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Abstract. Quasiperiodic systems are important space-filling ordered structures, without decay
and translational invariance. How to solve quasiperiodic systems accurately and efficiently is of
great challenge. A useful approach, the projection method (PM) [J. Comput. Phys., 256: 428,
2014], has been proposed to compute quasiperiodic systems. Various studies have demonstrated that
the PM is an accurate and efficient method to solve quasiperiodic systems. However, there is a
lack of theoretical analysis of PM. In this paper, we present a rigorous convergence analysis of the
PM by establishing a mathematical framework of quasiperiodic functions and their high-dimensional
periodic functions. We also give a theoretical analysis of quasiperiodic spectral method (QSM) based
on this framework. Results demonstrate that PM and QSM both have exponential decay, and the
QSM (PM) is a generalization of the periodic Fourier spectral (pseudo-spectral) method. Then we
analyze the computational complexity of PM and QSM in calculating quasiperiodic systems. The
PM can use fast Fourier transform, while the QSM cannot. Moreover, we investigate the accuracy
and efficiency of PM, QSM and periodic approximation method in solving the linear time-dependent
quasiperiodic Schrödinger equation.

Key words. Quasiperiodic systems, Quasiperiodic spectral method, Projection method, Birkhoff’s
ergodic theorem, Error estimation, Time-dependent quasiperiodic Schrödinger equation.

AMS subject classifications. 42A75, 65T40, 68W40, 74S25

1. Introduction. Quasiperiodic systems are a natural extension of periodic sys-
tems. The earliest quasiperiodic system can trace back to the study of three-body
problem [1]. Many physical systems can fall into the set of quasiperiodicity, includ-
ing periodic systems, incommensurate structures, quasicrystals, many-body problems,
polycrystalline materials, and quasiperiodic quantum systems [1, 2, 3, 4]. The math-
ematical study of quasiperiodic orders is a beautiful synthesis of geometry, analysis,
algebra, dynamic system, and number theory [5, 6]. The theory of quasiperiodic func-
tions, even more general almost periodic functions, has been well developed to study
quasiperiodic systems in mathematics [7, 8, 9]. However, how to numerically solve
quasiperiodic systems in an accurate and efficient way is still of great challenge.

Generally speaking, quasiperiodic systems, related to irrational numbers, are
space-filling ordered structures, without decay nor translational invariance. This
rises difficulty in numerically computing quasiperiodic systems. To study such im-
portant systems, several numerical methods have been developed. A widely used
approach, the periodic approximation method (PAM), employs a periodic function to
approximate the quasiperiodic function [10]. The conventional viewpoint is that the
approximation error could uniformly decay as the supercell gradually becomes large.
However, a recent theoretical analysis has demonstrated that the error of PAM may
not uniformly decrease as the calculation area increases [11]. The second method is the
quasiperiodic spectral method (QSM), which approximates quasiperiodic function by
a finite summation of trigonometric polynomials based on the continuous Fourier-Bohr
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transform [10], also see Subsection 3.1. The third approach is the projection method
(PM) [12], based on the fact that the quasiperiodic system can be embedded into a
high-dimensional periodic system. Then the PM can accurately calculate the high-
dimensional periodic system over a torus in a pseudo-spectral manner. Meanwhile,
the PM is efficient due to the availability of fast Fourier transform (FFT). Finally, the
PM obtains the quasiperiodic system by choosing a corresponding irrational slice of
the high-dimensional torus by the projection matrix. Extensive studies have demon-
strated that the PM can be used to compute quasiperiodic systems to high precision,
including quasicrystals [13, 14], incommensurate quantum systems [15, 16, 17], topo-
logical insulators [18], and grain boundaries [19, 20]. However, the PM still has a lack
of corresponding theoretical guarantees.

In this work, we present a rigorous theoretical analysis of numerical methods for
solving quasiperiodic systems. We establish the relationship between quasiperiodic
functions and their corresponding high-dimensional periodic functions based on the
idea of PM. These mathematical results provide a theoretical framework to analyze
the convergence of PM, as well as QSM. We also present another error analysis frame-
work of QSM without using high-dimensional periodic functions. These theoretical
results demonstrate that both PM and QSM have exponential convergence. Moreover,
we analyze the computational complexity of PM and QSM in solving quasiperiodic
systems. The PM can use FFT by introducing discrete Fourier-Bohr transform, see
Subsection 3.2, while the QSM cannot. Further analysis reveals that the QSM (PM)
is an extension of the periodic Fourier spectral (pseudo-spectral) method. Finally, we
investigate the accuracy and efficiency of PM, QSM, and PAM to solving the linear
time-dependent quasiperiodic Schrödinger equation (TQSE).

2. Preliminaries. Before our analysis, we give some preliminaries on quasiperi-
odic and periodic functions in this section.

2.1. Preliminaries of quasiperiodic functions. Let us recall the definition
of the quasiperiodic function [9]. Denote

Md×n = {M = (m1, · · · ,mn) ∈ Rd×n : m1, · · · ,mn are Q-linearly independent},

and define P ∈ Md×n as the projection matrix.

Definition 2.1. A d-dimensional function f(x) is quasiperiodic if there exists
a continuous n-dimensional periodic function F (n ≥ d) which satisfies f(x) =
F (P Tx), where P is the projection matrix.

In particular, when n = d and P is nonsingular, f(x) is periodic. When n → ∞,
f is almost periodic function [7]. For convenience, F in Definition 2.1 is called the
parent function of f in the following content. QP(Rd) represents the space of all
quasiperiodic functions. In Section 4, we will show that f and F can be uniquely
determined by each other when the projection matrix P is given.

Let KT = {x : x ∈ Rd, |xj | ≤ T, j = 1, · · · , d} be the cube in Rd. The mean
value M{f(x)} of f ∈ QP(Rd) is defined as

M{f(x)} = lim
T→+∞

1

(2T )d

∫
s+KT

f(x) dx := −
∫
f(x) dx,

where the limit on the right side exists uniformly for all s ∈ Rd. An elementary
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calculation shows

M{eiλ
Txe−iβTx} =

{
1, λ = β,

0, λ ̸= β.
(2.1)

Correspondingly, the continuous Fourier-Bohr transform of f(x) is

f̂λ = M{f(x)e−iλTx},(2.2)

where λ ∈ Rd. Denote Λ = {λ : λ = Pk, k ∈ Zn} and the Fourier series associated
with the quasiperiodic function f(x) can be written as

f(x) ∼
∑
k∈Zn

f̂λk
eiλ

T
kx,(2.3)

where λk = Pk ∈ Λ are Fourier exponents and f̂λk
defined in (2.2) are Fourier

coefficients. To simplify the notation, denote f̂k = f̂λk
. Let

QP1(Rd) =
{
f ∈ QP(Rd) :

∑
k∈Zn

|f̂k| < +∞
}
,

with norm ∥f∥L∞(Rd) = supx∈Rd |f(x)|.
In general, the convergence of the Fourier series (2.3) is a challenging problem,

see [9] for some sufficient criteria. The following conclusion presents an important
convergence property of quasiperiodic function.

Theorem 2.2. ([25] Chapter 1.3) If the Fourier series of a quasiperiodic function
is uniformly convergent, then the sum of the series is the given function.

If the Fourier series of the quasiperiodic function is absolutely convergent, it is also
uniformly convergent. Therefore, for f ∈ QP1(Rd), we have

f(x) =
∑
k∈Zn

f̂ke
iλT

kx.

