
DYNAMICAL SYSTEMS’ BASED NEURAL NETWORKS

ELENA CELLEDONI∗, DAVIDE MURARI ∗, BRYNJULF OWREN∗, CAROLA-BIBIANE

SCHÖNLIEB† , AND FERDIA SHERRY†

Abstract. Neural networks have gained much interest because of their effectiveness in many
applications. However, their mathematical properties are generally not well understood. If there is
some underlying geometric structure inherent to the data or to the function to approximate, it is often
desirable to take this into account in the design of the neural network. In this work, we start with
a non-autonomous ODE and build neural networks using a suitable, structure-preserving, numerical
time-discretisation. The structure of the neural network is then inferred from the properties of the
ODE vector field. Besides injecting more structure into the network architectures, this modelling
procedure allows a better theoretical understanding of their behaviour. We present two universal
approximation results and demonstrate how to impose some particular properties on the neural
networks. A particular focus is on 1-Lipschitz architectures including layers that are not 1-Lipschitz.
These networks are expressive and robust against adversarial attacks, as shown for the CIFAR-10
and CIFAR-100 datasets.

Key words. Neural networks, dynamical systems, Lipschitz networks, Structure-preserving
deep learning, Universal approximation theorem.

MSC codes. 65L05, 65L06, 37M15

1. Introduction. Neural networks have been employed to accurately solve many
different tasks (see, e.g., [4, 12, 54, 35]). Indeed, because of their excellent approxima-
tion properties, ability to generalise to unseen data, and efficiency, neural networks are
one of the preferred techniques for the approximation of functions in high-dimensional
spaces.

In spite of this popularity, a substantial number of results and success stories in
deep learning still rely on empirical evidence and more theoretical insight is needed.
Recently, a number of scientific papers on the mathematical foundations of neural
networks have appeared in the literature, [9, 71, 60, 61, 66, 33]. In a similar spirit,
many authors consider the design of deep learning architectures taking into account
specific mathematical properties such as stability, symmetries, or constraints on the
Lipschitz constant [36, 31, 26, 63, 22, 27, 67, 34, 69, 73]. Even so, the imposition of
structure on neural networks is often done in an ad hoc manner, making the resulting
input to output mapping F : X → Y hard to analyse. In this paper, we describe
a general and systematic way to impose desired mathematical structure on neural
networks leading to an easier approach to their analysis.

There have been multiple attempts to formulate unifying principles for the design
of neural networks. We hereby mention Geometric Deep Learning (see e.g. [13, 12]),
Neural ODEs (see e.g. [21, 47, 57, 72]), the continuous-in-time interpretation of Re-
current Neural Networks (see e.g. [58, 20]) and of Residual Neural Networks (see
e.g. [71, 44, 18, 59, 1]). In this work, we focus on Residual Neural Networks (ResNets)
and build upon their continuous interpretation.

Neural networks are compositions of parametric maps, i.e. we can characterise a neu-

∗Department of Mathematical Sciences, NTNU, N-7491 Trondheim, Norway
(elena.celledoni@ntnu.no, davide.murari@ntnu.no, brynjulf.owren@ntnu.no)

†Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilber-
force Road, Cambridge CB3 0WA, UK. (cbs31@cam.ac.uk, fs436@cam.ac.uk)

1

ar
X

iv
:2

21
0.

02
37

3v
2

 [
cs

.L
G

]
 3

1
A

ug
 2

02
3

mailto:elena.celledoni@ntnu.no
mailto:davide.murari@ntnu.no
mailto:brynjulf.owren@ntnu.no
mailto:cbs31@cam.ac.uk
mailto:fs436@cam.ac.uk

ral network as a map N = fθk ◦ . . .◦fθ1 : Rn → Rm, with fθi : Rni → Rni+1 being the
network layers. For ResNets the most important parametric maps are of the form

(1.1) x 7→ fθi(x) = x + hΛ(θi, x).

The continuous-in-time interpretation of ResNets arises from the observation that if
ni = ni+1, fθi coincides with one h−step of the explicit Euler method applied to
the non-autonomous ODE ẋ(t) = Λ(θ(t), x(t)). In this work, we consider piecewise-
autonomous systems, i.e. we focus on time-switching systems of the form

(1.2) ẋ(t) = fs(t)(x(t)), s : [0, T] → {1, . . . , N}, fi ∈ F ,

with s being piecewise constant (see e.g. [57, 41]), and F a family of parametric vector
functions. This simplification is not restrictive and can help analyse and design neural
networks, as we will clarify throughout the paper.

This interpretation of ResNets gives the skeleton of our reasoning. Indeed, we
replace the explicit Euler method in (1.1) with suitable (structure-preserving) numer-
ical flows of appropriate vector fields. We call the groups of layers obtained with
these numerical flows “dynamical blocks”. The choice of the vector field is closely
related to the structure to impose. For example, to derive symplectic neural net-
works we would apply symplectic time integrators to Hamiltonian vector fields. This
approach enables us to derive new structured networks systematically and collocate
other existing architectures into a more general setting, making their analysis easier.
For instance, section 2 presents a strategy to study the approximation capabilities of
some structured networks. Finally, we highlight the flexibility and the benefits of this
framework in section 3, where we show that to obtain expressive and robust neural
networks, one can also include layers that are not 1-Lipschitz.

There are multiple situations where one could be interested in networks with some
prescribed property. We report three of them here, where we refer to F as the function
to approximate:

1. When F has some known characterising property, e.g. F is known to be
symplectic; see section 4.

2. When the data we process has a particular structure, e.g. vectors whose entries
sum to one, as we present in section 4.

3. When we can approximate F to sufficiently high accuracy with functions in
G, a space that is well suited to model the layers of a network. An example
is using the space G of 1-Lipschitz functions to define a classifier robust to
adversarial attacks; see section 3.

Thus, there are various applications where having neural networks structured in a
particular way is desirable. We will delve deeper into some of them in the following
sections. To be precise, we remark that all the properties we focus on are preserved
under composition, such as being 1-Lipschitz or symplectic.

The paper is structured in five sections. First, in section 2 we investigate the universal
approximation capabilities of some neural networks, thanks to vector field decompo-
sitions, splitting methods and an embedding of the dynamics into larger dimensional
spaces. We then move, in section 3, to a neural network that has the property of being
1-Lipschitz. After the mathematical derivation of the architecture, we present some
numerical experiments on adversarial robustness for the CIFAR-10 and CIFAR-100
image classification problems. We devote a significant part of the experimental side

2

of this paper to examples in the well-established field of adversarial robustness, but
we furthermore provide examples of other desirable structural properties that can be
imposed on neural networks using connections to dynamical systems. In section 4, we
introduce such neural networks with specific designs. This last section aims to pres-
ent in a systematic way how one can impose certain properties on the architecture.
We finally conclude the paper in section 5, mentioning some promising directions for
further work.

Before moving on, we now report a numerical experiment that motivates our investi-
gation of structured neural networks. The results highlight how imposing a structure
does not have to degrade the approximation’s quality considerably. Furthermore, this
experiment suggests that not all the constraining strategies perform similarly, as we
also highlight in section 3. Thus, a systematic process to impose structure is essen-
tial since it allows changing the architecture in a guided manner while preserving the
property of interest.

1.1. Classification of points in the plane. We present a numerical experi-
ment for the classification problem of the dataset in Figure 1b. We consider neural
networks that are 1-Lipschitz, as in section 3. We define the network layers alternat-
ingly as contractive flow maps, whose vector fields belong to Fc = {−AT Σ(Ax + b) :
ATA = I}, and as flows of other Lipschitz continuous vector fields in F = {Σ(Ax+b) :
ATA = I}, with Σ(z) = [σ(z1), . . . , σ(zn)] and σ(s) = max{s, s/2}1. In section 3 we
expand on the choice of this activation function σ, which is called LeakyReLU and
was introduced in [45]. The time steps for each vector field are network parameters,
together with the matrices A and vectors b. We constrain the time steps to get a
1-Lipschitz network, see section 3. We report the results in Figure 1a and Table 1.

The average classification test accuracy and final integration time, in combination,
get better by combining Fc with F instead of considering Fc alone. In particular, we
see that the final integration time T with Fc ∪F is the smallest without significantly
compromising the accuracy. The parameter T quantifies how much the network layers
transform the points. The larger the timestep, the further a layer is from the identity
map; hence we can get a more natural and efficient solution by alternating the vector
fields. In section 2 we reinforce this empirical result, proving results about theoretical
approximation guarantees. This renders the possibility of obtaining neural networks
with prescribed properties without compromising their approximation capabilities.

Adopted family of vector fields Median accuracy Median of T
F ∪ Fc 98.0% 1.84

F 99.0% 7.53
Fc 97.3% 19.82

Table 1: We perform 100 experiments alternating vector fields in Fc with those in
F , 100 using just vector fields in Fc, and 100 with only those in F . We work with
networks with ten residual layers throughout the experiments. In the table we report
the median final time T and test accuracy for the three set of experiments analysed

1To impose the weight orthogonality, we set A = expm(W − WT) with expm being the matrix
exponential and W a trainable matrix.

3

F Fc
0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
ve

ra
ge

ac
ti

va
ti

on
ti

m
e

Median test accuracy: 98.0%

(a) Mean length of the time intervals along
which the two dynamical regimes are active.

−3 −2 −1 0 1 2 3

x

−3

−2

−1

0

1

2

3

4

y

Points to classify

(b) Dataset studied for the classification
problem

Fig. 1: Results from the experiments alternating the vector fields of F and those of
Fc, together with the dataset of interest

2. Universal approximation properties. As introduced before, neural net-
work layers can be modelled by discretising ordinary differential equations. In par-
ticular, this ODE-based approach can also be beneficial for imposing some structure
on neural networks and providing a better theoretical understanding of their proper-
ties. In this section, we follow this principle and prove the universal approximation
capabilities of two neural network architectures. Starting with the continuous-in-
time interpretation of neural networks, many approaches are possible to prove such
approximation properties, often based on merging the broad range of results from dy-
namical systems theory and numerical analysis. One can proceed, for example, in a
constructive way as done in [57], where the authors investigate the dynamics of some
neural networks and explicitly construct solutions to the problem of approximating
a target function. Another possibility is to study the approximation capabilities of
compositions of flow maps, as done in [40]. In this section, we focus on two solutions
that, to the best of our knowledge, are new. The first result is based on a vector
field decomposition, while the second is based on embedding vector fields into larger
dimensional spaces.

The approximation results that we cover rely on approximating vector fields arbi-
trarily well. Consequently, this allows us to approximate their flow maps accurately.
This is based on the fact that for a sufficiently regular vector field X ∈ Lip(Rn,Rn),
if X̃ : Rn → Rn is such that for every x ∈ Rn

(2.1) ∥X(x) − X̃(x)∥ < ε,

then also their flow maps are close to one another for finite time intervals. We formalise
this reasoning in Proposition 2.1. In the proposition and throughout the paper, we
denote with Φt

X(z) the time-t flow of the vector field X, applied to z.

Proposition 2.1. Let X ∈ Lip(Rn,Rn) and X̃ ∈ Lip(Rn,Rn) be as in (2.1).

4

Then ∥Φt
X(x) − Φt

X̃
(x)∥ ≤ εt exp (Lip(X)t), where Lip(X) is the Lipschitz constant

of X.

