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Abstract. Motivated by investigating multistationarity in biochemical systems, we address
saddle-node bifurcations for chemical reaction networks endowed with general kinetics. At positive
equilibria, we identify structural network conditions that guarantee the bifurcation behavior and
we develop a method to identify the proper bifurcation parameters. As a relevant example, we
explicitly provide such bifurcation parameters for Michaelis-Menten and Hill kinetics. Examples of
application include reversible feedback cycles, the central carbon metabolism of Escherichia coli, and
autocatalytic networks.
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1. Introduction. Multistationarity is the property of a chemical system to ex-
hibit two or more distinct equilibria, under identical conditions, and it has been pro-
posed as an explanation for many epigenetic processes, including cell differentiation:
see the groundbreaking work [38] by Thomas and Kaufman, and the many biological
references therein. Hence, it is no surprise that investigating multistationarity for
chemical systems has become a hot topic. See among others the works by Soulé [36],
Craciun and Feinberg [13, 14], Mincheva and Roussel [28], Banaji and Craciun [6],
Joshi and Shiu [25], Banaji and Pantea [7], Conradi et al. [11]. Under the restrictive
assumption of mass action, see the works by Rendall and coauthors [21, 32, 18], Dick-
enstein et al. [15], Shiu and de Wolff [34], Feliu et al. [17].

One attractive mathematical possibility to detect multistationarity is to identify
a saddle-node (SN) bifurcation. A bifurcation is a sudden qualitative change in the
system behavior according to a small change in the parameter values. A saddle-node
bifurcation occurs when two equilibria, e.g. one stable and one unstable, collide and
disappear. Hence, the occurrence of such a bifurcation at a positive equilibrium au-
tomatically implies an area of parameters with at least two positive equilibria. Under
the assumption of mass action, saddle-node bifurcations for biochemical systems have
been addressed by Conradi et al. [12] and Domijan and Kirkilionis [16]. In both these
contributions, the abstract conditions leading to the bifurcation have been reformu-
lated in the polynomial language of mass action. Otero–Muras and coauthors used
computational methods to detect saddle-node bifurcations in biochemical systems, see
for example [31]. Okada et al. [30] translated the bifurcation conditions from the Ja-
cobian to an augmented matrix, which allows them to confine a potential bifurcation
behavior in a certain subnetwork. To the best of our knowledge, abstract network
conditions that characterize saddle-node bifurcations have not yet been obtained for
systems arising from chemical reaction networks. This is the focus of the present
paper.
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2 N. VASSENA

The standard saddle-node bifurcation theorem for ordinary differential equations
(ODEs) reads as follows.

Theorem 1.1 (Saddle-node bifurcation, [20]). Let ẋ = g(x, λ) be an ODEs
system in RM depending on a single parameter λ. When λ = λ∗, assume that there
is an equilibrium x̄ for which the following hypotheses are satisfied:
(SN1) The Jacobian G(x̄, λ∗) := Dxg(x̄, λ

∗) has an algebraically simple eigenvalue
0 with right eigenvector v and left eigenvector w. G(x̄, λ∗) has κ eigenvalues
with negative real part and (M − κ − 1) eigenvalues with positive real parts
(counting multiplicity).

(SN2) ⟨w, ∂λg(x̄, λ∗)⟩ ≠ 0
(SN3) wT ∂2

xg(x̄, λ
∗)[v, v] ̸= 0

Then there is a smooth curve of equilibria in RM ×R passing through (x̄, λ∗), tangent
to the hyperplane RM × {λ∗}. Depending on the signs of the expressions in (SN2)
and (SN3), there are no equilibria near (x̄, λ∗) when λ < λ∗ (λ > λ∗) and two
equilibria near (x̄, λ∗) for each parameter value λ > λ∗ (λ < λ∗). The two equilibria
for ẋ = g(x, λ) near (x̄, λ∗) are hyperbolic and have stable manifolds of dimensions κ
and κ + 1, respectively. The set of equations ẋ = g(x, λ) which satisfy (SN1)-(SN3)
is open and dense in the space of C∞ one-parameter families of vector fields with an
equilibrium at (x̄, λ∗) with a zero eigenvalue.

Condition (SN1) is the necessary spectral condition: an algebraically simple eigenvalue
zero of the Jacobian, at an equilibrium. Conditions (SN2) and (SN3) sufficiently guar-
antee the proper nonlinear unfolding of the bifurcation. We call degenerate saddle-
node the situation when conditions (SN1) and (SN2) are satisfied, but not (SN3).
Nondegenerate saddle-node indicates then the complete case where conditions (SN1)–
(SN3) hold. Moreover, we will refer to properties that hold on an open and dense
subset as generic, albeit often in literature a generic set is more generally defined as
a set of second Baire category [3], i.e., a countable intersection of open and dense
subsets. Theorem 1.1 is stated this way by Guckenheimer and Holmes [20], without
an explicit proof, for which Vanderbauwhede [39] is a reference. The genericity part
has also been addressed and elaborated by Sotomayor [35].

A chemical reaction turns reactants into products. Several connected reactions
constitute a chemical reaction network. We investigate which networks can sustain
saddle-node bifurcations, and consequently multistationarity. More precisely, to any
network Γ we associate the following ODEs dynamical system:

(1.1) ẋ = g(x) := Sf(x),

where x(t) > 0 ∈ RM is the vector of concentrations of the chemical species; theM×E
matrix S is the stoichiometric matrix, the incidence matrix of the network; f(x) ∈ RE

is the vector of the reaction functions. We stress that we consider only strictly positive
concentrations x > 0: boundary equilibria, where some of the concentrations xm are
zero, fall beyond the scope of the present work. We address and answer the following
question:

For which networks Γ does there exist a choice of f
such that the associated dynamical system admits a saddle-node bifurcation?

The precise form of f is typically unknown in applications. Therefore, it is of
great interest to obtain conditions only based on the network structure. Following
this precise intention, we do not prescribe any specific form to f but rather look into
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the entire set of functions satisfying only a few meaningful assumptions that make
them reasonable as reaction functions, according to the following definition.

Definition 1.2 (monotone chemical functions). Let j be a reaction and fj the
associated reaction function. We call fj chemical if

1. fj depends only on the concentrations of the reactants of the reaction j;
2. fj is positive, i.e.,

f(x) > 0, for every x > 0.

We call a chemical function fj monotone if

3. f ′
jm(x) :=

∂fj(x)
∂xm

> 0, for any species m reactant of j and x > 0.

Widely used and standard kinetic schemes as mass action [23], Michaelis–Menten
[27], and Hill kinetics [22] follow Definition 1.2. However, condition 1 excludes de-
pendencies f ′

jm(x) ̸= 0 not expressed by the stoichiometry. Regulatory terms, i.e.
f ′
jm(x) ̸= 0 with m not a reactant to j, both in form of activators f ′

jm(x) > 0 and
inhibitors f ′

jm(x) < 0, are not taken in account here. Condition 2 considers the reac-
tion j as irriversible. As addressed in Section 2, a reversible process is treated in this
setting as two opposite irriversible ones. Condition 3 excludes nonmonotone reaction
rates as, for example, substrate inhibition. Furthermore, condition 3 actually requires
monotone increasing functions, i.e. f ′

jm(x) > 0, as this case is more relevant. Mathe-
matically, we could develop analogous results with the monotone decreasing condition:
f ′
jm(x) < 0. Yet, a small straightforward technicality must be taken in account: if the
reaction functions are monotone increasing, then any product among nonzero partial
derivatives is always positive. In contrast, for monotone decreasing reaction functions,
the sign of the product depends on the number of factors, of course. We proceed as-
suming always monotone increasing functions with no further specification.