As a consequence, we can obtain a subspace QP2(Rd) of QP(Rd)

QP2(Rd) =
{
f ∈ QP(Rd) : M{|f |2} < +∞

}
equipped with norm

∥f∥2L2(Rd) = M{|f |2} =
∑
k∈Zn

|f̂k|2,(2.4)

and the inner product (·, ·)QP2(Rd)

(f1, f2)QP2(Rd) = −
∫
f1(x)f̄2(x) dx.

Equality (2.4) is the Parseval’s identity. Now we introduce the Hilbert space of

quasiperiodic functions. Denote |x| =
∑d

j=1 |xj | with ∀x ∈ Rd. For any m ∈ N0 =

{m ∈ Z : m > 0}, the Sobolev space Hα
QP (Rd) comprises all quasiperiodic functions

with partial derivatives order α ≥ 1 with respect to the inner product (·, ·)α

(f1, f2)α = (f1, f2)QP2(Rd) +
∑

|m|=α

(∂mx f1, ∂
m
x f2)QP2(Rd),

and endowed with norm ∥f∥2α =
∑

k∈Zn(1 + |λk|2)α|f̂k|2, and semi-norm |f |2α =∑
k∈Zn |λk|2α|f̂k|2.
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2.2. Preliminaries of periodic functions. Let Tn = (R/2πZ)n be the n-
dimensional torus, then the Fourier transform of F (y) defined on Tn

F̂k =
1

|Tn|

∫
Tn

e−ikTyF (y) dy, k ∈ Zn,(2.5)

and

L∞(Tn) =
{
F (y) :

∑
k∈Zn

|F̂k| < +∞
}
.

Further, denote the Hilbert space on Tn

L2(Tn) =
{
F (y) : ⟨F, F ⟩ < +∞

}
,

equipped with inner product

⟨F1, F2⟩ =
1

|Tn|

∫
Tn

F1F̄2 dy.

For any integer α ≥ 0, the α-derivative Sobolev space on Tn is

Hα(Tn) = {F ∈ L2(Tn) : ∥F∥α <∞},

where ∥F∥α =
(∑

k∈Zn(1+∥k∥2α2 )|F̂k|2
)1/2

, with ∥k∥22 =
∑n

j=1 |kj |2. The semi-norm

of Hα(Tn) can be defined as |F |α =
(∑

k∈Zn ∥k∥2α2 |F̂k|2
)1/2

.

3. Algorithms. In this paper, our purpose is to establish the theoretical analysis
of QSM and PM. In this section, we introduce these algorithms before delving into
the numerical analysis. Moreover, we present the implementation framework of PM
by defining the discrete Fourier-Bohr transform of quasiperiodic functions.

For an integer N ∈ N0 and a given projection matrix P ∈ Md×n, denote

Kn
N = {k = (kj)

n
j=1 ∈ Zn : −N ≤ kj < N},

and

Λd
N = {λ = Pk : k ∈ Kn

N} ⊂ Λ.(3.1)

Obviously, the order of the set Λd
N is #(Λd

N ) = (2N)n. The finite dimensional linear
subspace of QP(Rd) is

SN = span{eiλ
Tx, x ∈ Rd, λ ∈ Λd

N}.

We denote PN : QP(Rd) 7→ SN the projection operator. For a quasiperiodic function
f(x) ∈ QP1(Rd) and its Fourier exponent λk ∈ Λ, we can split it into two parts

f(x) =
∑

k∈Kn
N

f̂ke
iλT

kx +
∑

k∈Zn/Kn
N

f̂ke
iλT

kx = PNf + (f − PNf).(3.2)

Next, we present QSM and PM, respectively.

4
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3.1. Quasiperiodic spectral method (QSM). The QSM directly approxi-
mates quasiperiodic function f by PNf ,

f(x) ≈ PNf(x) =
∑

k∈Kn
N

f̂ke
iλT

kx, x ∈ Rd,

where the quasiperiodic Fourier coefficient f̂k is obtained by the continuous Fourier-
Bohr transform (2.2). We will give the error analysis of QSM in Subsection 5.1, and
describe the numerical implementation of solving quasiperiodic system in Subsec-
tion 6.1.1. Note that quasiperiodic Fourier coefficients in QSM are obtained through
the continuous Fourier-Bohr transform (2.2), resulting in the QSM cannot use FFT.
A further computational complexity analysis will be presented in Subsection 6.1.1.

3.2. Projection method (PM). The PM embeds the quasiperiodic function
f(x) into a high-dimensional parent function F (y), then directly replace the discrete
quasiperiodic Fourier coefficients by the discrete parent Fourier coefficients [10, 12].
We can use the periodic Fourier spectral method to obtain the parent Fourier coef-
ficients. Concretely, we first discretize the tours Tn. Without loss of generality, we
consider a fundamental domain [0, 2π)n and assume the discrete nodes in each dimen-
sion are the same, i.e., N1 = N2 = · · · = Nn = 2N , N ∈ N0. The spatial discrete
size h = π/N . The spatial variables are evaluated on the standard numerical grid Tn

N

with grid points yj = (y1,j1 , y2,j2 , . . . , yn,jn), y1,j1 = j1h, y2,j2 = j2h, . . . , yn,jn = jnh,
0 ≤ j1, j2, . . . , jn < 2N . We define the grid function space

GN := {F : Zn 7→ C : F is Tn
N -periodic}.

Given any periodic grid functions F, G ∈ GN , the ℓ2-inner product is defined as

⟨F,G⟩N =
1

(4πN)n

∑
yj∈Tn

N

F (yj)G(yj).

For k, ℓ ∈ Zn, we have the discrete orthogonality condition

⟨eik
Tyj , eiℓ

Tyj ⟩N =

{
1, k = ℓ+ 2Nm, m ∈ Zn,

0, otherwise.
(3.3)

The discrete Fourier coefficient of F ∈ GN is

F̃k = ⟨F, eik
Tyj ⟩N , k ∈ Kn

N .(3.4)

The PM directly takes f̃k = F̃k. We define the discrete Fourier-Bohr transform of
quasiperiodic function f(x) as

f(xj) =
∑

λk∈Λd
N

f̃ke
iλT

kxj ,(3.5)

where collocation points xj = Pyj , yj ∈ Tn
N . The trigonometric interpolation of

quasiperiodic function is

INf(x) =
∑

λk∈Λd
N

f̃ke
iλT

kx.(3.6)

5
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Consequently, INf(xj) = f(xj). From the implementation, the PM can use the
n-dimensional FFT to obtain quasiperiodic Fourier coefficients by introducing the
discrete Fourier-Bohr transform (3.5). The concrete computational complexity of PM
for solving quasiperiodic systems will be shown in Subsection 6.1.2.

Remark 3.1. From the above description, QSM and PM are generalization of the
Fourier spectral method and Fourier pseudo-spectral method, respectively. When f(x)
is periodic, i.e., n = d and the projection matrix P ∈ Md×d is nonsingular, the QSM
(PM) reduces to the periodic Fourier spectral (pseudo-spectral) method.

4. Theoretical framework. From the implementation framework of PM pre-
sented in Subsection 3.2, exploring the relationship between quasiperiodic functions
and their parent functions is a prerequisite for its convergence analysis. Here, we
prove that the quasiperiodic Fourier coefficients f̂k of (2.2) are equal to their parent
Fourier coefficients F̂k of (2.5).

Theorem 4.1. For a given quasiperiodic function

f(x) = F (P Tx), x ∈ Rd,

where F (y) is its parent function defined on the tours Tn and P is the projection
matrix, we have

f̂k = F̂k, k ∈ Zn,(4.1)

where f̂k and F̂k are defined by (2.2) and (2.5), respectively.