Proof. We consider the integral equations associated to the ODEs ẋ(t) = X(x(t))
and ˙̃x(t) = X̃(x̃(t)) and study the difference of their solutions both with the same
initial condition x ∈ Rn

∥Φt
X(x) − Φt

X̃
(x)∥ =

∥∥∥∥x +

∫ t

0

X(Φs
X(x)) ds− x−

∫ t

0

X̃(Φs
X̃

(x)) ds

∥∥∥∥
≤
∫ t

0

∥∥∥X(Φs
X(x)) − X̃(Φs

X̃
(x))

∥∥∥ ds

=

∫ t

0

∥∥∥X(Φs
X(x)) −X(Φs

X̃
(x)) + X(Φs

X̃
(x)) − X̃(Φs

X̃
(x))

∥∥∥ ds

≤ Lip(X)

∫ t

0

∥Φs
X(x) − Φs

X̃
(x)∥ds + εt.

Then we conclude that

∥Φt
X(x) − Φt

X̃
(x)∥ ≤ εt exp (Lip(X)t).

applying Gronwall’s inequality.

A particular consequence of this proposition is that if for every ε > 0 there is an
X̃ ∈ F making (2.1) true, then we can approximate the T−flow map of X arbitrarily
well using elements of F :

∥ΦT
X(x) − ΦT

X̃
(x)∥ ≤ εT exp(Lip(X)T) = cε.

Because of this result, we now derive two approximation results for neural networks
working at the level of modelling vector fields.

2.1. Approximation based on a vector field decomposition. We now aim
to show that, for a particularly designed neural network, we can approximate arbi-
trarily well any continuous function in the Lp norm and any differentiable invertible
function in the supremum norm on compact sets. We also mention how to extend
this last result to generic continuous functions.

Theorem 2.2. Let F : Ω ⊂ Rn → Rn be a continuous function, with Ω ⊂ Rn a
compact set. Suppose that it can be approximated, with respect to some norm ∥ · ∥, by
a composition of flow maps of C1(Ω,Rn) vector fields, i.e. for any ε > 0, ∃f1, . . . , fk ∈
C1(Ω,Rn), such that

(2.2) ∥F − Φhk

fk
◦ . . . ◦ Φh1

f1
∥ < ε.

Then, F can be approximated arbitrarily well by composing flow maps of gradient and
sphere-preserving vector fields, i.e. ∥F − Φhk

∇Uk ◦ Φhk

Xk
S

◦ . . . ◦ Φh1

∇U1 ◦ Φh1

X1
S
∥ < ε.

By sphere-preserving vector field, we mean a vector field XS having zT z as a first
integral, i.e. such that zTXS(z) = 0 for any z ∈ Rn.

The norm ∥ · ∥ in (2.2) can be any norm that is well defined for functions in
C1(Ω,Rn). Two typical choices in the literature are Lp norms and the supremum
norm

(2.3) ∥F − Φhk

fk
◦ . . . ◦ Φh1

f1
∥ := sup

x∈Ω
∥F (x) − Φhk

fk
◦ . . . ◦ Φh1

f1
(x)∥.

5

Various works, like [11] and [40], have already proven the existence of vector fields
f1, . . . , fk making (2.2) true when ∥ · ∥ is the Lp norm and F is a continuous func-
tion. Regarding the validity of hypothesis (2.2) with the norm defined in (2.3), we
mention [65] where the authors have proven that if F is a smooth invertible map with
smooth inverse, then the existence of f1, . . . , fk can be guaranteed.

Theorem 2.2 is a consequence of the Presnov decomposition of vector fields, in-
troduced in [53], applied to the k vector fields f1, · · · , fk ∈ C1(Ω,Rn) in (2.2). The
Presnov decomposition is indeed a global decomposition of C1(Rn,Rn) vector fields
into the sum of a gradient and a sphere-preserving vector field. We now prove Theo-
rem Theorem 2.2, and we specialise it to the subfamilies of vector fields we implement
to define neural networks.

Proof. The vector fields f1, . . . , fk are supposed to be continuously differentiable.
Thus, they all admit a unique Presnov decomposition, i.e. they can be written as

fi(x) = ∇U i(x) + Xi
S(x),

for a scalar function Ui : Rn → R, with Ui(0) = 0, and a sphere-preserving vector
field Xi

S . In general the two vector fields ∇U i(x) and Xi
S(x) do not commute, i.e. the

Jacobi-Lie bracket [∇U i, Xi
S] is not identically zero. However, because of the Baker-

Campbell-Hausdorff formula (see e.g. [29, Section III.4.2]), as in splitting methods
(see e.g. [48]) we can proceed with an approximation of the form

Φh
fi = Φh

∇Ui ◦ Φh
Xi

S
+ O(h2).

This last equality is the local error of the Lie Trotter splitting: local order 2 and global
order 1 under the hypothesis that guarantees convergence2. We recall that Φh

fi
=

Φ
h/n
fi

◦ . . .Φh/n
fi

, where the flow maps are composed n times. Thus, up to choosing n

large enough, we can approximate as accurately as desired Φh
fi

with the composition of
flow maps of sphere-preserving and gradient vector fields. This concludes the proof.

Similar reasoning can be extended to other vector field decompositions, e.g. the
Helmholtz decomposition, as long as f1, . . . , fk admit such a decomposition. In sec-
tion 3, we adopt gradient vector fields whose flow maps expand and contract distances
to obtain 1-Lipschitz neural networks. We now specialise Theorem 2.2 to the vector
fields we use to model such neural networks.

Corollary 2.3. Consider the same assumptions of Theorem 2.2, and in partic-
ular the inequality (2.2). Then, we can approximate F arbitrarily well by composing
flow maps of expansive, contractive and sphere-preserving vector fields.

We first remark that with an expansive vector field we mean a vector field X such
that ∥Φt

X(x) − Φt
X(y)∥ > ∥x − y∥ for any t > 0, while by contractive we mean that

∥Φt
X(x) − Φt

X(y)∥ < ∥x− y∥. To prove the corollary, we rely on a classical universal
approximation theorem with non-polynomial activation functions (see e.g. [52]). For
clarity, we report it here.

Theorem 2.4 (Universal approximation, [52]). Let Ω ⊂ Rn be a compact set
and U ∈ C1(Rn). Assume γ ∈ C1(R) and γ is not a polynomial. Then for every ε > 0
there is

Ũ(x) = αT Γ(Ax + b), Γ(z) = [γ(z1), . . . , γ(zn)],

2We prove the convergence of the Lie-Trotter splitting formula for Lipschitz regular vector fields
in section Appendix D of the supplementary material. Such proof extends similarly to other splitting
strategies.

6

such that supx∈Ω ∥Ũ(x) − U(x)∥ < ε, and supx∈Ω ∥∇Ũ(x) −∇U(x)∥ < ε.

We now prove Corollary 2.3.

Proof. The proof follows the same reasoning of the one of Theorem 2.2. Indeed, we
first decompose each of the f1, . . . , fk of equation (2.2) via the Presnov decomposition
as fi(x) = ∇U i(x) + Xi

S(x). Then, we approximate each of the U i functions thanks
to Theorem 2.4. To ease the notation, we focus on one of the fi and denote it with f
from now on in the proof.

Let U : Rn → R and XS be so that f(x) = ∇U(x) + XS(x). Choose then
σ(x) = max{ax, x}, a ∈ (0, 1), and γ(x) =

∫ x

0
σ(s) ds. Since γ is not a polynomial

and it is continuously differentiable, Theorem 2.4 for any ε > 0 ensures the existence
of a function

Ũ(x) = αT Γ(Ax + b),

that satisfies supx∈Ω ∥U(x) − Ũ(x)∥ < ε and supx∈Ω ∥∇U(x) − ∇Ũ(x)∥ < ε. We

now split ∇Ũ(x) = AT diag(α)Σ(Ax + b) into a contractive and an expansive part,
exploiting the two following properties of σ and γ:

1. σ is positively homogeneous, i.e. σ(λs) = λσ(s) for λ, s ∈ R, λ ≥ 0,
2. γ is strongly convex.

We decompose α as α+ − α−, where (α+)k = max{0, αk}, (α−)k = −min{0, αk}
with k = 1, . . . , n. Because of the positive homogeneity, ∇Ũ(x) can be rewritten as

∇Ũ(x) = AT
1 Σ(A1x + b1) −AT

2 Σ(A2x + b2) = XE(x) + XC(x)

where

A1 = diag(α+)
1
2A, A2 = diag(α−)

1
2A, b1 = diag(α+)

1
2 b, b2 = diag(α−)

1
2 b.

Because of the strong convexity of γ, we have

1

2

d

dt
∥z(t) − y(t)∥2 = ⟨XE(z(t)) −XE(y(t)), z(t) − y(t)⟩ > 0

with z(t) = Φt
XE

(z0) and y(t) = Φt
XE

(y0). This means that the flow of XE is an
expansive map. A similar reasoning shows that XC has a contractive flow map. We
can now conclude as in Theorem 2.2 since we have shown that every fi in (2.2) can
be approximated arbitrarily well as fi(x) ≈ Xi

E(x) + Xi
C(x) + Xi

S(x).

As for the expansive and the contractive vector fields, to define neural networks based
on Corollary 2.3 one needs to parameterise the vector field Xi

S(z) that preserves
spheres. Many possibilities are available, and we report a couple of them. The first is

X̃S(z) = P (z)BT Σ(Cz + d), B, C ∈ Rm×n, d ∈ Rm, P (z) = In − zzT

∥z∥2 ,

where P (z) : TzRn → TzS
2
∥z∥ is the orthogonal projection on the space ⟨z⟩⊥ and

In ∈ Rn×n is the identity matrix. Another option is

X̃S(z) = Λ(z, θ)z

where Λ(z, θ) = A(z, θ) − A(z, θ)T ∈ Rn×n with A being a strictly upper triangular
matrix whose entries are modelled by BΣ(Cx + b) ∈ RN , B ∈ RN×m, C ∈ Rm×n,

b ∈ Rm, N = n(n−1)
2 . These two possibilities allow us to approximate any sphere-

preserving vector field arbitrarily because of classical universal approximation results,

7

like the one mentioned in Theorem 2.4. We prefer, for practical reasons, the second
one in the experiments reported in Appendix A of the supplementary material.

We now summarise the results presented in the context of neural networks. Sup-
pose that ∥F −Φhk

fk
◦ . . .◦Φh1

f1
∥ < ε and that fi ≈ f̃i = Xi

C +Xi
E + X̃i

S for i = 1, . . . , k.
In Theorem 2.2 we have worked with the exact flows of the vector fields. However,
most of the times these are not available and hence a numerical approximation is
needed. This is exactly equivalent to applying a splitting numerical integrator (see
e.g. [29, Chapter 2] or [48]) to approximate the hi-flow map of f̃i (and hence also of
fi) and get

(2.4) F (x) ≈ N (x) = Ψhk

Xk
C

◦ Ψhk

Xk
E

◦ Ψhk

Xk
S

◦ . . . ◦ Ψh1

X1
C
◦ Ψh1

X1
E
◦ Ψh1

X1
S
(x).

Here we denote with Ψh
f a discrete approximation of the exact flow Φh

f and N is the
neural network that approximates the target function F . Because of Corollary 2.3 and
basic theory of numerical methods for ODEs, N hence can approximate arbitrarily
well F in the norm ∥ · ∥.

We remark that the neural network N defined in (2.4) does not change the dimension-
ality of the input point, i.e. it is a map from Rn to itself. However, usually ResNets
allow for dimensionality changes thanks to linear lifting and projection layers. One
can extend all the results presented in this section to the dimensionality changes,
where instead of defining the whole network as the composition of discrete flow maps,
just the “dynamical blocks” are characterised in that way, as represented in Figure 2.
Consequently, one can extend the results presented in [74]. In particular, one can

Fig. 2: Representation of a ResNet made of two dynamical blocks, two lifting layers
L1, L2 and a final projection layer P.

show that by composing flow maps of sphere-preserving and gradient vector fields,
generic continuous functions can also be approximated in the sense of (2.3), as long
as linear lifting and projection layers are allowed in the network.

