
Adaptive importance sampling based on fault tree analysis for piecewise
deterministic Markov process

Guillaume Chennetier∗ † , Hassane Chraibi∗ , Anne Dutfoy∗ , and Josselin Garnier†

Abstract. Piecewise deterministic Markov processes (PDMPs) can be used to model complex dynamical in-
dustrial systems. The counterpart of this modeling capability is their simulation cost, which makes
reliability assessment untractable with standard Monte Carlo methods. A significant variance reduc-
tion can be obtained with an adaptive importance sampling (AIS) method based on a cross-entropy
(CE) procedure. The success of this method relies on the selection of a good family of approximations
of the committor function of the PDMP. In this paper original families are proposed. Their forms are
based on reliability concepts related to fault tree analysis: minimal path sets and minimal cut sets.
They are well adapted to high-dimensional industrial systems. The proposed method is discussed in
detail and applied to academic systems and to a realistic system from the nuclear industry.
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1. Introduction. The reliability assessment of industrial systems combines two issues:
finding an appropriate framework to model these systems and proposing a method allowing
the simulation of rare events since the failure probabilities are generally very low [9, 50]. We
focus here on hybrid dynamical industrial systems, i.e. systems whose time-dependent state
is described by both continuous and discrete variables. The continuous variables are typically
physical variables (such as temperature, pressure, or a level of liquid) that follow deterministic
physical laws, and the discrete variables are typically the status of the components of the
system that may be affected by random events. Such a system can be modeled by a piecewise
deterministic Markov process (PDMP) [23, 26, 2, 55]. The modeling and simulation of hybrid
systems is still an active field and other formalisms similar to PDMPs exist such as stochastic
hybrid systems (SHS) [45] or more recently general stochastic hybrid systems which generalize
and encompass both PDMPs and SHS [12]. The current work aims to enhance the efficiency of
the PyCATSHOO toolbox [18], an EDF-developed computer code based on the PDMP formalism.

During the last decade, several attempts to adapt traditional methods of rare event simu-
lation to hybrid systems have been proposed [16, 17, 33, 57, 5, 63, 1]. However, it still appears
challenging to significantly reduce the required sample size compared to a standard Monte-
Carlo method in the case of high-dimensional systems. Preliminary work [16] established the
connection between the optimal instrumental distribution of an importance sampling method
for PDMPs and the use of the committor function of the process as an importance function
(that we abbreviate IF). An importance function (also called reaction coordinate or collective
variable in computational physics and chemistry [43]) offers a one-dimensional representation
of the dynamics of a high-dimensional system. It associates to a given configuration of the
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system a real value that can be interpreted as a distance to a specific set of configurations.
The committor function is known as the optimal IF to use for modeling phenomena in tran-
sition phase theory [44] and for splitting algorithms in rare event simulation [15]. It is the
probability of realizing the rare event knowing the current state of the process. When dealing
with stochastic processes taking values in standard Euclidean spaces, the committor function
is frequently approximated by mixing explicit calculus on stochastic differential equations and
machine learning methods [39, 41, 32]. In our case, we can reduce the committor estimation
problem to a parametric problem by looking for the best approximation of the committor
function among a family of IFs that depend only on the status of the system components,
which forms a discrete albeit high-dimensional variable. The failure of a specific component
in a specific system configuration has to be encouraged to a greater or lesser extent depend-
ing on how it interacts with the other components. These interactions can be described by
fault tree analysis through the concepts of minimal path sets and minimal cut sets, that are
well-known in the reliability community [53]. These concepts are often used to construct
quantitative measures of system reliability such as importance indices for the components or
approximations of the probability of failure [47, 35, 13]. Here we will use them to design
efficient importance sampling strategies. The construction of importance functions proposed
in [57] to apply a RESTART method to hybrid systems is very close to our philosophy (see
also [10] for the same idea with a splitting method for dynamic fault trees).

Given a family of IFs that serve as approximations of the committor function, each IF can
be associated with an instrumental distribution for the importance sampling strategy. The
search for the best candidate within this family is sequential using an adaptive importance
sampling (AIS) method with a cross-entropy (CE) procedure (see [11] for a global perspective
on AIS, and [24] for a general introduction on CE). Each iteration of the method consists
of a simulation phase according to the current distribution and an optimization phase to
refine this distribution. Classical parametric families of importance distributions (typically
Gaussian mixtures in the literature) require a large number of parameters to sufficiently ap-
proximate the optimal distribution when it is quite complex. However it is well known that
in high dimensions, importance sampling becomes tricky [51] because of the degeneracy of
the likelihood ratios. This is one of the main concerns in the field and many recent works
try to answer it when the optimal parameters of the instrumental distribution are sought by
cross-entropy minimization [28, 27, 58, 62]. In the sake of efficiency, the AIS literature is also
paying increasing attention to recycling schemes for updating the instrumental distribution
and/or estimating the final quantity by reusing samples from past iterations [42, 46, 19]. The
paper [46] further proves that the AIS estimator with a standard recycling scheme verifies a
central limit theorem under appropriate assumptions. We give easily verifiable and physically
interpretable conditions on the process and on the family of IFs that validate these assump-
tions.

Contribution. The major contribution of this work is to propose families of IFs suitable
for approximating the committor functions of high-dimensional hybrid (industrial) systems.
These families of IFs are easy to implement and interpret as they are constructed based on the
“minimal paths” and “minimal cuts” of the system, which are classical concepts in reliability
analysis. The original parameterization of these IFs also makes them highly flexible, allowing
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for easy refinement of the committor function approximation even in high dimension. We also
provide detailed guidelines for the implementation of the AIS method with recycling scheme
and prove the consistency and asymptotic normality of the associated IS estimator.

Structure. The paper is organized as follows. Section 1 presents the notations and the
industrial application case. It reminds the reader with the fundamental relation that exists
between the committor function Uopt of a piecewise deterministic Markov process and the
optimal distribution qopt of an importance sampling method for this process. We propose in
section 2 three parametric families of functions Uθ allowing to approximate the committor
function Uopt and to construct instrumental densities qθ producing low variance importance
sampling estimators. These Uθ functions are built on reliability properties of the system and
we will explain for this purpose the notions of minimal path sets and minimal cut sets. Our
complete algorithm is given in section 3 with its asymptotic properties. We propose an adap-
tive cross-entropy importance sampling algorithm with recycling of past samples (both for
probability estimation and for updating the sampling policy). We also prove the consistency
and the asymptotic normality of the estimator produced by the algorithm. Our recommenda-
tions for the implementation of the method are described in detail in section 4. The method is
applied in section 5 to series/parallels systems and to two different configurations of the spent
fuel pool system. Our method gives a dramatic variance reduction when estimating the prob-
ability of system failure even in the most complex case. We finally discuss the implications
and possible refinements of this work in section 6.

1.1. Modeling hybrid systems with piecewise deterministic Markov processes. A sys-
tem failure is declared when continuous physical variables (e.g. temperature, pressure or liquid
level in a tank) exceed critical threshold values. This only happens when key combinations of
components fail and when repairs do not come in time. Component failures and repairs are
then seen as random one-time events while the evolution of continuous variables is dictated by
deterministic differential equations derived from physical laws. The high reliability of these
systems is explained on the one hand by their high level of redundancy: the system can be
reconfigured using several identical components to ensure its operation while waiting for the
repair or replacement of broken components. On the other hand, the average waiting time
before the failure of a component is generally considerably larger than the average waiting
time before its repair. Such behavior lends itself very well to modeling by PDMPs.

PDMPs are a class of stochastic processes introduced and described by Mark Davis in
1984 [23]. Apart from reliability considerations, these processes have since been used in many
different areas, in particular to model chemical and biological phenomena [34, 36, 52]. A
considerable work has also been done on the theoretical properties of these processes, in
particular on their long-time behaviors [20, 3]. They allow for a sophistication of Markov
Chain Monte Carlo methods for the simulation of a posteriori distributions [6, 4, 59].

A PDMP describes the evolution of one or more quantities over time. These quantities
follow a deterministic trajectory that can change (jump) at random or deterministic times.
Moreover, a PDMP is Markovian: the future of its trajectory depends only on its current
state and the time already elapsed, but not on its past states. Working with PDMPs therefore
requires managing two difficulties: first, its behavior is neither solely deterministic nor solely
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stochastic. Second, it is a hybrid process because it is composed of a continuous variable
called ”position” and a discrete variable called ”mode”.

The state of a PDMP at time t is denoted Zt = (Xt,Mt) ∈ E where Xt ∈ X ⊂ RdX

for some dX ≥ 1 is the position and Mt ∈ M is the mode of the PDMP (with M a finite or
countable set and E = X×M). We consider in this work PDMPs of fixed duration tmax > 0.
We denote Z = (Zt)t∈[0,tmax]

a complete trajectory and E is the set of all possible trajectories of
duration tmax on E (the explicit description of the set E is not necessary for the following but
is detailed in [30, section 1.2.3]). We will suppose in the following that one of the coordinates
of the ”position” variable X ∈ X is the total elapsed time and for any state z ∈ E we denote
by τz this elapsed time (in particular for any t > 0 we have τZt = t).

Given the state space E, the behavior of a PDMP is characterized by three elements:
1. The flow Φ that gives the deterministic trajectory.
2. The jump intensity λ which determines the distribution of the random jump times.
3. The transition kernel K which determines the distribution of the post-jump locations.

Flow function. If there is no jump between time s and time s+ h, the mode Ms+h of the
PDMP remains constant and equal to Ms and the position Xs+h of the PDMP evolves in a
deterministic way from Xs as ϕMs(Xs, h) where ϕm is the solution of the differential equation
dϕm

dh
= g(ϕm,m), ϕm(x, h = 0) = x. Here g : RdX ×M → RdX is a Lipschitz function. The

trajectory of the process (Xs+h,Ms+h) is then of the form Φ(Xs,Ms)(h) where the flow function
Φ is defined by:

(1.1) For any z = (x,m) ∈ E, Φz : h ∈ [0,+∞) 7−→ (ϕm(x, h),m) ∈ E.