We will prove Theorem 4.1 based on the Birkhoff’s ergodic theorem [26, 27]. Let
us start with some basic definitions. Let Ω be a set. A σ-algebra of Ω is a collection
B of subsets of Ω satisfying the following three conditions: (i) Ω ∈ B; (ii) if B ∈ B,
then Ω\B ∈ B; (iii) if Bn ∈ B for n ≥ 1, then

⋃∞
n=1Bn ∈ B. We call the pair

(Ω,B) a measurable space. The Lebesgue measure on (Ω,B) is a function µ : B 7→ R+

satisfying µ(∅) = 0 and µ(
⋃∞

n=1Bn) =
∑∞

n=1 µ(Bn) whenever {Bn}∞n=1 is a sequence
of members of B which are pairwise disjoint subsets of Ω. A finite measure space is a
triple (Ω,B, µ) where (Ω,B) is a measurable space and µ is a finite measure on (Ω,B).
We say (Ω,B, µ) is a probability space, or a normalized measure space if µ(Ω) = 1.

Definition 4.2. Suppose that (Ω1,B1, µ1) and (Ω2,B2, µ2) are probability spaces.
(i) A transformation ϕ : Ω1 7→ Ω2 is a measure if ϕ−1(B2) ⊂ B1;
(ii) A transformation ϕ : Ω1 7→ Ω2 is measure-preserving if ϕ is measureable and

µ1(ϕ
−1B2) = µ2(B2), for each B2 ∈ B2.

Definition 4.3. Let (Ω,B, µ) be a probability space. A measure-preserving trans-
formation ϕ : Ω 7→ Ω is called ergodic if the only member B ∈ B with ϕ−1B = B
satisfying µ(B) = 1 or µ(B) = 0.

Lemma 4.1 gives an equivalent condition of ergodicity.

Lemma 4.1. (Theorem 1.6 [26]) Let (Ω,B, µ) be a probability space and ϕ : Ω 7→
Ω be measure-preserving mapping, then the following statements are equivalent

(i) ϕ is ergodic;
(ii) If f is measurable and f ◦ ϕ = f a.e., then f is constant a.e.

The high-dimensional Birkhoff’s ergodic theorem reads

Theorem 4.4. ([27]) Let f(z) : Ω 7→ C be integrable and let the measure-preserving
transformation ϕx, x ∈ Rd, satisfies

ϕ0z = z, ϕx1+x2z = ϕx1(ϕx2z), z ∈ Ω,

6
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for any x1,x2 ∈ Rd. Then

−
∫
f(ϕxz) dx = f∗(z)

exists for almost all z in Ω. Moreover,∫
E

f∗(z) dz =

∫
E

f(z) dz,

where E ⊂ Ω is the invariant subset under ϕx.

In this work, Ω = E = Tn. Given a projection matrix P = (p1,p2, ...,pn) ∈
Md×n, denote the parameterized translation

ϕxP (z1, · · · , zn) = (z1 + pT
1 x, · · · , zn + pT

nx) (mod 1),(4.2)

where “mod 1” means that each coordinate remains its fractional part. Proposition 4.2
will show that ϕxP is ergodic in probability space (Tn,B, µ) when µ is Lebesgue mea-
sure.

Proposition 4.2. If P ∈ Md×n, then the parameterized translation ϕxP defined
by (4.2) is ergodic with respect to Lebesgue measure.

Proof. The parameterized translation ϕxP is measure-preserving with respect to
Lebesgue measure µ. The torus Tn is an invariant set under the translation ϕxP since
ϕxP (z) ∈ Tn for each z ∈ Tn. Let χ be a bounded measurable function invariant
under ϕxP , for example, the characteristic function of an invariant set Tn. Then, we
have

χTn (ϕ
x
P (z)) = χ

(ϕx
P

)−1(Tn)
(z) = χTn (z).(4.3)

Without causing confusion, Equation (4.3) can be rewritten as χ(ϕxP (z)) = χ(z).
Considering the Fourier expansion of χ

χ(z) =
∑
k∈Zn

χ̂
k
eik

T z,

we have

χ(ϕxP (z)) =
∑
k∈Zn

χ̂
k
eik

T (z1+pT
1 x,··· ,zn+pT

nx) =
∑
k∈Zn

χ̂
k
eik

T (pT
1 x,··· ,pT

nx)eik
T z.

Due to the ϕxP -invariance of χ and the uniqueness of Fourier coefficients χ̂
k
, we can

obtain

χ̂
k
= χ̂

k
eik

T (pT
1 x,··· ,pT

nx),

i.e.,

χ̂
k
(1− eik

T (pT
1 x,··· ,pT

nx)) = 0.

This means that χ̂
k
= 0 or

kT (pT
1 x, · · · ,pT

nx) = (Pk)Tx := m ∈ 2πZ.(4.4)

Since p1, · · · ,pn are rationally independent, then for k ̸= 0 andm ∈ 2πZ, the solution
x of (4.4) is countable at most. Obviously, there exists x0 ∈ Rd such that (Pk)Tx0 /∈
2πZ is true for k ̸= 0, then χ̂

k
= 0. Therefore, χ is a constant outside of a set measure

zero which means ϕxP is ergodic from Lemma 4.1.

7
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The proof of Theorem 4.1.

Proof. From the definitions of f̂k and F̂k, Equation (4.1) is equivalent to

−
∫
e−iλT

kxf(x) dx =
1

|Tn|

∫
Tn

e−ikTyF (y) dy,

i.e., we need to prove that

−
∫
e−i(Pk)TxF (P Tx) dx =

1

|Tn|

∫
Tn

e−ikTyF (y) dy.(4.5)

Denote G(y) = e−ikTyF (y). Equation (4.5) can be rewritten as

−
∫
G(P Tx) dx =

1

|Tn|

∫
Tn

G(y) dy.(4.6)

According to the parameterized translation ϕxP defined in (4.2), Equation (4.6) is
equivalent to

−
∫
G(ϕxP (0)) dx =

1

|Tn|

∫
Tn

G(y) dy.(4.7)

Applying the ergodicity of ϕxP proved in Proposition 4.2 and Theorem 4.4, Equa-
tion (4.7) is true. The proof of Theorem 4.1 is completed.

We take a one-dimensional quasiperiodic function as an example to demonstrate
Theorem 4.1, which can be embedded into a two-dimensional periodic system, as
shown in Figure 1. In Figure 1(a), we lift the definition area (blue line) of one-
dimensional quasiperiodic function to two-dimensional periodic lattice as an irrational
line by a projection matrix P = (1,

√
3). Then the irrational line can be reduced to

a two-dimensional unit cell by modulo arithmetic due to the two-dimensional period-
icity, as shown in Figure 1(b) and Figure 1(c). The irrational slice is infinite, these
moduled lines become dense in the two-dimensional unit cell. Therefore, as Theo-
rem 4.1 states, the one-dimensional quasiperiodic Fourier coefficient can be replaced
by the two-dimensional parent Fourier coefficient.

(a) The line P T x embedded
in a two-dimensional periodic
lattice

(b) Step 1: Modulo P T x
along y1-axis

(c) Step 2: Modulo P T x
along y2-axis after Step 1

Fig. 1. The process of modulo a two-dimensional irrational slice P T x where P = (1,
√
3), x ∈ R.

Applying Theorem 4.1, we have the following two corollaries.

Corollary 4.3. Quasiperiodic function f(x) and its parent function are uniquely
determined each other when the projection matrix P is given.

8
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Proof. On the one hand, when the parent function and the projection matrix P
are given, the quasiperiodic function f(x) is obviously unique.