We address the bifurcation conditions symbolically. For a related approach in
bifurcation analysis on networks, see the work by Fiedler [19] that concerns global
Hopf bifurcation. This symbolic strategy relates to the theory of jets [2]. Aiming at
a self-contained presentation, we proceed from scratch. We call r ∈ RM

>0 the vector of
equilibrium rates that f(x̄) attains at an equilibrium x̄. The equilibrium constraints
define r and simply read

(1.2) Sr = 0, with rj > 0 for every j.

In particular, r is any positive right kernel vector of the stoichiometric matrix S.
Throughout the paper, we only consider networks whose stoichiometric matrix S
admits a positive right kernel vector, i.e., admitting an equilibrium for a certain
choice of chemical functions f . Without this basic assumption, addressing equilibria
bifurcations would be meaningless. On the other hand, the bifurcation constraints
concern derivatives. We use the notation

r′ = {r′jm}j∈E, m∈M

for the values, which the nonvanishing first derivatives f ′
jm(x̄) := ∂fj(x̄)/∂xm attain

at the bifurcating equilibrium x̄. Analogously, we use the notation

r′′ = {r′′jmn}j∈E, m,n∈M

for the values of the second derivatives

f ′′
jmn(x̄) :=

∂2fj
∂xm∂xn

(x̄).
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Firstly, we address symbolically conditions (SN1) and (SN2) in terms of the values
r′ alone. Secondly, we address the condition (SN3) in terms of the values r′′ alone.
Finally, if conditions (1.2) and (SN1)–(SN3) are satisfied by an independent choice
(r̄, r̄′, r̄′′), we find proper f such that

(1.3) f(x̄) = r̄, f ′
jm(x̄) = r̄′jm and f ′′

jmn(x̄) = r̄′′jmn,

for a positive equilibrium value x̄ and any j, m, and n.

In this sense, we say that a chemical network Γ admits a saddle-node bifurcation if
there is a choice of f(x, λ), within the class of monotone chemical functions, such that
the assumptions of Theorem 1.1 hold. Of course, proving independently the conditions
in terms of (r, r′, r′′) always implies the existence of a monotone chemical function f
for which all the bifurcation conditions (SN1)–(SN3) are satisfied, at any choice of a
positive x̄: the class of monotone chemical functions is clearly wide enough to include
a nonlinearity f satisfying (1.3). However, even in its generosity, nature may not
always provide us with such a freedom of choice, and typically given parametric class
of functions (kinetics) are used to model the reaction network. The validity of the
results, when restricted to a certain kinetics must be further checked. In particular,
we need the parametric freedom to assign independently the function value r and its
first derivative value r′, at least. We prove that this is possible in the parametric class
of Michaelis-Menten kinetics. The only obstacle for multistationarity might reside in
the tangency of the curve of equilibria, condition (SN3) of Theorem 1.1, see example
9.4. The slightly more general Hill kinetics already provides the parametric freedom
to conclude always a nondegenerate bifurcation result, in the present setting. On the
contrary, polynomial mass action kinetics does not equally provide such parametric
freedom. We show a mass-action example undergoing a saddle-node bifurcation in
9.3, to foster discussion.

We base the results on the language of Child Selections. A Child Selection J is
an injective map associating to each species m a reaction j, in which m participates
as a reactant, see Definition 3.1. The Jacobian determinant of the system, detG, can
be expanded along Child Selections (Proposition 2.1 of [40]) as:

(1.4) detG =
∑
J

αJ

∏
m∈M

r′J(m)m,

where αJ is a coefficient structurally associated to any Child Selection. Note that
detG can then be interpreted as a multilinear homogenous polynomial P (r′) :=
detG(r′), considering r′ > 0 as independent real variables. Throughout, for sim-
plicity of presentation, we assume the existence of at least one Child Selection J with
αJ ̸= 0, implying

P (r′) ̸≡ 0.

This excludes a permanent eigenvalue zero of G and allows us to focus directly on
solving P (r′) = 0 without considering any reduced system. This assumption also
excludes conserved linear combinations of the concentrations xm(t) for the whole net-
work and may not be restrictive in itself: for instance, many metabolites in metabolic
networks have a decay outflow reaction. The first main result, discussed in Section 4,
characterizes the solvability of P (r′) = 0 in terms of Child Selections.
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Theorem. The multilinear homogeneous polynomial

P (r′) := detG(r′)

has a positive root r̄′ > 0 if and only if there exist two Child Selections J1, J2 such
that

αJ1αJ2 < 0.

The above theorem characterizes the networks admitting a singular Jacobian. As
stated in 1.1, genericity of saddle-node bifurcations suggests that singular Jacobians
indicate a nondegenerate bifurcation in most applications. However, [41] presents a
“pathological” network whose Jacobian G possesses either no or multiple eigenvalue
zero, for any choice of monotone chemical functions f . Even if rare and unexpected,
such a case must be technically excluded. The second main result, Theorem 4.3, pro-
vides a sufficient structural condition to have a saddle-node bifurcation. We define a
saddle-node pair (SN-pair) of Child Selections, satisfying a further algebraic condition
excluding multiple eigenvalues zero. The presence of an SN-pair of Child Selections
in the network guarantees the bifurcation behavior. Theorem 4.3 essentially reads:
If the network possesses an SN-pair of Child Selections, then the network admits a
saddle-node bifurcation. The bifurcation parameter λ is introduced parametrizing one
single reaction function fj , identified by an SN-pair of Child Selections.

The paper is organized as follows: Section 2 formalizes the mathematical setting,
and Section 3 introduces the language of Child Selections. The main results are pre-
sented in Section 4. Sections 5, 6, 7, and 8 build up the arguments needed to prove
the main results. In particular, Section 5 discusses networks possessing an eigen-
value zero; Section 6 addresses the multiplicity of such eigenvalue; Section 7 presents
the unfolding of the bifurcation; Section 8 reads the results with explicit parameter
choices for Hill and Michaelis-Menten kinetics, serving both as a specific example and
as a general procedure on how to implement the results in given dynamical models.
Section 9 lists four examples: 9.1 a network motif giving rise to saddle-node bifur-
cation; 9.2 a saddle-node bifurcation identified in the central carbon metabolism of
E.coli ; 9.3 a mass-action example; 9.4 an example of a network that admits only a
degenerate saddle-node when endowed with Michaelis-Menten. Section 10 concludes
the paper with the discussion. Section 11 lists all proofs.

2. Setting. A chemical reaction network Γ is a pair of sets {M,E}: M is the
set of chemical species or metabolites, and E is the set of reactions. Both sets are
finite with cardinalities |M| = M and |E| = E. Letters m,n ∈M and j, h ∈ E refer
to species and reactions, respectively.

A reaction j is an ordered association of two positive linear combinations of
species:

(2.1) j : sj1m1 + ...+ sjMmM −→
j

s̃j1m1 + ...+ s̃jMmM .

The nonnegative real coefficients sj , s̃j are called stoichiometric coefficients. Chemical
networks often deal with integer stoichiometric coefficients. The reactants (resp.,
products) of the reaction j are the species appearing at the left (resp., right) of (2.1)
with nonzero stoichiometric coefficient. Chemical systems are often open systems:
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inflow reactions are then reactions with no reactants (sjm = 0 for every m) and
outflow reactions are reactions with no products (s̃jm = 0 for every m). The M × E
stoichiometric matrix S is the matrix of all ordered stoichiometric coefficients:

(2.2) Smj := s̃jm − sjm.

This way we assign a fixed order to each reaction: we model a reversible reaction

j : A+ 2B ⇌
j
A+ 2C

simply as two irreversible reactions

(2.3) j1 : A+ 2B −→
j1

A+ 2C and j2 : A+ 2C −→
j2

A+ 2B.