Deterministic jumps. By denoting Em := {z′ = (x′,m′) ∈ E | m′ = m} we can write E =⋃
m∈MEm. The boundary of the state space Em for m ∈ M is denoted by ∂Em. When the

position reaches the boundary of the state space following the flow Φ, the PDMP jumps.
Starting from a state z = (x,m) ∈ Em at time s and assuming that no random jump takes
place, the boundary ∂Em is reached at a deterministic time t∂z ∈ [0,+∞]:

(1.2) t∂z = inf{h > 0 : Φz(h) ∈ ∂Em},

with the convention inf ∅ = +∞.

Intensity function. For each state z ∈ E, there is a random waiting time Tz at the end
of which the process jumps (if it is smaller than the deterministic jump time t∂z ). The jump
intensity λ is a function that associates to each state z ∈ E a weight λ(z) ∈ (0,+∞). The
larger λ(z) is, the more likely it is that the PDMP jumps when it passes through state z. The
distribution of Tz depends on λ through the following formula:

(1.3) P (Tz > h | Zτz = z) = 1h<t∂z
exp

(
−
∫ h

0
λ
(
Φz(h

′)
)
dh′
)
.
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Transition kernel. Given the jump time and the state z− from which the process jumps,
the arrival state of the process after the jump is randomly chosen according to a Markovian
transition kernel K(z−, ·). It is assumed for any z− that the transition kernel K(z−, ·) admits a
probability density function K (z−, ·) with respect to a reference measure νz− on B(E) (where
B(·) indicates the Borelians of a set). So for any B ∈ B(E):

(1.4) K(z−, B) =

∫
B
K
(
z−, z

)
dνz−(z).

Probability density function of a trajectory. A fixed-time trajectory of a PDMP possesses
a probability density function with respect to a dominant measure denoted by ζ which is
a mixture of Lebesgue and Dirac measures. The definition of this dominant measure and
the density of the PDMP trajectory can be found in Definition 3.2 and Theorem 3.3 of [16],
respectively. Using our notations, the expression for this density is as follows. Let Z =
(Zt)t∈[0,tmax]

be a PDMP trajectory and nZ its number of jumps. We denote by z0 the initial
state of the trajectory, by t0 the waiting time before the first jump, and for k = 1, . . . , nZ − 1
we denote by zk the state of the process after the k-th jump and by tk the waiting time
between the k-th and the (k + 1)-th jump. Finally let tnZ = t∂znZ

= tmax −
∑nZ−1

k=0 tk. The
probability density function of this trajectory can then be expressed as:
(1.5)

πλ,K(Z) =

nZ∏
k=0

[λ (Φzk(tk))]
1
tk<t∂zk × exp

[
−
∫ tk

0
λ (Φzk(u)) du

]
×

nZ−1∏
k=0

K (Φzk(tk), zk+1) .

We consider the state space E and the flow Φ of the PDMP fixed once and for all in this
paper. A distribution πλ,K of a PDMP trajectory on E can thus be totally determined by the
choice of the jump intensity λ and the jump kernel density K.

System failure. In the case of industrial systems, the position of the PDMP contains the
physical variables that determine the failure of the system and if necessary all the variables
allowing the process to be Markovian such as the elapsed time. The physical variables evolve
in time according to the flow Φ given by physical laws. The mode of the PDMP contains the
status of each component (active, inactive, broken, etc.). The failure and repair rates of each
component (which can depend on the value of the physical variables) determine the jump
intensity λ and the jump kernel density K (see section 5 for a numerical example).

The system fails when the position reaches a critical region XD determined by threshold
values for the physical variables. The critical region XD can only be reached in certain modes
(the critical thresholds cannot be reached by the physical variables when all components are
functioning, for example). Let MD denote the set of modes m such that the position can reach
XD by following the flow ϕm corresponding to the mode m. The set of states corresponding
to a failed system is therefore D = XD ×MD ⊂ E. The set of faulty trajectories is written
D ⊂ E and corresponds to:

(1.6) D :=
{
(Zt)t∈[0,tmax]

∈ E : ∃ t ∈ [0, tmax] such that Zt ∈ D
}
.
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Objective. We denote by λ0, K0 and K0 the jump intensity, jump kernel and jump kernel
density of the PDMP modeling the system whose failure probability we wish to estimate, and
π0 ≡ πλ0,K0 the corresponding PDMP distribution. Our objective is to estimate the following
probability:

(1.7) P := Pπ0 (Z ∈ D) = Eπ0 [1Z∈D] .

Simulation cost. Most of the computational cost for complex industrial systems comes
from solving the differential equations that define the flow of the PDMP. We consider in the
following that simulating several tens of uniform random variables and evaluating the den-
sity of a PDMP trajectory have a negligible cost compared to the computation of the flow
between two jumps. This will guide the choice of our jump time simulation method and our
optimization strategy for AIS (both are described in section 4). Note that, even if the flow
appears in the formula of the density of a trajectory (1.5), it does not have to be computed
again since it was already evaluated to generate the trajectory.

Test case: the spent fuel pool. We propose a redesigned version of the system presented in
[18]. It is a simplification of the real operation of the storage pools of water for spent fuel from
nuclear reactors. The water in the pool cools the fuel and provides protection from radiation.
Conversely, the fuel heats the water in the pool, which will eventually boil, evaporate and allow
the fuel to damage the structure and contaminate the outside environment. System failure
is declared when the water level in the pool has reached a critical level. All the components
of the system (shown in Figure 1) are designed to keep the water in the pool cold enough to
prevent it from evaporating.

On this system the position of the PDMP corresponds to the water temperature and the
water level in the pool; its mode is the combination of the status (active, inactive, broken)
of the components. The domain D is defined by all the states of E in which the water
temperature (first coordinate of the position) is 100◦C and the water level (second coordinate
of the position) is lower or equal to the critical threshold. We notice that these positions are
not accessible for the flow for all modes, for example if no component is broken. If on the
other hand, all the generators G0, G1, G2 and G3 are and remain broken for example, then the
flow reaches one of these positions in finite time. A more formal description of the modes
allowing the flow to bring the process into D is given in section 2. This description will turn
out to be important to build a good estimator of the failure probability. The system data
allowing to compute the flow, and the different failure and repair rates of each component
allowing to build the jump intensities and kernels are given in section 5.

1.2. Importance sampling with piecewise deterministic Markov processes. We are in-
terested in estimating P the probability that the system fails before tmax. In the nuclear and
hydraulic energy sector, the reliability requirements for the systems are very high. The system
failure is therefore a rare event with a probability of 10−5 or smaller.

Crude Monte-Carlo estimator (CMC). It is well known that CMC methods are quite in-
efficient in this case because an overwhelming majority of realizations will not produce any
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Figure 1: Representation of the spent fuel pool. The temperature of an external cold water
source S1 is transfered to the pool by means of three sealed circuits connected by heat exchangers L1,1,
L2,1 and L3,1 forming a line L1. The system has a general power supply G0. In the event of a problem
with one of these components, the system is equipped with two other lines L2 and L3 identical to L1, an
emergency diesel generator for each line G1, G2 and G3, and a second outside water source S2 accessible
only to the third line L3.

failure. A CMC estimator of P from an i.i.d sample Z1, . . . ,ZN ∼ π0 is given by:

(1.8) P̂CMC
N :=

1

N

N∑
k=1

1Zk∈D
a.s.−−−−→

N→∞
Eπ0 [1Z∈D] = P .

An accurate CMC estimator of P (say with a coefficient of variation of 0.1) requires about
100/P realizations. Each realization implies to simulate a PDMP trajectory which is very
expensive especially for large industrial systems (as previously mentioned, the deterministic
parts of the trajectory correspond to complex physical phenomena and result from the res-
olution of expensive computer codes). It is therefore unthinkable to simulate several tens of
millions of trajectories to estimate the probability of system failure.

Importance sampling estimator (IS). Introduced in 1951 by Kahn and Harris [31], impor-
tance sampling is used to estimate the expectation of a random quantity under an arbitrary
distribution. In the context of rare event simulation, this method allows to estimate the prob-
ability P of the rare event using an instrumental distribution q whose support is included in
the support of the original distribution π0 and that realizes the event more frequently than it.
See [9] for a rare event perspective of IS, [56] for a recent review of IS methods in reliability
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assessment and [29] for recent advances in IS for more general purpose. From the formula

P = Eπ0 [1Z∈D] =

∫
E
1Z∈Dπ0(Z) dζ(Z)

=

∫
E
1Z∈D

π0(Z)

q(Z)
q(Z) dζ(Z) = Eq

[
1Z∈D

π0(Z)

q(Z)

]
,(1.9)

we can deduce the form of the importance sampling estimator of P with an i.i.d sample
Z1, . . . ,ZN ∼ q:

(1.10) P̂ IS
N :=

1

N

N∑
k=1

1Zk∈D
π0(Zk)

q(Zk)

a.s.−−−−→
N→∞

Eq

[
1Z∈D

π0(Z)

q(Z)

]
= P .

Optimal importance process for PDMPs. The variance of P̂ IS
N strongly depends on the choice

of q. The optimal distribution qopt : Z 7→ 1
P 1Z∈D π0(Z) produces a zero variance IS estimator.

Although inaccessible in practice, this form guides us on the choice of the instrumental density
to use. We also know from [16] that the process of distribution qopt is a PDMP with the same
state space and with the same deterministic flow as the original PDMP of distribution π0.

The optimal jump intensity λopt and optimal jump kernel density Kopt given in (1.12)
can be expressed in terms of the committor function of the process Uopt. It is defined here as
follows for any states z−, z ∈ E by:

(1.11) Uopt(z) := Eπ0 [1Z∈D | Zτz = z] and U−
opt(z

−) :=

∫
E
Uopt(z)K0

(
z−, z

)
dνz−(z).

Uopt represents the probability of reaching D knowing the current state of the trajectory and
U−
opt represents the same quantity with the additional assumption that the process jumps

immediately. Theorems 4.3 and 4.4 of [16] give us the following result:

Theorem 1.1 (Optimal jump intensity and jump kernel). For states z−, z ∈ E, the optimal
jump intensity and optimal jump kernel density are given by:

(1.12) λopt(z) = λ0(z)×
U−
opt (z)

Uopt (z)
and Kopt

(
z−, z

)
= K0

(
z−, z

)
× Uopt (z)

U−
opt (z

−)
.