On the other hand, we prove that when the projection matrix P is given, f(x)
has a unique parent function. Assume that there exist two distinct parent functions
F (y) and G(y) such that

f(x) = F (P Tx), f(x) = G(P Tx).

From Theorem 4.1, we can obtain F̂k = f̂k = Ĝk, k ∈ Zn, where F̂k and Ĝk are
obtained by the continuous Fourier-Bohr transform, respectively. According to the
uniqueness theorem [9], then it follows that F (y) ≡ G(y).

Note that the uniqueness theorem in Bohr’s work states that the quasiperiodic
function is uniquely determined by quasiperiodic Fourier coefficients, which are ob-
tained by the continuous Fourier-Bohr transform [7]. In contrast, Corollary 4.3 states
the uniqueness property that arises from the relation between the quasiperiodic func-
tion and its parent function.

Furthermore, we can establish an isomorphism relation between quasiperiodic
function space and its parent function space. Denote

Tri(Tn) =
{
F (y) =

∑
k∈Zn

ĉke
ikTy, y ∈ Tn :

∑
k∈Zn

|ĉk| <∞
}
.

For a given projection matrix P ∈ Md×n, we define the subspace of QP(Rd)

WP (Rd) = {f(x) ∈ C(Rd) : f(x) = F (P Tx), F ∈ Tri(Tn), P ∈ Md×n}.

Define a mapping φP : Tri(Tn) 7→ WP (Rd), then we can easily prove that φP is
isomorphic from Corollary 4.3.

Corollary 4.4. For a given function f(x) ∈ QP(Rd), F (y) is its parent func-
tion, we have the following properties

(i) F (y) ∈ L∞(Tn) if and only if f(x) ∈ QP1(Rd).
(ii) F (y) ∈ L2(Tn) if and only if f(x) ∈ QP2(Rd).

Proof. For f(x) ∈ QP1(Rd), we have f(x) =
∑

k∈Zn f̂ke
i(Pk)Tx. Denote the

periodic function g(y) =
∑

k∈Zn f̂ke
ikTy. Obviously, f(x) = g(P Tx), i.e., g(y) is the

parent function of f(x). Applying Corollary 4.3 and Theorem 4.1 leads to

F (y) = g(y) =
∑
k∈Zn

F̂ke
ikTy,(4.8)

the Fourier coefficient F̂k is calculated by (2.5) and the Fourier series of the parent
function F (y) is convergent, i.e., F (y) ∈ L∞(Tn). Similarly, we can prove that the
conclusion (i) is sufficient. The conclusion (ii) can be proved similarly.

Applying the Parseval’s equality (2.4) and Corollary 4.4, for any F1, F2 ∈ Tri(Tn)
and f1, f2 ∈WP (Rd), we have

∥F∥2L2 =
∑
k∈Zn

|ĉk|2, ∥f∥2L2(Rd) =
∑
k∈Zn

|ĉk|2.

Therefore, ∥f∥L2(Rd) = ∥φPF∥L2(Rd) = ∥F∥L2 , i.e., φP is an isometric mapping in

the sense of L2(Rd). The isomorphic mapping φP is a useful tool for error estimates
of QSM and PM, see Theorem 5.1 and Theorem 5.3, respectively.

9
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5. Error estimate.

5.1. Error analysis of QSM. The error analysis of QSM is built on the relation
between the quasiperiodic function and its parent function. Therefore, we first give
the truncation error of periodic Fourier spectral method [21].

Lemma 5.1. For each F ∈ Hα(Tn). There exists a constant C, independent of F
and N , such that

∥PNF − F∥L2 ≤ CNµ−α|F |α.

In the following, we will state the error estimate of QSM in L2(Rd)- and L∞(Rd)-norm
sense, respectively.

Theorem 5.1. Suppose that f(x) ∈ QP(Rd) and its parent function F (y) ∈
Hα(Tn) with α ≥ 0. Then, there exists a constant C, independent of F and N ,
such that

∥PNf − f∥L2(Rd) ≤ CN−α|F |α.

Proof. Obviously, Corollary 4.4 implies f ∈ QP2(Rd). Since the mapping φP is
isometric in the sense of L2(Rd), from Lemma 5.1, we have

∥PNf − f∥L2(Rd) = ∥PNφPF − φPF∥L2(Rd) = ∥φPPNF − φPF∥L2(Rd)

= ∥PNF − F∥L2 ≤ CN−α|F |α.

This completes the proof.

An another way of proving Theorem 5.1 is presented in Appendix A.

Theorem 5.2. Suppose that f(x) ∈ QP1(Rd) and its parent function F (y) ∈
Hα(Tn) with α > q > n/2. There exists a constant Ct, independent of F and N ,
such that

∥PNf − f∥L∞(Rd) ≤ CtN
q−α|F |α.

Proof. Applying Theorem 4.1 and Cauchy-Schwarz inequality, we obtain

∥PNf − f∥L∞(Rd) = sup
x∈Rn

∣∣∣∣ ∑
k∈Zn/Kn

N

f̂ke
i(Pk)Tx

∣∣∣∣ ≤ ∑
k∈Zn/Kn

N

|f̂k|

≤
( ∑

k∈Zn/Kn
N

(1 + ∥k∥22)−q

)1/2( ∑
k∈Zn/Kn

N

(1 + ∥k∥22)q|f̂k|2
)1/2

≤ CNq−α

( ∑
k∈Zn/Kn

N

(1 + ∥k∥22)−q

)1/2( ∑
k∈Zn/Kn

N

∥k∥2α−2q
2 · (1 + ∥k∥22)q|f̂k|2

)1/2

≤ C2q/2Nq−α

( ∑
k∈Zn/Kn

N

(1 + ∥k∥22)−q

)1/2( ∑
k∈Zn

∥k∥2α2 · |f̂k|2
)1/2

= C2q/2Nq−α

( ∑
k∈Zn/Kn

N

(1 + ∥k∥22)−q

)1/2( ∑
k∈Zn

∥k∥2α2 · |F̂k|2
)1/2

≤ CtN
q−α|F |α.

The last inequality holds due to
∑

k∈Zn/Kn
N
(1 + ∥k∥22)−q <∞ when q > n/2.
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Besides, we can also directly give the error analysis of QSM without using the
parent function, see Appendix B for details. These results also show that the QSM
has an exponential convergence rate.

5.2. Error analysis of PM. The PM grasps the essence that the quasiperiodic
function can be embedded into its parent function. Assume that the Fourier series in
(4.8) converges to F (y) at every grid point of Tn

N . Applying the discrete orthogonality
(3.3), the discrete parent Fourier coefficient of (3.4) becomes

F̃k = ⟨F, eik
Tyj ⟩N =

〈 ∑
ℓ∈Zn

F̂ℓe
iℓTyj , eik

Tyj

〉
N

= F̂k +
∑

m∈Zn
∗

F̂k+2Nm, k ∈ Kn
N ,

(5.1)

where Zn
∗ = Zn/{0}. Recall that λk = Pk and from (5.1), we have∑

k∈Kn
N

F̃ke
iλT

kx =
∑

k∈Kn
N

F̂ke
iλT

kx +
∑

k∈Kn
N

( ∑
m∈Zn

∗

F̂k+2Nm

)
eiλ

T
kx.

From Theorem 4.1 and Equation (3.6), we obtain∑
λk∈Λd

N

f̃ke
iλT

kx =
∑

λk∈Λd
N

f̂ke
iλT

kx +
∑

λk∈Λd
N

( ∑
m∈Zn

∗

f̂k+2Nm

)
eiλ

T
kx.