We use the notation Sj for the column of the stoichiometric matrix S associated to
the reaction j. For example, in a network of four species {A,B,C,D}, reaction j1 in
(2.3) is represented as the jth1 column of the stoichiometric matrix S as

Sj1 =

j1


A 0
B −2
C 2
D 0

.

Let x ≥ 0 be the M -vector of chemical concentrations. Under the assumption that
the reactor is well mixed, spatially homogeneous, and isothermal, the dynamics x(t)
of the concentrations satisfy the following system of ODEs:

(1) ẋ = g(x) := Sf(x),

where S is the M ×E stoichiometric matrix (2.2) and f(x) is the E-vector of the re-
action functions. Without any reactant, we consider as constant the reaction function
of inflow reactions jf :

fjf (x) ≡ Fjf .

For any other reaction j, we only require that f is monotone chemical, as defined in
1.2.

3. Child Selections and Partial Child Selections. We introduce the main
tools.

Definition 3.1 (Child Selections [9]). A Child Selection is an injective map
J : M −→ E, which associates to every species m ∈M a reaction j ∈ E such that m
is a reactant of reaction j.

The notation j ∈ J indicates that there exists a species m ∈M such that j = J(m).
Let now SJ indicate the matrix whose mth column is the J(m)th column of S. In
particular, the columns of SJ correspond one-to-one and following the order to the
reactions

J(m1), J(m2), ... , J(mM−1), J(mM ).
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We associate to each Child Selection J the coefficient

αJ := detSJ.

Let G := ∂xg(x) indicate the Jacobian matrix of (1.1). The determinant of G can be
expressed in terms of Child Selections [9, 40]:

(3.1) detG =
∑
J

αJ ·
∏

m∈M

f ′
J(m)m(x),

The sum runs on all Child Selections. Let us consider the matrix G symbolically,
i.e., we consider the nonvanishing partial derivatives f ′

J(m)m as independent positive

variables r′jm := f ′
J(m)m. We then interpret (3.1) as a multilinear homogenous poly-

nomial of order M , in the variables r′. The notation r′[J] indicates the monomial of
the variables r′jm = r′J(m)m. That is,

r′[J] :=
∏

m∈M

r′J(m)m.

In this sense,

(3.2) P (r′) := detG(r′) =
∑
J

αJr[J]

is the symbolic version of polynomial (3.1).

We call αJ the behavior coefficient. Depending on the sign of αJ we classify a
Child Selection as follows. We call a Child Selection J zero if αJ = 0. On the contrary,
we call J a nonzero Child Selection if αJ ̸= 0. In the latter case, we say that J is
good if signαJ = (−1)M , and bad otherwise. To clarify the naming, let us consider
a system that possesses a single stable equilibrium for any choice of f . This requires
the Jacobian of such equilibrium to have either only eigenvalues with negative real
part or pairs of purely imaginary complex conjugated eigenvalues, and it excludes
saddle-node bifurcations, of course. Assuming at least one eigenvalue with negative
real part, the sign of a nonsingular Jacobian is

sign detSR = (−1)M .

Via (3.2), this “stable” sign is automatically implied if there are no bad Child Selec-
tions. In the opposite direction, a loss of stability of an equilibrium via a sign-change
of a single eigenvalue necessarily implies the existence of at least one bad Child Selec-
tion. Furthermore, any Child Selection naturally identifies a subnetwork consisting
only of reactions j ∈ J(M). In [40], the behavior of any Child Selection has been
structurally characterized. That analysis showed that certain classes of Child Selec-
tions, commonly found in metabolic networks, are always good. As a consequence, we
observe a clear predominance of good Child Selections in metabolic networks, whereas
the few bad Child Selections hint at stability change and bifurcations.

A natural distance can be assigned to the set of Child Selections.

Definition 3.2 (Distance of Child Selections). Let J1,J2 be two Child Selections.
The distance d(J1,J2) is the number of species m ∈M such that J1(m) ̸= J2(m).
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Remark 3.3. In literature, this distance is often called Hamming distance [29].

This distance admits a natural concept of minimality, in the following sense.

Definition 3.4 (Minimal distance). Let J1, J2 be two nonzero Child Selections
at distance d = δ. We say that J1 and J2 are at minimal distance if any Child
Selection J3 such that

(3.3)

{
d(J1,J3) < δ

d(J2,J3) < δ

is zero, i.e., αJ3
= 0.

Remark 3.5. The above definition always applies if J1 and J2 are at distance
d = 1, since no Child Selection J3 satisfies (3.3).

We conclude this section with a related concept: the Partial Child Selections.

Definition 3.6 (Partial Child Selections). A Partial Child Selection J∨m is an
injective map:

J∨m : M \ {m} −→ E,

associating to each species n ̸= m a reaction j such that n is a reactant of j.

Let us pick a metabolite mi and consider 1, ..., i, ...M without loss of generality. In
analogy to the submatrix SJ for a Child Selection J, the expression SJ∨mi

indicates
the M × (M − 1) matrix with columns corresponding one-to-one, and following the
order, to the reactions

J∨mi(m1), ... , J
∨mi(mi−1), J

∨mi(mi+1), ... , J
∨mi(mM ).

The first column is the stoichiometric column Sj1 of the reaction j1 = J∨mi(m1) and
the ith column is the stoichiometric column Sji of the reaction ji = J∨mi(mi+1), and
so on. We associate to each Partial Child Selection J∨m the behavior coefficient

βJ∨m := detSJ∨m

∨m ,

where the notation SJ∨m

∨m indicates the (M −1)× (M −1) matrix obtained from SJ∨m

by removing the mth row. If the behavior coefficient βJ∨m is zero (resp., nonzero) we
call the Partial Child Selection J∨m zero (resp., nonzero), accordingly.

4. Main results. The first result is a characterization of networks that admit a
singular Jacobian.

Theorem 4.1. The multilinear homogeneous polynomial

P (r′) := detG(r′)

has a positive root r̄′ > 0 if and only if there exist two Child Selections J1, J2 such
that

αJ1αJ2 < 0.

Theorem 4.1 is the structural characterization of a necessary spectral condition for a
saddle-node bifurcation. However, the existence of two Child Selections J1, J2 with
αJ1

αJ2
< 0 does not guarantee that there exists a positive root r̄′ of P (r′) such that

the associated Jacobian G(r̄′) has an algebraically simple eigenvalue zero. See [41] for
a counterexample. For the simplicity, we need a further condition.
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Definition 4.2 (SN-pair of Child Selections). We call two nonzero Child Selec-
tions J1, J2 a saddle-node pair (SN-pair) if the following conditions all hold true:

1. J1 and J2 are at minimal distance;
2. αJ1αJ2 < 0;
3. there exists a species m̃ with J1(m̃) ̸= J2(m̃) and a nonzero Partial Child

Selection J∨m̃ such that J∨m̃(n) = J1(n) or J
∨m̃(n) = J2(n) for every n ̸= m̃.

We can now state the main result of this paper.

Theorem 4.3. Assume that the network possesses an SN-pair of Child Selections
J1,J2. Then there exists a choice of monotone chemical functions f such that the
associated dynamical system

ẋ = Sf(x, λ)

undergoes a saddle-node bifurcation at a positive equilibrium x̄ for a bifurcation value
λ∗. The bifurcation parameter λ parametrizes the function fη of a reaction η such
that J1(m

∗) = η ̸= J2(m
∗), for a species m∗.

Theorem 4.3 states that the existence of an SN-pair of Child Selections is a suf-
ficient condition for the network to admit a saddle-node bifurcation. We derive the
following corollary that provides a method to identify bifurcation motifs in reaction
networks.

