arXiv:2208.10443v4 [math.NA] 9 Dec 2023

The accurate and efficient evaluation of Newtonian potentials over general 2-D domains is
important for the numerical solution of Poisson’s equation and volume integral equations.
In this paper, we present a simple and efficient high-order algorithm for computing the
Newtonian potential over a planar domain discretized by an unstructured mesh. The
algorithm is based on the use of Green’s third identity for transforming the Newtonian
potential into a collection of layer potentials over the boundaries of the mesh elements,
which can be easily evaluated by the Helsing-Ojala method. One important component of
our algorithm is the use of high-order (up to order 20) bivariate polynomial interpolation in
the monomial basis, for which we provide extensive justification. The performance of our
algorithm is illustrated through several numerical experiments.

Keywords: Newtonian potential, Poisson’s equation, Green’s third identity, Vandermonde
matrix, Monomials

Rapid evaluation of Newtonian potentials on
planar domains

Zewen Shen'®* and Kirill Serkh¥®
v4, Oct 3, 2023

¢ This author’s work was supported in part by the NSERC Discovery Grants RGPIN-
2020-06022 and DGECR-2020-00356.

T Dept. of Computer Science, University of Toronto, Toronto, ON M5S 2E4
! Dept. of Math. and Computer Science, University of Toronto, Toronto, ON M5S 2E4

* Corresponding author

Contents

1__Introduction| 2
2 Mathematical and numerical preliminaries| 4
2.1 Newtonian potentiall 4

[2.2 The Helsing-Ojala method tor the close evaluation of 1-D layer potentialg 5

[3 Bivariate polynomial interpolation in the monomial basis| 6
[4 Numerical algorithm| 8
4.1 Construction of the anti-Laplacian mapping 8
4.2 Close and selt-evaluation of Newtonian potential over a mesh element| . . 10
4.3 Generalization to an arbitrary domain|o 10
4.4 Time complexity analysis| 11
[> Numerical experiments| 12
[.1 Bivariate polynomial interpolation in the monomial basis| 13
[5.2 Newtonian potential generated over a mesh element| 14
0.3 Poisson’s equation| L 15
6 C s [Furil G ons 21
[7 Acknowledgements| 22

1 Introduction

The accurate and efficient discretization of the Newtonian potential integral operator

Nalfl(@) = 5= [[1ogla = sl)swaa, (1)

for a complicated 2-D domain €2 is important for the numerical solution of Poisson’s
equation and volume integral equations. However, its numerical evaluation poses three
main difficulties. Firstly, the integrand is weakly-singular, and thus, special-purpose
quadrature rules are required. Secondly, a complicated domain 2 typically requires at
least part of the domain to be discretized by an unstructured mesh, over which the direct
evaluation of the potential by quadrature becomes costly. Finally, the algorithm for
evaluation should have linear time complexity with small constants.

When solving Poisson’s equation, the Newtonian potential is used as a particular
solution to the equation. This particular solution can be obtained by evaluating the
volume integral in directly (see, for example, [22| [, 29] 20]), or, alternatively, can
be obtained by computing the Newtonian potential over a regular domain Q" D Q for
an extended density function f* defined on QF, such that f|q = f|q, which allows for
efficient precomputations for accelerating the potential evaluation [7) 2]. When following
the latter approach, the order of convergence depends on the smoothness of the extended
density function fT, which means that f™ must be sufficiently smooth over Q% in order

to reach high accuracy within a reasonable computational budget. We refer the readers
to, for example, [10, 2 [8, 5], for a series of work along this line.

When solving volume integral equations, the aforementioned function extension
method is no longer applicable, as the computation does not require a particular solution
to Poisson’s equation, but rather, a discretization of the operator . However, as is
shown in [22] (1], difficulties arise when the domain is discretized by an unstructured mesh,
and a quadrature-based method is used. Firstly, the Newtonian potential generated over
a mesh element at a target location close to that element is costly to compute, as the
integrand is nearly-singular, and thus, expensive adaptive integration is generally required.
Furthermore, one cannot efficiently precompute these near interactions as is done in [7],
since the relative position of the target location and the nearby mesh elements is arbitrary
when an unstructured mesh is used. Secondly, efficient self-interaction computations (i.e.,
when the target location is inside the mesh element generating the Newtonian potential)
generally require a large number of precomputed generalized Gaussian quadrature rules
[3, 4], which could be nontrivial to construct.

There are several previously proposed methods [19, 21} [6, 24] which avoid these issues,
by not directly evaluating the volume integral. One such method is the dual reciprocity
method (DRM) [21], which first constructs a global approximation of the anti-Laplacian
of the density function over the domain, and then reduces the evaluation of the Newtonian
potential over the domain to the evaluation of layer potentials over the boundary of
the domain by Green’s third identity. As the 1-D layer potential evaluation problem
has been studied extensively, such a reduction is favorable. Furthermore, the method
does not require the domain to be meshed, and thus, is particularly suitable for use
in the boundary integral equation method [25]. However, approximating the density
function globally over the domain using, for example, radial basis functions with tractable
anti-Laplacians, is challenging, and the method is often inefficient when high accuracy is
required.

In this paper, we present a simple and efficient high-order algorithm that unifies the far,
near and self-interaction computations, and resolves all of the aforementioned problems.
As in the DRM, we use the anti-Laplacian to reduce the volume integral to a collection of
boundary integrals. However, unlike the DRM, we approximate the anti-Laplacian locally
over each mesh element, and then reduce the Newtonian potential to layer potentials
over the boundaries of the individual mesh elements. We efficiently evaluate the resulting
layer potentials to machine precision using the Helsing-Ojala method. As a result, we are
able to rapidly evaluate the Newtonian potential generated by each mesh element at any
target location to machine accuracy, with the speed of the evaluation independent of the
target location. In particular, the speeds of close and self-evaluations for a single mesh
element are almost the same as the speed of evaluating a layer potential over the element
boundary by naive quadrature. Furthermore, the use of Green’s third identity reduces
the number of quadrature nodes in the far field interaction computation over a single
mesh element from O(N?) to O(N). Finally, we note that the precomputation required
by our algorithm makes up a small fraction of the total cost.

The key component of our algorithm is the computation of the anti-Laplacian of the
density function f over each mesh element. We approximate f by a bivariate polynomial
interpolant in the monomial basis, which allows for easy computation of the anti-Laplacian
using simple recurrence relations, and provides a unified approach for handling both

triangle and curved triangle mesh elements. Despite the exponential ill-conditioning of
the Vandermonde matrix, we recently show in [23] that the monomial basis generally
performs as well as a well-conditioned polynomial basis for interpolation, provided that
the condition number of the Vandermonde matrix is below the reciprocity of machine
epsilon. In this paper, we apply this idea to bivariate polynomial interpolation in the
monomial basis over a (possibly curved) triangle, and demonstrate that the resulting
order of approximation can reach up to 20, regardless of the triangle’s aspect ratio.