We have qλopt,Kopt(Z) = qopt(Z) = 1
P 1Z∈D π0(Z) and this distribution produces a zero-variance

IS estimator of P .

Remark: understanding these equations gives a good intuition of the behavior of the
optimal process. If from a given state z− ∈ E:

1. the process is k times more likely to reach D before the end of the simulation by
jumping now than by not jumping, then the optimal intensity λopt must be k times
larger than the nominal intensity λ0,

2. and if the process is k times more likely to reach D before the end of the simulation
by jumping to state z than by jumping randomly according to K, then the value of
the optimal jump kernel density Kopt between z− and z must be k times larger than
that of the nominal jump kernel density K0.

The optimal distribution qopt is thus completely characterized by the original distribution π0
and by the committor function Uopt.
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2. Parametric approximation of the committor function Uopt. In practice the true com-
mittor function is not accessible. The best we can do is to replace it by a function that we call
importance function (IF) and whose behavior is as close as possible to Uopt. Rather than try-
ing to learn the committor function among a nonparametric class of functions, we look for the
best approximation of Uopt among a parametric family of IFs

(
Uθ

)
θ∈Θ. Here θ ∈ Θ ⊂ Rdθ is

a parameter of dimension dθ. Each IF Uθ is associated with a PDMP importance distribution
qθ ≡ πλθ ,Kθ

whose jump intensity λθ and jump kernel Kθ are defined by:

(2.1) λθ(z) = λ0(z)×
U−
θ (z)

Uθ (z)
and Kθ

(
z−, z

)
= K0

(
z−, z

)
× Uθ (z)

U−
θ (z−)

.

The more faithful is the approximation Uθ to the committor function Uopt, the closer the
instrumental distribution qθ should be to the optimal distribution qopt, and the larger the
variance reduction of the IS method should be. The committor function can be interpreted
as a proximity measure between a state of the process and the set D.

IFs without position dependency. Since it is sufficient to stay long enough in MD to end
up in D, the main obstacle to overcome in order to realize the rare event is to reach MD.
Moreover, the committor function appears only as ratios evaluated at identical positions but
distinct modes (see (2.1)), which removes some of the position dependence. It is therefore
reasonable to restrict ourselves to IFs which depend only on the mode and not on the position
of the process. It remains to determine how to quantify the proximity of a mode (which
represents the status of the system components) to the set MD. For this purpose we will
exploit a static and Boolean representation of the system, and make use of concepts from the
reliability theory: the minimal path sets (MPS) and minimal cut sets (MCS).

2.1. Minimal path sets (MPS) and Minimal cut sets (MCS). In the static point of view,
we consider the final mode of the trajectory and we declare that the trajectory has failed if
that mode belongs to MD (without taking account the time during which the position evolves
to D when its mode belongs to MD as well as the possibility that the system is repaired during
this time). The path sets and cut sets can be defined as follows.

• The path sets are the sets of components whose operation prevents the system failure.
• The cut sets are the sets of components whose malfunction causes the system failure.

A path/cut set is minimal if it contains no other path/cut set. These concepts can be under-
stood very well with examples.

Series and parallel systems. Here are two extreme examples of industrial systems to keep
in mind for the following. A series system is a configuration of components in which the
failure of any one component is sufficient to cause system failure (see Figure 2). A parallel
system is a configuration of components in which the failure of all components is necessary to
cause system failure (see Figure 3). A series system has only one MPS and a parallel system
has dc MPS. In contrast, a series system has dc MCS and a parallel system has only one MCS.

Spent fuel pool example. The test case described in subsection 1.1 can be represented
as a series/parallel diagram (see Figure 4) facilitating its decomposition into MPS and MCS.
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Figure 2: Series system with dc components.
It has one MPS : {C1, . . . , Cdc} and dc MCS :
{C1}, . . . , {Cdc}. Figure 3: Parallel system with dc components.

It has dc MPS : {C1}, . . . , {Cdc} and one MCS :
{C1, . . . , Cdc}.

The MPS correspond to all vertical combinations and the MCS to all horizontal combinations.

Figure 4: Series/Parallel diagram of the spent fuel pool of Figure 1. There are 8 MPS
and 69 MCS in this system. MPS examples: {G0, S1, L1,1, L2,1, L3,1} and {G0, S2, L1,3, L2,3, L3,3}. MCS
examples: {L1,1, L3,2, L1,3} and {G0, S1, G3}.

Formal definition with Boolean algebra. Let dc ∈ N∗ and c = (c1, . . . , cdc) ∈ {0, 1}dc , we
note J1, dcK = {1, . . . , dc} and for any I ⊂ J1, dcK:∨

j∈I
cj = max {cj , j ∈ I} and

∧
j∈I

cj = min {cj , j ∈ I} .

Let c′ = (c′1, . . . , c
′
dc
) ∈ {0, 1}dc , we write c ≤ c′ if and only if cj ≤ c′j for all j ∈ J1, dcK.

Let φ be a Boolean function, i.e from {0, 1}dc to {0, 1}. The function φ is non-decreasing if
and only if φ(c) ≤ φ(c′) ⇐⇒ c ≤ c′ for all c, c′ ∈ {0, 1}dc . Combining Theorem 1.14 and
Theorem 1.21 from [21], we obtain the following decomposition:

Theorem 2.1 (Complete disjonctive normal form of an non-decreasing Boolean function). If
φ is an non-decreasing Boolean function, then it admits a unique decomposition (except for
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the numbering of the terms) of the form:

(2.2) φ(c) =

dφ∨
i=1

∧
j∈Ii

cj for all c ∈ {0, 1}dc ,

where dφ is an integer and I1, . . . , Idφ ⊂ J1, nK are such that Ii ̸⊂ Ii′ for all i, i′ ∈ J1, dφK with
i ̸= i′.

If a system has dc components we now consider that the PDMP mode m ∈ M can be
converted into a multidimensional binary variable bm = (c1, . . . , cdc) ∈ {0, 1}dc where for
j ∈ J1, dcK, cj is 0 if the j-th component is broken and 1 otherwise.

Definition 2.2 (Structure function φ). We call the structure function of the system the
Boolean function φ which associates 1 to the modes for which the system works and 0 to
the other ones:

(2.3) φ : bm 7−→ 1− 1m∈MD
.

Definition 2.3 (Coherent system). A system is said to be coherent if:
• it works when none of its components is down, i.e. φ ((1, ..., 1)) = 1.
• it does not work when all its components are broken, i.e. φ ((0, ..., 0)) = 0.
• if it does not work in a given mode then it does not work with the additional failure of
a component and conversely if it works in a given mode then it still works if broken
components are repaired, i.e. φ is non-decreasing.

MPS decomposition. We assume from now that the system is coherent, so we can ap-
ply Theorem 2.1 to its structure function φ. There are then dMPS sets of components
I1, . . . , IdMPS

⊂ J1, dcK such that none of them is contained in another and such that the
operation of all the components of a set causes the operation of the system independently of
the status of the components in the other sets. These sets are the unique minimal paths sets
of the system. By switching to the complementary with c = 1 − c for any c ∈ {0, 1}, we can
notice that:

(2.4) φ(bm) =

dMPS∨
i=1

∧
j∈Ii

cj ⇐⇒ φ(bm) =

dMPS∧
i=1

∨
j∈Ii

cj .

Therefore the minimal paths sets can be alternatively defined such that the failure of at least
one component in each set causes the system failure.

MCS decomposition. Let us first note that since φ is a non-decreasing Boolean function, the

function bm 7→ φ
(
bm
)
is also non-decreasing (it is called the dual function of φ). Indeed: let

bm ≤ b′m ∈ {0, 1}dc , we have bm ≥ b′m so φ
(
bm
)
≥ φ

(
b′m
)
and finally φ

(
bm
)
≤ φ

(
b′m
)
. We can

therefore apply Theorem 2.1 to it and get a set of dMCS lists of indices J1, . . . , JdMCS
⊂ J1, dcK

with Ji ̸⊂ Ji′ for any i, i′ ∈ J1, dMCSK with i ̸= i′ such that:

(2.5) φ
(
bm
)
=

dMCS∨
i=1

∧
j∈Ji

cj i.e 1− φ (bm) = φ (bm) =

dMCS∨
i=1

∧
j∈Ji

cj .
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These dMCS sets of components J1, . . . , JdMCS
are the unique minimal cuts sets of the system.

If all the components of a MCS are broken then this causes (from the static point of view)
the system failure. And again by switching to the complementary, if at least one component
per MCS works, the system failure is prevented:

(2.6) φ(bm) =

dMCS∨
i=1

∧
j∈Ji

cj ⇐⇒ φ(bm) =

dMCS∧
i=1

∨
j∈Ji

cj .

2.2. Parametric families of importance functions. We below propose 3 families of IFs(
U

(BC)
θ

)
θ∈Θ,

(
U

(MPS)
θ

)
θ∈Θ and

(
U

(MCS)
θ

)
θ∈Θ to approximate the committor function Uopt,

each based on a different reliability idea and parameterized by a vector θ ∈ Θ ⊂ Rdθ for some
dθ ≥ 1. To each of these families of approximations of the committor function corresponds a
family

(
qθ
)
θ∈Θ of instrumental distributions obtained by replacing Uopt by Uθ in (1.12).

One comment: since our IF only appears in the intensities and jump kernels as the ratio
U−
θ /Uθ, we only need to approximate a function proportional to Uopt and not Uopt itself.

This means that unlike Uopt, Uθ does not have to be interpreted as a probability and can
therefore be larger than 1. On the other hand, we impose Uθ=0 ≡ 1 to ensure that q0 = π0
the unbiased distribution and Uθ must be increasing in each coordinate of θ. The intuition
for the practitioner should be clear: the ”larger” θ is, the more we bias and the more we push
the trajectory to D but the more unstable the likelihood ratio π0/qθ could become. One just
have to find a suitable trade-off.

Broken components based importance function (BC-IF). A natural idea is to design Uθ as
an increasing function in the number of broken components. We borrow and extend an idea
from [16]. Let dc be the total number of components in the system, β(BC)(z) the number of
broken components when the process is in the state z ∈ E, and θ = (θ1, . . . , θdc) ∈ Rdc . We
propose the following IF:

(2.7) U
(BC)
θ (z) := exp

 dc∑
j=1

θj 1β(BC)(z)≥j

2 = exp


β(BC)(z)∑

j=1

θj

2
 .