In Appendix A of the supplementary material we show some numerical experiments
where some unknown dynamical systems and some target functions are approximated
starting from the above results. We now introduce another way to get expressivity
results starting from the continuous-in-time interpretation of neural networks.

2.2. Approximation based on Hamiltonian vector fields. Augmenting the
dimensionality of the space where the dynamics is defined is a typical technique for

8

designing deep neural networks, see Figure 2. Based on this idea, we now study the ap-
proximation properties of networks obtained by composing flow maps of Hamiltonian
systems. For an introductory presentation of Hamiltonian systems, see [37].

We now show that for any function F for which hypothesis (2.2) holds, one can
approximate F arbitrarily well, in the same function norm, by composing flow maps of
Hamiltonian systems and linear maps. Consequently, symplectomorphisms like those
defined by SympNets ([34]) can also be used approximate F arbitrarily well.

This result relies on the embedding of a vector field f ∈ C1(Rn,Rn) into a Hamil-
tonian vector field on R2n. To do so, we first define the linear map L : Rn → R2n, as
z 7→ L(z) = (z, 0). We then introduce the function Hf (z, p) = pT f(z), where p is the
conjugate momentum of z. The gradient of such a function is

∇Hf (z, p) =

[
∂[pT f(z)]

∂z
f(z)

]
.

This implies that the Hamiltonian ODEs associated to Hf are[
ż
ṗ

]
= XHf

(z, p) = J∇Hf (z, p) =

[
f(z)

−∂[pT f(z)]
∂z

]
.

Hence, we have Φh
f = P ◦ Φh

XHf
◦ L where P is the projection on the first component

R2n ∋ (z, p) 7→ z ∈ Rn. This construction, together with hypothesis (2.2), implies
that

∥F − P ◦ Φhk

XHfk

◦ L ◦ P ◦ Φ
hk−1

XHfk−1

◦ L ◦ . . . L ◦ P ◦ Φh1

XHf1

◦ L∥ < ε.

One could be interested in such a lifting procedure and hence work with Hamiltonian
systems because discretising their flow maps with symplectic methods might generate
more stable networks or, as highlighted in [26], could prevent vanishing and exploding
gradient problems.

3. Adversarial robustness and Lipschitz neural networks. In this section,
we consider the problem of classifying points of a set X ⊂ Rn. More precisely, given
a set X = ∪C

i=1Xi defined by the disjoint union of C subsets X1, . . . ,XC , we aim
to approximate the function ℓ : X → {1, . . . , C} that assigns all the points of X to
their correct class, i.e. ℓ(x) = i for all x ∈ Xi and all i = 1, . . . , C. Because of their
approximation properties, one can often choose neural networks to solve classification
problems, i.e. as models that approximate the labelling function ℓ. On the other
hand, there is increasing evidence that trained neural networks are sensitive to well-
chosen input perturbations called adversarial attacks. The first work that points this
out is [64] and, since then, numerous others (see e.g. [46, 17, 28]) have introduced
both new ways to perturb the inputs (attacks) and to reduce the sensitivity of the
networks (defences). We first formalise the problem of adversarial robustness from
the mathematical point of view and then derive a network architecture with inherent
stability properties.

Let N : Rn → RC be a neural network trained so that the true labelling map ℓ
is well approximated by ℓ̂(x) = arg maxi=1,...,C N (x)i for points x ∈ X . Furthermore,
let us assume

∥x− y∥ ≥ 2ε ∀x, y ∈ X , ℓ(x) ̸= ℓ(y)

9

for some norm ∥ · ∥ : Rn → R+ defined on the ambient space. With this setup, we say
the network N is ε−robust if

ℓ(x) = ℓ̂(x) = ℓ̂(x + δ), ∀δ ∈ Rn, ∥δ∥ < ε.

In order to quantify the robustness of N we, first of all, consider its Lipschitz constant
Lip(N), i.e. the smallest scalar value such that

∥N (x) −N (y)∥2 ≤ Lip(N)∥x− y∥, ∀x, y ∈ Rn,

where ∥ · ∥2 : RC → R+ is the ℓ2 norm. We also need a way to quantify how certain
the network predictions are. A measure of this certainty level is called margin in the
literature (see e.g. [3, 7, 68]) and it is defined as

MN (x) = N (x)T eℓ(x) − max
j ̸=ℓ(x)

N (x)T ej ,

where ei is the i−th vector of the canonical basis of RC . Combining these two quan-
tities, in [68] the authors show that if the norm ∥ · ∥ considered for X is the ℓ2 norm
of the ambient space Rn, then

(3.1) MN (x) ≥
√

2εLip(N) =⇒ MN (x + δ) ≥ 0 ∀δ ∈ Rn, ∥δ∥ ≤ ε.

Hence, for the points in X where (3.1) holds, the network is robust to perturbations
with a magnitude not greater than ε. This result can be extended to generic ℓp

metrics, but, in this section, we focus on the case where ∥ · ∥ is the ℓ2 metric of Rn

and, from now on, we keep denoting it as ∥ · ∥.
Motivated by inequality (3.1), we present a strategy to constrain the Lipschitz

constant of ResNets to the value of 1. Differently from [18, 73, 50], we impose such
a property on the network without relying only on layers that are 1-Lipschitz. This
strategy relies on the ODE-based approach that we are presenting and is motivated by
the interest of getting networks that also have good expressivity capabilities. Indeed,
we remark that in section 2 we studied the approximation properties of networks
similar to those we consider in this section. We conclude the section with extensive
numerical experiments for the adversarial robustness with the CIFAR-10 and CIFAR-
100 datasets to test the proposed network architectures.

3.1. Non-expansive dynamical blocks. Consider a scalar differentiable func-
tion V : Rn → R that is also strongly convex, i.e. it admits a µ > 0 such that

(3.2) ⟨∇V (x) −∇V (y), x− y⟩ ≥ µ∥x− y∥2,

see e.g. [32, Chapter 6]. We refer to a function V that is strongly-convex with strong
convexity constant µ as µ-strongly convex. This said, it follows that the dynamics
defined by the ODE

(3.3) ẋ(t) = −∇V (x(t)) = X(x(t))

is contractive, since

1

2

d

dt
∥x(t) − y(t)∥2 = −⟨x(t) − y(t),∇V (x(t)) −∇V (y(t))⟩ ≤ −µ∥x(t) − y(t)∥2

=⇒ ∥x(t) − y(t)∥ ≤ e−µt∥x0 − y0∥ < ∥x0 − y0∥ ∀ t ≥ 0,

(3.4)

10

where x(t) = Φt
X(x0) and y(t) = Φt

X(y0). A choice for V is V (x) = 1T Γ(Ax+b), where
Γ(x) = [γ(x1), . . . , γ(xn)], γ : R → R is a strongly convex differentiable function, and
1 = [1, . . . , 1] ∈ Rn. In this way, the network we generate by concatenating explicit
Euler steps applied to such vector fields has layers of the type

x 7→ Ψh
X(x) = x− hAT Σ(Ax + b)

where Σ(x) = [σ(x1), . . . , σ(xn)] and σ(s) = γ′(s).
If we discretise the ODE introduced above reproducing the non-expansive be-

haviour at a discrete level, as presented for example in [23, 18, 50], we get that the
numerical flow Ψh

X is non-expansive too. Consequently, we can obtain 1-Lipschitz
neural networks composing these non-expansive discrete flow maps. A simple way to
discretise (3.3) while preserving non-expansiveness is to use explicit-Euler steps with
a small enough step size. Indeed, assuming Lip(σ) ≤ 1, a layer of the form

(3.5) x 7→ x− hAT Σ(Ax + b), h ≤ 2

∥A∥2 , ∥A∥ = sup
x∈Rn

∥x∥=1

∥Ax∥,

is guaranteed to be 1-Lipschitz. We remark that, as highlighted in [18, 50], it is not
necessary to require strong convexity for γ in order to make Φt

X 1-Lipschitz. Indeed,
it is enough to take γ convex. However, the strong convexity assumption allows us to
include other layers that are not 1-Lipschitz thanks to inequality (3.4).

We now shortly present the reasoning behind this statement. Consider another
ODE ẋ(t) = Y (x(t)) where Y is again a vector field on Rn and suppose that Y is
L-Lipschitz. Then, we have that

∥Φt̄
Y (x0) − Φt̄

Y (y0)∥ ≤ exp (Lt̄)∥x0 − y0∥.

This implies that, given X as in (3.3), the map Φt
X ◦ Φt̄

Y =: Ct̄,t satisfies

(3.6) ∥Φt
X(Φt̄

Y (x0)) − Φt
X(Φt̄

Y (y0))∥ ≤ exp (−µt + Lt̄) ∥x0 − y0∥,

so Ct̄,t is Lipschitz continuous and will be 1-Lipschitz if exp (−µt + Lt̄) ≤ 1. This
amounts to imposing Lt̄ ≤ µt on the considered vector fields and time intervals on
which corresponding flow maps are active. The map Ct̄,t can be seen as the exact
(t + t̄)−flow map of the switching system having a piecewise constant (in time) au-
tonomous dynamics. In particular, such a system coincides with Y for the first time
interval [0, t̄) and with X for the time interval [t̄, t̄ + t).

We could choose Y to be the gradient vector field of an L-smooth scalar potential. In
other words, we ask for its gradient to be L-Lipschitz. An option is hence

Y (x) = AT Σ(Ax + b), ∥A∥ ≤ 1,

with σ that is L−Lipschitz. Thus, one possible way of building a dynamical block of
layers that is 1-Lipschitz is through a consistent discretisation of the switching system

(3.7) ẋ(t) = (−1)s(t)AT
s(t)Σ(As(t)x(t) + bs(t)),

where t 7→ s(t) is a piecewise constant time-switching signal that, following (3.6),
balances the expansive and contractive regimes. In (3.7), we are assuming that
Σ(z) = [σ(z1), . . . , σ(zn)] with σ 1−Lipschitz and γ(s) =

∫ s

0
σ(t)dt strongly convex.

11

In the numerical experiment we report at the end of the section we design s(t) giving
an alternation between contractive and possibly non-contractive behaviours. In the
following subsection, we present two possible approaches to discretise numerically the
system in (3.7), mentioning how this extends to more general families of vector fields.

In this subsection, we have worked to obtain dynamical blocks that are non-
expansive for the Euclidean metric. In Appendix B of the supplementary material
we show a way to extend this reasoning to more general metrics defined in the input
space.

3.2. Non-expansive numerical discretisation. As presented in the introduc-
tory section, it is not enough to have a continuous model that satisfies some property
of interest to get it at the network level. Indeed, discretising the solutions to such
an ODE must also be done while preserving such a property. One approach that
always works is to restrict the step sizes to be sufficiently small so that the behaviour
of the discrete solution resembles the one of the exact solution. This strategy can
lead to expensive network training because of the high number of time steps. On the
other hand, this strategy allows weaker weight restrictions and better performances.
We remark how this translates for the dynamical system introduced in (3.7), with
σ(x) = max{x, ax}. For that ODE, the one-sided Lipschitz constant of contractive
layers is µ = aλmin(ATA), λmin being the smallest eigenvalue. Thus, if A is orthogonal,
we get µ = a. Under the same orthogonality assumption, the expansive layers in (3.7)
have Lipschitz constant L = 1 and this allows to specialise the non-expansiveness con-
dition (3.6) to t̄ ≤ at. Thus, if we impose such a relationship and perform sufficiently
small time steps, also the numerical solutions will be non-expansive.