It follows that

INf = PNf +RNf,

where

PNf =
∑

λk∈Λd
N

f̂ke
iλT

kx, RNf =
∑

λk∈Λd
N

( ∑
m∈Zn

∗

f̂k+2Nm

)
eiλ

T
kx.

Similar to the periodic Fourier pseudo-spectral method, INf and RNf represent the
interpolation and the aliasing part, respectively. As a consequence, we have

f − INf = (f − PNf)−RNf.

Thus, the approximation error of PM consists of two parts, the truncation error
f − PNf as QSM has, and the aliasing error RNf . The truncation error estimates
of Theorem 5.1 and Theorem 5.2 for QSM are also valid for PM. The aliasing error
will be analyzed in the following content. The L2(Rd)- and L∞(Rd)-estimates of
interpolation error f − INf are stated as follows, respectively.

Theorem 5.3. Suppose that f(x) ∈ QP(Rd) and its parent function F (y) ∈
Hα(Tn) with α ≥ 0. There exists a constant C, independent of F and N , such
that

∥INf − f∥L2(Rd) ≤ CN−α|F |α.

Proof. Corollary 4.4 tells us that f ∈ QP2(Rd). Since φP (PNF ) = PN (φPF )
and φP (RNF ) = RN (φPF ), we obtain

∥INf − f∥L2(Rd) ≤ ∥f − PNf∥L2(Rd) + ∥RNf∥L2(Rd)

= ∥φPF − PN (φPF )∥L2(Rd) + ∥RN (φPF )∥L2(Rd)

= ∥φPF − φP (PNF )∥L2(Rd) + ∥φP (RNF )∥L2(Rd)

= ∥F − PNF∥L2 + ∥RNF∥L2 .
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Ref. [21] (see its Section 5.1.3) shows that

∥RNF∥L2 ≤ C1N
−α|F |α,

where C1 is independent of F and N . Then, the proof is completed by combining
Lemma 5.1.

An another way of proving Theorem 5.3 is provided in Appendix C.

Theorem 5.4. Suppose that f(x) ∈ QP1(Rd) and its parent function F (y) ∈
Hα(Tn) with α > q > n/2. There exists a constant Cp, independent of F and N ,
such that

∥INf − f∥L∞(Rd) ≤ CpN
q−α|F |α.

Proof. According to the definition of ∥ · ∥L∞(Rd), we have

∥INf − f∥L∞(Rd) ≤
∑

λk∈Λ/Λd
N

|f̂k|+
∑

λk∈Λd
N

∣∣∣ ∑
m∈Zn

∗

f̂k+2Nm

∣∣∣.(5.2)

From Theorem 5.2, it follows that∑
λk∈Λ/Λd

N

|f̂k| ≤ CtN
q−α|f |α,

where α > q > n/2. For the second term on the right side of inequality (5.2),
combining with Cauchy-Schwarz inequality, we can obtain∑
λk∈Λd

N

∣∣∣ ∑
m∈Zn

∗

f̂k+2Nm

∣∣∣ = ∑
k∈Kn

N

∣∣∣ ∑
m∈Zn

∗

F̂k+2Nm

∣∣∣ ≤ ∑
k∈Kn

N

∑
m∈Zn

∗

∣∣∣F̂k+2Nm

∣∣∣
≤

[ ∑
k∈Kn

N

∑
m∈Zn

∗

(1 + ∥k + 2Nm∥22)−α
] 1

2 ·
[ ∑
k∈Kn

N

∑
m∈Zn

∗

(1 + ∥k + 2Nm∥22)α |F̂k+2Nm|2
] 1

2

.

For k ∈ Kn
N and m ∈ Zn

∗ , we have ∥k + 2Nm∥22 ≥ N2. Furthermore, for α > q, it
follows that[ ∑

k∈Kn
N

∑
m∈Zn

∗

(1 + ∥k + 2Nm∥22)−α
] 1

2

=
[ ∑
k∈Kn

N

∑
m∈Zn

∗

(1 + ∥k + 2Nm∥22)q−α · (1 + ∥k + 2Nm∥22)−q
] 1

2

= (1 +N2)
q−α

2 ·
[ ∑
k∈Kn

N

∑
m∈Zn

∗

(1 + ∥k + 2Nm∥22)−q
] 1

2

≤ 2
q−α

2 Nq−α ·
[ ∑
k∈Kn

N

∑
m∈Zn

∗

(1 + ∥k + 2Nm∥22)−q
] 1

2

.

When q > n/2, the series S :=
∑

k∈Kn
N

∑
m∈Zn

∗
(1 + ∥k + 2Nm∥22)−q converges.
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Therefore, ∑
λk∈Λd

N

∣∣∣ ∑
m∈Zn

∗

f̂k+2Nm

∣∣∣
≤ 2

q−α
2 Nq−αS1/2 ·

[ ∑
k∈Kn

N

∑
m∈Zn

∗

(1 + ∥k + 2Nm∥22)α |F̂k+2Nm|2
] 1

2

≤ 2q/2Nq−αS1/2|F |α = CaN
q−α|F |α.

Then,

∥INf − f∥L∞(Rd) ≤ CtN
q−α|F |α + CaN

q−α|F |α = CpN
q−α|F |α.

6. Application. In Section 5, we have provided prior estimates of PM and QSM.
In this section, we further investigate the accuracy and efficiency of numerical meth-
ods for solving the quasiperiodic system. The TQSE with a spatially quasiperiodic
solution is an important quasiperiodic system [16, 30, 31, 32]. Concretely, consider

iψt(x, t) = −1

2
ψxx(x, t) + v(x)ψ(x, t), (x, t) ∈ R× [0, T ],(6.1)

with incommensurate potential v(x) =
∑

λ∈Λ1
v̂λe

iλx, where Λ1 = {1,−1,
√
5,−

√
5}

and v̂λ = 1. Let the initial value ψ0(x) =
∑

λ∈Λ2
ĉλe

iλx, x ∈ R, with Λ2 = {λ =

m + n
√
5 : m,n ∈ Z,−32 ≤ m,n ≤ 31} and ĉλ = e−(|n|+|m|). Therefore, the

projection matrix is P = (1,
√
5). The product term of wave function ψ(x, t) and

potential function v(x), a convolution in the reciprocal space, allows us to examine
the performance of different methods.

In the following, we empoly QSM, PM and PAM to discretize (6.1) in space
direction, and the second-order operator splitting (OS2) method in time direction. In
each interval [0, 2π), we use 2N discrete points, corresponding to the number of basis
functions of QSM. Here we are concerned with the accuracy of spatial quasiperiodic
solution, therefore, the final time T can be arbitrary. For simplicity, we choose T =
0.001. The time step size τ = 1 × 10−7 ensures that the time truncation error does
not affect the spatial approximation error.

6.1. Numerical implementation.

6.1.1. QSM discretization. As Subsection 3.1 states, the QSM approximates
the wave function ψ(x, t) in a finite dimensional space

ψ(x, t) ≈ PNψ(x, t) =
∑

λ∈ΛN

ψ̂λ(t)e
iλx.

The quasiperiodic Fourier coefficient ψ̂λ is obtained by the continuous Fourier-Bohr
transform (2.2). ΛN is defined by (3.1) with d = 1 and n = 2. #(ΛN ) = (2N)2 := D.
Then the TQSE (6.1) is discretized as

(6.2) i
∑

λ∈ΛN

dψ̂λ(t)

dt
eiλx =

1

2

∑
λ∈ΛN

|λ|2ψ̂λ(t)e
iλx +

( ∑
λ∈Λ1

v̂λe
iλx

)( ∑
λ∈ΛN

ψ̂λ(t)e
iλx

)
.
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Making the inner product of (6.2) by eiβx and applying the orthogonality (2.1), we
obtain

i
dψ̂β(t)

dt
=

1

2
|β|2ψ̂β(t) +

∑
λ∈ΛN

v̂β−λψ̂β(t), β ∈ ΛN .(6.3)

By applying OS2 method to semi-discrete equation (6.3), we can obtain the fully
discrete scheme as given in Appendix D.1. Since the QSM cannot use FFT, the
computational cost of solving (6.3) in each time step is dominated by the convolution
calculation with computational complexity of O(D2).