One may observe that our algorithm resembles the method proposed in Chapter 5 of
[6]. However, there exist two notable distinctions. Firstly, the order of approximation
is constrained to 4 in [6], whereas our approach permits a substantially higher order of
approximation, reaching up to 20. Secondly, we discretize the domain solely by (possibly
curved) triangles, while in [6], the domain is discretized by the Cartesian cut cell method,
where the potentials generated over the interior boxes are computed by the box code [7],
and the ones generated over the cut cells are computed via Green’s third identity.

2 Mathematical and numerical preliminaries

2.1 Newtonian potential

Definition 2.1. The infinite-space Green’s function for Poisson’s equation is

1
G(z,y) = 5 108 |z -yl (2)

where z,y € R2.

It is well-known that the function G satisfies
where § denotes the Dirac delta function.

Definition 2.2. Given a domain) and an integrable function f : Q@ — R, the Newtonian
potential with density f is defined to be

u@) = [[Gaaswan, = 3= [[oslla - sl)swaa, @

It follows immediately from that the Newtonian potential u(x) satisfies V2u = f
in Q.

We now introduce Green’s third identity, which reduces the Newtonian potential
over 2 to layer potentials over 0f).

Theorem 2.1. Let 2 be a 2-D planar domain and f be an integrable function on €.
Suppose that ¢ : Q@ — R satisfies V2p = f. Then,

[cewrwar, = e@iow + ¢ (Gang2e) - L o) at, 5)
Q Lo} Ty

Ony

for x € R?\ 0Q, where 1q denotes the indicator function for the domain €, and ny
denotes the outward pointing unit normal vector at the point y.

2.2 The Helsing-Ojala method for the close evaluation of 1-D layer
potentials

In this section, we review the Helsing-Ojala method [I7] for accurate and efficient
evaluation of the 1-D single- and double-layer potentials

/ Ge) 22wy, and [298Y o0y a, (6)

(9ny T any
where z € R? is in close proximity to the curve I' € R?. Without loss of generality, we
assume that the left endpoint of T" is (—1,0), and the right endpoint of T" is (1, 0).
Firstly, observe that

e _1 (9%, 9
JReER e)ty = 5 _Re [0tz =) O LG
and
9G(z,y) TR I)
/F Iny #ly) dfy = Re 21 Jp 2z — @ dz, (®)

where, in a slight abuse of notation, we equate R? with C. The integrals fr % dz and
Jrlog(z — x)z* dz satisfy the following recurrence relations:

1
/ dz = log(1 — x) —log(—1 — x) + 2miN,, (9a)
TR —X
Zk+1 Zk 1+(—1)k
dz = d _— 9b
/Fz_xzx/w_xw e (91)
i 1 L Zk-i—l
/Flog(z—x)z dz:7k+1<log(1—w)—i—(—1) log(—l—x)—/rz_xdz>, (9¢)

for all k > 0, where A, = 0 when z is outside the region enclosed by the oriented
closed curve formed by I' (traversed forwards) and [—1,1] (traversed backwards), and
Nz = +1(—1) when z is inside the region enclosed counterclockwise (clockwise). We note
that these recurrence relations are stable when x is close to I'. Therefore, if the complex
density functions S)T‘py(z) : % and ¢(z) in (7)) and are approximated uniformly to
high accuracy by complex polynomials expressed in the monomial basis, then the single-
and double-layer potentials @ can be readily calculated via and , respectively,
with the aid of the aforementioned recurrence relations.

To approximate the density functions (%Z(z) . % and ¢(z) by complex polynomials
in the monomial basis, one collocates at a set of nodes over I' with a small Lebesgue
constant, and then solves the resulting Vandermonde system with a backward stable solver.
Despite the ill-conditioning of the Vandermonde matrix, based on our analysis in [23],
the monomial basis is as good as a well-conditioned polynomial basis for interpolation,
provided that the condition number of the Vandermonde matrix is smaller than %, where
u denotes machine epsilon, and that u - ||a||, is smaller than the polynomial interpolation
error, where a denotes the monomial coefficient vector of the interpolating polynomial.
As is shown in 23], the first condition is met when the order of approximation is less

than =~ 40, even in the case where I' has a high curvature. In addition, the second

condition is satisfied automatically in most practical situations. Therefore, the use of a
monomial basis in floating point arithmetics is justified under these conditions. However,
it is pointed out in [16] that the complex density functions %(z) : % and ¢(z) have a
singularity close to the domain I' when the curvature of I' is not small, which leads to a
slowly decaying polynomial interpolation error. This issue can be remedied by adaptively
subdividing I' until the curvature of each subpanel is small.

3 Bivariate polynomial interpolation in the monomial basis

In this section, we discuss the numerical stability of bivariate polynomial interpolation in
the monomial basis over a (possibly curved) triangle.

Let A C R? be a triangle, and let F': A — R be an arbitrary function. We define N
to be the dimensionality of the space of 2-D polynomials of degree at most N, which is
equal to %JNH) The Nth degree interpolating polynomial, which we denote by Py,

of the function F' for a given set of N collocation points Z := {(zj,95)}
be expressed as

Pt = 0“5 (1) w

§=0 k=0

j=1.. & CAcan

where (c,d) € R? is the monomial expansion center, s,t € R are the scaling factors of

the basis, and the monomial coefficient vector a®) .= (aoo0, a10, o1, - - - ,aON)T € IRN is
the solution to the Vandermonde system V™" a®™) = f(N) where

r1—c y1—d r1—C\2 (an—r:)(yrd) (yrd)N
; t—d a:zs c\2 (EQS c yzt—d yzt—d N
1 To—cC Y2 — - ~ ~
voo . |1 e e R SR P (11)
: G ~.—d B G L ~;d
1 S INT (BAN)2 (RSB - ()N

is a 2-D Vandermonde matrix and f(V) := (F(z1,y1), F(22,92), . .. ,F(:cﬁ,yﬁ))T € RV.
A notable feature of polynomial interpolation in dimensions higher than one is the
possibility of non-uniqueness in the solution to this Vandermonde system (equivalently,
non-uniqueness of Py), even when the collocation points are all distinct. A nonlinear
optimization algorithm for computing well-conditioned collocation points for polynomial
interpolation of order up to 20 over a bounded convex domain has been proposed in [26].
The resulting points, known as Vioreanu-Rokhlin nodes, are well-conditioned in the sense
that the associated Lebesgue constant is relatively small in magnitude (which also implies
that the corresponding Vandermonde matrix is invertible). In Figure [I} we plot an
example set of Vioreanu-Rokhlin nodes over a triangle, along with the corresponding
Lebesgue constants for various orders of approximation.