However, frequently smarter choices of discrete dynamical systems can lead to leaner
architectures and faster training procedures. We focus on the explicit Euler method for
this construction, although one can work with other numerical methods, like generic
Runge-Kutta methods, as long as the conditions we derive are adjusted accordingly.
We concentrate on two time steps applied to equation (3.7), but then the reasoning
extends to every pair of composed discrete flows and to other families of vector fields.
Let

Ψ̃h1(x) = x− h1A
T
c Σ(Acx + bc) =: x− h1X(Ac, bc, x)

Ψh2(x) = x + h2A
T
e Σ(Aex + be) =: x + h2X(Ae, be, x).

(3.8)

We remark that here the subscripts c and e stand for contractive and expansive
respectively. The condition we want to have is that the map Fh = Ψ̃h1 ◦ Ψh2 is 1-
Lipschitz, or at least that this is true when Ac, Ae and Σ satisfy some well-specified
properties. We first study the Lipschitz constant of both the discrete flow maps and
then upper bound the one of Fh with their product. We take two points x, y ∈ Rn,
define δX(Ac, bc, x, y) = X(Ac, bc, y) −X(Ac, bc, x), and proceed as follows

∥Ψ̃h1(y) − Ψ̃h1(x)∥2 = ∥y − x∥2 − 2h1⟨y − x, δX(Ac, bc, x, y)⟩ + h2
1∥δX(Ac, bc, x, y)∥2

≤ ∥y − x∥2 − 2h1λmin(AT
c Ac)a∥y − x∥2 + h2

1∥Ac∥4∥y − x∥2,

where the last inequality is because we consider σ = max{ax, x}. In the experiments
we present at the end of the section, we assume all the weight matrices to be orthog-
onal, hence λmin(AT

c Ac) = 1. Multiple works support this weight constraint as a way
to improve the generalisation capabilities, the robustness to adversarial attacks and

12

the weight efficiency (see e.g. [69, 67]). We will detail how we get such a constraint
on convolutional layers in the numerical experiments.

0.0 0.2 0.4 0.6 0.8 1.0

h1

0.0

0.2

0.4

0.6

0.8

1.0

h
2

(a) Case S = 1.

0.0 0.2 0.4 0.6 0.8 1.0

h1

0.0

0.2

0.4

0.6

0.8

1.0

h
2

(b) Case S = 2.

Fig. 3: Representation of the non-expansiveness region (3.10) for the choice a = 0.5.

The orthogonality of Ac implies ∥Ac∥ = 1 and hence we get that a Lipschitz
constant of Ψ̃h1 is L1 =

√
1 − 2h1a + h2

1. For the expansive flow map Ψh2 , we have

∥Ψh2(y) − Ψh1(x)∥ ≤ ∥x− y∥ + h2 Lip
(
AT

e Σ(Aez + be)
)
∥x− y∥

≤ (1 + h2)∥x− y∥(3.9)

under the orthogonality assumption for Ae. The same result holds also if we just have
∥Ae∥ ≤ 1. This leads to a region in the (h1, h2)−plane where L1 ·L2 ≤ 1 that can be
characterised as follows

(3.10) R = {(h1, h2) ∈ [0, 1]2 : (1 + h2)
√

1 − 2h1a + h2
1 ≤ 1}.

This is represented in Figure 3a for the case a = 0.5, that is the one used also in the
numerical experiment for adversarial robustness. Thus, we now have obtained a way
to impose the 1-Lipschitz property on the network coming from the discretisation of
the ODE (3.7). It is clear that the result presented here easily extends to different
time-switching rules (i.e. a different choice of s(t)), as long as there is the possibility of
balancing expansive vector fields with contractive ones. Furthermore, to enlarge the
area in the (h1, h2)−plane where non-expansiveness can be obtained, one can decide
to divide into sub-intervals the time intervals [0, h1] and [0, h2]. Doing smaller steps,
the allowed area increases. Indeed, instead of doing two single time steps of length h1

and h2, one can perform S time-steps all of step-length h1/S or h2/S. Thus, replacing
h̄1 = h1/S and h̄2 = h2/S into (3.10) it is immediate to see that h1 and h2 are allowed
to be larger than with the case S = 1. For example, if we again fix a = 0.5 and set
S = 2, we get the area represented in Figure 3b. The choice of a = 0.5 and S = 2 is
the one we adopt in the experiments reported in this section. We now conclude the
section showing how the derived architecture allows to improve the robustness against
adversarial attacks for the problem of image classification.

3.3. Numerical experiments with adversarial robustness. We now apply
the reasoning presented above to the problem of classifying images of the CIFAR-10
and CIFAR-100 datasets. The implementation is done with PyTorch and is available

13

at the GitHub repository associated to the paper3. We work with convolutional
neural networks, and with the activation function σ(x) = max

{
x, x

2

}
, if not otherwise

specified. We test multiple architectures and start by introducing the one coming
directly from the derivation reported in the previous section. The residual layers of
this network are dynamical blocks based on the discrete flow maps

Ψ̃h1(x) = x− h1A
T
c Σ(Acx + bc) =: x− h1X(Ac, bc, x), AT

c Ac = I

Ψh2(x) = x + h2A
T
e Σ(Aex + be) =: x + h2X(Ae, be, x), AT

e Ae = I

x 7→ Ψh2/2 ◦ Ψ̃h1/2 ◦ Ψh2/2 ◦ Ψ̃h1/2(x).(3.11)

The orthogonality of the convolutional filters Ac and Ae is imposed through a reg-
ularisation strategy proposed in [69]. We comment more on this and alternative
strategies later on in the description of the experimental setup. The step restriction is
imposed after every training iteration, projecting back the pairs (h1, h2) in the region
represented in Figure 3b if needed.

The strategy in equation (3.11) is defined as a “prescribed switching strategy”
in the numerical experiments. It is applied both for the experiment on CIFAR-10
and CIFAR-100. To demonstrate the freedom one still has while using an alternation
strategy to design the layers, we mention another switching strategy that we shall call
“flexible”. In this case, we have the following alternation

Ψ̃h1(x) = x− h1A
T
c Σ(Acx + bc) =: x− h1X(Ac, bc, x), AT

c Ac = I

Ψh2(x) = x + h2A
T ReLU(Ax + b) =: x + h2X(A, b, x), ATA = I

x 7→ Ψ̃h1/2 ◦ Ψ̃h1/2 ◦ Ψh2(x).(3.12)

Here the weight A is no longer with a subscript since the layer it defines has no
guaranteed behaviour. The restriction on the stepsize h1 is derived as in the previ-
ous section, while h2 is either positive and satisfies a similar balance law as for the
switching in equation (3.11), or it is allowed to be negative. For the dynamical block
to be overall contractive, in case of a negative step h2 we constrain it as in equation
(3.5), i.e. we impose |h2| < 2. In this way, there is not necessarily an alternation
of expansive and contractive layers, but the optimiser is free to learn the switching
strategy while still guaranteeing the non-expansivity of the dynamical block. For the
experiments on CIFAR-100, we do not impose A to be orthogonal, but we normalise
it since we have observed improved performance in this way.

We compare these alternation strategies with three other networks. The first uses
only non-expansive flow maps defined in (3.5), with ReLU as an activation function.
In the experiments, we denote this network as “non-expansive”. We set the weight
matrices to be orthogonal and constrain the learnable step sizes to be less than 2. We
then report the results obtained with a more naive way of constraining the Lipschitz
constant of a ResNet layer. This approach relies on composing maps of the form

x 7→ 1

2

(
x + AT ReLU(Bx + b)

)
, ATA = BTB = I,

as suggested in [39, Appendix D.1]. We noticed experimentally that this constraining
strategy does not generate very expressive networks, which motivates the research
for better 1-Lipschitz ResNet architectures, as proposed in this manuscript. As a

3https://github.com/davidemurari/StructuredNeuralNetworks

14

https://github.com/davidemurari/StructuredNeuralNetworks

general reference, we also include experiments based on a standard ResNet that is not
constrained in its weights and is composed of maps of the form

x 7→ x + AT ReLU(Bx + b).

Before commenting on the results, we remark that the näıvely constrained network
and the reference ResNet have double the parameters of the others based on dynamical
systems. The rationale for this choice is to compare the networks at the level of the
number of computations done per layer instead of based on the parameter count. For
this reason, all the networks have the same number of layers. Furthermore, to get
sufficiently accurate predictions on clean images, we did not constrain the last linear
layer in all the experiments with the näıvely constrained network and all the CIFAR-
100 experiments for the other networks. To jump-start the training of the networks
on the CIFAR-100 dataset, we initialised all their layers, but the final projection layer,
with the weights obtained on the CIFAR-10 dataset.

We implement architectures that take as inputs tensors of order three and shape
3 × 32 × 32. The first dimensionality of the tensor increases to 32 − 64 − 128 feature
maps throughout the network via convolutional layers. For each fixed number of
filters, we have four layers of the forms specified above. To be precise, convolutional
layers replace the matrix-vector products.

The network architecture based on (3.11) gets close to 90% test accuracy, on
the CIFAR-10 dataset, when trained with cross-entropy loss and without weight con-
straints. However, as presented at the beginning of this section, one could consider
its Lipschitz constant and its margin at any input point of interest to get robustness
guarantees for a network. For this reason, we now focus on constraining the Lipschitz
constant of the architecture, and we introduce the loss function we adopt to promote
higher margins. As in [3], we train the network architecture with the multi-class hinge
loss function defined as

L =
1

N

N∑
i=1

10∑
j=1

j ̸=ℓ(xi)

max
{

0,margin −
(
N (xi)

T eℓ(xi) −N (xi)
T ej
)}

,

where margin is a parameter to tune. We train all the networks with this loss func-
tion, and with a stochastic gradient descent (SGD) optimiser. Having predictions
with higher margins allows us to get more robust architectures if we fix the Lipschitz
constant. Still, too high margins can lead to poor accuracy. In the experiments we
test the three margin values 0.07, 0.15 and 0.3. For the networks based on dynamical
systems, we report the results obtained constraining all the dynamical blocks and the
final projection layer. However, we do not constrain the lifting layers. In this way,
we can still control the full network’s Lipschitz constant, just considering the norms
of those lifting layers. On the other hand, we leave some flexibility to the network,
which can train better also when we increase the hinge-loss margin. We notice ex-
perimentally that the dynamical blocks usually get a small Lipschitz constant. Thus,
even when we do not constrain all the layers, the network will still be 1-Lipschitz.

To get orthogonal convolutional filters, we apply the regularisation strategy proposed
in [69]. This strategy is not the only one possible. Still, for this experiment, we
preferred it to more involved ones since the main focus has been on the architecture,
and the obtained results are satisfactory. Various works, e.g. [38, 51, 25], highlight
how one can directly constrain the optimisation steps without having to project the

15

weights on the right space or to add regularisation terms. We have not experimented
with these kinds of strategies, and we leave them for future study. We also work
with an orthogonal initialisation for the convolutional layers. The lifting layers of the
networks based on dynamical systems are modelled as x 7→ αWx for a convolutional
filter W with ∥W∥2 ≤ 1. To constrain the norm to 1, we add a projection step after
the stochastic gradient descent (SGD) method updates the weights, i.e. we normalise
the weights as W 7→ W/max{1, ∥W∥2}. Here, the 2−norm of the convolutional filters
is computed with the power method as described, for example, in [50]. Furthermore,
we work with SGD having a learning rate scheduler that divides the learning rate af-
ter a fixed number of epochs. Finally, we generate the adversarial examples with the
library “Foolbox” introduced in [55]. We focus on the ℓ2−PGD attack and perform
ten steps of it. We test different magnitudes of the adversarial perturbations.