Corollary 4.4. Let a network Γ = (M,E) possess an SN-pair of Child Se-
lections (J1,J2) and let Γ̃ = (M̃, Ẽ) be a network having Γ as a subnetwork: i.e.,
M ⊆ M̃, E ⊆ Ẽ. Assume there exists a pair of nonzero Child Selections of Γ̃,
(J̃1, J̃2), at minimal distance in Γ̃, such that{

J̃1(m) = J1(m)

J̃2(m) = J2(m)
,

for every m ∈M, and J̃1(m) = J̃2(m) for every m ∈ M̃ \M. Then (J̃1, J̃2) form an
SN-pair of Child Selections of Γ̃ and, in particular, Γ̃ admits a saddle-node bifurcation.

Remark 4.5. In the case of minimal distance d = 1, the minimality in the sub-
network Γ is always inherited by Γ̃.

In the following sections, we will present all the arguments that prove the results.

5. Eigenvalues zero. We solve P (r′) = 0 by considering a rescaling of the
variables r′ with the introduction of a further parameter ε > 0. The rescaling identifies
two “leading” monomials corresponding to two Child Selections at minimal distance.

Lemma 5.1. Let J1 and J2 be two Child Selections at minimal distance. Then
there exists an ε-rescaling of r′ such that

(5.1) P (r′) = αJ1
r′[J1] + αJ2

r′[J2] + q(ε),

where q(ε) is a polynomial with q(0) = 0.

Throughout the paper, we extensively refer to such ε-rescaling. If αJ1αJ2 < 0,

αJ1
r′[J1] = −αJ2

r′[J2]

is a positive solution of P = 0 at the limit ε = 0. In the proof of Theorem 4.1, we
employ the implicit function theorem to extend this solution to positive ε > 0. The
bridge between Lemma 5.1 and Theorem 4.1 is then provided by the following lemma.
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Lemma 5.2. There exist two Child Selections J1 and J2 with αJ1αJ2 < 0 if and
only if there exist two Child Selections J3 and J4 at minimal distance with αJ3αJ4 < 0.

Lemma 5.2 is inspired by Balinski’s theorem on convex polyhedra [4]. Informally:
consider the Newton polytope N generated by the determinant polynomial P (r′). By
convexity, an expansion of the type (5.1) is possible if and only if there is an edge e
of N adjacent to the vertices associated to J1 and J2. Moreover, the expansion (5.1)
provides a positive root of P (r′) if and only if the coefficient sign of adjacent vertices
of e is opposite. There is such an edge if and only if there are vertices of different
sign: in fact, Balinski’s theorem states the connectedness of the graph associated to
N ; hence it is enough to consider any path joining two vertices of different sign and
find the first sign-switch. Even though this context is inspirational for the results, we
proceed in a more elementary setting and we do not require any knowledge of convex
polytopes.

6. Algebraic multiplicity. Theorem 4.1 characterizes a network for which the
Jacobian G of the associated system (1.1) admits a zero eigenvalue. To address the
multiplicity of such an eigenvalue zero, we study the adjugate matrix (transpose of
the cofactor matrix) of G, AdjG. We recall two propositions from [41].

Proposition 6.1 ([41]). The Jacobian G(r′) has an algebraically simple eigen-
value zero at r̄′ > 0 if and only if

(6.1)

{
P (r̄′) := detG(r̄′) = 0;

A(r̄′) := trAdjG(r̄′) ̸= 0.
.

In analogy to the expansion (3.2) for P (r′), the polynomial A(r′) can be expanded
along Partial Child Selections.

Proposition 6.2 ([41]). Let G be the Jacobian matrix of the system (1.1) and let
AdjGm

m indicate the mth diagonal entry of its adjugate. Then the following expansion
holds:

(6.2) AdjGm
m(r′) =

∑
J∨m

βJ∨m r′[J∨m],

where J∨m are Partial Child Selections and the notation r′[J∨m] indicates the multi-
linear monomial of degree M − 1:

r′[J∨m] =
∏
n ̸=m

r′J∨m(n)n.

In particular,

A(r′) := trAdjG(r′) =
∑
m∈M

∑
J∨m

βJ∨m r′[J∨m].

The paper [41] also presents a degenerate network for which

detG(r̄′) = 0 ⇒ trAdjG(r̄′) = 0,

and hence the system (6.1) is never satisfied. The presence of an SN-pair of Child
Selection excludes this degeneracy, as the following lemma states.

Lemma 6.3. Assume that the network possesses an SN-pair of Child Selections.
Then the polynomial system (6.1) has a positive solution r̄′ > 0. In particular, at r̄′

the Jacobian G(r̄′) possesses an algebraically simple eigenvalue zero.
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7. Nonlinear unfolding. Let us consider a network with an SN-pair of Child
Selections J1 and J2. Lemma 6.3 guarantees the existence of a positive choice r̄′ > 0,
such that the Jacobian G(r̄′) possesses an algebraically simple eigenvalue zero, i.e.,
spectral condition (SN1) of 1.1. The nonlinear unfolding comprises conditions (SN2)
and (SN3). Let η be a reaction such that J1(m

∗) = η ̸= j2 = J2(m
∗), for a species m∗.

We unfold the bifurcation by a λ-parametrization of the reaction η. In particular, the
bifurcation parameter λ appears in the reaction function fη, only. To the bifurcation
point (x̄, λ∗) corresponds the bifurcation value r̄′. The nondegeneracy condition (SN2)
requires that the derivative of the vector field with respect to λ is not in the range of
the Jacobian at the bifurcation point:

⟨w, ∂λg(x̄, λ∗)⟩ ≠ 0,

for w left eigenvector of the Jacobian G(r̄′). The first consequence of our parame-
trization choice is that the vector ∂λg is parallel to the stoichiometric vector Sη of
reaction η and

⟨w, ∂λg(x̄, λ∗)⟩ ≠ 0 ⇔ ⟨w, Sη⟩ ≠ 0.

We have the following lemma.

Lemma 7.1 (SN2). Assume that the network possesses an SN-pair of Child Se-
lections J1 and J2. Let η be a reaction such that J1(m

∗) = η ̸= j2 = J2(m
∗). Then

there exists a positive root r̄′ > 0 of (6.1) such that

⟨w, Sη⟩ ≠ 0,

where w is a left kernel vector of the Jacobian G(r̄′) and Sη is the stoichiometric
column of reaction η.

Lemma 7.1 shows that condition (SN2) is always satisfied by our choice of f(x, λ)
at the bifurcation point (x̄, λ∗). The last step is discussing the tangency of the curve of
equilibria at the bifurcation point. Condition (SN3) states that a quadratic tangency
is sufficient.

Lemma 7.2 (SN3). Let r̄′ be any positive root of the system (6.1), with w and v
respectively left and right kernel vectors of the Jacobian G(r̄′). Then

wT ∂2
xg(x̄, λ

∗)[v, v] ̸≡ 0,

as a function of the second derivatives r′′ = f ′′(x̄).

Lemma 7.2 concludes that the system admits a saddle-node bifurcation, if we
have enough parametric freedom to assign r′′ freely and independently from r and r′.
We discuss this in detail in Section 8, where we present the applicability of the results
for two kinetics of interest.

8. Michaelis-Menten and Hill kinetics. In this section, we apply the results
to given kinetics. We discuss Hill kinetics, as a general mathematical form that
comprises also Michaelis-Menten and mass action kinetics as particular cases. Hill
kinetics is a relevant example of monotone chemical functions. The mathematical
form of a reaction j according to Hill is:

(8.1) fj(x) := aj
∏

m∈M

(
x
cjm
m

(1 + bjmxcjm
m )

)sjm

,
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where sjm is the stoichiometric coefficient of species m as reactant of the reaction j,
and aj , b

j
m, cjm are positive parameters. Typically, aj , b

j
m are real, while cjm is an in-

teger, though irrelevant for the present mathematical description. Michaelis-Menten
kinetics fixes cjm = 1 for all j,m. Mass action kinetics is recovered by considering the
limit case bjm = 0, cjm = 1 for all j,m. We write a to refer to the set of parameters
aj for all reactions j. Analogously, we write b (resp., c) for the set of parameters bjm
(resp., cjm), for all j and m.