6.1.2. PM discretization. The PM is a generalized Fourier pseudo-spectral
method. As a sequence, the PM can further discretize x variable through the collo-
cation points xj = Pyj with yj = (j1π/N, j2π/N) ∈ T2

N , 0 ≤ j1, j2 < 2N . We can
expand the spatial function by discrete Fourier-Bohr expansion

ψ(xj , t) ≈ INψ(xj , t) =
∑

λ∈ΛN

ψ̃λ(t)e
iλxj j = 0, 1, · · · , D − 1,

where ψ̃λ(t) = Ψ̃k(t) = ⟨Ψ, eikTyj ⟩N , λ = Pk, and D = (2N)2 is the number of
spatial nodes.

Denote that V (y) is the parent function of v(x). Similarly, we can expand v(x)
using the discrete Fourier-Bohr transform. The TQSE (6.1) is discretized as
(6.4)

i
∑

λ∈ΛN

dψ̃λ(t)

dt
eiλxj =

1

2

∑
λ∈ΛN

|λ|2ψ̃λ(t)e
iλxj +

( ∑
λ∈Λ1

ṽλe
iλxj

)( ∑
λ∈ΛN

ψ̃λ(t)e
iλxj

)
,

where ṽλ = ⟨V, eikTyj ⟩N . Taking the discrete inner product of (6.4) by eiβxj and
applying the discrete orthogonality (3.3) yield

i
dψ̃β(t)

dt
=

1

2
|β|2ψ̃β(t) +

∑
λ∈ΛN

ṽβ−λψ̃λ(t), β ∈ ΛN .(6.5)

Similarly, the OS2 method can be applied to discretize the semi-discrete equation
(6.5). The corresponding fully discrete scheme can be found in Appendix D.2. Mean-
while, we can use FFT to efficiently compute the convolution terms in (6.5) based on
the discrete Fourier-Bohr transform. Therefore, the computational complexity of PM
in each time step is the level of O(D logD).

6.1.3. PAM discretization. The PAM, using a periodic system to approximate
the quasiperiodic systems, is a widely used approach to addressing quasiperiodic sys-
tems [10]. Here, we use a periodic Schrödinger equation over a finite fundamental
region [0, 2πL), L ∈ N0 to approximate TQSE. Then we can use the periodic Fourier
pseudo-spectral method to solve the approximated periodic Schrödinger equation. We
use D = 2ML discrete points to discretize the one-dimensional periodic system. The
computational complexity in each time step is at the level of O((2ML) log(2ML)).
Appendix D.3 provides the implementation of the PAM of solving TQSE.

6.2. Numerical results. In this subsection, we present numerical results of
solving TQSE (6.1) by using PM, QSM and PAM. All algorithms are coded by
MSVC++ 14.29 on Visual Studio Community 2019. The used FFT in PM and PAM
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is based on the software FFTW 3.3.5 [33]. All computations are carried out on a
workstation with an Intel Core 2.30GHz CPU, 16GB RAM. The reference solution
ψ∗(x, T ) is obtained by using PM with the time step size τ = 1× 10−7, the fine mesh
size h = π/128 and the final time T = 0.001. In our numerical results, we mainly
show the numerical error eN and CPU time of three algorithms. Firstly, we give the
calculation formula of eN of QSM, PM and PAM. Denote the exact solution of TQSE

ψ∗(x, T ) =
∑
λ∈Λ

ψ̃∗
λ(T )e

iλx.

In the QSM, from the Parseval’s equality, the numerical error is

e2N = ∥ψ∗(x, T )− PNψ(x, T )∥2L2(R)

= lim
K→+∞

1

2K

∫ K

−K

|ψ∗(x, T )− PNψ(x, T )|2 dx

=
∑

λ∈ΛN

|ψ̃∗
λ(T )− ψ̂λ(T )|2.

In the PM, we can obtain

e2N = ∥ψ∗(x, T )− INψ(x, T )∥2L2(R) =
∑

λ∈ΛN

|ψ̃∗
λ(T )− ψ̃λ(T )|2.

In the PAM, assume that the exact solution of the periodic Schrödinger system (D.5)
is

φ∗(x, T ) =
∑
k∈Z

ψ̃∗
k(T )e

ikx, x ∈ [0, 2πL).

The numerical solution obtained by PAM is

φM (x, T ) =
∑

k∈ΛPAM
M

φ̃k(T )e
ikx, x ∈ [0, 2πL),

where ΛPAM
M = {k ∈ Z : −LM ≤ k < LM} is a finite subset of Z containing a subset

of {k ∈ Z : k = [Lλ], λ ∈ ΛN}. Then we can compute the numerical error

e2M = ∥φ∗(x, T )− φM (x, T )∥L2([0,2πL)) =
∑

k∈ΛPAM
M

|ψ̃∗
k(T )− φ̃k(T )|2.

Therefore, the errors of three methods are all measured by the convergence of cor-
responding Fourier coefficients. Note that both QSM and PM calculate the global
quasiperiodic system over R, while the PAM only computes a periodic approximation
system on a fundamental period [0, 2πL).

We present the numerical results of PAM with M = 4N . For convenience, we use
eN to replace eM . Through extensive experiments, we adopt N = 8 (also see Table 1)
in PAM to ensure enough numerical accuracy of discretizing TQSE. Figure 2(a) shows
the approximation error obtained by PAM with N = 8. The approximation error eN
of PAM exhibits an oscillation phenomenon as domain size L increases. This behavior
can be attributed to the Diophantine approximation error, i.e., using rational numbers
to approximate the irrational number. As depicted in Figure 2(b), the Diophantine
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(a) In the PAM, the relationship between the numerical error eN and L with N = 8.

(b) Diophantine approximation error

Fig. 2. Approximation error of PAM as the domain size L increases.

approximation error {L
√
5} := |L

√
5− [L

√
5]|, where [α] denotes the nearest integer

to α, does not uniformly decrease with an increase of L due to the arithmetic property
of irrational number

√
5. Relevant function approximation theory on the PAM can

refer to [11]. For specific values of L, such as 17, 72, 305 and 1292, the Diophantine
approximation error as well as the approximation error eN can gradually decrease.

Then, we compare the approximation error eN of PM, QSM and PAM. Table 1
shows eN of three algorithms as discrete points increase. Figure 3 gives a visual im-
age to show the convergence rate. For the PAM, we only present these results when
L = 17, 72, 305, 1292. The approximation error of PAM consists of the quasiperi-
odic approximation error determined by the Diophantine approximation error {L

√
5},

and the numerical discrete error of solving periodic Schrödinger system (D.5). The
quasipepriodic approximation error is mainly controlled by the Diophantine approxi-
mation error. The numerical discrete error is dependent on the discrete points. Once
L is fixed, the discrete points achieve a critical value, then eN of PAM cannot de-
crease, as shown in Table 1. Therefore, eN of the PAM is mainly determined by the
quasiperiodic approximation error. Theoretically, eN of the PAM can decrease by
choosing a large and reasonable L. However the resulting computational cost could
be unbearable. More significantly, L cannot go to infinity in the numerical computa-
tion. As a result, the quasiperiodic approximation error cannot be avoided. Table 1
also shows that QSM and PM both have exponentially convergent rates in solving
TQSE, consistent with the error estimates in Section 5. Besides, the aliasing error
∥RNψ∥L2(R) of PM is almost smaller than the level of 10−12, even for the 4× 4 grid.