Now let A € R? be a star-shaped curved triangle with only one curved side, v :
[0, L] — R? be the parameterization of the curved side of A, and O € R? be the vertex
opposite to the curved side. The blending function method [II] provides a smooth
mapping from the standard simplex A% = {(z,y) € R2:0< 2 < 1,0 <y <1 -z} to the

051

Y

Figure 1: The 20th order Vioreanu-Rokhlin nodes over a triangle, and the
associated Lebesgue constants for various orders of approximation.. The z-axis
label N denotes the order of approximation. One may observe in Figure that the
Lebesgue constant for the Vioreanu-Rokhlin nodes does not exhibit monotonic growth,
which is due to the heuristic nature of the algorithm used to construct these nodes.

curved triangle 5, defined by the formula

p&mn)i=01-&=n) (L) +& v(0)+n-0
+11§§77(7(L(1 =€) - (1=¢&-y(L)-¢- 7(0)). (12)

To obtain a set of collocation points over ﬁ, we map the Vioreanu-Rokhlin nodes over
A to A via . We observe that the Lebesgue constant of resulting collocation points
is also relatively small in magnitude when ~ is not too curved.

Similar to the 1-D case, the 2-D Vandermonde matrix is also exponentially
ill-conditioned. The following theorem provides a priori bounds for the monomial
approximation error, which shows that the accuracy of approximation is essentially
unrelated to the ill-conditioning of the matrix. Its proof is almost identical to the proof
of Theorem 2.2 in [23].

Theorem 3.1. Let Q C R? be a bounded domain, and let F : Q — C be an arbitrary
function. Suppose that Py is the Nth degree bivariate interpolating polynomial of F for
a giwen set of N distinct collocation points Z := {(xj,yj)}j:1 o N CQ. Let V) (V)

and f) be the same as introduced above. Suppose that there exists some constant Yn > 0

such that the computed monomial coefficient vector @) := (@oo, @10, dot, - - -, don) T € RN
satisfies

(V(N) + 5v(N))a(N) = V) (13)
for some 6VIV) ¢ RN with

1SV, < w-w, (14)

where u denotes machine epsilon. Let Py (z,y) = Z;-V:o ZZ::O 6j,k,k(xgc)j_k(ﬂl)k be

the computed monomial expansion. If the 2-norm of (V(N))_1 satisfies

V)T, < 5 (15)
then the 2-norm of the numerical solution a¥N) is bounded by

20, < 1@, < 200, (16)
and the monomial approrimation error can be quantified a priori by

IF = Pyl ooy < IF = Puvll ooy + 2u - v A [la™]5, (17)

where A denotes the Lebesgque constant for Z.

When solving the Vandermonde system using a backward stable linear system solver,
the set of assumptions and is satisfied with constant vy = O(||[V)||,). Further-
more, based on the same analysis as in [23], one can show that u-[|a™) |, < ||F — Pn|[oo

holds in most practical situations when [(V(M)~1|, satisfies the condition (15)), from
which it follows that the monomial basis is as good as an orthogonal polynomial basis for
interpolation in such cases. Therefore, it is advisable to carefully select the monomial
expansion center (c,d) and the scaling factors s, ¢ to minimize the growth of both ||V V)|,
and ||(VM)~1|,. Below, we provide an algorithm for choosing these constants.

Given an arbitrary bounded domain €2 in R?, we define B to be the minimum bounding
box of 2 (see Figure . Then, we establish a local coordinate system centered at the
midpoint of B, with the z- and y-axes aligned parallel to the sides of B. In this coordinate
system, we set ¢ and d to be zero, s to be half the length of the longer side of B, and
t to be half the length of the shorter side of By. One can show that the entries of the
resulting Vandermonde matrix V") are no larger than one in magnitude, which implies
that the constant vy is small. In addition, one can observe from Figure that the
condition is satisfied for N < 20, regardless of the triangle’s aspect ratio.

In Section 5.1} we provide numerical experiments to demonstrate the feasibility of
bivariate polynomial interpolation in the monomial basis.

4 Numerical algorithm

In this section, we first present an algorithm for computing the Newtonian potential
when the domain € is a (possibly curved) triangle. Then, we describe how to apply this
algorithm to compute the Newtonian potential over a general domain. In the end, we
show that our algorithm has linear time complexity.

4.1 Construction of the anti-Laplacian mapping

In this section, we present an algorithm for computing the anti-Laplacian of a bivariate
monomial. With a slight abuse of notation, we denote the anti-Laplacian operator by

/ 10°

0 1 2 3 4 0 5 10 15 20

T N
(a) (b)

Figure 2: The growth of x(V(N)) for triangles with different aspect ratios. The
colors of the triangles in Figure [2a] correspond to the line colors depicted in Figure
The boxes in Figure [2a] define the local coordinate for each triangle.

V2, which we define by the recurrence relations
2

) s () (13
)

T—c\m/ Yy — 2 T —c\m _
V() (ytd)]:(m+1(m+2)<) H(de)’ (18b)

for all m > 0, and
— n 2 — n
V_QKy t d) } T+ 1§(n—i—2) (y t d) " (19a)

2 — — n
} T+ 1§(n+2) (:c s 0><y / d) o
for all n > 0, and

T —Cc\™ - n s2 T —c\m — n
)) e () ()

2Tl n — xr—c\m n—
(m+(2 m1+1 v <) +2<%Z> 2} (202)

|
2 T —c\m n
:(n—|—2§(n+1(s) (y d) "
(5

2 X —c\m— n
s2zn+(2)(n+1 [) Q(Z/td) H}’ (20b)

9
o
L—
/N
&
@ ||
o
S~
/~
<
=+ |
IS
—
3

for all m > 2,n > 2. It is easy to verify that V2 o V~2 = I. Based on these recurrence
relations, one can construct a mapping from the monomial coefficients of a bivariate poly-
nomial of degree N to the monomial coefficients of the anti-Laplacian of this polynomial.
This mapping only has O(NN?) non-zero entries, and should be stored in a sparse format.

Remark 4.1. The identity (20a]) produces a shorter sequence of recurrence relations
when m > n, and vice versa for (20b)).