To analyse the results of the experiments, we show how the accuracy of the net-
works changes as we increase the magnitude of the perturbations and the areas under
these curves we get. The Area Under the Curve (AUC) metric is an informative quan-
tity adopted to measure the adversarial robustness [8]. This metric is evaluated by
computing the area below the piecewise linear curve obtained by plotting the robust
accuracies as in Figure 4. A higher value indicates a better tradeoff between accuracy
and robustness. In Figure 4, we see that the robustness of the constrained neural
networks based on dynamical systems improves compared to the baseline ResNet and
the näıvely constrained one. Furthermore, we see that alternating expansive layers
in the network improves the tradeoff between clean accuracy and robustness than
using a network with only non-expansive layers. To conclude, it is also evident from
the experiments that if a more flexible alternating strategy is adopted, the results
can improve because while the clean accuracy can increase, the robustness is kept
unchanged or improved. In Figure 5, we plot the timesteps learned for the networks
with a flexible alternation strategy. More precisely, given the 2 consecutive layers
defined by

Ψ̃h1(x) = x− h1A
T
c Σ(Acx + bc) =: x− h1X(Ac, bc, x), AT

c Ac = I

Ψh2(x) = x + h2A
T ReLU(Ax + b) =: x + h2X(A, b, x), ATA = I

x 7→ Ψ̃h1/2 ◦ Ψ̃h1/2 ◦ Ψh2(x),

we plot line segments that are as long as the steps h1 and h2, doing it for all the pairs
of such layers. The step h2 can also be negative, leading to non-expansive dynamics.
This possibility is the main difference provided by the flexibility of the alternation
approach. We notice that, especially for the CIFAR-10 dataset, a timestep is learned
to be negative. This is not the case for CIFAR-100. For the case of margin = 0.15
and margin = 0.3, reported in Appendix C, more steps are negative, especially for the
CIFAR-10 experiments. On the other hand, there seems not to be a clear pattern in
the step selection. These results suggest the optimiser exploits the freedom introduced
due to the flexibility in the step selection and allows getting improved results in some
instances. Appendix C collects more details on how the timesteps are constrained.
Furthermore, in Appendix C, we also report the experiments for different margin
values.

We remark that the results obtained with our proposed approach are not as
good as those provided by the technique of adversarial training yet. On the other
hand, our derivations lead to a more efficient training strategy that allows us to get
networks with reduced sensitivity without the need to build adversarial examples in

16

the training phase. Additionally, the results in Figure 4 show that the proposed
constraining strategy allows considerable gains in the accuracy-robustness tradeoff.
The proposed framework is general enough to allow for possible improvements and
reduce the performance difference with adversarial training. However, how to do so
in practice still needs to be understood. We mention some possibilities in section 5.

0.0 0.2 0.4 0.6 0.8 1.0

ε

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
ob

u
st

ac
cu

ra
cy

`2 robustness CIFAR-10, margin = 0.07

Unconstrained

Switching prescribed

Naively constrained

Non-expansive

Switching flexible

(a) Robustness plot

0.07 0.15 0.30

Margin

0.40

0.45

0.50

0.55

0.60

0.65

A
U

C

Area under the curve CIFAR-10

(b) Area under the curve

0.0 0.2 0.4 0.6 0.8 1.0

ε

0.1

0.2

0.3

0.4

0.5

0.6

R
ob

u
st

ac
cu

ra
cy

`2 robustness CIFAR-100, margin = 0.07

Unconstrained

Switching prescribed

Naively constrained

Non-expansive

Switching flexible

(c) Robustness plot

0.07 0.15 0.30

Margin

0.20

0.25

0.30

0.35

0.40

A
U

C

Area under the curve CIFAR-100

(d) Area under the curve

Fig. 4: On the left: plots of the accuracy against the magnitude of the adversarial PGD
perturbation of 1024 test clean images, comparing various perturbation magnitudes
and the 5 networks introduced in the text. On the right: area under the curves, to
measure the actual robustness of the models. The legend is shared among the four
plots, and for clarity we omit in the plots for the area under the curve.

4. Imposition of other structure. Depending on the problem and the appli-
cation where a neural network is adopted, the properties that the architecture should
satisfy may be very different. We have seen in the previous section a strategy to impose
Lipschitz constraints on the network to get some guarantees in terms of adversarial
robustness. In that context, the property is of interest because it is possible to see

17

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

t

2

4

6

8

10

12

L
ay

er
nu

m
b

er

Stepsize alternation, Margin = 0.07, CIFAR-10

x− h1A
T
c Σ(Acx + bc)

x + h2A
TReLU(Ax + b)

(a) Learned step alternation strategy for
CIFAR-10 dataset.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

t

2

4

6

8

10

12

L
ay

er
nu

m
b

er

Stepsize alternation, Margin = 0.07, CIFAR-100

x− h1A
T
c Σ(Acx + bc)

x + h2A
TReLU(Ax + b)

(b) Learned step alternation strategy for
CIFAR-100 dataset.

Fig. 5: Representation of the learned stepsizes for the 12 layers characterising the
networks giving the results reported in Figure 4. This is the case with margin = 0.07,
and the other ones are reported in Appendix C. The time instants corresponding to
the beginning of the interval where a layer is active are denoted with dots, while the
ending time instants with diamonds. This implies that if a diamond on a segment is
on the left of a dot, the represented timestep is negative. The abscissa t corresponds
to the sum of the timesteps characterising each layer.

that even when imposing it, we can get sufficiently accurate predictions. Moreover,
this strategy allows controlling the network’s sensitivity to input perturbations. As
mentioned in the introduction, there are at least two other situations where structural
constraints might be desirable. The first one is when one knows that the function to
approximate has some particular property. The second is when we know that the
data we process induces some structure on the function we want to approximate.

This section supports the claim that combining ODE models with suitable numer-
ical integrators allows us to define structured networks. More precisely, we derive
multiple architectures by putting together these two elements. Some of these have
already been presented in other works, and others are new. The properties that we
investigate are symplecticity, volume preservation and mass preservation. For the first
two, we describe how to constrain the dynamical blocks. For the third, we propose
how to structure also the linear lifting and projection layers. Moreover, for this latter
example, we also report some numerical experiments. The purpose of the presented
toy example is to show that the architecture is computationally realisable and also
effective.

4.1. Symplectic dynamical blocks. A function F : R2n → R2n is said to be
symplectic if it satisfies the identity

∂F (x)

∂x

T

J
∂F (x)

∂x
= J ∀x ∈ R2n, J =

[
0n In
−In 0n

]
∈ R2n×2n

with 0n, In ∈ Rn×n being the zero and the identity matrices. Symplectic maps are
particularly important in classical mechanics, because the flow map Φt of a Hamil-
tonian system ẋ(t) = J∇H(x(t)) is symplectic, see e.g. [37]. This fact implies that
if one is interested in approximating such a flow map with a neural network, then

18

structuring it to be symplectic might be desirable. In this direction there are a con-
siderable number of works (see e.g. [34, 22, 75, 14]). We mention in particular [34]
where the authors construct layers of a network to ensure the symplectic property is
satisfied. On the other hand, in [22] the authors consider a neural network as the
Hamiltonian function of a system and approximate its flow map with a symplectic
numerical integrator4. The simplest symplectic integrator is symplectic Euler, which
applied to H(q, p) = V (q) + K(p) computes updates as

qn+1 = qn + h∂pK(pn), pn+1 = pn − h∂qV (qn+1).

We now focus on the gradient modules presented in [34], defined by alternating maps
of the form

G1(q, p) =

[
AT diag(α)Σ(Ap + a) + q

p

]
G2(q, p) =

[
q

BT diag(β)Σ(Bq + b) + p

]
.

We notice that we can obtain the same map from a time-switching ODE model. We
first introduce the time-dependent Hamiltonian of such a model, which is

(4.1) Hs(t)(z) = αT
s(t)Γ(As(t)Ps(t)z + bs(t)), As(t) ∈ Rn×n, bs(t) ∈ Rn,

with s : [0,+∞) → R+ being piecewise constant. We can suppose without loss
of generality that s(t) ∈ {0, 1, 2, . . . ,K} and that Ps(t) alternates between Π1 =
[In, 0n] ∈ Rn×2n and Π2 = [0n, In] ∈ Rn×2n. Let now Γ(z) = [γ(z1), . . . , γ(zn)],
Σ(z) = [σ(z1), . . . , σ(zn)], and γ′(s) = σ(s). We then notice that the Hamiltonian
vector field associated to Hs(t) alternates between the following two vector fields

XH1 =
[
AT

1 diag(α1)Σ(A1p + b1) 0
]T

, XH2 =
[
0 −AT

2 diag(α2)Σ(A2q + b2)
]T

.

We now conclude that if we compute the exact flow of XHs(t)
and we take s(t) to be

constant on every interval of length 1, we recover the gradient module in [34].

Similarly, all the network architectures presented in [22] and related works are based
on defining a neural network N (q, p) that plays the role of the Hamiltonian function
and then applying a symplectic integrator to the Hamiltonian system ż = J∇N (z).
The composition of discrete flow maps of the a time independent Hamiltonian gives
a symplectic network with shared weights. On the other hand, if the Hamiltonian
changes as in (4.1), one gets different weights for different layers and potentially a
more expressive model as presented in [34].

4.2. Volume-preserving dynamical blocks. Suppose that one is interested
in defining efficiently invertible and volume-preserving networks. In that case, an
approach based on switching systems and splitting methods can provide a flexible
solution. Consider the switching system defined by ż(t) = fs(t)(z(t)), fi ∈ X(Rn),
where for every value of s(t), the vector field has a specific partitioning that makes it
divergence-free. For example, if we have n = 2m,

fs(t)(z) =
[
us(t)(z[m :]) vs(t)(z[: m])

]T
satisfies such a condition and its flow map will be volume-preserving. We can nu-
merically integrate such a vector field while preserving this property. Indeed, we

4We remark that a one-step numerical method Ψh is symplectic if and only if, when applied to
any Hamiltonian system, it is a symplectic map.

19

can apply a splitting method based on composing the exact flow maps of the two
volume-preserving vector fields

f1
s(t)(z) =

[
us(t)(z[m :]) 0

]T
, f2

s(t)(z) =
[
0 vs(t)(z[: m])

]T
.

This approach gives architectures that are close to the ones of RevNets (see e.g. [27]).
The inverse of the network is efficient to compute in this case, and this translates
into memory efficiency since one does not need to save intermediate activation values
for the backpropagation. A particular class of these blocks can be obtained with
second-order vector fields and, in particular, with second-order conservative vector
fields (hence Hamiltonian): ẍ(t) = fs(t)(x(t)), or ẍ(t) = −∇Vs(t)(x(t)), where, for
example, Vs(t)(x) = αT Γ(As(t)x + bs(t)) for some Γ = [γ, . . . , γ]. With a similar
strategy, one can also derive the volume-preserving neural networks presented in [6].

