive integer m, there exists $t_{0}=$ $t_{0}(\varepsilon)$ such that for every integer $t \geqslant t_{0}$ there exists a K_{t}-minor-free graph G that is not ($(2-\varepsilon) t m, m)$-choosable.

Proof. Let $\varepsilon \in(0,1)$ be given. Pick some $\varepsilon^{\prime} \in(0,1)$ such that $\frac{2-\varepsilon^{\prime}}{1+2 \varepsilon^{\prime}} \geqslant 2-\frac{\varepsilon}{2}$. Let $n_{0}=$ $n_{0}\left(\varepsilon^{\prime}\right) \in \mathbb{N}$ be as in Lemma 9, and define $t_{0}:=\max \left\{\left[\left(1+2 \varepsilon^{\prime}\right) n_{0}\right\rceil,\left\lfloor\frac{6}{\varepsilon}\right]\right\}$. Now, let $t \geqslant t_{0}$ be any given integer. Define $n:=\left\lfloor\frac{t}{1+2 \varepsilon^{\prime}}\right\rfloor \geqslant n_{0}$ and then $t \geqslant\left(1+2 \varepsilon^{\prime}\right) n$.

By Lemma 9, there exists a graph H whose vertex set is partitioned into two nonempty sets A and B of size n, such that both A and B form cliques in H, every vertex in H has at most $\varepsilon^{\prime} n$ non-neighbors, and H is K_{t}-minor-free.

For any fixed positive integer m, let D be the family of all m-subsets of [2nm-1] = $\{1,2, \ldots, 2 n m-1\}$. For each injection c from vertices in A to D, let H_{c} be a copy of H with the vertex set $A_{c} \cup B_{c}$ and G be a graph obtained from all copies of H by identifying the different copies of $v \in A$ into a single vertex for each vertex $v \in A$. Denote the vertex set of G by $A \cup \bigcup_{c} B_{c}$. Since H is K_{t}-minor-free and the set A forms a clique of size n, G is K_{t}-minor-free by repeated application of Lemma 7.

Consider an assignment $L: V(G) \rightarrow 2^{\mathbb{N}}$ to vertices in G as follows: For every vertex $x \in A$, we define $L(x):=[2 n m-1]$, and for every vertex $y \in B_{c}$ for some injection c from vertices in A to D, define

$$
L(y):=[2 n m-1] \backslash \bigcup_{x \in A, x y \notin E(G)} c(x) .
$$

Recall that every vertex in H has at most $\varepsilon^{\prime} n$ non-neighbors. So $|L(v)| \geqslant 2 n m-1-\varepsilon^{\prime} n m$ for every vertex $v \in V(G)$.

It remains to prove that G does not admit a m-fold L-colouring, which will then prove that G is not $\left(\left(2-\varepsilon^{\prime}\right) n m-1, m\right)$-choosable. Assume to the contrary that there exists an
m-fold L-colouring ϕ of G. Let c be the restriction of ϕ to A, and then c is an injection from vertices in A to D.

Consider the colouring restricted to the subgraph induced by $H_{c}:=A \cup B_{c}$ in G. Since $\left|V\left(H_{c}\right)\right|=2 n$ and $\bigcup_{v \in V\left(H_{c}\right)} L(v)=[2 n m-1]$, there are two vertices x, y in H_{c} which have $\phi(x) \cap \phi(y) \neq \varnothing$. Since both of A and B_{c} form a clique in H_{c}, there exists $x \in A, y \in B_{c}$ and a colour $i \in[2 n m-1]$ such that $x y \notin E(G)$ and $i \in \phi(x) \cap \phi(y)$. Thus $i \in c(x)$ and hence $i \notin L(y)$, a contradiction.

Since $t \geqslant t_{0} \geqslant \frac{6}{\varepsilon}$,

$$
\begin{aligned}
\left(2-\varepsilon^{\prime}\right) n m-1 & =\left(2-\varepsilon^{\prime}\right)\left\lfloor\frac{t}{1+2 \varepsilon^{\prime}}\right\rfloor m-1 \\
& >\left(2-\varepsilon^{\prime}\right)\left(\frac{t}{1+2 \varepsilon^{\prime}}-1\right) m-1 \\
& \geqslant\left(2-\frac{\varepsilon}{2}\right) t m-\left(2 m-\varepsilon^{\prime} m+1\right) \\
& \geqslant(2-\varepsilon) t m .
\end{aligned}
$$

Hence, we conclude that G is a K_{t}-minor-free graph that is not $((2-\varepsilon) t m, m)$-choosable.

Acknowledgements

This research was partially completed at the Structural Graph Theory Downunder workshop at the Mathematical Research Institute MATRIX (November 2019). Xuding Zhu is partially supported by NSFC Grants 11971438, U20A2068, and ZJNSFC grant LD19A010001.