The results of this section can be summarized as follows: at any concentration
value x̄, the parametric freedom of Michaelis-Menten allows us to consider the values r
of the function f , and the values r′ of their derivatives f ′ as independent parameters,
via a careful choice of parameters a,b. Contrarily, the value of the second derivatives
r′′ cannot be independently chosen. As a consequence, under the assumptions of The-
orem 4.3, we can always conclude that the network endowed with Michaelis-Menten
kinetics possesses a positive equilibrium satisfying conditions (SN1) and (SN2) of
Theorem 1.1. This is presented in Theorem 8.1. However, we may never be able to
find parameters that jointly satisfy also (SN3) of 1.1. We present in Example 9.4 a
network showing such degeneracy. Theorem 8.2 provides then a sufficient condition
to exclude this degeneracy in a Michaelis-Menten system. The degeneracy can always
be avoided in the more general class of Hill kinetics, by a proper choice of the further
available parameters c, Theorem 8.3. In contrast, our network assumptions do not
conclude a bifurcation result in the case of mass action kinetics. Nevertheless, Ex-
ample 9.3 presents a mass-action system undergoing a saddle-node bifurcation, where
the construction is inspired by the present results.

We first present the two theorems for Michaelis-Menten kinetics, hence fixing
cjm = 1 for all reactions j and species m in the nonlinearity (8.1). We are thus left
only with the choice of a,b.

Theorem 8.1. Assume that the network possesses an SN-pair of Child Selections
J1,J2. Let η be a reaction such that J1(m

∗) = η ̸= J2(m
∗), for the species m∗.

Choose as bifurcation parameter λ := bηm∗ . Then there exists a choice of a,b such
that the Michaelis-Menten system admits a positive equilibrium satisfying conditions
(SN1) and (SN2) of Theorem 1.1.

Michaelis-Menten kinetics does not guarantee a parameter choice such that the curve
of equilibria at the bifurcation point has a quadratic tangency (SN3). For this rea-
son, we present a condition that characterizes the nondegeneracy of a saddle-node
bifurcation under Michaelis-Menten kinetics for the case where the SN-pair of Child
Selections is at distance d = 1.

Theorem 8.2. Let (J1,J2) be an SN-pair of Child Selections at distance d = 1.
Let m∗ be the unique species such that J1(m

∗) = η ̸= j2 = J2(m
∗). Choose as

bifurcation parameter λ = bηm∗ . Assume the following condition holds:

(8.2)
αJ2

r̄η

(
1 +

1

sηm∗

)
̸= −αJ1

r̄j2

(
1 +

1

sj2m∗

)
,

where r̄η and r̄j2 indicate the equilibrium rates (1.2) relative to reaction η and j2,
respectively. Then, there exists a choice of a,b such that the Michaelis-Menten system
undergoes a saddle-node bifurcation according to the parameter λ.

In particular, Theorem 8.2 states that the degeneracy of the saddle-node depends
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on the ratio r̄η/r̄j2 , which is not uniquely fixed in most applications. The degeneracy
can be thus most often avoided by a proper choice of the equilibrium rates r. See
again Example 9.4. Child Selections at greater minimal distance d > 1 possess a quite
special structure that will be addressed and described in a future publication. Such
structure indicates also that the case d = 1 is the most relevant, as it is the most
likely to occur. See also the related discussion in Section 10. A general version of
Theorem 8.2 for minimal distance d > 1 requires the understanding of such structure,
which exceeds the purposes of the present paper, and it is thus not addressed here.

For the more general Hill kinetics, we can choose also parameters c ̸= 1. The
result reads as follows.

Theorem 8.3. Assume that the network possesses an SN-pair of Child Selections
J1,J2. Let η be a reaction such that J1(m

∗) = η ̸= J2(m
∗), for the species m∗.

Choose as bifurcation parameter λ := bηm∗ . Then there exists a choice of a,b, c such
that the Hill system undergoes a saddle-node bifurcation according to the parameter
λ.

Let us be explicit in the parameter choice: assume there exist positive x̄, r̄, r̄′

such that:

(8.3)


Sr̄=0;

detG(r̄′) = 0;
r̄j
r̄′jm
≥ x̄m

sjm
for every reaction j and species m.

Note that the three constraints (8.3) can be always satisfied for a network admitting a
choice r̄, r̄′ satisfying the first two constraints: the third constraint follows by choosing
big enough equilibrium flux r̄. We fix

(8.4) 0 < bjm :=

(
r̄j
r̄′jm

sjm
x̄m
− 1

)
1

x̄m
,

and

(8.5) aj := r̄j
∏

m∈M

(
x̄
cjm
m

(1 + bjmx̄cjm
m )

)−sjm

.

A straightforward computation shows that the Hill function

fj(xm) := aj
∏
m

(
x
cjm
m

(1 + bjmxcjm
m )

)sjm

satisfies {
fj(x̄m) = r̄j ;

fjm(x̄m) = r̄′jm.
.

Note that (8.4) and (8.5) do not require a fixed choice of c and hence hold true also
for Michaelis-Menten, i.e. c = 1. Furthermore, parameters c can be used to nudge

wT ∂2
xg(x̄, λ

∗)[v, v]

away from the degenerate value 0, in the Hill case. We discuss it in detail in the proof
of Theorem 8.3.
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9. Examples.

9.1. Example I: Reversible feedback cycles. We present a family of net-
works admitting saddle-node bifurcations. Consider a reversible feedback cycle of
length M :

m1

1
−−→←−−

4
m2

3
−−→←−−

6
...

2M−3
−−→←−−
2M

mM

2M−1
−−→←−−

2
2m1.

The feedback cycles generalize autocatalytic processes: walking along the cycle from
left to right, one single molecule of m1 produces two molecules of m1, while from right
to left, two molecules of m1 reduce to one single molecule of m1. We show that such
a structure admits saddle-node bifurcations. More specifically, we can identify 2M
different parameters triggering a saddle-node bifurcation. The system ofM differential
equations reads:

ẋ1 = −r1(x1)− 2r2(x1) + r4(x2) + 2r2M−1(xM );

ẋi = −r2i−1(xi)− r2i(xi) + r2i+2(xi+1) + r2i−3(xi−1), for i = 2, ...,M − 1;

ẋM = −r2M−1(xm)− r2M (xM ) + 2r2(x1) + r2M−3(xM−1).

where xi is the concentration of mi. An equilibrium is given by

rj ≡ r̄ ∈ R>0, for every j.

There are only two nonzero Child Selections:{
J1(xi) = r2i−1, for every i = 1, ...,M ;

J2(xi) = r2i, for every i = 1, ...,M.

Since there are no other nonzero Child Selections, J1 and J2 are obviously at minimal
distance d(J1,J2) = M . The behavior coefficients are opposite: αJ1

= (−1)M−1 and
αJ2 = (−1)M , thus

detG(r′) = (−1)M−1r′[J1] + (−1)Mr′[J2].

The determinant is zero if and only if r′[J1] = r′[J2]. Any Partial Child Selection

J∨m(M \ {m}) = Ji(M \ {m}),

with i = 1 or i = 2, is nonzero. Hence J1 and J2 form an SN-pair of Child Selections,
and the system admits a saddle-node bifurcation, via Theorem 4.3.