4.3. Mass-preserving neural networks. The final property we focus on is
mass preservation. By mass preservation, we refer to the conservation of the sum of
the components of a vector (see [10]). This property is typical of semi-discretisations
of mass-preserving PDEs, models for chemical reactions, for population dynamics and
ecology (see e.g. [30, 15, 56]). More explicitly, one could be interested in imposing
such a structure if the goal is to approximate a function F : Rn → Rm that is known
to satisfy Tnx =

∑n
i=1 xi = TmF (x) =

∑m
i=1 F (x)i. A simple way to impose such

property is by approximating the target function F : Rn → Rm as

F (x) ≈
∑n

i=1 xi∑m
j=1 F̃ (x)j

F̃ (x)

where F̃ : Rn → Rm is any sufficiently expressive neural network. However, this
choice might lead to hard training procedures because of the denominator. Imposing
this structure at the level of network layers is not so intuitive in general. Hence, we
rely again on a suitable ODE formulation. A vector field X ∈ X(Rn) whose flow map
preserves the sum of the components of the state vector is simply one having a linear
first integral g(x) = 1Tx =

∑n
i=1 xi. Thus, we can design vector fields of the form

(4.2) ẏ(t) = (A(y) −A(y)T)1, A : Rn → Rn×n,

and this property will be then a natural consequence of the exact flow map. This
mass conservation could also be extended to a weighted-mass conservation, and we
would just have to replace 1 with a vector of weights α. This extension does not,
however, allow to change the dimensionality from a layer to the next one as easily.
To model these vector fields, we can work with parametric functions like f̃(x) =
BT Σ(Ax + b) ∈ Rn(n−1)/2 and use them to build the upper triangular matrix-valued
function A in (4.2). As presented in [29, Chapter 4], it is also immediate to impose this
property at a discrete level since every Runge-Kutta or multistep method preserves
linear first integrals without time-step restrictions. Thus, a possible strategy to model
mass-preserving neural networks is based on combining layers of the following types:

1. Lifting layers: L : Rk → Rk+s, L(x1, . . . , xk) = (x1, . . . , xk, 0, 0, . . . , 0),
2. Projection layers: P : Rk+s → Rk, P (x1, . . . , xk, xk+1, . . . , xk+s) = (x1 +

o, . . . , xk + o), with o =
∑s

i=1 xk+i/s,
3. Dynamical blocks: one-step explicit Euler discretisations of (4.2).

To test the neural network architecture, we focus on the approximation of the flow
map of the SIR-model

(4.3) ẏ =
[
−y1y2 y1y2 − y2 y2

]T
= X(y)T .

20

This experiment relates to the research area of data-driven modelling, which has at-
tracted a high amount of interest in recent years, especially through the tools provided
by machine learning (see, e.g., [19, 24, 6, 22]). We model the neural network as dis-
cussed above. We approximate the 1−flow map of (4.3) working with pairs of the form
{(xi, yi = Ψ1

X(xi))}i=1,...,N
5. In this context we suppose it is not possible to integrate

in time the system of ODEs because this is not available, and what is provided is just
a set of observed trajectories. The plots in Figure 6 represent the first two compo-
nents of the solution for the SIR model. All the line segments connect the components
of the initial conditions with those of the time-1 updates. The considerable benefit
of mass-preservation as a constraint is that it allows interpretable outputs. Indeed,
in this case the components of y represent the percentages of three species on the
total population, and the network we train still allows to get this interpretation being
mass-preserving.

0.0 0.2 0.4 0.6 0.8 1.0
Time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

y 1

Time evolution of y1

True Position

Predicted Position

0.0 0.2 0.4 0.6 0.8 1.0
Time

0.1

0.2

0.3

0.4

y 2
Time evolution of y2

True Position

Predicted Position

Fig. 6: Plots of the approximation of the time 1−flow map of the SIR model (4.3) for
10 test initial conditions. We report the first two components of the solutions. Each
point represents either an initial condition (at time 0), or a time-1 update.

5. Conclusion and future directions. In this work, we have introduced a
framework to combine the design of ODE models with the choice of proper numerical
methods to, in turn, obtain neural networks with prescribed properties. After intro-
ducing and motivating the approach, we proved two universal approximation theo-
rems. The first one relates to sphere-preserving and gradient vector fields, while the
second one involves Hamiltonian vector fields. We then obtained Lipschitz-constrained
ResNets, focusing mainly on how to introduce layers that are not 1-Lipschitz. We then
applied this construction to get neural networks with adversarial robustness guaran-
tees. Finally, to show the framework’s flexibility, we demonstrated how to design
dynamical blocks that are symplectic, volume-preserving and mass-preserving.

The main application investigated in this manuscript is the one of adversarial
robustness. Our experiments highlight that the robustness of neural networks to
input perturbations can be improved using structured neural networks. However,
the obtained results are competitive with other constraining strategies but not with
adversarial training, which still provides state-of-the-art performance. We plan to

5Here with Ψ1
X(xi) we refer to an accurate approximation of the time-1 flow map of X applied

to xi

21

optimise the proposed approach to get higher clean accuracy, possibly by designing a
better optimisation strategy or designing other more expressive families of expansive
and contractive vector fields.

Throughout the manuscript we have focused on explicit numerical methods as
tools to generate neural network architectures. However, many geometric integrators
are implicit (see e.g. [29]); thus, this remains a direction to pursue in further work so
that the framework can be extended to other properties (see e.g. [5, 43]).

We have adopted the formalism of piecewise-autonomous dynamical systems to
design neural networks without heavily relying on the theory of time-switching sys-
tems. However, switching systems are a well-studied research area (see e.g. [41, 42, 2]),
and it seems natural to study them further and their use to design neural network
architectures.

Finally, we remark that imposing properties on neural networks is a promising
strategy to make them more understandable, interpretable, and reliable. On the other
hand, it is also clear that constraining the architecture can considerably decrease the
network’s expressivity in some cases. Thus, it remains to understand when it is
preferable to replace hard constraints with soft constraints promoting such properties
without imposing them by construction.

Acknowledgements The authors would like to thank the Isaac Newton Insti-
tute for Mathematical Sciences, Cambridge, for support and hospitality during the
programmes Mathematics of deep learning and Geometry, compatibility and structure
preservation in computational differential equations where work on this paper was sig-
nificantly advanced. This work was supported by EPSRC grant no EP/R014604/1.
EC and BO have received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sk lodowska-Curie grant agreement No
860124.

REFERENCES

[1] A. Agrachev and A. Sarychev, Control on the manifolds of mappings with a view to the
deep learning, Journal of Dynamical and Control Systems, (2021), pp. 1–20.

[2] T. Alpcan and T. Basar, A stability result for switched systems with multiple equilibria,
Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis,
17 (2010), pp. 949–958.

[3] C. Anil, J. Lucas, and R. Grosse, Sorting out Lipschitz function approximation, in Interna-
tional Conference on Machine Learning, PMLR, 2019, pp. 291–301.

[4] S. Arridge, P. Maass, O. Öktem, and C.-B. Schönlieb, Solving inverse problems using
data-driven models, Acta Numerica, 28 (2019), pp. 1–174.

[5] S. Bai, J. Z. Kolter, and V. Koltun, Deep equilibrium models, Advances in Neural Informa-
tion Processing Systems, 32 (2019).

[6] J. Bajārs, Locally-symplectic neural networks for learning volume-preserving dynamics, arXiv
preprint arXiv:2109.09151, (2021).

[7] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky, Spectrally-normalized margin bounds
for neural networks, Advances in Neural Information Processing Systems, 30 (2017).

[8] P. Bashivan, R. Bayat, A. Ibrahim, K. Ahuja, M. Faramarzi, T. Laleh, B. Richards, and
I. Rish, Adversarial feature desensitization, Advances in Neural Information Processing
Systems, 34 (2021), pp. 10665–10677.

[9] J. Berner, P. Grohs, G. Kutyniok, and P. Petersen, The modern mathematics of deep
learning, arXiv preprint arXiv:2105.04026, (2021).

[10] S. Blanes, A. Iserles, and S. Macnamara, Positivity-preserving methods for population
models, arXiv preprint arXiv:2102.08242, (2021).

[11] Y. Brenier and W. Gangbo, Lp Approximation of maps by diffeomorphisms, Calculus of
Variations and Partial Differential Equations, 16 (2003), pp. 147–164.

[12] M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković, Geometric deep learning: Grids,
groups, graphs, geodesics, and gauges, arXiv preprint arXiv:2104.13478, (2021).

22

[13] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, Geometric
deep learning: going beyond euclidean data, IEEE Signal Processing Magazine, 34 (2017),
pp. 18–42.

[14] J. W. Burby, Q. Tang, and R. Maulik, Fast neural Poincaré maps for toroidal magnetic
fields, Plasma Physics and Controlled Fusion, 63 (2020), p. 024001.

[15] H. Burchard, E. Deleersnijder, and A. Meister, A high-order conservative Patankar-type
discretisation for stiff systems of production–destruction equations, Applied Numerical
Mathematics, 47 (2003), pp. 1–30.

[16] M. Calvo, D. Hernández-Abreu, J. I. Montijano, and L. Rández, On the preservation of
invariants by explicit Runge–Kutta methods, SIAM Journal on Scientific Computing, 28
(2006), pp. 868–885.

[17] N. Carlini and D. Wagner, Towards evaluating the robustness of neural networks, in 2017
IEEE Symposium on Security and Privacy, IEEE, 2017, pp. 39–57.

[18] E. Celledoni, M. J. Ehrhardt, C. Etmann, R. I. McLachlan, B. Owren, C.-B. Schönlieb,
and F. Sherry, Structure-preserving deep learning, European Journal of Applied Mathe-
matics, 32 (2021), pp. 888–936.

[19] E. Celledoni, A. Leone, D. Murari, and B. Owren, Learning hamiltonians of constrained
mechanical systems, Journal of Computational and Applied Mathematics, 417 (2023),
p. 114608.

[20] B. Chang, M. Chen, E. Haber, and E. H. Chi, AntisymmetricRNN: A Dynamical System
View on Recurrent Neural Networks, in International Conference on Learning Representa-
tions, 2019.

[21] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, Neural ordinary differ-
ential equations, Advances in Neural Information Processing Systems, 31 (2018).

[22] Z. Chen, J. Zhang, M. Arjovsky, and L. Bottou, Symplectic Recurrent Neural Networks,
in International Conference on Learning Representations, 2020.

[23] G. Dahlquist, Generalized disks of contractivity for explicit and implicit Runge-Kutta meth-
ods, tech. report, CM-P00069451, 1979.

[24] S. Eidnes, Order theory for discrete gradient methods, BIT Numerical Mathematics, (2022),
pp. 1–49.

[25] G. França, A. Barp, M. Girolami, and M. I. Jordan, Optimization on manifolds: A sym-
plectic approach, arXiv preprint arXiv:2107.11231, (2021).

[26] C. L. Galimberti, L. Furieri, L. Xu, and G. Ferrari-Trecate, Hamiltonian deep neural
networks guaranteeing non-vanishing gradients by design, arXiv preprint arXiv:2105.13205,
(2021).

[27] A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse, The reversible residual network:
Backpropagation without storing activations, Advances in Neural Information Processing
Systems, 30 (2017).

[28] I. J. Goodfellow, J. Shlens, and C. Szegedy, Explaining and harnessing adversarial exam-
ples, in ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
Y. Bengio and Y. LeCun, eds., 2015.

[29] E. Haier, C. Lubich, and G. Wanner, Geometric Numerical integration: structure-preserving
algorithms for ordinary differential equations, Springer, 2006.

[30] I. Hense and A. Beckmann, The representation of cyanobacteria life cycle processes in aquatic
ecosystem models, Ecological Modelling, 221 (2010), pp. 2330–2338.

[31] J. Hertrich, S. Neumayer, and G. Steidl, Convolutional proximal neural networks and
plug-and-play algorithms, Linear Algebra and its Applications, 631 (2021), pp. 203–234.

[32] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms I:
Fundamentals, vol. 305, Springer Science & Business Media, 2013.

[33] K. Huang, Y. Wang, M. Tao, and T. Zhao, Why do deep residual networks generalize better
than deep feedforward networks?—a neural tangent kernel perspective, Advances in neural
information processing systems, 33 (2020), pp. 2698–2709.

[34] P. Jin, Z. Zhang, A. Zhu, Y. Tang, and G. E. Karniadakis, SympNets: Intrinsic structure-
preserving symplectic networks for identifying Hamiltonian systems, Neural Networks, 132
(2020), pp. 166–179.