4.2 Close and self-evaluation of Newtonian potential over a mesh ele-
ment

Given a possibly curved triangle A; and a function f : A; — R, we first compute its
bivariate interpolating polynomial in the monomial basis, as described in Section [3| By
Green’s third identity (see Theorem , the Newtonian potential with density function
f over A at a given target € R? can be expressed as

/ Glx,y)f(y) dA, ~ / Glx,y) Py(y) dA,
Aq Ay

(6o gt = ot aty. (21

Ony

~pla)a, (@) + §

0A1

where Py is the Nth degree bivariate interpolating polynomial of f, and ¢ := V~2[Py]
is a bivariate polynomial of degree (N + 2) computed using the algorithm outlined in the
previous section. Thus, it remains to compute the layer potentials [; G(z, y)g—é(y) d¢,

and fLi Mgp(y) d¢, for i =1, 2, 3, where L; denotes the ith edge of A;. When z

ony

is well-separated from L;, these integrands are smooth, and is computed using a
standard quadrature rule. When z is close to L;, these integrands become nearly-singular,
and the Helsing-Ojala method is used for the calculation (see Section . We note that
the restriction of the anti-Laplacian ¢ to a line segment is a univariate polynomial of
degree N + 2.

Remark 4.2. It is well-known that Horner’s method evaluates a polynomial in the
monomial basis with the fewest number of multiplications. However, Estrin’s scheme
outperforms Horner’s method in terms of speed on a modern computer, as it effectively
utilizes CPU pipelines.

4.3 Generalization to an arbitrary domain

Given a general planar region {2, we first discretize €2 into triangles and curved triangles
using a standard off-the-shelf meshing algorithm. Then, we construct the anti-Laplacian
of the density function in the form of a 2-D monomial expansion for each mesh element.
We also compute the 1-D monomial expansion coefficients for the restriction of the
anti-Laplacian and its normal derivatives to the edges of each element. At this stage, all
of the required precomputations are completed.

Then, we use the point-based fast multipole method (FMM) [I5] to compute the far
field interactions. Typically, one uses 2-D quadrature rules over triangles to compute the
far field interactions generated over mesh elements (see, for example, [22] 1]) and, thus,
the number of quadrature nodes over each element for computing far field interactions is
of order O(N?), where N is the degree of the bivariate interpolating polynomial for the
density function. We note, however, that in the far field, the layer potentials in Green’s
third identity can be computed efficiently and accurately by Gauss-Legendre rules.
It follows that, in our algorithm, the number of quadrature nodes over each element is
of order O(N). Finally, we compute the near and self-interactions using the algorithm
presented in the previous section, and use the “subtract-and-add” method to remove the
spurious contribution from the FMM (see [14] for details).

10

Remark 4.3. Given two adjacent mesh elements, their far field quadrature nodes
over their common edge coincide, and thus, one could merge the nodes in the FMM
computation to reduce the number of sources by a factor of two. Similarly, one could
merge the expansion coefficients of the two 1-D monomial expansions over the common
edge of two elements to reduce the near interaction computational cost by a factor of two.

4.4 Time complexity analysis

In this section, we present the time complexity of our algorithm. Suppose that we
construct a pth degree bivariate interpolating polynomial of the density function over
each element. Consequently, each polynomial is represented by (p + 1)(p + 2)/2 = O(p?)
terms in the monomial basis. We estimate the various costs as follows.

Precomputation for each mesh element:

1. The computation of the 2-D monomial expansion coefficients of the density function
takes O(p®) operations, since the cost is dominated by the factorization of a 2-D
Vandermonde matrix of size O(p?) x O(p?).

2. The computation of the anti-Laplacian takes O(p®) operations.

3. The evaluation of the anti-Laplacian and its normal derivative at the O(p) collocation
points on the edges of the mesh elements takes O(p?) operations.

4. The computation of the 1-D monomial expansions of the restriction of the anti-
Laplacian and its normal derivatives takes O(p?) operations on a straight edge
(as one can store and reuse the pivoted LU factorization of the 1-D Vandermonde
matrix with Gauss-Legendre collocation nodes over [—1,1]), and takes O(p3) on a
curved edge. We note that the total number of curved edges is generally far fewer
than the total number of straight edges.

Close and self-evaluation of the Newtonian potential over a mesh element at
a single target location:

1. It takes O(p) operations to evaluate the layer potentials on the right hand side of
Green’s third identity , either by the Gauss-Legendre rule or the Helsing-Ojala
method.

2. Tt takes O(p?) operations to evaluate the anti-Laplacian on the right hand side of
Green’s third identity . This is only required by the self-evaluation.

Based on these estimates, we present the total number of operations required to
evaluate the Newtonian potential over all of the discretization nodes over the domain €.
Suppose that 2 is discretized into m mesh elements. Then, the number of discretization
nodes Nyt is of order O(p?m). First, the precomputation takes O(p®m) = O(p* Niot)
operations. Second, the far field interaction costs (i.e., the FMM cost) are of order
O(pm + Niot). Third, the near interaction computation takes O(pNio) operations, as
each discretization node is inside the near fields of a constant number of mesh elements.
Finally, the self-interaction computation takes O(p®Niot) operations. Since p is generally

11

a small constant, our algorithm has linear time complexity. Furthermore, we note that
the constant associated with the precomputation is small (see Table , and the near and
self-interaction computations are nearly instantaneous after the precomputations have
been performed.

5 Numerical experiments

In this section, we illustrate the performance of the algorithm with several numerical
examples. We implemented our algorithm in Fortran 77 and Fortran 90, and compiled it
using the Intel Fortran Compiler, version 2021.6.0, with the -0fast flag. We conducted
all experiments on a ThinkPad laptop, with 16 GB of RAM and an Intel Core i7-10510U
CPU.

We use the Vioreanu-Rokhlin rules [26], which are publicly available in [I3]. We
use the FMM library published in [I2] in our implementation. We use the subroutines
dgetrf and dgetrs (i.e., LU factorization with partial pivoting) from LAPACK as our
linear system solver for the Vandermonde system. We make no use of parallelization.
While we comment in Remark that it is more efficient to loop through edges instead
of triangles, these features are not implemented in our code, for the sake of simplicity.

We list the notation that appears in this section below.

® Sexps: The number of targets at which the Newtonian potential generated over a
mesh element can be evaluated per second using our algorithm, after the precom-
putation.

® Sadap: The number of targets at which the Newtonian potential generated over a
mesh element can be evaluated, per second, using adaptive integration.

o Fexps: The absolute error of the potential evaluation computed using our algorithm.

® Faqap: The absolute error of the potential evaluation computed using adaptive
integration.