Theoretical arguments in favor of this particular function are given in [16] for a one-dimensional

form: U
(BC)
θ (z) = e(θ1bz)

2
(equivalent to (2.7) by imposing θ1 = · · · = θdc). The intuition is

that a good parametric form should favor each new component failure more and more strongly,
because it is less and less likely that additional components will break without the previous
ones being repaired. The form x 7→ exp(x2) then guarantees that the ratios U−

θ /Uθ are strictly
increasing in β(BC).

The authors of [16] have successfully tested this one-dimensional approach on a parallel
system with 3 components and a single failing mode (when all components are broken). It is
reasonable to think that the number of components is not the core of the problem for paral-
lel systems and that our dc-dimensional extension adds enough flexibility if needed for very
large parallel systems. On the other hand, there is concern that this approach is too naive
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to approximate Uopt in the case of systems with both many components and multiple failing
modes. Typical failures do not involve a large number of components but a small number of

key components. Using U
(BC)
θ produces trajectories where blindly selected components will

break. With small θ it may not break the right components, and with large θ it may break
too many and produce implausible trajectories (with a low likelihood ratio in the IS estimator
(1.10)). We must therefore take into account the role played by each component within the
system.

MPS based importance function (MPS-IF). A MPS is said damaged when at least one of
its components is broken. It is necessary that all minimal paths sets are damaged to reach
system failure. For θ = (θ1, . . . , θdMPS

) ∈ RdMPS , we recycle the idea expressed in (2.7) but
with this time an increasing function in β(MPS)(z) the number of damaged MPS in state z:

(2.8) U
(MPS)
θ (z) := exp

(dMPS∑
i=1

θi 1β(MPS)(z)≥i

)2
 = exp


β(MPS)(z)∑

j=1

θj

2
 .

The process simulated from U
(MPS)
θ therefore prioritizes the failure of components involved in

a large number of still undamaged MPS (and conversely will prioritize preventing the repair
of components involved in a large number of already damaged MPS).

The MPS-IF does not consider the number of broken components per MPS but only the

presence of at least one broken component. This means that the form U
(MPS)
θ does not look

for breaking two components in a single MPS if they are not present in other MPS. Yet,
even if this second broken component is not necessary to achieve system failure, it prevents
the system from being safe in the case when the first component is repaired. Describing the
functioning of the system with MCS rather than MPS leads us to a more flexible paramet-
ric family since this time we have to look at the proportion of broken components in each MCS.

MCS based importance function (MCS-IF). For any state z ∈ E and any i ∈ J1, dMCSK, we
define β

(MCS)
i (z) the proportion of broken components in the i-th MCS when the process is

in the state z. We rank these proportions in descending order and we also define β
(MCS)
(i) (z)

the i-th largest proportion of broken components among all MCS in the state z:

(2.9) U
(MCS)
θ (z) := exp

(dMCS∑
i=1

θi β
(MCS)
(i) (z)

)2
 .

Here again, the process simulated from U
(MCS)
θ prioritizes the failure of components in-

volved in a large number of MCS or in MCS of small size (to bring the proportions of broken
components closer to 1 more quickly).

Dimension reduction. A key point for the success of the method is to get a flexible but
reasonably sized family. One way to reduce the dimension of θ is to impose the equality of
some groups of coordinates (by ordered packets). For example, to get a vector θ ∈ Rdθ from
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θ̃ ∈ Rd
θ̃ with dθ = k × d

θ̃
we impose θi = θ̃⌊ i−1

k
⌋+1 for i ∈ J1, dθK. This is why by choosing

1β≥i in (2.7) and (2.8) instead of simply 1β=i, and β
(MCS)
(i) instead of β

(MCS)
i in (2.9), we keep

a consistent (and increasing in each coordinate) Uθ even with d
θ̃
= 1.

3. Algorithm and asymptotic properties. To each parametric family (Uθ)θ∈Θ of IFs de-
signed to approximate Uopt corresponds a family of instrumental distributions (qθ)θ∈Θ ≡
(πλθ ,Kθ

)θ∈Θ designed to approximate qopt. Each of these distributions is defined by the jump
intensity λθ and density jump kernel Kθ given in (2.1).

The AIS method by cross-entropy that we present allows us to jointly determine a good
candidate within the family (qθ)θ∈Θ and to estimate the probability P of the rare event that
interests us.

3.1. Estimation procedure. We follow the cross-entropy minimization principle [24]. We
are looking for a candidate within the family (qθ)θ∈Θ as close as possible to the target distri-
bution qopt in the sense of the Kullback-Leibler divergence:

argmin
θ∈Θ

DKL (qopt∥qθ) = argmin
θ∈Θ

Eqopt

[
log

(
qopt(Z)

qθ(Z)

)]
= argmin

θ∈Θ

∫
− log (qθ(Z))

1Z∈D π0(Z)

P
dζ(Z)

= argmin
θ∈Θ

Eπ0 [−1Z∈D log (qθ (Z))] .(3.1)

Sequential algorithm. The function θ 7→ Eπ0 [−1Z∈D log (qθ (Z))] is estimated by impor-
tance sampling under an initial instrumental distribution qθ(1) , we determine θ(2) which min-
imizes this estimate and we repeat the scheme. To save the simulation budget, we reuse at
each iteration all the trajectories already drawn to perform the minimization step. Similarly,
all the trajectories generated during the algorithm are recycled to produce the final estimator
of P . To summarize, at iteration ℓ ∈ N∗:

1. Simulation phase. Generate nℓ trajectories Z
(ℓ)
1 , . . . ,Z(ℓ)

nℓ

i.i.d.∼ qθ(ℓ) .
2. Optimization phase. Update the parameter of the instrumental distribution with

the ℓ last samples drawn
(
Z(1)
k

)n1

k=1
, . . . ,

(
Z(ℓ)
k

)nℓ

k=1
:

(3.2) θ(ℓ+1) = argmin
θ∈Θ

{
−

ℓ∑
r=1

nr∑
k=1

1Z(r)
k ∈D

π0
(
Z(r)
k

)
qθ(r)

(
Z(r)
k

) log [qθ(Z(r)
k

)]}
.

Estimation phase at the final iteration L (with NL =
∑L

ℓ=1 nℓ the total budget), we reuse
all past samples to get the final estimator of P :

(3.3) P̂NL
=

1

NL

L∑
ℓ=1

nℓ∑
k=1

1Z(ℓ)
k ∈D

π0
(
Z(ℓ)
k

)
qθ(ℓ)

(
Z(ℓ)
k

) .
3.2. Asymptotic optimality and confidence interval. Using theorems 2 and 3 from [46],

we can determine sufficient criteria to ensure the consistency and asymptotic normality of the
estimator (3.3).



ADAPTIVE IMPORTANCE SAMPLING BASED ON FAULT TREE ANALYSIS 15

Hypothesis 3.1 (Assumptions on the PDMP). The PDMP of distribution π0 with states in
E, jump intensity λ0 and jump kernel K0 verifies the following conditions:

1. There exist λmin, λmax > 0 such that for any z ∈ supp(λ), λmin ≤ λ0(z) ≤ λmax.
2. There exist Kmin,Kmax > 0 such that for any z− ∈ E and z ∈ supp (K0 (z

−, ·)),
Kmin ≤ K0(z

−, z) ≤ Kmax.
3. There exists tε > 0 such that for any z− ∈ ∂E and z ∈ supp (K0 (z

−, ·)), t∂z ≥ tε.

Hypothesis 3.2 (Assumptions on the parametric family (Uθ)θ∈Θ and on the set Θ). The set
of parameters Θ and the parametric family (Uθ)θ∈Θ of IFs verify the following conditions:

1. Θ is a compact subset of Rdθ for some dθ > 0.
2. θopt ∈ Θ is the unique minimizer of θ 7→ Eπ0 [−1Z∈D log (qθ (Z))].
3. There exist Umin, Umax > 0 such that for any θ ∈ Θ and z ∈ E, Umin ≤ Uθ(z) ≤ Umax.

Theorem 3.3. Under Hypothesis 3.1 and Hypothesis 3.2, with V : θ 7→ Eπ0

[
1Z∈D

π0(Z)
qθ(Z)

]
−

P 2, we have

(3.4) θ(L) a.s.−→ θopt and
√

NL

(
P̂NL

− P
)

L−→ N (0, V (θopt))

if one of the two following conditions are satisfied:
1. nℓ > 0 for any ℓ > 0 and L → +∞,
2. L < ∞, nL−1 → +∞ and nL/nL−1 → +∞.

The asymptotics can therefore be taken either in the number of iterations L or in the size
of the last two samples nL−1 and nL. These are two different yet specific ways to make the
total number of simulated trajectories tend towards infinity. The first case, more standard,
is proven in Appendix A.1. In the second case, with a fixed number of iterations L, if the
number of simulated trajectories at the second to last iteration nL−1 tends to infinity, then
we minimize θ 7→ Eπ0 [−1Z∈D log (qθ (Z))] which gives θopt. Thus at the last iteration L,
the trajectories are generated according to qθopt . It is then sufficient that nL/nL−1 tends to
infinity for the proportion of trajectories drawn according to qθopt to converge to one.

We can also propose a consistent estimator of the asymptotic variance V (θopt):

(3.5) σ̂2
NL

=
1

NL

L∑
ℓ=1

nℓ∑
k=1

1Z(ℓ)
k ∈D

π0
(
Z(ℓ)
k

)2
qθ(ℓ)

(
Z(ℓ)
k

)2 − P̂ 2
NL

.

It follows that an asymptotic confidence interval for P with the conditions of Theorem 3.3 is
given by:

(3.6) P
(
P ∈

[
P̂NL

− v1−α/2 σ̂NL
N

−1/2
L ; P̂NL

+ v1−α/2 σ̂NL
N

−1/2
L

])
−→ 1− a,

where v1−α/2 is the (1− α/2)-quantile of the N (0, 1) distribution.