[35] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasu-
vunakool, R. Bates, A. Ž́ıdek, A. Potapenko, et al., Highly accurate protein structure
prediction with AlphaFold, Nature, 596 (2021), pp. 583–589.

[36] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.
Jackel, Backpropagation applied to handwritten zip code recognition, Neural computation,
1 (1989), pp. 541–551.

[37] B. Leimkuhler and S. Reich, Simulating Hamiltonian dynamics, no. 14, Cambridge Univer-

23

sity Press, 2004.
[38] B. Leimkuhler, T. J. Vlaar, T. Pouchon, and A. Storkey, Better Training using Weight-

Constrained Stochastic Dynamics, in Proceedings of the 38th International Conference on
Machine Learning, 2021, pp. 6200–6211.

[39] Q. Li, S. Haque, C. Anil, J. Lucas, R. B. Grosse, and J.-H. Jacobsen, Preventing gradient
attenuation in lipschitz constrained convolutional networks, Advances in neural information
processing systems, 32 (2019).

[40] Q. Li, T. Lin, and Z. Shen, Deep learning via dynamical systems: An approximation perspec-
tive, Journal of the European Mathematical Society, (2022).

[41] D. Liberzon, Switching in systems and control, vol. 190, Springer, 2003.
[42] D. Liberzon and A. S. Morse, Basic problems in stability and design of switched systems,

IEEE Control Systems Magazine, 19 (1999), pp. 59–70.
[43] A. Look, S. Doneva, M. Kandemir, R. Gemulla, and J. Peters, Differentiable implicit

layers, arXiv preprint arXiv:2010.07078, (2020).
[44] Y. Lu, A. Zhong, Q. Li, and B. Dong, Beyond finite layer neural networks: Bridging deep

architectures and numerical differential equations, in International Conference on Machine
Learning, PMLR, 2018, pp. 3276–3285.

[45] A. L. Maas, A. Y. Hannun, A. Y. Ng, et al., Rectifier nonlinearities improve neural network
acoustic models, in Proc. icml, vol. 30, Atlanta, Georgia, USA, 2013, p. 3.

[46] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, Towards Deep Learning
Models Resistant to Adversarial Attacks, in International Conference on Learning Repre-
sentations, 2018.

[47] S. Massaroli, M. Poli, J. Park, A. Yamashita, and H. Asama, Dissecting neural odes,
Advances in Neural Information Processing Systems, 33 (2020), pp. 3952–3963.

[48] R. I. McLachlan and G. R. W. Quispel, Splitting methods, Acta Numerica, 11 (2002),
pp. 341–434.

[49] R. I. McLachlan, G. R. W. Quispel, and N. Robidoux, Geometric integration using discrete
gradients, Philosophical Transactions of the Royal Society of London. Series A: Mathemat-
ical, Physical and Engineering Sciences, 357 (1999), pp. 1021–1045.

[50] L. Meunier, B. Delattre, A. Araujo, and A. Allauzen, Scalable Lipschitz Residual Net-
works with Convex Potential Flows, arXiv preprint arXiv:2110.12690, (2021).

[51] M. Ozay and T. Okatani, Optimization on submanifolds of convolution kernels in CNNs,
arXiv preprint arXiv:1610.07008, (2016).

[52] A. Pinkus, Approximation theory of the MLP model in neural networks, Acta Numerica, 8
(1999), pp. 143–195.

[53] E. Presnov, Non-local decomposition of vector fields, Chaos, Solitons & Fractals, 14 (2002),
pp. 759–764.

[54] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations, Journal of Computational physics, 378 (2019), pp. 686–707.

[55] J. Rauber, W. Brendel, and M. Bethge, Foolbox: A python toolbox to benchmark the
robustness of machine learning models, arXiv preprint arXiv:1707.04131, (2017).

[56] H. Robertson, The solution of a set of reaction rate equations, Numerical analysis: an intro-
duction, 178182 (1966).

[57] D. Ruiz-Balet and E. Zuazua, Neural ODE control for classification, approximation and
transport, arXiv preprint arXiv:2104.05278, (2021).

[58] T. K. Rusch and S. Mishra, UnICORNN: A recurrent model for learning very long time
dependencies, in International Conference on Machine Learning, PMLR, 2021, pp. 9168–
9178.

[59] L. Ruthotto and E. Haber, Deep neural networks motivated by partial differential equations,
Journal of Mathematical Imaging and Vision, 62 (2020), pp. 352–364.

[60] A. M. Saxe, J. L. McClelland, and S. Ganguli, Exact solutions to the nonlinear dynamics
of learning in deep linear neural networks, CoRR, abs/1312.6120 (2014).

[61] R. Shwartz-Ziv and N. Tishby, Opening the black box of deep neural networks via informa-
tion, ArXiv, abs/1703.00810 (2017).

[62] P. Simard, Y. LeCun, and J. Denker, Efficient pattern recognition using a new transforma-
tion distance, Advances in Neural Information Processing Systems, 5 (1992).

[63] B. Smets, J. Portegies, E. J. Bekkers, and R. Duits, PDE-based group equivariant convo-
lutional neural networks, Journal of Mathematical Imaging and Vision, (2022), pp. 1–31.

[64] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and
R. Fergus, Intriguing properties of neural networks, CoRR, abs/1312.6199 (2014).

[65] T. Teshima, K. Tojo, M. Ikeda, I. Ishikawa, and K. Oono, Universal approximation property

24

of neural ordinary differential equations, arXiv preprint arXiv:2012.02414, (2020).
[66] M. Thorpe and Y. van Gennip, Deep limits of residual neural networks, arXiv preprint

arXiv:1810.11741, (2018).
[67] A. Trockman and J. Z. Kolter, Orthogonalizing Convolutional Layers with the Cayley Trans-

form, in International Conference on Learning Representations, 2021.
[68] Y. Tsuzuku, I. Sato, and M. Sugiyama, Lipschitz-margin training: Scalable certification of

perturbation invariance for deep neural network, Advances in Neural Information Process-
ing Systems, 31 (2018).

[69] J. Wang, Y. Chen, R. Chakraborty, and S. X. Yu, Orthogonal convolutional neural net-
works, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 11505–11515.

[70] L. Wang, Y. Zhang, and J. Feng, On the Euclidean distance of images, IEEE Transactions
on Pattern Analysis and Machine Intelligence, 27 (2005), pp. 1334–1339.

[71] E. Weinan, A proposal on machine learning via dynamical systems, Communications in Math-
ematics and Statistics, 1 (2017), pp. 1–11.

[72] L. Xiao, Y. Bahri, J. Sohl-Dickstein, S. Schoenholz, and J. Pennington, Dynamical
isometry and a mean field theory of cnns: How to train 10,000-layer vanilla convolutional
neural networks, in International Conference on Machine Learning, PMLR, 2018, pp. 5393–
5402.

[73] M. Zakwan, L. Xu, and G. Ferrari-Trecate, On Robust Classification using Contractive
Hamiltonian Neural ODEs, arXiv preprint arXiv:2203.11805, (2022).

[74] H. Zhang, X. Gao, J. Unterman, and T. Arodz, Approximation capabilities of neural odes
and invertible residual networks, in International Conference on Machine Learning, PMLR,
2020, pp. 11086–11095.

[75] A. Zhu, P. Jin, and Y. Tang, Deep hamiltonian networks based on symplectic integrators,
arXiv preprint arXiv:2004.13830, (2020).

Appendix A. Some numerical experiments for data-driven modelling
and regression.

We now apply the theoretical background introduced in section 2 to two approx-
imation tasks. More precisely, we verify whether the introduced architectures are
complicated to train in practice or whether they can achieve good performances. The
two tasks of interest are the approximation of a continuous scalar function and the
approximation of a C1 vector field starting from a set of training trajectories.

We start with the approximation of f(x) = x2 + |x| + sin (x), x ∈ R, and g(x, y) =√
x2 + y2. The goal here is to approximate them by composing flow maps of vector

fields that are structured as

XG(z) = AT diag(α)Σ(Az + b) = ∇
(
αT Γ(Az + b)

)
,

XS(z) = (A(z) −A(z)T)z.

More precisely, following the result in Theorem 2.2, we compose the flow maps of XG

and XS , maintaining the same time step for pairs of such flow maps. We report the
results in Figure 7.

The second experiment that we report, is the one of approximating a vector field
X ∈ X(Rn) starting from a set of training pairs {(xi, yi)}i=1,...,N , with yi = Ψh

X(xi),
for an accurate approximation Ψh

X of the time-h flow of X. We recall that the universal
approximation result based on the Presnov decomposition allows approximating any
vector field X as

Xθ(z) = AT diag(α)Σ(Az + b) + (B(z) −B(z)T)z = XG(z) + XS(z),

as long as the weights are chosen correctly. In principle, calling Ψh any numerical
method applied to Xθ and said ŷi = Ψh(xi), one could train the weights of Xθ so that

25

−3 −2 −1 0 1 2 3
x

0

2

4

6

8

10

12

f
(x

),
N
N

(x
)

Comparison real and predicted function

Exact

Predicted

(a) Approximation of f(x)

x

−2.0−1.5−1.0−0.5
0.0

0.5
1.0

1.5
2.0

y

−2.0

−1.5

−1.0

−0.5

0.0
0.5

1.0
1.5

2.0

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

Approximation error

(b) Approximation of g(x, y)

Fig. 7: Comparison between the trained networks and the true functions.

they minimise

L =
1

N

N∑
i=1

∥yi − ŷi∥2 .

However, because of the properties of XG and XS , we choose to preserve them with
Ψh and apply a splitting method. In other words, we apply to XS and XG two in-
tegrators Ψh

S and Ψh
G, then compose them to obtain Ψh = Ψh

G ◦ Ψh
S . We choose Ψh

S

to be an explicit method that preserves the conserved quantity ∥x∥2, while Ψh
G to

be a discrete gradient method (see e.g. [24, 49]) so that it preserves the dissipative
nature of XG. As said before, this splitting strategy is not necessary in principle.
However, we propose it as an alternative inspired by all the works on Hamiltonian
neural networks (see e.g. [22, 19, 24]) where geometric integrators are often utilised.
Furthermore, it would be interesting to understand if this or other splitting strategies
give better approximation results or theoretical guarantees, but this goes beyond the
scope of this work.

We choose Ψh
S as a modified Euler-Heun method, following the derivation presented

in [16], so that it is explicit and it also preserves ∥x∥2. For Ψh
G we use instead the

Gonzalez discrete gradient method (see e.g. [49]). We remark that discrete gradient
methods applied to ẋ(t) = −∇V (x(t)) are of the form

xn+1 = xn − h∇V (xn, xn+1)

and they are hence implicit. However, since we have the trajectories available, i.e. the
yis are known, we do not have to solve a non-linear system of equations. Indeed, the
problem of approximating X amounts to minimise the following cost function

L =
1

N

N∑
i=1

∥∥yi − (Ψh
S(xi) − h∇V (Ψh

S(xi), yi)
)∥∥2 .

26

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
x1

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

x
2

ẋ = (sin x)3 + x3

True

Approximation

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
x1

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

x
2

ẋ = p, ṗ = − sin x

True

Approximation

Fig. 8: In the two plots, we compare the true and predicted vector fields.

In Figure 8, we report the results obtained for the following two vector fields

X1(x) =


(sinx1)3 + x3

1

(sinx2)3 + x3
2

(sinx3)3 + x3
3

(sinx4)3 + x3
4

 X2(x) =

[
x2

− sinx1

]
.

Appendix B. Non-expansive networks with non-Euclidean metric.