® Niem: The number of mesh elements.
e h{®*: The maximum diameter of all mesh elements.
° h{)“in: The minimum diameter of all mesh elements.

o A™3: The maximum aspect ratio of all mesh elements. The aspect ratio of a
triangle equals the ratio of its circumradius to twice its inradius.

e Ngrq: The order of the bivariate polynomial approximation to the density function
over each mesh element.

e N{&: The total number of targets at which the Newtonian potential is evaluated.
e N¢: The total number of sources (i.e., far field quadrature nodes).

® Toeom: The time spent on the geometric algorithms: quadtree constructions, nearby
elements queries, etc. The mesh creation time is not counted.

12

e Tiit: The time spent on the precomputations required by our algorithm.

e Tr: The time spent on the far field interaction computation (i.e., the FMM
computation).

e T): The time spent on the near field interaction computation, including the
subtraction of spurious contributions from the far field interaction computation
(see [14, 22]).

e Ts: The time spent on the self-interaction computation, including the subtraction
of spurious contributions from the far field interaction computation (see [14} 22]).

e Tiot: The total time for the evaluation of the volume potential at all of the
discretization nodes.

. %: The number of targets at which the Newtonian potential can be evaluated

per second using our algorithm, including the precomputation cost.

o FEpui: The largest absolute error of the solution to Poisson’s equation at all of the
target nodes.

e F4en: The L* monomial approximation error of the density function over the
whole domain, estimated by comparing the approximated function values at 40,000
uniformly sampled points over the domain with the true function values.

e FEio: The error tolerance of the adaptive version of our algorithm. Used in the
experiment with an inhomogeneous density function.

5.1 Bivariate polynomial interpolation in the monomial basis

In this section, we present numerical experiments to demonstrate the feasibility of bivariate
polynomial interpolation in the monomial basis.

Let Ay be an equilateral triangle with vertices (—1,0), (1,0) and (0,+/3), and let Ay
be a flattened triangle with vertices (—1,0), (1,0) and (0, 15). In Figures |3 and |4] we
estimate L°° errors of bivariate polynomial interpolation in the 2-D monomial basis and
in the Koornwinder polynomial basis [3] (i.e., the orthogonal polynomial basis over a
triangle) over the domains A; and Ay with the Vioreanu-Rokhlin collocation points, for
different orders of approximation IV, by comparing the values of the two approximations
with the true values of the function at 20,000 uniformly sampled points over the domain.
We also report the extra numerical error that arises from the use of monomial basis
(i.e., u- |a™)||,; see Theorem . One can observe that the use of the monomial basis
induces essentially no extra loss of accuracy in both cases.

Now let A be a curved triangle, given by the formula

A:={(rcosf —1,rsinf) e R*:0<r<2,0<6<n/3}. (22)
We repeat the previous experiment on ﬁ, and show the results in Figure . One can

observe that the performance of the monomial approximation over a curved triangle is
almost identical to the triangle domain case.

13

10%4 —*— Koornwinder 100
—e— Monomial

1034 - [la ™), 103
o 101 .. 10

1094 = 100

10’12‘ 10—12

08 AR 1015

0 5 10 15 20
N
2 2
_ (x4 8 o 1
(a> f(xny) =e€ (Y)/ (b) f(l‘vy) —81n(§xy—|—x+y)

10”‘ 101'

10'3‘ 10—:;
L 104 . 100
£ g
La =

1094 - 109

1012] 1012 e

L R SINT N 0% PO

0 5 10 15 20 0 5 10 15 20
N N
-1 5.5
(c) f(z.y) = szqy71e (d) fz,y) = |z|

Figure 3: Bivariate polynomial interpolation over the equilateral triangle A,
by monomials and Koornwinder polynomials.

5.2 Newtonian potential generated over a mesh element

In this section, we compare our algorithm with adaptive integration for Newtonian
potential evaluation. We set the domain to be A := {(z,y) € R?:0<2<1,0<y <
1 — z}, the density function to be f(x,y) = cos(bzxy) + sin(2z + 1) + cos(3y — 1), and the
target location to be (0.5, —h), for various h. In the adaptive integration computation, we
used the Vioreanu-Rokhlin rule of order Ng.q, equipped with the error control technique
introduced in [22] to align the error with the error of our algorithm. To make the adaptive
integration speed independent of the complexity of the density function, we excluded
the time spent on the density function evaluations on the first level, but included the
time spent on interpolating the density function values to the next level (see [3] for a fast
interpolation technique). Furthermore, we accelerated the application of the interpolation
matrix by LAPACK, and fine-tuned the baseline to make the comparisons fair. The
reference solutions were computed using extremely high-order adaptive integration. In
Table [1| we report the speed-up of the close evaluation of the Newtonian potential
obtained by our algorithm after the precomputation, compared to the conventional
adaptive integration-based approach, for different orders of approximation. We do not

14

1074) —»— Koornwinder 100
A —6— Monomial

1034 = - [la™], 103
o 101 .. 10

1094 =00

10’12‘ 10—12

ey R 1015

0 5 10 15 20
N
2, .2
— o (z7+ 8 I |
(a> f(x7y) =e€ (Y)/ (b) f(l‘vy) —81n(§xy—|—x+y)

1004 - 100

1073 1 10—:;
5 1007 L 100
£ g
La =

10794 - 107

1012] 1012 e

000 e P attad sl e

0 5 10 15 20 0 5 10 15 20
N N
-1 5.5
(C) f(:z:,y) T 224 (y+1)2 (d) f(-%',y) = |‘T|

Figure 4: Bivariate polynomial interpolation over the flattened triangle A, by
monomials and Koornwinder polynomials.

include a similar experiment that demonstrates the speed-up of the self-evaluation, since
a fair experiment requires the speed of the adaptive integration-based approach to be
independent of the cost of evaluating the density function. We note that, even when
the density function is a constant (so that its evaluation is free), the speed of the self-
evaluation by our algorithm is significantly faster than the adaptive integration-based
approach when the target point is close to the boundary of the domain. In Figure [6]
we report the speeds for the close and self-evaluations, and of the precomputations, for
various orders of approximations. In Figure[7] we show the plots of the computational
errors of the Newtonian potential.