4. Implementation guidelines. We discuss here the implementation of our method.
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Initialization of the algorithm. It is known that the choice of the initial distribution of an
AIS method is crucial. A common option that has the advantage of being without a priori is
to take qθ(0) = π0, but it is not suitable to deal with rare events. Let us recall that we would
like to minimize Eπ0 [1Z∈D log qθ(Z)] but we minimize in practice an empirical approximation
(3.2). With a poorly chosen initial auxiliary distribution, the minimizer of the approximation
could be too far from the true minimizer. It is then difficult to find the right track over the
iterations and the final result of the procedure depends therefore a lot on this initial choice.

In the starting configuration of our system, the first spontaneous jump can only be the
failure of a component since none are broken at the initial time. We are therefore able to set
a time limit t̃ and a threshold probability p̃ and to determine the smallest θ̃ (of dimension
1) such that the probability under π

θ̃
that the first spontaneous jump takes place before the

time t̃ is larger than p̃. We can then start the Cross-Entropy with θ(0) =
(
θ̃, . . . , θ̃

)
and

(4.1) θ̃ := inf
{
θ ∈ R+ : Pqθ

(
Tz0 ≤ t̃ | Z0 = z0

)
≥ p̃
}
,

with Tz0 the time of the first random jump and hence the time of the first component failure.

Sampling size policy and stopping criterion. Given a fixed simulation budget, we would like
to choose nℓ the sample size at iteration q, and L the total number of iterations. Let us recall
that NL =

∑L
ℓ=1 nℓ is the total number of trajectories to be drawn.

If we do not opt for a recycling scheme, it is imperative to set nℓ large enough (at the very
least 100) even if it means doing few iterations, because we cannot rely on past samples to
approximate the true objective function in (3.2). On the other hand with a recycling scheme,
we would ideally like to choose nℓ as small as possible in order to perform as many iterations
as possible, thus as many minimizations as possible, and to give ourselves the best chances to
get close to qopt.

In practice, it all depends on the optimization method used to solve (3.2). If it is ex-
pensive, we cannot afford too many iterations. Moreover, the cost of calling the function
to be minimized depends linearly on the number of terms in the sum, so the minimization
will be more and more expensive with each iteration (using a recycling scheme). To get an
idea, if we do not want the cost dedicated to the optimization to exceed the cost dedicated
to the simulation, the number of iterations L should be smaller than 2cS/cO − 1 with cS the
computational cost of simulating one trajectory and cO the computational cost of minimizing
(3.2) for a single trajectory.

For a fixed simulation budget NL, we propose to determine nℓ at iteration q as the min-
imum between the remaining budget NL − Nq−1 and the (random) smallest number of tra-
jectories to be drawn such that nCE of them belong to D (with for example nCE = 10 in the
case of a total budget NL = 104).

Numerical optimization. It is necessary at each iteration to call an optimization program
to solve (3.2). Let us point out that with a large number of iterations and few new trajec-
tories at each sample, it is not useful to determine the true minimizer (which would imply
using sophisticated methods adapted to non-convex problems). We only need to improve our
instrumental distribution a little bit at each iteration.
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We employed the BFGS method [22] that can be found in many toolboxes. We used the
function minimize(·,method=BFGS) from the scipy.optimize toolbox in Python [61]. This
function performs better when given the explicit gradient of the function to be minimized
rather than letting it approximate it by finite differences. We give in Appendix A.2 the
explicit gradient of the function θ 7→ log qθ(·) involved in (3.2).

One last advice: a classical stopping criterion of a BFGS method is to obtain a sufficiently
small gradient (i.e. close to zero). The default threshold in scipy.optimize is 10−5. It is
better to drastically lower this threshold to 10−20 for example because since the set of possible
trajectories is a very high dimensional space, the densities of the trajectories are very small
and the gradient of the objective function is small.

PDMP simulation. It is assumed that a suitable numerical code can be called up to com-
pute the flow. It represents the main computational cost of the simulation. There are several
methods, exact or approximate, to simulate the jump times of a PDMP [36, 7, 60, 37, 49].
Since our main constraint comes from the computation of the flow, we will opt for a method
that is sparing in the number of calls to the flow. We adapt for this purpose the algorithm
3.4 of [55] which is intended for the case where the flow is explicitly known. This algorithm
is based on a thinning principle which is usual for simulating time inhomogeneous Poisson
processes [38]. The PyCATSHOO toolbox [18] is an EDF-developed computer code that enables
such simulations.

MPS/MCS decomposition. Listing all the MPS or MCS of a system is an NP-hard prob-
lem. This task can be done by hand on the SFP system that we present in subsection 1.1
but it becomes impractical in the case of very large, highly redundant systems. The litera-
ture presents more methods to determine the MCS than the MPS of a system but the two
problems are strictly equivalent. Fault trees are the most common representation of systems
in the static Boolean approach and the search for the MCS of the system belongs to the field
called fault tree analysis (FTA) (see [53] for a recent survey). This is an old but still active
field in the industrial and academic communities. New approaches based on the differential
logic calculus offer other perspectives on the decomposition of the structure function [54].

5. Numerical experiments. In this section we present the results obtained with our
method, first on series and parallel systems, and then on the spent fuel pool system rep-
resented in Figure 1. We compare the performances of the AIS method with each of the three
families of IFs (BC-IF, MPS-IF and MCS-IF) to a CMC method.

5.1. Series and parallel systems. We study series and parallel systems with dc compo-
nents. We set M = {0, 1}dc . The mode of the system is m =

(
m(1), . . . ,m(dc)

)
where for

j ∈ {1, . . . , dc}, the status of the j-th component m(j) = 1 if the component is active and
0 if it is broken. The mode at time t ≥ 0 thus corresponds to the current status of each

component: Mt = (M
(1)
t , . . . ,M

(dc)
t ). Therefore in the case of series systems Mt ∈ MD if

there is j ∈ {1, . . . , dc} such that M
(j)
t = 0, and in the case of parallel systems Mt ∈ MD if

M
(j)
t = 0 for any j ∈ {1, . . . , dc}.
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λ
(j)
θ in a series system λ

(j)
θ in a parallel system

With U
(BC)
θ λ

(j)
0 (z) exp

[
θ2
βz+m(j) + 2(2m(j) − 1)θβz+m(j)

∑βz
i=1 θi

]
With U

(MPS)
θ λ

(j)
0 (z) exp

[
θ21

(
1βz≥2(1−m(j)) − 1βz≥1

)]
Same as BC case

With U
(MCS)
θ Same as BC case λ

(j)
0 (z) exp

[
(θ1/dc)

2
(
1 + 2(2m(j) − 1)βz

)]
Table 1: Marginal importance jump intensity of the j-th component for the importance process
on series and parallel systems. The jump intensity λθ and the jump kernel density Kθ of the importance

distribution qθ are simply written: λθ(z) =
∑dc

j=1 λ
(j)
θ (z) and Kθ

(
z, z(j)

)
= λ

(j)
θ /λθ(z) with z(j) the same

state as z except for m(j) the status of the j-th component.

Under distribution π0, for j ∈ {1, . . . , dc}, the j-th component has a jump rate λ
(j)
0

that depends on its status (in other words it has a constant failure rate and a constant
repair rate). From the state z−, the next jump occurs at a random time of jump intensity

λ0(z
−) =

∑dc
j=1 λ

(j)
0 (z−). At each jump from state z−, only one component is randomly

selected with probability λ
(j)
0 (z−)/λ0(z

−) for j ∈ {1, . . . , dc} and it then changes status.
The system failure is reached either as soon as the process has spent a total time larger

than x
(1)
max in MD (global grace period), or when it remains in MD a time larger than x

(2)
max

without leaving it (local grace period). We note Xt = (X
(1)
t , X

(2)
t , X

(3)
t ) the position of the

process at time t ≥ 0 with X
(1)
t the total time spent in MD during the entire trajectory,

X
(2)
t the elapsed time since the entry in MD if the process is there and 0 otherwise, and

finally X
(3)
t = t the total elapsed time. For an initial time t0 > 0 and a departure state

Zt0 = (Xt0 ,Mt0), the flow of the PDMP is given by ΦZt0
: h 7→ (Xt0+h,Mt0+h) with :

X
(1)
t0+h = X

(1)
t0
1Mt0 /∈MD

+
(
X

(1)
t0

+ h
)
1Mt0∈MD

,(5.1)

X
(2)
t0+h =

(
X

(2)
t0

+ h
)
1Mt0∈MD

,(5.2)

X
(3)
t0+h = t0 + h.(5.3)

Importance distribution for series and parallel systems. In this subsection we will note βz ≡
β(BC)(z) the number of broken components in state z ∈ E. As seen in subsection 2.1:

1. A series system with dc components has 1 MPS containing all the components and

dc MCS containing each 1 component. Thus in series systems U
(MCS)
θ = U

(BC)
θ and

U
(MPS)
θ = exp

[
θ21 1βz≥1

]
.

2. A parallel system with dc components has dc MPS containing each 1 component and

1 MCS containing all the components. Thus in parallel systems U
(MPS)
θ = U

(BC)
θ and

U
(MCS)
θ = exp[(θ1βz/dc)

2].
For these cases, we give in Table 1 explicit expressions of the jump intensity λθ and jump

kernel Kθ of the importance density qθ from the marginal jump intensities
(
λ
(j)
θ

)dc
j=1

.

Each of the two systems presents a different challenge for importance sampling. The se-
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Method NL P̂NL σ̂NL 95% confidence interval

105 4× 10−5 6.32× 10−3
[
8.02× 10−7 ; 7.92× 10−5

]
CMC 106 2.9× 10−5 5.38× 10−3

[
1.84× 10−5 ; 3.96× 10−5

]
107 2.7× 10−5 5.19× 10−3

[
2.38× 10−5 ; 3.02× 10−5

]
IS with U

(MPS)
θ

103 2.82× 10−5 2.26× 10−5
[
2.68× 10−5 ; 2.96× 10−5

]
104 2.91× 10−5 2.24× 10−5

[
2.87× 10−5 ; 2.95× 10−5

]
IS with U

(MCS)
θ = U

(BC)
θ

103 2.96× 10−5 2.25× 10−5
[
2.82× 10−5 ; 3.09× 10−5

]
104 2.89× 10−5 2.25× 10−5

[
2.84× 10−5 ; 2.93× 10−5

]
Table 2: Results on the series system case (with jump rates of the five components from Table 7 in
appendix). The 3 AIS versions were initialized according to the method described in section 4: with the
smallest one-dimensional θ such that the probability that at least one component failure occurs before the
end of the simulation is larger than 1/3. At each iteration, we generate trajectories until we have nCE = 10
failures before updating θ for NL = 103 and nCE = 50 for NL = 104. We stop when the total budget NL is
reached. The effective dimension of the vector θ is not modified. For the CMC method, we simply generate
NL trajectories and we count the proportion of faulty trajectories. The estimated probability P̂NL is given by
(3.3) and the estimated asymptotic standard deviation σ̂NL is given by (3.5).