References

[1] N. Alon, Zs. Tuza, M. Voigt. Choosability and fractional chromatic numbers, Discrete Math. 165/166, 31-38, 1997.
[2] K. Appel, W. Haken. Every planar map is four colourable. I. Discharging. Illinois J. Math., 21(3):429-490, 1977.
[3] K. Appel, W. Haken, J. Koch. Every planar map is four colourable. II. Reducibility. Illinois J. Math., 21(3):491-567, 1977.
[4] J. Barát, G. Joret and D.R. Wood. Disproof of the list Hadwiger conjecture. Electronic J. Combin., 18(1), P232, 2011.
[5] M. Delcourt, L. Postle. Reducing linear Hadwiger's conjecture to coloring small graphs. arXiv:2108.01633.
[6] G. A. Dirac. A property of 4 -chromatic graphs and some remarks on critical graphs. J. London Math. Soc., 27:85-92, 1952.
[7] P. Erdős, A.L. Rubin, H. Taylor, Choosability in graphs, in: Proc. West Coast Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium XXVI, 1979, pp. 125-157.
[8] H. Hadwiger. Über eine Klassifikation der Streckenkomplexe. Vierteljschr. Naturforsch. Ges. Zürich, 88:133-142, 1943.
[9] K. Kawarabayashi. On the connectivity of minimum and minimal counterexamples to Hadwiger's Conjecture. J. Combin. Theory Ser. B, 97(1):144-150, 2007.
[10] K. Kawarabayashi, B. Mohar. Some recent progress and applications in graph minor theory. Graphs Combin., 23(1):1-46, 2007.
[11] A. Kemnitz, M. Voigt. A note on non-4-list colourable planar graphs, Electron. J. Combin. 25(2), \#P2.46, 2018.
[12] A. V. Kostochka. The minimum Hadwiger number for graphs with a given mean degree of vertices. Metody Diskret. Analiz., (38):37-58, 1982.
[13] A. V. Kostochka. Lower bound of the Hadwiger number of graphs by their average degree. Combinatorica, 4(4):307-316, 1984.
[14] S. Norin, L. Postle. Connectivity and choosability of graphs with no K_{t} minor. J. Combin. Theory, Ser. B, https://doi.org/10.1016/j.jctb.2021.02.001, 2021. arXiv:2004.10367.
[15] S. Norin, L. Postle, and Z. Song. Breaking the degeneracy barrier for colouring graphs with no K_{t} minor. arXiv:1910.09378v2, 2019.
[16] L. Postle. Further progress towards Hadwiger's conjecture. arXiv:2006.11798, 2020.
[17] L. Postle. An even better density increment theorem and its application to Hadwiger's conjecture. arXiv:2006.14945, 2020.
[18] L. Postle. Further progress towards the list and odd versions of Hadwiger's conjecture. arXiv:2010.05999, 2020.
[19] B. Reed, P. Seymour. Fractional colouring and Hadwiger's conjecture. J. Combin. Theory Ser. B, 74(2):147-152, 1998.
[20] N. Robertson, D.P. Sanders, P. Seymour, R. Thomas. The four-colour theorem. J. Combin. Theory Ser. B, 70(1):2-44, 1997.
[21] N. Robertson, P. Seymour, R. Thomas. Hadwiger's conjecture for K_{6}-free graphs. Combinatorica, 13(3):279-361, 1993.
[22] R. Steiner. Improved lower bound for the list chromatic number of graphs with no K_{t} minor. Combin. Probab. Comput., https://doi.org/10.1017/S0963548322000116, arXiv:2110.09403, 2021.
[23] P. Seymour, Hadwiger's conjecture. In: Open Problems in Mathematics, Eds. J. F. Nash Jr. and M. Th. Rassias, 417-437, Springer, 2016.
[24] A. Thomason. An extremal function for contractions of graphs. Math. Proc. Cambridge Philos. Soc., 95(2):261-265, 1984.
[25] V.G. Vizing, Coloring the vertices of a graph in prescribed colours, Diskret. Analiz 29 Metody Diskret. Anal. v Teorii Kodov i Shem (1976) 3-10, p. 101, (in Russian).
[26] M. Voigt. List colourings of planar graphs. Discrete Math., 120 (1-3), 215-219, 1993.
[27] K. Wagner. Über eine Eigenschaft der ebenen Komplexe. Mathematische Annalen, 114:570-590, 1937.
[28] X. Zhu, A refinement of choosability of graphs. J. Combin. Theory, Ser. B 141 (2020) 143-164.

[^0]: September 16, 2022
 ${ }^{\ddagger}$ College of Mathematics and Computer Sciences, Zhejiang Normal University, China (\{ytjiang, yangyan, xdzhu\}@zjnu.edu.cn).
 ${ }^{\dagger}$ School of Mathematics, Monash University, Melbourne, Australia (david.wood@monash.edu). Research supported by the Australian Research Council.