5.3 Poisson’s equation

In this section, we report the performance of our Newtonian potential evaluation algorithm
in the context of solving Poisson’s equation

Vip=finQ,
@ =g on 01, (23)

15

1004 —e— Monomial 100
----- u-[la™]],
10-34 103
., 104 . 1o
10794 = 100
10’12‘ 10—12
100] 1015 e _J
0 5 10 15 20 0 5 10 15 20
N N
2 2
_ ("4 8 _ n(l
(a> f(x7y) =e€ (Y)/ (b) f(l‘vy) —81n(§xy—|—x+y)
10”‘ 101'
N N w
.. 1064 .. 100
£ g
Lﬁ =
1091 = 109
1012] 1012 S
AN JPtad ’/
P Pl b Pl
VRl B - 10°15 P ’
0 5 10 15 20 0 5 10 15 20
N N
-1 5.5
(©) f(2,y) = 72 (d) f(z,y) = |z]

Figure 5: Bivariate polynomial interpolation over the curved triangle element A
by monomials.

where
f(z,y) = 9cos(9x) sin(6y) + 16 Cos(lﬁy + %) — 12sin(12x), (24)
and

g(x,y) = p(z,y)|oq = (% sin(12z) — 1i6 cos(16y + %) - %3 cos(9z) sin(6y)> ’89’ (25)
for the domain Q is displayed in Figure [§] The boundary of this domain was created
by the following procedure. First, we fit a C* curve through a collection of points
using the algorithm described in [28], and then up-sampled the curve to produce a
new collection of data points. The final curve was constructed by interpolating these
new points using the interpolation formula and C* interpolatory basis introduced
in [27], where the basis functions are translates of the product of the sinc function
and the Gaussian exp(—axz?), with the parameter a = 0.1. The final curve can be
recreated from this interpolation formula, together with the data points, which we
provide in https://doi.org/10.5281/zenodo.8401488. Once the boundary of €2 has

16

https://doi.org/10.5281/zenodo.8401488

Sexps

Nora h Sexps Sadap S FEexps Eadap
8 2x1071 9.29x10° 3.56x10° 2.61 4.07x107® 1.37x1077
2x 1072 1.19x10% 2.02x10° 5.88 3.06x10~°® 9.73x1078
2x1073 1.19x10% 6.13x10* 19.4 4.89x107% 2.78x1077
2x107% 1.19x10% 5.39x10* 22.1 5.10x107® 5.35x107%8
2x107° 1.19x10% 3.95x10* 30.1 5.12x107% 7.03x107%®
14 2x107" 1.04x10% 5.07x10* 20.6 9.42x107'3 9.41x10713
2x 1072 1.04x10% 1.51x10* 69.0 1.69x10~'" 1.20x10~"
2x 1073 1.04x10% 8.21x10% 127 2.27x10~!' 5.83x10~1
2x107*% 1.04x10% 5.64x10® 185 2.34x10~'' 5.30x10~!!
2x107° 1.04x10% 4.09x10® 255 2.35x10~'' 5.66x10~!!
20 2x107! 7.40x10° 1.19x10* 62.2 7.77x107'6 1.00x1016
2x1072 7.41x10° 3.11x10% 238 4.16x107'6 8.33x107!7
2x1073 7.41x10° 1.56x10% 474 8.60x10716 2.03x10715
2x107% 7.43x10° 1.00x10% 741 1.05x107'5 6.38x1071'6
2x107° 7.42x10° 8.09x10% 917 8.33x107'6 5.83x10716

Table 1: The speed-up of close evaluation of Newtonian potentials generated
over a single mesh element A.

been constructed, a mesh is created on (2 using the Gmsh mesh generator. To ensure
that the boundary is well-resolved by the triangle mesh, we post-process the resulting
mesh by performing additional subdivision of curved triangles on high curvature regions.

It is easy to verify that the solution ¢ to Poisson’s equation can be expressed as
the sum of the Newtonian potential u with density function f over the domain €2, and
the solution to the Laplace equation

VZ2uh =0 inQ,

u" =g —u on Q. (26)
In our implementation, we first compute u using our algorithm, and then solve the Laplace
equation using the boundary integral equation method [25].

In our first experiment, we aim to validate both the convergence rate and the
computational efficiency of our algorithm. To achieve this, we discretize the domain
() using a quasi-uniform triangular mesh. We provide the problem sizes in Tables
and Subsequently, we present a detailed performance analysis of our algorithm in
Table [d] and visualize its convergence rate in Figure[9} Our results demonstrate that our
algorithm exhibits the anticipated order of convergence. Additionally, when the order
is not extremely high (e.g., < 14), the time spent on precomputation is small, and the
computational costs associated with near and self-interaction are comparable to those of
the far field interaction computation.

17

x10°

g : ‘ :
) ——Far 2 ——Precomputation
[®) —
847 g
—
(5]) =
& ‘g 10°
g =
(]
L :
<
e g
- & 10
21| :
g
: Z
0 5 10 15 20 0 5 10 15 20
N N

Figure 6: The speed of the far, close, and self-evaluations, and of the pre-
computations, over a single mesh element A. The z-axis denotes the order of
approximation. The y-axes in (a) and (b) denote the number of targets the volume
potential can be evaluated at and the number of mesh elements that the precomputation
can be executed on, per second, respectively. The label “Far” denotes the evaluation of
the Newtonian potential via by a Gauss-Legendre rule of order N + 2 over every edge
of the mesh element. The labels “Close” and “Self” denote the close and self-evaluation
of the Newtonian potential via by the Helsing-Ojala method of order N + 2 over every
edge of the mesh element.

hanax Nelem Amax hglln/h(l;,ﬂaX

0.99 542 1.96 0.16
0.55 1844 4.20 0.17
0.28 6964 45.5 0.17

Table 2: The total number of mesh elements, the maximum diameter (i.e.,
hg'**), aspect ratio (i.e., A™**) of mesh elements, and the ratio between the
largest and smallest triangles (i.e., A" /h®X), for different meshes used in
Poisson’s equation experiment. Note that the ratio between the minimum diameter
and the maximum diameter of mesh elements is small, because the mesh size has to be
smaller inside the two lobes (see Figure .

In the following example, we assess the performance and accuracy of our algorithm
for an inhomogeneous density function and a domain featuring multiscale features.
Specifically, we define the density function as the combination of a smooth function and
three highly localized spikes, given by:

flz,y) =2 —32sin(4(z + y))+
3
2 Z ¢ (@w=ai)* ~di (y=b:)? (= —d? +2¢} (z — a;)* + 2d} (y — b;)?), (27)
=1

18

—15.0 —14.7
2

—15.2 —15.0
1 —15.4 —15.3

—15.6 —15.6
0

—15.8 —15.9

—1 16.0
—2 —1 0 1 2 1

~16.2
(a) (b)

Figure 7: Error contours. We set the density function to be f(z,y) = Sin(%my +z+y),
and the orders of the 2-D and 1-D monomial approximations to be 20 and 22, respectively.