Method NL P̂NL σ̂NL 95% confidence interval

105 8× 10−5 8.94× 10−3
[
2.46× 10−5 ; 1.35× 10−4

]
CMC 106 6.7× 10−5 7.54× 10−3

[
5.10× 10−5 ; 8.30× 10−5

]
107 6.73× 10−5 8.2× 10−3

[
6.22× 10−5 ; 7.24× 10−5

]
IS with U

(MPS)
θ = U

(BC)
θ

103 4.85× 10−5 1.77× 10−4
[
3.76× 10−5 ; 5.94× 10−5

]
104 5.80× 10−5 2.53× 10−4

[
5.29× 10−5 ; 6.31× 10−5

]
IS with U

(MCS)
θ

103 5.94× 10−5 2.95× 10−4
[
4.12× 10−5 ; 7.77× 10−5

]
104 7.01× 10−5 7.14× 10−4

[
5.61× 10−5 ; 8.41× 10−5

]
Table 3: Results on the parallel system case (with jump rates of the five components from Table 7 in
appendix). Same notation as in Table 2, except that the 3 IS forms were initialized with the smallest one-
dimensional θ such that the probability that at least one component failure occurs before tmax/dc is larger
than 1/3.

ries system requires multi-modal importance distribution since the failure can come from any
component, and the importance distribution for a parallel system must produce sequences
where all components fail that are plausible from the perspective of jump times.

Results. We compare on a series and on a parallel system the performance of a CMC
method with a sample size ranging from 105 to 107 to our three versions of the AIS method
corresponding to the three families of approximations of the committor function with a sample
size ranging from 103 to 104. For both the series and parallel systems, we generated trajectories

of duration tmax = 1500 with global grace period x
(1)
max = 75 and local grace period x

(2)
min = 50.

Each system has five components. The jump parameters of the two systems are described in
Table 7. The results obtained on the series system, resp. parallel system, are described in
Table 2, resp. in Table 3.
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The AIS method performs better than the CMC method in all configurations. The esti-
mated probabilities are of the same order and the confidence intervals produced by the AIS
method for a given sample size are of comparable length to the confidence intervals produced
by the CMC method for a sample size 104 larger. It can be seen that the best performance
is obtained on the series system despite a slightly lower failure probability. This result is not
surprising since the failed trajectories of a series system generally contain few jumps and thus
produce likelihood ratios that are easier to stabilize. Since only the failure (and non-repair) of
a single component is necessary for the system to fail, the MPS and BC/MCS methods have
the same effectiveness here. For the parallel system on the other hand, the BC/MPS method
benefits from additional degrees of freedom compared to the MCS method which seems to
make a small difference at the end. In particular, the BC/MPS form allows the speed at
which component failures must follow each other until the failure mode is reached to be dosed
precisely.

5.2. The spent fuel pool. The roles of the components (cj)
dc=15
j=1 are described in Figure 1.

We set M = {−1, 0, 1}dc . The mode of the system is m =
(
m(1), . . . ,m(dc)

)
where for j ∈

{1, . . . , dc}, the status of the j-th component m(j) = 1 if the component is active, 0 if it is

inactive and -1 if it is broken.. The mode Mt = (M
(1)
t , . . . ,M

(dc)
t ) of the process at time t ≥ 0

corresponds to the current status of each component. Recall that we have Mt ∈ MD if at time
t ≥ 0 all MPS are damaged or equivalently if at least one MCS has all its components broken.

We note Xt = (X
(1)
t , X

(2)
t , X

(3)
t ) the position of the process at time t ≥ 0 with X

(1)
t the

temperature of the water in the pool in °C, X(2)
t the water level in the pool in meters (m) and

X
(3)
t = t the total elapsed time. The evolution of these variables is described by the system

of ordinary differential equations:

dX
(1)
t

dt
= 1

X
(1)
t <100

×
r + ρCQ(x

(1)
S −X

(1)
t )1Mt /∈MD

ρCAX
(2)
t

,(5.4)

dX
(2)
t

dt
= −1

X
(1)
t =100

× r

ρCAℓ
,(5.5)

dX
(3)
t

dt
= 1,(5.6)

where the physical parameters are given in the Table 4 (values taken from [18]).

Under distribution π0, each component m(j) has a jump rate λ
(j)
0 which depends on its

status and on the values of the physical variables of the system. The jump intensity of
the PDMP in a state z ∈ E is the sum of the jump rates of the components in state z:

λ0(z) =
∑dc

j=1 λ
(j)
0 (z). At each jump from state z−, a component cj is randomly selected

with probability λ
(j)
0 (z−)/λ0(z

−) and changes status (it is repaired if it was down, and fails
otherwise). The system automatically reconfigures itself by enabling or disabling components
so that exactly 1 MPS has all its components active if possible (be careful not to confuse
inactive component m(j) = 0 and broken component m(j) = −1).

It is assumed that no water can be re-injected into the pool in case of evaporation for the
duration of the mission tmax. Once in MD there is a first grace period before the tempera-
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Physical parameters Value Description

r 2.106× 1010 J · h−1 Residual power of the fuel
C 4180 J ·Kg−1 · °K−1 Mass heat capacity
ρ 990Kg ·m−3 Density of the water
A 77m2 Area of the pool.

x
(1)
S 15°C Temperature of the water sources
Q 550m3 h−1 The debit water
ℓ 2.257× 106 J ·Kg−1 Latent heat of vaporization

tmax 3600 h Duration of the mission

x
(2)
0 19m Initial level of water in the pool

x
(2)
min 16m Critical threshold of the level of water in the pool

Table 4: Physical parameters of the SFP. Values taken from [18].

ture of the water reaches 100°C, but this temperature can go back down once the system is
repaired. Then we have a second grace period before the water level in the pool reaches a

critical threshold x
(2)
min. In our model, the evaporated water is lost and the water level cannot

rise again if the system is repaired.

Results. We carry out three series of numerical simulations on the spent fuel pool system.
1. We first compare the performance of each version of our AIS method to a CMC method

on a standard case with jump rates described in Table 8 in appendix, results described
in Table 5 and a probability of system failure about 10−5.

2. We then check the stability of the best version of our method which seems to be based

on U
(MPS)
θ . We represent in Figure 5 50 confidence intervals at 95% level obtained with

the AIS MPS-IF method with a sample size of 103 trajectories still on the standard
case (Table 8) and we compare them to the confidence interval obtained with the CMC
method and a sample size of 107.

3. Since the method is stable, we can trust the confidence intervals produced and confront
it with even rarer events for which it cannot be compared to a CMC method. Therefore
we test the AIS MPS-IF method on an extreme case with jump rates described in
Table 9 in appendix, results described in Table 6 and a probability of system failure
about 10−7.

The first observation on Table 5 is that even the BC-IF method, which does not distinguish
the role of each component, manages to drastically reduce the variance of the estimator
compared to the CMC method (almost by a factor of 1000). Surprisingly, the performance of
the MCS-IF method is closer to the BC-IF method than to the MPS-IF method. The latter is
extremely efficient with a variance reduction of 104. We may explain this by two reasons. The
first one is that, as we have seen, the MPS-IF method is more adapted to parallel systems than
the MCS-IF method, yet the structure of reliable industrial systems relies on the redundancy
of components and thus on parallelism. The second one is that since we are dealing with a
dynamic system in continuous time and not in discrete time, it seems more appropriate to
decide how fast to go through the stages until MD is reached, as the MPS-IF method allows,
rather than to decide which stages are to be gone through in priority, as the MCS-IF method
allows.
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Method NL P̂NL σ̂NL 95% confidence interval

105 2× 10−5 4.47× 10−3
[
0 ; 4.77× 10−5

]
CMC 106 1.3× 10−5 3.61× 10−3

[
5.93× 10−6 ; 2.01× 10−5

]
107 1.77× 10−5 4.21× 10−3

[
1.51× 10−5 ; 2.03× 10−5

]
AIS with U

(BC)
θ

103 2.16× 10−5 2.35× 10−4
[
7.05× 10−6 ; 3.63× 10−5

]
104 1.79× 10−5 3.01× 10−4

[
1.37× 10−5 ; 2.22× 10−5

]
AIS with U

(MPS)
θ

103 2.19× 10−5 6.59× 10−5
[
1.78× 10−5 ; 2.60× 10−5

]
104 1.99× 10−5 2.01× 10−5

[
1.96× 10−5 ; 2.03× 10−5

]
AIS with U

(MCS)
θ

103 1.05× 10−5 1.27× 10−4
[
2.65× 10−6 ; 1.83× 10−5

]
104 1.50× 10−5 2.04× 10−4

[
1.10× 10−5 ; 1.90× 10−5

]
Table 5: Results on the standard SFP case (with jump rates from Table 8). The 3 AIS methods were
initialized according to the same way described in section 4: with the smallest one-dimensional θ such that
the probability that at least one component failure occurs before the end of the simulation is larger than 1/3.
At each iteration, we generate trajectories until we have nCE = 10 failures before updating θ for N = 103 and
nCE = 50 for N = 104. We stop when the total budget N is reached. The effective dimension of the vector θ is
reduced to 8. For the CMC method, we simply generate N trajectories and we count the proportion of faulty
trajectories. The estimated probability P̂NL is given by (3.3) and the estimated asymptotic standard deviation
σ̂NL is given by (3.5).