To exemplify further, we compute all conditions explicitly under the assumption
of Michaelis-Menten kinetics. We operate as described in Section 8 choosing arbitrary
values. We fix x̄i = 1 for every i, the values r̄j = 4 for every j, and r̄jm = 1 for every
j and m. Computing a, b as in (8.4), (8.5), the reaction functions fj read:

fj(x) =

{
256
(

x1

1+7x1

)2
if j = 2;

16 xi

1+3xi
if j = 2i− 1 or j = 2i, j ̸= 2.
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We compute the Jacobian G(r̄′) at r̄′ = 1.

G(1) =



−3 1 0 ... 0 0 2
1 −2 1 ... 0 0 0
0 1 −2 ... 0 0 0
... ... ... ... ... ... ...
0 0 0 ... −2 1 0
0 0 0 ... 1 −2 1
1 0 0 ... 0 1 −2


,

with right kernel vector v = (1, 1, ..., 1)T and left kernel vector w = (M,M+1, ..., 2M−
1)T . Let us first check the condition (SN3),

wT ∂2
xg(x)[v, v] = wT

∑
i

∂2g

(∂xi)2
(vi)

2.

A simple computation shows:

(M,M + 1, ..., 2M − 1)
∂2g

(∂xi)2
= f ′′

(2i−1)mimi
− f ′′

(2i)mimi
,

which is nonzero if and only if i = 1. In fact, note that f2i ≡ f2i−1, unless i = 1. In
the case of i = 1, we have

f ′′
1m1m1

− f ′′
2m1m1

= −13

8
+

3

2
= −1

8
̸= 0,

and thus

wT ∂2
xg(x)[v, v] = wT ∂2g

(∂x1)2
̸= 0.

Via Lemma 7.1, or a direct check, we have that

⟨w, Sj⟩ ≠ 0,

for any reaction j: the condition (SN2) is satisfied. In conclusion, the saddle-node

bifurcation point can be unfolded along 2M different parameters b j
mi , for i = 1, ...,M ,

j = 2i or j = 2i− 1.

9.2. Example II: glyoxylate cycle vs TCA cycle in E.coli . The central
carbon metabolism is a fundamental metabolic process in living beings. An important
part of this process is the tricarboxylic acid (TCA) cycle, a cyclic sequence of reactions
generating energy in form of ATP. Described for the first time in 1957 by Kornberg
and Krebs, the glyoxylate cycle is a suggested variation of the TCA cycle. We refer
to [26] for more detailed biological explanations. We consider the network structure
combining TCA and glyoxylate cycle, as presented in [26]. Such model does not take
in account outflow reactions, which are crucial for a dynamical analysis and indeed
abundantly present in dynamical models of metabolism [10, 24]. Thus we further
consider outflow reactions as presented in a general model of the Central Carbon
Metabolism [24]. We show that such structure admits a saddle-node bifurcation. The
structure is the following:
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Above, arrows indicate reactions. Inputs of the arrows are reactants and outputs
are products. The continuous arrows refer to reactions present in both TCA and
glyoxylate cycle. The sparsely dotted arrows indicate reactions in the TCA cycle
not in the glyoxylate cycle: reactions 1, 3, and 4. On the contrary, dotted-dashed
arrows indicate reactions of the glyoxylate cycle that do not appear in the TCA cycle:
reactions 2 and 11. Reactions 3, 8, and 12 are outflow reactions considered in [24].
The system of differential equations is the following:

ẋA = −r1(xA)− r2(xA) + r10(xG);

ẋB = r1(xA)− r3(xB)− r4(xB);

ẋC = r4(xB) + r2(xA)− r5(xC);

ẋD = r5(xC)− r6(xD);

ẋE = r6(xD)− r7(xE) + r11(xH , xI);

ẋF = r7(xE)− r8(xF )− r9(xF , xI);

ẋG = r9(xF , xI)− r10(xG);

ẋH = r2(xA)− r11(xH , xI);

ẋI = −r9(xF , xI)− r11(xH , xI)− r12(xI) + FI ,

with



A
B
C
D
E
F
G
H
I


=



Isocitrate

α-Ketoglutarate

Succinate

Fumarate

Malate

Oxaloacetate

Citrate

Glyoxylate

Acetate


.

Fix arbitrarily r̄3, r̄4, r̄8, r̄12 > 0. The equilibrium constraints are:

(9.1)



FI = 3r̄3 + r̄4 + 2r̄8 + r̄12;

r̄1 = r̄3 + r̄4;

r̄2 = r̄3 + r̄8;

r̄3 = r̄3;

r̄4 = r̄4;

r̄5 = r̄3 + r̄4 + r̄8;

r̄6 = r̄3 + r̄4 + r̄8;



r̄7 = 2r̄3 + r̄4 + 2r̄8;

r̄8 = r̄8;

r̄9 = 2r̄3 + r̄4 + r̄8;

r̄10 = 2r̄3 + r̄4 + r̄8;

r̄11 = r̄3 + r̄8;

r̄12 = r̄12.

We identify an SN-pair of Child Selections. Consider

J1(A,B,C,D,E, F,G,H, I) = (1, 3, 5, 6, 7, 9, 10, 11, 12),

and
J2(A,B,C,D,E, F,G,H, I) = (2, 3, 5, 6, 7, 9, 10, 11, 12).

J1 and J2 are
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1. at minimal distance 1: only the species A is such that J1(A) ̸= J2(A);
2. αJ1

= −1 and αJ2
= +1;

3. the Partial Child Selection

J∨A(B,C,D,E, F,G,H, I) = (3, 5, 6, 7, 9, 10, 11, 12)

has nonzero coefficient
βJ∨A = 1 ̸= 0.

Hence J1 and J2 form an SN-pair of Child Selections. The system thus admits a
saddle-node bifurcation according to a parametrization of either reaction 1 or 2. Re-
actions 1 and 2 mark the difference between the TCA cycle and the glyoxylate cycle.
Even when endowed with Michaelis-Menten kinetics, via Theorem 8.2, the system ex-
hibits a saddle-node bifurcation. In this case, it is required to choose r̄1 ̸= r̄2, which
is allowed by the equilibrium constraints (9.1).

9.3. Example III: Mass action. The law of mass action for a reaction j as-
sumes

(9.2) fj(x) := kj
∏

m∈M

x
sjm
m ,

where kj > 0 is a positive constant and sjm is the stoichiometric coefficient of the
species m as reactant of the reaction j. Assuming (9.2) for all reaction functions
fj translates (1.1) into a polynomial system. In contrast to Michaelis-Menten and
Hill, a striking feature is that each reaction function fj is parametrized by only one
parameter kj . This impedes our approach, which assumes enough parametric freedom
to discuss separately the equilibrium constraints from the bifurcation constraints: it
is not the case for mass action. In particular, there is not enough choice of parameters
to harness the value of the derivative

(9.3) f ′
jm(x) = sjm x

(sjm−1)
m kj

∏
n ̸=m

x
sjn
n =

sjm
xm

fj ,

once the value rj = fj(x) is fixed. It is not possible using without concern the value
xm as a parameter, as xm appears also in the mathematical expression of any other
derivative fhm, for a reaction h ̸= j where m participates as reactant. For this reason,
the mass-action case deserves further dedication and work, not addressed in this pa-
per. Nevertheless, we derive two observations and produce an example of a network
undergoing a saddle-node bifurcation under the assumption of mass action. We keep
this discussion as informal and self-contained as possible.