\';
20 5 ?Xﬁ'ﬁ'ﬁ'é»}
0 0
—20
-5
) 0 5 -5 0 5
(a) (b)

Figure 8: The domain (2, the density function f, and an example mesh
where Ay = 0.99.

where (al, bl, Cc1, dl) = (—3, 6, 10, 10), (az, bg, Cc9, dg) = (2, —7, 5, 10) and (a3, bg, Cc3, dg) =
(3.8,8.6,15,20). We set the boundary condition of Poisson’s equation to be

3

9(2.) = @(z,y)lon = sin(d(x +y)) + (2* =3y +8) + Y e WIS (25
i=1

Additionally, we introduce a tiny lobe to the previously defined domain 2. The density
function and the domain are visualized in Figure We also set the order Ny.q of our
algorithm to be 14.

To accurately represent the inhomogeneous density function, we refine the initial mesh
by 1-to-4 subdivisions until the density function over each element can be approximated
by a polynomial of degree 14 within a specified error tolerance. To resolve the tiny lobe,
we use Gmsh to subdivide the lobe and its neighborhood until we achieve the desired
reduction in error. We provide the problem sizes and the performance of our algorithm

19

max src tgt Neot
Nord g Niot Niot Ntt%f
O

8 0.99 17886 24390
0.55 60852 82980 73.3%
0.28 229812 313380

14 099 27642 65040
0.55 94044 221280 42.5%
0.28 355164 835680

20 0.99 37398 125202
0.55 127236 425964 29.9%
0.28 480516 1608684

Table 3: The total number of sources and targets for different orders of
approximation N,.q and for different mesh sizes hy used in Poisson’s equation
experiment. We note that the total number of the mesh elements equals 552, 1844,
6898 when hg = 0.6, 0.3, 0.15, respectively. The sources are the Gauss-Legendre nodes
of order Ny.q + 2 along the boundaries of the mesh elements, and the targets are the
Vioreanu-Rokhlin nodes of order N,.q over all mesh elements. The values in the last
column are equal to 6(Norq + 3)/((Nord +1) - (Nora + 2)), and show the reduction in the
number of far field quadrature nodes, when the far field interactions are computed using
Green’s third identity.

Nord B3 Tyeom Tmie Tr Ty Ts Tiot #tat Epoi

8 0.99 0.02 0.03 0.17 0.04 0.02 0.29 853x10* 1.49x1073
0.55 0.06 0.07 0.60 0.15 0.08 0.97 857x10* 1.01x10°6
028 0.24 026 1.72 0.67 0.32 3.21 9.77x10* 1.90x107?

14 099 005 009 034 015 0.08 0.71 9.13x10* 4.98x10°7
0.55 0.18 031 1.05 081 0.36 270 8.19x10* 9.05x10~'?
0.28 0.58 093 3.65 270 1.15 9.01 9.27x10* 3.75x107'?

20 099 020 096 099 0.33 0.18 2.67 4.69x10* 7.71x10~1
055 031 284 234 1.09 062 7.21 5.91x10* 7.39x10712
028 1.26 105 7.20 4.46 255 26.0 6.19x10* 5.18x10712

Table 4: Performance of our algorithm for solving Poisson’s equation. The
smallest value of Fpo; we report is 3.75 x 10~'2. We found that the loss of several digits
accuracy was due to the condition number associated with the calculation of the curvature
of 0€), which is represented as a global C'>° curve. Note that the meshes for different
values of Nyq with the same value of hfj'** are identical.

20

-1 10°F o 1
//,//// Eden ////
P —— 14th order e
100 -- e
107 f P
1077 -
10710t
10710 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.4 0.6 0.8 1 0.4 0.6 0.8 1
ma; ma
h§ax hg e
(a) 8th order (b) 14th order

Figure 9: Order of convergence. We refer the readers to the caption of Table [4f for the
reason why the error does not decay to machine precision in Figure (b).

in Table 5| and plot the corresponding meshes in Figure Note that the error tolerance
required for resolving the density is typically several orders of magnitude larger than El.

Remark 5.1. In our experiments, we found that the time spent on the far field interaction
computation performed by the FMM has a high variance, so we ran the program several
times and reported the experiment with the smallest FMM computation time. We note
that the runtimes of all other parts of our algorithm have low variance.

Eiol Nelem ~A™* Tgeom Tinit Tr T Ts Thot #iet Epoi

sec

107® 1076 5.05 0.15 0.19 0.60 0.19 0.15 1.27 1.02x10° 5.75x1075
10710 3258 241 159 051 1.88 1.93 0.72 6.63 6.09x10* 8.57x1010

Table 5: Performance of our algorithm for solving Poisson’s equation when the
domain has a multiscale feature and when the density function is inhomoge-
neous. In this experiment, Ny.q = 14. We note that the time spent on the geometric
algorithms (i.e., Tyeom) is substantially higher than the one in the previous examples.
This is because our geometric algorithm is not optimized for multiscale meshes. The near
field interaction computation takes much longer for the same reason.

6 Conclusions and further directions

In this paper, we present a simple and efficient high-order algorithm for the rapid
evaluation of Newtonian potentials over a general planar domain. Furthermore, we
provide a justification for employing a monomial basis in the context of high-order (up to
order 20) bivariate polynomial interpolation. This choice serves as a crucial component
of our algorithm, despite being commonly regarded as infeasible.

21

0 6.5 ﬂ
5 4
0.5 0.0 0.5
07 —500
_5 -
—1000 7]
5 0 5 3.5 4.0 45

Figure 10: The domain 2 with a tiny lobe, and the inhomogeneous density
function f.

We note that our algorithm can be generalized to compute the Helmholtz (or Yukawa)
volume potential, provided that the anti-Helmholtizian (or anti-Yukawaian) of a bivariate
polynomial can be approximated accurately, and that the Helmholtz (or Yukawa) layer
potentials over the boundaries of mesh elements can be efficiently computed to high
accuracy (see, for example, [I8, 9]). Furthermore, the use of polynomial interpolation in
the monomial basis and Green’s third identity generalize in a straightforward way to 3-D
domains, but efficient algorithms for the evaluation of surface Newtonian potentials are
an area of active research.

7 Acknowledgements

We are deeply grateful to Travis Askham, Shidong Jiang, Manas Rachh, and the anony-
mous referees for their valuable advice and insightful discussions.

References

[1] T. G. Anderson, H. Zhu, and S. Veerapaneni, A Fast, High-Order Scheme for
Evaluating Volume Potentials on Complex 2D Geometries via Area-to-Line Integral
Conversion and Domain Mappings, J. Comput. Phys., 472 (2023), pp. 111688.