Figure 5: Comparison of 50 confidence intervals at 95% level obtained with MPS-IF
approximation. Each confidence interval corresponds to a run of the AIS MPS-IF method on the
standard case of the SFP (Table 8) with 103 trajectories (same conditions as for Table 5). They are
compared to the confidence intervals obtained with the CMC method on 107 trajectories.

Note that the coefficient of variation in Table 5, which can be used as an indicator of the
performance of an estimator, does not necessarily decrease with the sample size. This is due
to the fact that in the first iterations of the method, the parameter θ is not yet well chosen and
that a poor importance distribution in high dimension tends to produce too small likelihood
ratios. The coefficient of variation is underestimated at this time.

Figure 5 confirms the performance of the AIS MPS-IF method. The majority of the
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Method NL P̂NL σ̂NL 95% confidence interval

AIS with U
(MPS)
θ

103 3.31× 10−7 1.11× 10−6
[
2.63× 10−7 ; 4.00× 10−7

]
104 3.83× 10−7 1.26× 10−6

[
3.58× 10−7 ; 4.08× 10−7

]
Table 6: Results with the MPS-IF approximation on the extreme SFP case (with jump rates from
Table 9). Same method as in Table 5 except that the initialization follows the method described in section 4
with the smallest one-dimensional θ such that the probability that at least one component failure occurs before
the end of the simulation is larger than 0.9.

confidence intervals produced by the AIS method with a sample size of 103 are shorter than
the confidence interval produced by the CMC method with a sample size of 107. Only 1
interval out of 50 is significantly larger than the interval produced by CMC, but it is relevant
since it gives a probability of failure between 1 × 10−5 and 3.5 × 10−5. We deduce that the
AIS MPS-IF method is robust and that we can therefore have confidence in its estimates.

Finally, we see on the Table 6 that the AIS MPS-IF method still offers excellent perfor-
mances for a 100 times rarer event. A reliable estimate of the probability that is of order 10−7

can be obtained with a sample size smaller than 104.

6. Conclusion. This work contains a comprehensive methodology for assessing the relia-
bility of hybrid dynamic industrial systems, as well as a demonstration of its efficiency.

1. We have presented the mathematical modeling of the system under the form of a
piecewise deterministic Markov process (PDMP).

2. We have emphasized the role played by the committor function of the system in the
optimality conditions of an importance sampling method for estimating its failure
probability.

3. We have proposed three different families of parametric approximations of the com-
mittor function. The forms of these families are based on the decomposition of the
system structure function into minimal path sets (MPS) and minimal cut sets (MCS).

4. We have proposed an adaptive importance sampling (AIS) algorithm based on a cross-
entropy procedure and a recycling scheme of past samples. The convergence and
asymptotic normality of the estimator have been demonstrated. They make it possible
to construct asymptotic confidence intervals of the failure probability.

5. Finally, the different versions of our method have been tested and compared on differ-
ent test cases.

It is found that each version of our AIS method is considerably more efficient than a CMC
method in all cases. If we compare the different AIS versions between them, it appears that
the best performances are obtained when we approximate the committor function with an
increasing function in the number of MPS with a broken component. The variance of the
estimator produced is more than 10,000 times smaller than that of a CMC method on the
examples. It allows to estimate with accuracy a probability of failure of order 10−7 with a
sample size smaller than 104.

Multi-level CE and improved CE. Sometimes, it is challenging to determine an initial in-
strumental distribution beforehand that enables the realization of the event {Z ∈ D}. When
the event takes the form {φ(Z) > γ}, a common technique is to adaptively set intermediate
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thresholds γ1 < γ2 < · · · < γ and replace the indicator 1φ(Z)>γ with 1φ(Z)>γℓ at each step ℓ,
as explained in Algorithm 1.1 of [24]. A further refinement of this technique is the iCE (im-
proved cross entropy method) presented in [58], where the indicator function is replaced by a

continuous approximation of the form g(Z; s) = FN (0,1)

(
φ(Z)−γ

s

)
with FN (0,1) the cumulative

distribution function of the N (0, 1) distribution (such that we have g(Z; s) −→
s→0

1φ(Z)>γ).

In our case, as we have seen, even though the event {Xt ∈ XD} can generally be expressed
as a threshold exceedance, the intermediate steps to be crossed are primarily determined by
the modes of M that are not ordered. The importance function can serve both to parame-
terize the importance distribution and to define the intermediate thresholds by ordering the
modes. The major drawback of MCS-IF here is that it classifies the modes in a different order
depending on the value of the vector θ (unlike BC-IF and MPS-IF).

Extension to other applications with reverse importance sampling trick. Our method can also
serve other purposes. Recall that with the reverse importance trick, one can always estimate
what the probability of failure would have been under another distribution π̃:

(6.1) Eπ̃ [1Z∈D] = Eqθ

[
1Z∈D

π̃(Z)

qθ(Z)

]
.

For example, a reliability sensitivity analysis can be carried out to measure the influence of
variations of the jump intensity and the jump kernel (or hyperparameters of the jump intensity
and the jump kernel such as failure rates of components of an industrial system) on its failure
probability. Any classical sensitivity index [48] can be constructed from an input/output data

set
(
(λ,K)(i), P̂π

(λ,K)(i)

)
i=1,...,n

with:

(6.2) P̂π
(λ,K)(i)

=
1

NL

L∑
ℓ=1

nℓ∑
k=1

1Z(ℓ)
k ∈D

π(λ,K)(i)
(
Z(ℓ)
k

)
qθ(ℓ)

(
Z(ℓ)
k

) ,

for i = 1, . . . , n. Thus the trajectories already simulated can be recycled to estimate new
quantities.

Application to other rare event methods. As mentioned earlier, approximating the commit-
tor function of the process enables the efficient implementation of variance reduction methods
other than importance sampling. Importance splitting is a family of methods used to estimate
the probability of a rare event by decomposing it into a nested intersection of less rare events.
The principle is to generate a set of trajectories of the process, this time following its original
distribution π0, but duplicating the most promising trajectories along the way and discarding
the others. It is up to the user to choose an importance function that determines whether a
trajectory is promising or not, and this choice primarily determines the method’s performance.
Such methods have already been applied to PDMPs in the literature. For example, adaptive
multilevel splitting (AMS) [14, 8] was applied to particle transport in [40], and the interacting
particle systems (IPS) method [25] was applied to industrial systems similar to ours in [17].
The optimal importance function to use in AMS is the committor function Uopt. In the case
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of the IPS algorithm, the optimal importance function (more exactly, the potential function
used to select the promising particles) can also be expressed in terms of the committor func-
tion although the relationship is more complex. The families of importance functions we have
proposed in this paper could therefore be used to efficiently implement splitting algorithms.
The latter do not generally compete with a well-implemented importance sampling method,
however their performance degrades little when the importance function is not well chosen.
They generally require less a priori knowledge about the system.
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[13] M. Čepin, Assessment of power system reliability: methods and applications, Springer Science & Business
Media, 2011.

[14] F. Cérou and A. Guyader, Adaptive multilevel splitting for rare event analysis, Stochastic Analysis
and Applications, 25 (2007), pp. 417–443.

[15] F. Cérou, A. Guyader, and M. Rousset, Adaptive multilevel splitting: Historical perspective and
recent results, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29 (2019), p. 043108.

[16] H. Chraibi, A. Dutfoy, T. Galtier, and J. Garnier, On the optimal importance process for piecewise
deterministic markov process, ESAIM: Probability and Statistics, 23 (2019), pp. 893–921.

[17] H. Chraibi, A. Dutfoy, T. Galtier, and J. Garnier, Optimal potential functions for the interacting
particle system method, Monte Carlo Methods and Applications, 27 (2021), pp. 137–152.

[18] H. Chraibi, J. C. Houdebine, and A. Sibler, PyCATSHOO: Toward a new platform dedicated to



26 GUILLAUME CHENNETIER, HASSANE CHRAIBI, ANNE DUTFOY, JOSSELIN GARNIER

dynamic reliability assessments of hybrid systems, in 13th International Conference on Probabilistic
Safety Assessment and Management (PSAM 13), 2016.

[19] J.-M. Cornuet, J.-M. Marin, A. Mira, and C. P. Robert, Adaptive multiple importance sampling,
Scandinavian Journal of Statistics, 39 (2012), pp. 798–812.

[20] O. L. Costa and F. Dufour, Stability and ergodicity of piecewise deterministic markov processes, SIAM
Journal on Control and Optimization, 47 (2008), pp. 1053–1077.

[21] Y. Crama and P. L. Hammer, Boolean functions: Theory, algorithms, and applications, Cambridge
University Press, Cambridge, 2011.

[22] Y.-H. Dai, Convergence properties of the BFGS algoritm, SIAM Journal on Optimization, 13 (2002),
pp. 693–701.

[23] M. H. A. Davis, Piecewise-Deterministic Markov Processes: A General Class of Non-Diffusion Stochastic
Models, Journal of the Royal Statistical Society. Series B (Methodological), 46 (1984), pp. 353–388.

[24] P.-T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, A tutorial on the cross-entropy
method, Annals of Operations Research, 134 (2005), pp. 19–67.

[25] P. Del Moral and J. Garnier, Genealogical particle analysis of rare events, Ann. Appl. Prob., 15
(2005), pp. 2496–2534.

[26] L. Desgeorges, P.-Y. Piriou, T. Lemattre, and H. Chraibi, Formalism and semantics of pycatshoo:
A simulator of distributed stochastic hybrid automata, Reliability Engineering & System Safety, 208
(2021), p. 107384.

[27] M. El Masri, J. Morio, and F. Simatos, Improvement of the cross-entropy method in high dimension
for failure probability estimation through a one-dimensional projection without gradient estimation,
Reliability Engineering & System Safety, 216 (2021), p. 107991.

[28] M. ElMasri, J. Morio, and F. Simatos, Optimal projection to improve parametric importance sampling
in high dimension, arXiv:2107.06091, (2021).

[29] V. Elvira and L. Martino, Advances in importance sampling, Wiley StatsRef: Statistics Reference
Online, (2021), pp. 1–14.

[30] T. Galtier, Accelerated Monte-Carlo methods for piecewise deterministic Markov processes for a faster
reliability assessment of power generation systems within the PyCATSHOO toolbox, PhD thesis, Uni-
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Appendix A. Appendix.