We examine the efficiency of three methods by comparing CPU time in solving
TQSE, as shown in Table 2. These results demonstrate that the CPU time required
by QSM increases dramatically with an increase of N due to the invalidity of FFT. In
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Table 1
Numerical error eN of PM, QSM and PAM for different N .

N 2 4 8 16 32

PM 4.132e-03 7.569e-04 2.543e-05 1.702e-08 1.748e-12

QSM 4.132e-03 7.569e-04 2.543e-05 1.702e-08 1.903e-12

PAM (L = 17) 1.907e-02 1.900e-02 1.899e-02 1.899e-02 1.899e-02

PAM (L = 72) 4.536e-03 4.449e-03 4.449e-03 4.449e-03 4.449e-03

PAM (L = 305) 1.376e-03 1.052e-03 1.051e-03 1.051e-03 1.051e-03

PAM (L = 1292) 9.219e-04 2.529e-04 2.480e-04 2.480e-04 2.480e-04

Fig. 3. The relationship between the numerical error eN and N .

contrast, the PM can greatly save computational amounts by using FFT. The CPU
time of PAM has a similar behavior to PM due to the availability of FFT. However,
the PAM is less efficient than PM since the PAM needs more discrete nodes.

Table 2
Required CPU time (s) of PM, QSM and PAM for different N .

N 2 4 8 16 32

PM 0.051 0.077 0.237 0.716 2.873

QSM 0.125 1.020 13.366 198.301 3347.355

PAM (L = 17) 0.331 0.593 1.146 2.554 4.204

PAM (L = 72) 0.994 1.833 3.741 7.382 15.947

PAM (L = 305) 6.497 12.853 27.451 64.089 109.709

PAM (L = 1292) 28.625 50.074 114.273 247.594 494.179

Finally, combining the data in Table 1 and Table 2, we plot the relationship
between eN and CPU time in Figure 4. These results show that the PM is a high-
precision and efficient algorithm in solving TQSE (6.1).

7. Discussion and Conclusions. In this paper, we present the convergence
analysis of PM and QSM by revealing the relation between quasiperiodic functions
and their parent functions. These results demonstrate that PM and QSM have ex-
ponential decay both in L2(Rd)- and L∞(Rd)-norm, and QSM (PM) is an extension
of periodic Fourier spectral (pseudo-spectral) method. We also analyze the compu-
tational complexity of these methods. The PM can use FFT while the QSM cannot.
Finally, we adopt a one-dimensional TQSE to show the accuracy and efficiency of PM,
QSM and PAM in solving quasiperiodic systems. Numerical results demonstrate that
PM and QSM also have exponential convergence, while the approximation error of
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Fig. 4. The relationship between the numerical error eN and CPU time (s) when N =
2, 4, 8, 16, 32, respectively.

PAM is mainly dominated by Diophantine approximation error. These results show
that the PM is an accurate and efficient method for solving quasiperiodic systems. It
is the first theoretical work of the PM. This work encourages us to further investigate
the error estimates of PM and QSM in general function space, as well as the devel-
opment of advanced numerical methods and theories for solving more quasiperiodic
systems.
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Appendix A. The proof of Theorem 5.1.

Proof. For k ∈ Kn
N , it follows that ∥k∥2 ≤

√
nN . By Cauchy-Schwarz inequality

and applying Theorem 4.1, we have

∥PNf − f∥2L2(Rd) =
∑

k∈Zn/Kn
N

|f̂k|2 ≤ CN−2α
∑

k∈Zn/Kn
N

∥k∥2α2 |f̂k|2

= CN−2α
∑

k∈Zn/Kn
N

∥k∥2α2 |F̂k|2 ≤ CN−2α|F |2α.

This completes the proof.

Appendix B. Error analysis of QSM without the help of parent func-
tions. Here we present an approximation analysis of QSM in the quasiperiodic
function space by imposing some assumptions on the projection matrix.

Theorem B.1. Suppose that f(x) ∈ Hα
QP (Rd) and the nonzero minimum singu-

lar value σmin(P ) of the projection matrix P satisfies σmin(P ) > θ > 0. Then, there
exists a constant C(θ), independent of f and N , such that

∥PNf − f∥L2(Rd) ≤ C(θ)N−α|f |α.

Proof. For k ∈ Kn
N , it follows that ∥k∥2 ≤

√
nN . By Cauchy-Schwarz inequality,

we have

∥PNf − f∥2L2(Rd) =
∑

k∈Zn/Kn
N

|f̂k|2 =
∑

λ∈Λ/Λd
N

|f̂λ|2

≤ C(σmin(P )N)−2α
∑

λ∈Λ/Λd
N

∥λ∥2α2 |f̂λ|2 ≤ C(θ)N−2α|f |2α.
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This completes the proof.

Theorem B.2. Suppose that f(x) ∈ Hα
QP (Rd), that the nonzero minimum sin-

gular value σmin(P ) of the projection matrix P satisfies σmin(P ) > θ > 0 and
α > q > d/2. Then, there exists a constant C(θ), independent of f and N , such
that

∥PNf − f∥L∞(Rd) ≤ C(θ)Nq−α|f |α.

Proof. Applying Cauchy-Schwarz inequality, we obtain

∥PNf − f∥L∞(Rd) = sup
x∈Rn

∣∣∣∣ ∑
k∈Zn/Kn

N

f̂ke
i(Pk)Tx

∣∣∣∣ ≤ ∑
k∈Zn/Kn

N

|f̂k| =
∑

λ∈Λ/Λd
N

|f̂λ|

≤
( ∑

λ∈Λ/Λd
N

∥λ∥−2q
2

)1/2( ∑
λ∈Λ/Λd

N

∥λ∥2q2 |f̂λ|2
)1/2

=

( ∑
λ∈Λ/Λd

N

∥λ∥−2q
2

)1/2( ∑
λ∈Λ/Λd

N

∥λ∥2q−2α
2 ∥λ∥2α2 |f̂λ|2

)1/2

≤ C[σmin(P )N ]q−α

( ∑
λ∈Λ/Λd

N

∥λ∥−2q
2

)1/2( ∑
λ∈Λ/Λd

N

∥λ∥2α2 |f̂λ|2
)1/2

≤ C[σmin(P )N ]q−α

( ∑
λ∈Λ/Λd

N

∥λ∥−2q
2

)1/2( ∑
λ∈Λ

|λ|2α|f̂λ|2
)1/2

= C(θ)Nq−α|f |α.

The last inequality holds due to
∑

λ∈Λ/Λd
N
∥λ∥−2q

2 <∞ when q > d/2.

Appendix C. Another proof of Theorem 5.3. According to the definition
of L2(Rd)-norm, we have

∥f − INf∥2L2(Rd) =
∑

λk∈Λ/Λd
N

|f̂k|2 +
∑

λk∈Λd
N

∣∣∣ ∑
m∈Zn

∗

f̂k+2Nm

∣∣∣2
= ∥f − PNf∥2L2(Rd) + ∥RNf∥2L2(Rd).