X Y Z

X + δ, ‖δ‖2 = 108.52 Y + δ, ‖δ‖2 = 81.6 Z + δ, ‖δ‖2 = 113.18

Fig. 9: Three clean images from the CIFAR-10 dataset at the top and a random
perturbation of the red channel in one pixel at the bottom. For humans the images of
the two rows clearly associate to the same object, even with this pixel perturbation.

In section 3 we have introduced a way to generate networks that are non-expansive
for the Euclidean metric on the input space. We now propose a strategy to generalise
the reasoning. It is intuitive, and also evident from Figure 9, that ℓp norms of Rn are

27

not the ones humans utilise to compare pictures. There have been many attempts
to design similarity measures between images (see e.g. [70, 62]), but it is still not
evident what should be the preferred choice. To make the model (3.7) introduced
in section 3 more general, we hence show how it can be made contractive for a more
generic metric d defined by a symmetric and positive definite matrix M ∈ Rn×n. We
introduce the notation ⟨v, w⟩M = vTMw for any pair of vectors v, w ∈ Rn. Let again
Σ(z) = [σ(z1), . . . , σ(zn)] where σ is an increasing scalar function. We focus on the
autonomous dynamical system

(B.1) ż(t) = −WT Σ(MWz + b), W ∈ Rn×n, b ∈ Rn,

that is no more a gradient vector field, but it has similar properties to the one studied
above. We suppose M is constant and the same for the other involved weights. How
this reasoning extends to time-switching systems, as discussed throughout the paper,
is quite natural and follows the procedure seen for M being the identity matrix,
compare in particular section 3. We now verify the contractivity of the ODE B.1 with
respect to the metric defined by M :

d

dt

1

2
∥z(t) − y(t)∥2M =

1

2

d

dt

(
(z(t) − y(t))TM(z(t) − y(t))

)
= −⟨WT Σ(MWz + b) −WT Σ(MWy + b), z − y⟩M
= −⟨Σ(MWz + b) − Σ(MWy + b),MWz −MWy⟩ ≤ 0.

This result implies that all the trajectories of (B.1) will converge to a reference tra-
jectory if the convergence is measured using the metric defined by M . Notice that
the scalar product in the last line is the canonical one of Rn. Hence, if we have that γ
is strongly convex, we can still combine these dynamics with expansive vector fields.

Appendix C. Additional details on adversarial robustness. This section
presents additional plots related to the experiment on adversarial robustness analysed
in section 3. We have studied the effect of using different margin values in the loss
function adopted for the training of the five different neural networks. In Figure 10
we report the results obtained for two additional values of the margin parameter. The
observations presented for the case margin = 0.07 extend also to these ones, where
the dynamically constrained networks still perform better. Moreover, the networks
that allow for expansive layers still outperform those with all non-expansive layers.

We additionally provide the details on how the stepsizes for the flexibly con-
strained neural networks are selected. We recall that the flexible alternation strategy
is defined by maps of the form

Ψ̃h1(x) = x− h1A
T
c Σ(Acx + bc) =: x− h1X(Ac, bc, x), AT

c Ac = I

Ψh2(x) = x + h2A
T ReLU(Ax + b) =: x + h2X(A, b, x), ATA = I

x 7→ Ψ̃h1/2 ◦ Ψ̃h1/2 ◦ Ψh2(x) =: Ψh(x).

In order for the map Ψh to be non-expansive, we either need to have both Ψ̃h1/2 and
Ψh2 to be 1−Lipschitz, or them to be 1−Lipschitz when composed together. For the
former case, this is imposed in our implementation by the constraints 0.11 < h1 < 1.9
and −1.9 < h2 ≤ 0, since ∥Ac∥ = ∥A∥ = 1 and the relevant condition is (3.5). In the
case h2 > 0, we need to impose the relation

(h1, h2) ∈ R = {(h1, h2) ∈ R2 : (1 + h2)(1 − h1a + h2
1/4) ≤ 1}.

28

0.0 0.2 0.4 0.6 0.8 1.0

ε

0.2

0.4

0.6

0.8

R
ob

u
st

ac
cu

ra
cy

`2 robustness CIFAR-10, margin = 0.15

Unconstrained

Switching prescribed

Naively constrained

Non-expansive

Switching flexible

0.0 0.2 0.4 0.6 0.8 1.0

ε

0.0

0.2

0.4

0.6

0.8

R
ob

u
st

ac
cu

ra
cy

`2 robustness CIFAR-10, margin = 0.3

Unconstrained

Switching prescribed

Naively constrained

Non-expansive

Switching flexible

0.0 0.2 0.4 0.6 0.8 1.0

ε

0.1

0.2

0.3

0.4

0.5

0.6

R
ob

u
st

ac
cu

ra
cy

`2 robustness CIFAR-100, margin = 0.15

Unconstrained

Switching prescribed

Naively constrained

Non-expansive

Switching flexible

0.0 0.2 0.4 0.6 0.8 1.0

ε

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
ob

u
st

ac
cu

ra
cy

`2 robustness CIFAR-100, margin = 0.3

Unconstrained

Switching prescribed

Naively constrained

Non-expansive

Switching flexible

Fig. 10: Behaviour of the test accuracy on 1024 images, under perturbations of differ-
ent magnitude ε. On the left we report the experiments with margin value 0.15 and
on the right with 0.3.

Because of experimental reasons, we choose to impose it by clamping the h1 timestep,
with the PyTorch function clamp, so that 0.11 < h1 < 1.9. Then, we clamp h2 so
that the pair (h1, h2) ∈ R, i.e. in the green area represented in Figure 11. All the
constraints are imposed after each SGD step. In each training iteration, the pair
(h1, h2) is projected onto the green area. In Figure 12, we show the learned timesteps
for the flexible training strategy that are not included in the manuscript’s main text.
We remark that Figure 12 reports many negative steps for the CIFAR-10 dataset,
especially when the margin is 0.15, where almost all of them are. This pattern does
not show up for CIFAR-100, which suggests that the increased complexity of this
classification task leads to the need for more freedom in the network layers, given by
expansive layers.

Appendix D. Proof convergence of splitting strategy for Lipschitz fields.
In this section, we prove the convergence of a Lie-Trotter splitting method applied

to Lipschitz vector fields, as applied in the proofs of section 2. This reasoning extends
similarly to other splitting strategies, like Strang splitting.

Proposition D.1. Let X ∈ X(Rn) be a vector field that can be decomposed on

29

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

h1

0.0

0.2

0.4

0.6

0.8

1.0

h
2

Fig. 11: In green, we represent the contractivity area R.

the compact set Ω ⊂ Rn as X = f + g for two Lipschitz continuous vector fields
f, g ∈ X(Ω). More precisely, let Lf , Lg > 0 be such that

∥f(x) − f(y)∥ ≤ Lf∥x− y∥, ∥g(x) − g(y)∥ ≤ Lg∥x− y∥ ∀x, y ∈ Ω.

The Lie-Trotter splitting method φh := Φh
g ◦Φh

f is a first-order accurate approximation

of the exact flow Φh
X .

Proof. The proof comes from applying Gronwall’s inequality twice. We start
considering the function

γ(t) := ∥Φt
g ◦ Φh

f (x0) − Φt
f+g(x0)∥.

By the integral definition of the flow map, we have

Φh
g ◦ Φh

f (x0) = x0 +

∫ h

0

f(Φs
f (x0))ds +

∫ h

0

g(Φs
g ◦ Φh

f (x0))ds

and

Φh
f+g(x0) = x0 +

∫ h

0

f(Φs
f+g(x0))ds +

∫ h

0

g(Φs
f+g(x0))ds.

This means that

γ(h) ≤ Lf

∫ h

0

∥Φs
f+g(x0) − Φs

f (x0)∥ds + Lg

∫ h

0

∥Φs
g ◦ Φh

f (x0) − Φs
f+g(x0)∥ds

= α(h) +

∫ h

0

β(s)γ(s)ds

where α(h) = Lf

∫ h

0
∥Φs

f+g(x0) − Φs
f (x0)∥ds and β(s) ≡ Lg.

30

0.0 0.2 0.4 0.6 0.8

t

2

4

6

8

10

12

L
ay

er
nu

m
b

er

Stepsize alternation, Margin = 0.15, CIFAR-10

x− h1A
T
c Σ(Acx + bc)

x + h2A
TReLU(Ax + b)

(a) Learned step alternation strategy for
CIFAR-10 dataset.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

t

2

4

6

8

10

12

L
ay

er
nu

m
b

er

Stepsize alternation, Margin = 0.15, CIFAR-100

x− h1A
T
c Σ(Acx + bc)

x + h2A
TReLU(Ax + b)

(b) Learned step alternation strategy for
CIFAR-100 dataset.

−1.0 −0.5 0.0 0.5 1.0 1.5

t

2

4

6

8

10

12

L
ay

er
nu

m
b

er

Stepsize alternation, Margin = 0.3, CIFAR-10

x− h1A
T
c Σ(Acx + bc)

x + h2A
TReLU(Ax + b)

(c) Learned step alternation strategy for
CIFAR-10 dataset.

0.00 0.25 0.50 0.75 1.00 1.25 1.50

t

2

4

6

8

10

12

L
ay

er
nu

m
b

er

Stepsize alternation, Margin = 0.3, CIFAR-100

x− h1A
T
c Σ(Acx + bc)

x + h2A
TReLU(Ax + b)

(d) Learned step alternation strategy for
CIFAR-100 dataset.

Fig. 12: These figures report the learned step alternation strategies for the flexible
regime, with margin values of 0.15 and 0.3

Since α is a non-decreasing function, we can apply Gronwall’s integral inequality
to get

γ(h) ≤ α(h)exp

(∫ h

0

β(s)ds

)
= α(h)exp (Lgh) .

We need to bound the function α(h). We study the behaviour of

λ(s) := ∥Φs
f+g(x0) − Φs

f (x0)∥

similarly to what was done above. Indeed we have

Φs
f+g(x0) − Φs

f (x0) =

∫ s

0

f(Φs′

f+g(x0))ds′ +

∫ s

0

g(Φs′

f+g(x0))ds′ −
∫ s

0

f(Φs′

f (x0))ds′

and hence

λ(s) ≤ Lf

∫ s

0

λ(s′)ds′ +

∫ s

0

∥g(Φs′

f+g(x0))∥ds′.

Again by Gronwall’s inequality, we can conclude

λ(s) ≤ s max
x∈Ω

∥g(x)∥exp(Lfs).

31

This inequality allows finishing the proof since

γ(h) := ∥Φh
g ◦ Φh

f (x0) − Φh
f+g(x0)∥

≤ max
x∈Ω

∥g(x)∥exp(Lgh)

∫ h

0

exp(Lfh)sds

=
h2

2
exp((Lf + Lg)h) max

x∈Ω
∥g(x)∥

≤ h2

2
exp(Lip(X)h) max

x∈Ω
∥g(x)∥.

Thus Lie-Trotter splitting is a first-order method for the vector field X.

32

	Introduction
	Classification of points in the plane

	Universal approximation properties
	Approximation based on a vector field decomposition
	Approximation based on Hamiltonian vector fields

	Adversarial robustness and Lipschitz neural networks
	Non-expansive dynamical blocks
	Non-expansive numerical discretisation
	Numerical experiments with adversarial robustness

	Imposition of other structure
	Symplectic dynamical blocks
	Volume-preserving dynamical blocks
	Mass-preserving neural networks

	Conclusion and future directions
	References
	Appendix A. Some numerical experiments for data-driven modelling and regression
	Appendix B. Non-expansive networks with non-Euclidean metric
	Appendix C. Additional details on adversarial robustness
	Appendix D. Proof convergence of splitting strategy for Lipschitz fields