Essentially, our scheme to detect saddle-node bifurcations is to find two Child Se-
lections J1, J2 with opposite behavior and at minimal distance. Firstly, a trivial nec-
essary condition to have a saddle-node is the nonlinearity of the system: for linear sys-
tems, condition (SN3) of Theorem 1.1 is never satisfied. Under the assumption of mass
action, this requires reactions with more than one reactant or with a stoichiometric
coefficient bigger than one for the unique reactant. In spirit with the present results,
the nonlinearity should be precisely in reactions j with J1(m

∗) = j ̸= J2(m
∗), for a

species m. Secondly, in the mass-action case, we are not able to discuss independently
equilibrium constraints and bifurcation constraints, as shown in (9.3). Thus, it is help-
ful having constant inflow reactions to the speciesm∗ with J1(m

∗) = j ̸= J2(m
∗). The
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constant inflow reactions help solve the equilibrium equations, but they do not play
any role in the bifurcation conditions, disappearing upon differentiation. Following
these two observations we present the following example:

−→
FA

A −→
1

−→
FB

B −→
3

A+B −→
2

C −→
4

2A+ 2B

where reactions FA, FB are inflows and reactions 1, 3 are outflows to species A,B,
respectively. From the network we derive the following system of differential equations:

ẋA = −f1(xA)− f2(xA, xB) + 2f4(xC) + FA = −k1xA − k2xAxB + 2k4xC + FA;

ẋB = −f3(xB)− f2(xAxB) + 2f4(xC) + FB = −k3xB − k2xAxB + 2k4xC + FB ;

ẋC = f2(xAxB)− f4(xC) = k2xAxB − k4xC .

Note that reaction 2 has two reactants, and hence the function f2 = k2xAxB is non-
linear. Fix arbitrarily r̄1, r̄2, r̄3 > 0 such that r̄2 < r̄1, r̄3; the equilibrium constraints
read: 

FA

FB

f1
f2
f3
f4

 =


r̄1 − r̄2
r̄3 − r̄2

r̄1
r̄2
r̄3
r̄2


The Jacobian of the system is

G =

−k1 − k2xB −k2xA 2k4
−k2xB −k3 − k2xA 2k4
k2xB k2xA −k4

 ,

with detG = −k1k3k4 + k1k2k4xA + k2k3k4xB . Let us consider the point x̄ =
(x̄A, x̄B , x̄C) = (1, 1, 1), and the rates k1 = k3 = 2, k2, k4 = 1. This solves detG = 0
with a simple eigenvalue zero and fixes FA = FB = 1. Let us consider k2 as a bifur-
cation parameter, and thus k∗2 = 1 as its bifurcation value. The Jacobian G at the
bifurcation point reads:

G|(x̄,k∗
2 )

=

−3 −1 2
−1 −3 2
1 1 −1


with right kernel vector v = (1, 1, 2)T and left kernel vector w = (1, 1, 4). Condition
(SN2) is satisfied:

⟨w, ∂k2
g⟩ = (1, 1, 4)(−1,−1, 1)T ̸= 0,

as well as (SN3):
wT ∂2

xg[v, v] = (1, 1, 4)(−2,−2, 2)T ̸= 0.

The fact that up to a constant the two conditions (SN2) and (SN3) are the same is
not a coincidence, but the central idea of this example: the only nonlinear reaction
function f2 is also the only reaction function where the bifurcation parameter ap-
pears, hence ∂k2

g must be parallel to ∂2
xg[v, v]. In conclusion, for k1 = k3 = 2 and

FA = FB = k4 = 1, the equilibrium (xA, xB , xC) = (1, 1, 1) undergoes a saddle-node
bifurcation for the parameter k2 = 1. In particular, for k2 < 1 we have multistation-
arity.
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9.4. Example IV: Degenerate saddle-node for Michaelis-Menten kinet-
ics. This example presents a network that, when endowed with Michaelis-Menten
kinetics, admits an equilibrium x̄ satisfying conditions (SN1) and (SN2) but for which
(SN3) is never satisfied. The network is the following:

←−
0

A −→
1

B −→
2

2A

where reaction 0 is an outflow from A. The system possesses only two Child Selections
J1 and J2:

J1(A,B) = (0, 2) and J2(A,B) = (1, 2).

J1 and J2 form an SN-pair of Child Selections. In fact, they are at minimal dis-
tance d(J1,J2) = 1, αJ1αJ2 = 1 · (−1) = −1, and the unique Partial Child Selection
J∨A(B) = 2 is nonzero. Theorem 4.3 guarantees that there exist monotone chem-
ical functions such that the associated dynamical system undergoes a saddle-node
bifurcation according to a parametrization of the reaction η = 0 or η = 1. However,
when restricted to Michaelis-Menten kinetics the saddle-node is always degenerate.
Consider the associated system{

ẋA = −r0(xA)− r1(xA) + 2r2(xB);

ẋB = r1(xA)− r2(xB).

The equilibrium constraints fix r̄0 = r̄1 = r̄2, and hence condition (8.2) is never sat-
isfied.

However, the degenerate situation is easily fixable: let us consider the same system
with an added inflow to species A:

−→
FA

A.

The system of ODEs now reads{
ẋA = −r0(xA)− r1(xA) + 2r2(xB) + FA;

ẋB = r1(xA)− r2(xB),

with the equilibrium constraints:

r̄1 = r̄2 = r̄0 − FA.

Thus, for 0 < FA < r̄0, we have now equilibria for which r̄0 ̸= r̄1. The case FA = 0
recovers the degenerate example. If r̄0 ̸= r̄1 we have a nondegenerate saddle-node
bifurcation, even in the Michaelis-Menten case.

10. Discussion. We have presented a comprehensive saddle-node bifurcation
analysis for chemical reaction networks. Via a symbolic approach, we have analyzed
which networks admit the occurrence of a bifurcation behavior. This work has two
direct consequences. Theoretically, we have described the structures that guarantee
that the network can sustain multistationarity. Practically, we have identified the
proper parameters to unfold a saddle-node bifurcation.

The key structure we have described are SN-pairs of Child Selections, i.e., two
nonzero Child Selections (J1,J2) that satisfy three conditions:
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The network has two Child Selections with opposite behavior.

(1) ⇔

The network has two Child Selections at minimal distance with opposite behavior.

(2) “ ⇔ ”

The network admits a saddle-node bifurcation.

(3) ⇒

The network admits multistationarity.

Fig. 1. The conceptual map of this paper. Implication (1) is Lemma 5.2. Implication (2) is
technically only a necessary condition ⇐, but many “pathological” counterexamples are not biologi-
cally relevant, hence the implication is expected to be also sufficient in realistic networks. Implication
(3) concludes the logical chain by assessing multistationarity.

1. they are at minimal distance δ;
2. their behavior coefficient is opposite in sign: αJ1

αJ2
< 0;

3. a technical condition excluding multiple eigenvalues zero.
If the network possesses an SN-pair of Child Selections, then a saddle-node bifur-
cation occurs for a choice of monotone chemical functions f(x, λ) parametrized by
a single parameter λ. The bifurcation parameter λ parametrizes only the function
fη of an arbitrary reaction η = J1(m

∗) ̸= J2(m
∗), for one of the δ species m∗ with

J1(m
∗) ̸= J2(m

∗). The existence of a pair of Child Selections satisfying conditions (1)
and (2) above is only necessary for a bifurcation behavior. However, the identification
of a counterexample [41] to the sufficiency of conditions (1) and (2) suggests that this
is an issue for mathematicians, with seemingly no biological relevance. That is, for
realistic biological networks, conditions (1) and (2) above essentially characterize the
bifurcation behavior. On the other hand, the three conditions (1)–(3) are technically
only sufficient. See Figure 1 for a conceptual map.

Our symbolic approach considers the derivatives r′ of the reaction functions as
positive independent variables. We have applied a geometrical perturbation argument
with an ε-rescaling of the variables r′. At the limit ε = 0, the only nonzero variables
are the ones identified by the SN-pair (J1,J2) of Child Selections, that is:

r′jm ̸= 0 ⇔ (j,m) = (Ji(m),m) for i = 1, 2.