Recall that ∥k∥22 =
∑n

j=1 |kj |2 and by Cauchy-Schwarz inequality, we have∣∣∣ ∑
m∈Zn

∗

f̂k+2NPm

∣∣∣2 =
∣∣∣ ∑
m∈Zn

∗

F̂k+2Nm

∣∣∣2
=

∣∣∣ ∑
m∈Zn

∗

(1 + ∥k + 2Nm∥22)−
α
2 · (1 + ∥k + 2Nm∥22)

α
2 F̂k+2Nm

∣∣∣2
≤

∑
m∈Zn

∗

(1 + ∥k + 2Nm∥22)−α ·
∑

m∈Zn
∗

(1 + ∥k + 2Nm∥22)α |F̂k+2Nm|2.

Since |kj | ≤ N, j = 1, · · · , n, for |mj | ≥ 1, it follows that

|kj + 2Nmj | ≥ 2N |mj | − |kj | ≥ (2|mj | − 1)N > 1.
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Thus, for m ∈ Zn with |mj | ≥ 1, we have

(1 + ∥k + 2Nm∥22)−α =
[
1 +

n∑
j=1

|kj + 2Nmj |2
]−α

≤
[
1 +

n∑
j=1

((2|mj | − 1)N)2
]−α

≤ N−2α
[ n∑
j=1

(2|mj | − 1)2
]−α

.

Then

∑
m∈Zn

∗

(1 + ∥k + 2Nm∥22)−α ≤ N−2α
n∑

r=1

2rCr
n

+∞∑
m1=1

· · ·
+∞∑

mr=1

[ r∑
j=1

(2|mj | − 1)2
]−α

.

When α > r/2, the series
∑+∞

m1=1 · · ·
∑+∞

mr=1

[∑r
j=1(2|mj | − 1)2

]−α

converges. For

α > n/2, we have

S :=
∑

m∈Zn
∗

[ d∑
j=1

(2|mj | − 1)
]−α

<∞.

Therefore,

∥RNf∥2L2(Rd) =
∑

k∈Kn
N

∣∣∣ ∑
m∈Zn

∗

F̂k+2Nm

∣∣∣2
≤ N−2αS ·

∑
k∈Kn

N

∑
m∈Zn

∗

(1 + ∥k + 2Nm∥22)α |F̂k+2Nm|2

≤ N−2αS · 2α
∑

k∈Kn
N

∑
m∈Zn

∗

∥k + 2Nm∥2α2 |F̂k+2Nm|2

≤ 2αN−2αS|F |2α.

Applying Lemma 5.1, yields

∥f − INf∥L2(Rd) ≤ CN−α|F |α.

Appendix D. Fully discrete scheme of TQSE (6.1). We apply the OS2
method to solving semi-discrete equations (6.3) and (6.5) in time direction. Mean-
while, we present the implementation details of PAM to solve TQSE (6.1). Let τ be
the time size and the m-th time iteration step tm = mτ .

D.1. Fully discrete scheme using the QSM. From tm to tm+1, the OS2
scheme consists of three steps to solving (6.3).

Step 1: Consider the following ordinary differential equation for t ∈ [tm, tm+τ/2],

i
dψ̂β(t)

dt
=

1

2
|β|2ψ̂β(t),(D.1)

with initial value ψ̂β(tm). We can analytically solve (D.1) and obtain

ϕ̂β(tm) = ψ̂β(tm +
τ

2
) = e−(iβ2τ)/4ψ̂β(tm).(D.2)
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Step 2: Consider Equation (D.3) for t ∈ [tm, tm+1],

i
dψ̂β(t)

dt
=

∑
λ∈ΛN

v̂β−λψ̂λ(t) := g(t, ψ̂β(t)),(D.3)

with initial value ϕ̂β(tm). To address the convolution term, we apply the fourth-order
Runge Kutta (RK4) method to solve (D.3) in the reciprocal space. Concretely, let

k1 = g(tm, ϕ̂β(tm)), k2 = g(tm + τ/2, ϕ̂β(tm) + τk1/2), k3 = g(tm + τ/2, ϕ̂β(tm) +

τk2/2), k4 = g(tm+τ, ϕ̂β(tm)+τk3), then ϕ̂β(tm+1) = ϕ̂β(tm)+τ(k1+2k2+2k3+k4)/6.

Step 3: Still consider Equation (D.1) but with initial value ϕ̂β(tm+1) for t ∈
[tm + τ/2, tm+1], then we can obtain ψ̂β(tm+1) analytically.

Here we analyze the computational complexity for each time step. In Steps 1
and 3, the QSM can analytically solve (D.1), resulting in D multiplication operators,
respectively. In Step 2, due to the RK4 scheme and convolution summations, there
are 8D2+14D operators. Therefore, the computational complexity of QSM in solving
(6.1) is the level of O(D2).

D.2. Fully discrete scheme using the PM. Also, from tm to tm+1, the OS2
scheme contains three steps in solving Equation (6.5). The Step 1 and Step 3 are
similar to Appendix D.1. In Step 2, we can calculate the convolution terms of (6.5)
by using two-dimensional FFT, we obtain

Φ(yj , tm) =
∑

k∈K2
N

Φ̃k(tm)eik
Tyj ,

where Φ̃k(tm) is obtained by Step 1. Consider equation for t ∈ [tm, tm+1]

iΨt = V (yj)Ψ(yj , t) := w(t,Ψ(yj , t)),(D.4)

where the initial value is Φ(yj , tm), V (y) is the parent function corresponding to
v(x). To make a fair comparison with QSM, we still use RK4 to solve (D.4) in
physical space. Let k1 = w(tm,Φ(yj , tm)), k2 = w(tm+ τ/2,Φ(yj , tm)+ τk1/2), k3 =
w(tm + τ/2,Φ(yj , tm) + τk2/2), k4 = w(tm + τ,Φ(yj , tm) + τk3), then Φ(yj , tm+1) =

Φ(yj , tm) + τ(k1 + 2k2 + 2k3 + k4)/6. Again using FFT, we obtain ϕ̃β(tm+1) =

⟨Φ, eikTyj ⟩N .
Next, we analyze the computational complexity of each time step. Similarly, the

differential systems in Steps 1 and 3 can be analytically solved in the reciprocal space,
resulting in D multiplication operators, respectively. In Step 2, due to the availability
of FFT, the convolutions in (6.5) can be economically calculated in physical space
as dot product as shown in (D.4) which rises O(D logD) operators. Therefore, the
computational complexity of PM in solving (6.1) is the level of O(D logD).

D.3. Implementation of PAM of solving TQSE (6.1). We give the im-
plementation of PAM to solve TQSE (6.1). In the PAM, we use a one-dimensional
periodic Schrödinger equation (PSE) to approximate TQSE (6.1) over a finite region
[0, 2πL). Concretely, we use the periodic functions u(x) and φ(x, t) to approximate
v(x) and ψ(x, t), respectively. Denote

Λ(u) = {h ∈ Z : h = [Lλ], λ ∈ Λ1},
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then

u(x) =
∑

h∈Λ(u)

ûhe
ihx, x ∈ [0, 2πL),

where ûh = û[Lλ] = v̂λ = 1. Therefore, the PAM solves the one-dimensional PSE

i
dφ(x, t)

dt
= −1

2

∂2φ(x, t)

∂2x
+ u(x)φ(x, t), (x, t) ∈ [0, 2πL)× [0, T ],(D.5)

where the initial periodic function φ0(x) is the approximate periodic function of
ψ0(x). We use the periodic Fourier pseudo-spectral method and the OS2 method
to discretize (D.5) in space and time directions, respectively. Since the PAM can use
one-dimensional FFT to solve the equation (D.5) and the number of grid points is
2ML, then the computational complexity is O((2ML) log(2ML)) of each time step.
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