A.1. Proof of Theorem 3.3. The results come directly from showing that we verify the
hypotheses of Theorems 2 and 3 from [46]. We know by Hypotheses 3.1 and 3.2 that Θ is
compact and that we have Eπ0 [−1Z∈D log qθ(Z)] > Eπ0

[
−1Z∈D log qθopt(Z)

]
if θ ̸= θopt.
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Moreover, for any z ∈ E the continuity of the application θ 7→ Uθ(z) implies the continuity
of θ 7→ 1Z∈D π0(Z) log qθ(Z) for any Z ∈ E . To obtain the convergence of the sequence(
θ(L)

)
L>0

, it remains to show that :

Eπ0

[
1Z∈D sup

θ∈Θ
{− log qθ(Z)}

]
< +∞,(A.1)

sup
θ∈Θ

{
Eπ0

[
1Z∈D

π0(Z)

qθ(Z)
sup
θ̃∈Θ

{
− log π

θ̃
(Z)
}2]}

< +∞,(A.2)

and to get the asymptotic normality of the estimator P̂NL
, we have to prove that there exists

η > 0 such that:

(A.3) sup
θ∈Θ

{
Eπ0

[
1Z∈D

(
π0(Z)

qθ(Z)

)1+η
]}

< +∞.

From the definitions (2.1) of λθ and Kθ, and from Hypotheses 3.1 and 3.2, we obtain
that for any z ∈ supp (λ0): λminUmin/Umax ≤ λθ(z) ≤ λmaxUmax/Umin, and for any z− ∈ E
and any z ∈ supp (K0 (z

−, ·)): KminUmin/Umax ≤ K(z−, z) ≤ KmaxUmax/Umin. Then from
the definition (1.5) of the density of a PDMP trajectory Z ∈ E with nZ jumps, there exist
cmin, cmax > 0 such that:

sup
θ∈Θ

qθ(Z) ≤
nZ∏
k=0

(
λmax

Umax

Umin

)1
tk<t∂zk

nZ−1∏
k=0

Kmax
Umax

Umin
≤ (cmax)

nZ ,(A.4)

inf
θ∈Θ

qθ(Z) ≥
nZ∏
k=0

(
λmin

Umin

Umax

)1
tk<t∂zk exp

[
−λmax

Umax

Umin
tk

] nZ−1∏
k=0

Kmin
Umin

Umax
≥ (cmin)

nZ .(A.5)

Using (A.4) and (A.5) we see that conditions (A.1)–(A.3) are dominated by the following:

for any constant c > 0, Eπ0 [c
nZ ] < +∞. We have nZ = n

(λ)
Z + n

(∂)
Z with n

(λ)
Z the number of

spontaneous jumps with jump rate λ and n
(∂)
Z the number of jumps at boundaries. At most,

the process reaches the state space boundary ”almost immediately” after each spontaneous

jump, and a time tε after reaching another boundary. So n
(∂)
Z ≤ n

(λ)
Z + tmax/tε, and thus

nZ ≤ 2n
(λ)
Z + tmax/tε. We just need to prove that Eπ0

[
cn

(λ)
Z

]
< +∞ for any constant c.

We define Z̃ as a jump process analogous to a PDMP but with some jumps rejected and
not taking place. It is characterized by its flow Φ, its constant jump intensity λmax and its
jump kernel K̃ defined as follows:

(A.6) K̃
(
z−, dz

)
=

 K0 (z
−, dz)

λ0(z
−)

λmax
+

(
1− λ0(z

−)

λmax

)
δz−(dz) if z− /∈ ∂E,

K0 (z
−, dz) otherwise.

Thus a part of the spontaneous jumps are ”rejected” because the process remains on the

same state at each jump with probability
(
1− λ0(z−)

λmax

)
. Following theorem 5.5 from [23], we
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notice that the generator of this process is the same as that of the PDMP Z. Indeed by
denoting Q0 the generator of the PDMP Z and Q̃ the generator of the process Z̃, for any
state z− ∈ E and f a function of the domain of the generator Q̃ (see detail in [23]):

Q̃ f(z−) = ⟨∇f(z−), g(z−)⟩+ λmax(z
−)

∫
E

[
f(z)− f(z−)

]
K̃(z−, dz)

= ⟨∇f(z−), g(z−)⟩+ λ0(z
−)

∫
E

[
f(z)− f(z−)

]
K0(z

−, dz) +

(
1− λ0(z

−)

λmax

)[
f(z−)− f(z−)

]
= Q0 f(z

−).

Since the generator characterizes the distribution of the process, the trajectories of the
PDMP Z and of the jump process Z̃ are identically distributed. In particular, their number

of jumps nZ and nZ̃ also follow the same law (as well as n
(λ)
Z and n

(λ)

Z̃
). If we note ñ

(λ)

Z̃
the number of proposed jumps with jump intensity λmax including the rejected ones, it is

straightforward to see that ñ
(λ)

Z̃
follows a Poisson distribution with intensity λmax and that

ñ
(λ)

Z̃
≥ n

(λ)

Z̃
. Finally for any c ≥ 1,

(A.7) Eπ0

[
cn

(λ)
Z

]
= E

[
c
n
(λ)

Z̃

]
≤ E

[
c
ñ
(λ)

Z̃

]
= E

[
cP(λmax)

]
= eλmax(c−1) < +∞.

This completes the proof of the theorem.

A.2. Gradient of the log-likelihood for instrumental distributions. At each iteration
of the cross-entropy procedure, the minimization program (3.2) must be solved. The only
quantity depending on θ in the objective function is : Z 7→ log qθ(Z). Let us recall that the
probability density function of any trajectory Z ∈ E is given by (1.5). For all states z−, z ∈ E,
we note: rθ(z

−, z) = U−
θ (z−)/Uθ(z). For i ∈ {1, . . . , dθ}, the derivative of log qθ(Z) in θi is

given by:

∂θi log qθ(Z) =

nZ∑
k=0

[
1tzk<t∂zk

∂θirθ (Φzk(tk),Φzk(tk))

rθ (Φzk(tk),Φzk(tk))

−
∫ tk

0
λ0 (Φzk(u)) ∂θirθ (Φzk(u),Φzk(u)) du

]
−

nZ−1∑
k=0

∂θirθ (Φzk(tk), zk+1)

rθ (Φzk(tk), zk+1)
,

with ∂θirθ(z
−, z) =

1

Uθ(z)2

∫
E

[
Uθ(z)∂θiUθ(z

+)− Uθ(z
+)∂θiUθ(z)

]
K0(z

−, z+) dνz−(z
+).

A.3. Jump parameters for the series/parallel systems and the spent fuel pool system.
The marginal jump rates of each system component are presented according to its status and
according to the value of the position. The jump intensity of the process in a given state is
the sum of the marginal jump rates in that state.
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Series system Parallel system

Component Marginal jump intensity λ
(j)
0 for j = 1, . . . , dc

c1 1 · 10−9 1m(1)=0 + 1 · 10−6 1m(1)=1 6 · 10−5 1m(1)=0 + 1 · 10−4 1m(1)=1

c2 5 · 10−9 1m(2)=0 + 5 · 10−6 1m(2)=1 2 · 10−4 1m(2)=0 + 5 · 10−4 1m(2)=1

c3 5 · 10−9 1m(3)=0 + 1 · 10−6 1m(3)=1 2 · 10−4 1m(3)=0 + 1 · 10−3 1m(3)=1

c4 1 · 10−9 1m(4)=0 + 5 · 10−6 1m(4)=1 6 · 10−5 1m(4)=0 + 5 · 10−4 1m(4)=1

c5 8 · 10−9 1m(5)=0 + 6 · 10−6 1m(5)=1 5 · 10−4 1m(5)=0 + 8 · 10−4 1m(5)=1

Table 7: Marginal jump intensity of each component for the series and parallel systems.

Component Marginal jump intensity λ
(j)
0 for j = 1, . . . , dc

ci when m(i) = −1 when m(i) = 0 when m(i) = 1

c1 = G0 4 · 10−2 4 · 10−6 6 · 10−6

ci+1 = Gi, i = 1, 2, 3 8 · 10−2 2 · 10−6 30 · 10−6

c5 = S1 1 · 10−2 4 · 10−6 20 · 10−6

c6 = S2 3 · 10−2 1 · 10−6 5 · 10−6

c6+i = Li,1, i = 1, 2, 3 (6− 0.03X
(1)
t ) · 10−2 (1 + 0.05X

(1)
t ) · 10−6 (3 + 0.1X

(1)
t ) · 10−6

c9+i = Li,2, i = 1, 2, 3 (6− 0.03X
(1)
t ) · 10−2 (1 + 0.05X

(1)
t ) · 10−6 (3 + 0.1X

(1)
t ) · 10−6

c12+i = Li,3, i = 1, 2, 3 (6− 0.03X
(1)
t ) · 10−2 (1 + 0.05X

(1)
t ) · 10−6 (3 + 0.1X

(1)
t ) · 10−6

Table 8: Marginal jump intensity of each component for the standard SFP case.

Component Marginal jump intensity λ
(j)
0 for j = 1, . . . , dc

ci when m(i) = −1 when m(i) = 0 when m(i) = 1

c1 = G0 4 · 10−2 4 · 10−6 6 · 10−6

ci+1 = Gi, i = 1, 2, 3 10 · 10−2 15 · 10−6 30 · 10−6

c5 = S1 1 · 10−2 4 · 10−6 20 · 10−6

c6 = S2 3 · 10−2 1 · 10−6 5 · 10−6

c6+i = Li,1, i = 1, 2, 3 (12− 0.04X
(1)
t ) · 10−2 (1 + 0.1X

(1)
t ) · 10−6 (3 + 0.1X

(1)
t ) · 10−6

c9+i = Li,2, i = 1, 2, 3 (12− 0.04X
(1)
t ) · 10−2 (1 + 0.1X

(1)
t ) · 10−6 (3 + 0.1X

(1)
t ) · 10−6

c12+i = Li,3, i = 1, 2, 3 (15− 0.05X
(1)
t ) · 10−2 (1 + 0.08X

(1)
t ) · 10−6 (3 + 0.08X

(1)
t ) · 10−6

Table 9: Marginal jump intensity of each component for the extreme SFP case.
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