[2] T. Askham, and A. J. Cerfon, An Adaptive Fast Multipole Accelerated Poisson Solver
for Complex Geometries, J. Comput. Phys., 344 (2017), pp. 1-22.

[3] J. Bremer, and Z. Gimbutas, A Nystrém Method for Weakly Singular Integral
Operators on Surfaces, J. Comput. Phys., 231.14 (2012), pp. 4885-4903.

[4] J. Bremer, Z. Gimbutas, and V. Rokhlin, A Nonlinear Optimization Procedure
for Generalized Gaussian Quadratures, SIAM J. Sci. Comput., 32.4 (2010), pp.
1761-1788.

22

ot

D Eermmm— AV
RORRRRRERAE LS
REPASOAAAX AL NN
WAV, ‘VA;AZA‘

TR

O

AVK\VAVAV

(b) Error tolerance = 1010

Figure 11: The meshes used in the Poisson’s equation experiments for a
multiscale domain and an inhomogeneous density function.

[5] O. P. Bruno, and J. Paul, Two-Dimensional Fourier Continuation and Applications,
SIAM J. Sci. Comput. 44.2 (2022), pp. A964-992.

[6] F. Ethridge, Fast Algorithms for Volume Integrals in Potential Theory, Ph.D. disser-
tation, New York University.

[7] F. Ethridge, and L. Greengard, A New Fast-Multipole Accelerated Poisson Solver in
Two Dimensions, STAM J. Sci. Comput., 23.3 (2001), pp. 741-760.

[8] C. Epstein, and S. Jiang. A Stable, Efficient Scheme for C" Function Extensions on
Smooth Domains in RY, arXiv:2206.11318, 2022.

23

http://arxiv.org/abs/2206.11318

[9]

[10]

[11]

[12]

[15]

[16]

F. Fryklund, L. af Klinteberg, and A. K. Tornberg, An Adaptive Kernel-Split
Quadrature Method for Parameter-Dependent Layer Potentials, Adv. Comput. Math.,
48.2 (2022), pp. 1-17.

F. Fryklund, E. Lehto, and A. K. Tornberg, Partition of Unity Extension of Functions
on Complex Domains, J. Comput. Phys. 375 (2018), pp. 57-79.

W. J. Gordon, and C. A. Hall, Construction of Curvilinear Co-Ordinate Systems
and Applications to Mesh Generation, Int. J. Numer. Methods Eng., 7.4 (1973), pp.
461-477.

Z. Gimbutas, and L. Greengard, Computational Software: Simple FMM Libraries
for Electrostatics, Slow Viscous Flow, and Frequency-Domain Wave Propagation,
Commun. Comput. Phys., 18.2 (2015), pp. 516-528.

Z. Gimbutas, and H. Xiao, Quadratures for triangles, squares, cubes and tetrahedra,
https://github.com/zgimbutas/triasymq (2020).

L. Greengard, M. O’Neil, M. Rachh, and F. Vico, Fast Multipole Methods for the
Evaluation of Layer Potentials with Locally-Corrected Quadratures, J. Comput. Phys.:
X, 10 (2021), pp. 100092.

L. Greengard, and V. Rokhlin, A Fast Algorithm for Particle Simulations, J. Comput.
Phys., 135.2 (1997), pp. 280-292.

L. af Klinteberg, and A. H. Barnett. Accurate Quadrature of Nearly Singular Line
Integrals in Two and Three Dimensions by Singularity Swapping, BI'T Numer. Math.
61.1 (2021): 83-118.

J. Helsing, and R. Ojala. On the Evaluation of Layer Potentials Close to Their
Sources, J. Comput. Phys. 227.5 (2008): 2899-2921.

J. Helsing, and A. Holst. Variants of an Explicit Kernel-Split Panel-Based Nystrém
Discretization Scheme for Helmholtz Boundary Value Problems, Adv. Comput. Mathe.
41.3 (2015), pp. 691-708.

A. Mayo, The Rapid Evaluation of Volume Integrals of Potential Theory on General
Regions, J. Comput. Phys., 100.2 (1992), pp. 236-245.

S. Nintcheu Fata, Treatment of Domain Integrals in Boundary Element Methods,
Appl. Numer. Math., 62.6 (2012), pp. 720-735.

P. W. Patridge, C. A. Brebbia, L. W. Wrobel, The Dual Reciprocity Boundary
Element Method, Computational Mechanics Publication, Southampton, 1992.

Z. Shen, and K. Serkh, Accelerating Potential Fvaluation over Unstructured Meshes
in Two Dimensions, arXiv:2205.04401 (2022).

Z. Shen, and K. Serkh, Is polynomial interpolation in the monomial basis unstable?,
arXiv:2212.10519 (2022).

24

https://github.com/zgimbutas/triasymq
http://arxiv.org/abs/2205.04401
http://arxiv.org/abs/2212.10519

[24]

[25]

[26]

[27]

[28]

[29]

J. D. Towers, A Source Term Method for Poisson Problems on Irregular Domains, J.
Comput. Phys. 361 (2018), pp. 424-441.

P. G. Martinsson, Fast Direct Solvers for Elliptic PDEs, CBMS-NSF Conference
Series, vol. CB96. STAM, Philadelphia, 2019.

B. Vioreanu, and V. Rokhlin, Spectra of Multiplication Operators as a Numerical
Tool, STAM J. Sci. Comput., 36.1 (2014), pp. A267-288.

R. J. Zhang, and W. Ma, An efficient scheme for curve and surface construction
based on a set of interpolatory basis functions, ACM T. Graph., 30.2 (2011), pp.
1-11.

M. Zhao, and K. Serkh, A Continuation Method for Fitting a Bandlimited Curve to
Points in the Plane, arXiv:2301.04241| (2023).

H. Zhu, Fast, High-Order Accurate Integral Equation Methods and Application to
PDE-Constrained Optimization, PhD thesis, University of Michigan (2021).

25

http://arxiv.org/abs/2301.04241

	Introduction
	Mathematical and numerical preliminaries
	Newtonian potential
	The Helsing-Ojala method for the close evaluation of 1-D layer potentials

	Bivariate polynomial interpolation in the monomial basis
	Numerical algorithm
	Construction of the anti-Laplacian mapping
	Close and self-evaluation of Newtonian potential over a mesh element
	Generalization to an arbitrary domain
	Time complexity analysis

	Numerical experiments
	Bivariate polynomial interpolation in the monomial basis
	Newtonian potential generated over a mesh element
	Poisson's equation

	Conclusions and further directions
	Acknowledgements