In this sense, the bifurcation behavior of the SN-pair of Child Selections is inherited
by the full network. Inheritance of dynamical features figures in recent works by Ba-
naji [5, 8]. However, these works have not yet discussed the inheritance of bifurcation
behavior, and focused on modified networks, rather than identifying some leading sub-
networks that encode the dynamics, as we did. In particular, any network for which
a pair of Child Selections is an SN-pair admits a saddle-node bifurcation. Corollaries
4.4 exploits and clarifies this idea, and can be used to find small and simple network
motifs for saddle-node bifurcation in larger networks.
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Network motifs connected to multistationarity have been discussed in the litera-
ture on various levels of abstraction and empiricism. A central role is often claimed
by autocatalysis [33]. Autocatalytic reactions are those in which at least one of the
products is also a reactant. For example, the reversible reaction

m
j+aut

−−→←−−
j−aut

2m

is autocatalytic. We refer to reaction j+aut as positively autocatalytic and to j−aut as
negatively autocatalytic. These ideas can be generalized to autocatalytic sequences of
reactions (feedback loops) or autocatalytic networks, leading to a more general concept
of autocatalysis, which is still under debate [1]. We do not enter here such a formal
discussion, but we observe that the results are consistent with the many independent
observations on the centrality of autocatalysis. In particular, positive autocatalysis
can trigger a saddle-node bifurcation and consequent multistationarity. Example 9.1
shows how reversible feedback loops admit saddle-node bifurcations. Such feedback
loops are a simple generalization of autocatalytic reactions and their connection with
multistationarity has been pioneered by Thomas [37] in a related context. Example
9.2 identifies a saddle-node bifurcation in the central carbon metabolism of E. coli.
Along the glyoxylate cycle, one molecule of Isocitrate transforms into two molecules,
similarly to j+aut. Example 9.3 contains two reactions

A+B −→
2

C −→
4

2A+ 2B,

with a clear analogy to j+aut. Example 9.4 contains a positive feedback loop of two
reactions

A −→
1

B −→
2

2A.

More simply, let us consider a toy network Γ with a single species A. The behavior
coefficient of any Child Selection on Γ is then just

αJ = detSJ = SAJ(A) = s̃
J(A)
A − s

J(A)
A .

Clearly, a Child Selection J is bad if and only if J(A) is positively autocatalytic.
This observation can be generalized to any dimension and highlights the connection
between positive autocatalysis and bad Child Selections. Previous work [40] argued
on the prevalence of good Child Selections in biochemical networks. In light of such
an argument, the mere presence of positive autocatalysis points to the first step of
the logical chain of Figure 1 and the consequent possibility of multistationarity. The
formalization of these presented arguments will be included in future work.

Realistic kinetic models of biochemical networks typically comprise different types
of kinetics [10]. In this paper, we have explicitly discussed the case of two kinet-
ics of interest: Michaelis-Menten and Hill kinetics, and identified the proper bifur-
cation parameters. In the presence of a SN-pair of Child Selections (J1,J2), the
bifurcation parameter is bηm∗ in (8.1) for any reaction η and species m∗ such that
η = J1(m

∗) ̸= J2(m
∗). We have shown that the parametric richness of Hill kinetics

always guarantees a saddle-node bifurcation behavior. On the contrary, for Michaelis-
Menten kinetics we can only guarantee the existence of an equilibrium such that con-
ditions (SN1)-(SN2) of Theorem 1.1 are satisfied, not necessarily (SN3). However,
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Theorem 8.2 provides a sufficient condition (8.2) for a nondegenerate saddle-node
bifurcation in the case of distance d(J1,J2) = 1. Condition (8.2) shows that the de-
generacy is quite unlikely, as it requires a uniquely determined equilibrium constraint
(1.2). Example 9.4 shows how an inflow reaction to m∗ already guarantees that there
exists a choice of equilibrium fluxes r such that (8.2) is satisfied. Finally, the analysis
for mass action kinetics is at present inconclusive, even though Example 9.3 presents
a mass-action system undergoing a saddle-node bifurcation according to the same
structural intuition of the present paper. Further work is needed to clarify it, along
the lines of the present contribution.

A natural combinatorial question arises with regard to SN-pairs of Child Selec-
tions (J1,J2): which structure is required for the case of minimal distance d(J1,J2) >
1? In Example 9.1 we have presented the case of reversible feedback cycles of length
M , which possesses an SN-pair of Child Selections at distance M . In a work in
preparation, we will characterize SN-pairs of Child Selections in terms of a reciprocal
permutation structure, generalizing the concept of reversible cycles. This observation
stresses how saddle-node bifurcations are triggered either by SN-pairs at distance
d = 1, or by special (thus recognizable!) structures. Note that even for Michaelis-
Menten kinetics we have a sufficient condition for saddle-node for the most relevant
case d = 1.

In conclusion we make a non-mathematical consideration. It is a strong impression
of the author that the bifurcation behavior is essentially characterized in realistic
biological networks by simple and recognizable structures, even though mathematics
includes much more complex options, and requires a thorough analysis and exclusion
of pathological cases. Such pathological cases are of minimal interest for biologists
but enhance the technical difficulties of the proofs and diminish the verbal strength
of the results. This empirical consideration calls for stronger interaction between
mathematicians and theoretical biologists to synthesize the results, with a skimming
of biologically irrelevant (but nevertheless mathematically challenging and intriguing)
cases, with the goal of obtaining a clearer picture of the bifurcation behavior in real-
world biochemical networks.

11. Proofs. ,

Proofs of Section 5 and Theorem 4.1: before proving Lemma 5.1, we prove
a further lemma.

Lemma 11.1. Let J1,J2 be two Child Selections at minimal distance δ. Then, for
every other nonzero Child Selection J3, there exists a species m∗ such that

(11.1)

{
J3(m

∗) ̸= J1(m
∗);

J3(m
∗) ̸= J2(m

∗).

Proof. Let D ⊆ M be the set of species m such that J1(m) ̸= J2(m). If there
exists m∗ ∈ M \ D such that J1(m

∗) ̸= J3(m
∗) we are done, since together with

J1(m
∗) = J2(m

∗) it implies (11.1). Consequently, let us assume J1(m) = J2(m) =
J3(m), for every m ∈ M \D. Take any m∗ ∈ D. We have (11.1). Indeed, assume
(11.1) does not hold. Without loss of generality we have J3(m

∗) = J1(m
∗), which

implies
d(J1,J3) ≤ δ − 1 < δ,
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and contradicts the assumption of δ being the minimal distance.

Proof of Lemma 5.1. For any r′jm ̸= r′Ji(m)m, for i = 1, 2, fix the value

r′jm = ε r̄jm,

where r̄jm > 0 is any positive value. Via Lemma 11.1, P (r′) now takes the form:

(11.2) P (r′) = αJ1r
′[J1] + αJ2r

′[J2] + q(ε),

where q(ε) indicates all the summands where ε appears at least linearly. Lemma 11.1
guarantees indeed that there are no other nonzero summands. In particular, q(ε) is a
polynomial in ε with zero constant term, i.e. q(0) = 0.

Proof of Lemma 5.2. The implication ⇐ is trivial. We prove the implication ⇒.
Consider the following two sets of Child Selections:

G = {J | αJ = (−1)M} and B = {J | αJ = (−1)M−1}.

Since the total number of Child Selections is finite, G and B are finite sets and, by
assumption, both are nonempty. We can define the distance d of the two sets as:

d(G ,B) := infJ1∈G,J2∈B d(J1,J2) = minJ1∈G,J2∈B d(J1,J2) = d(J3,J4),

for some Child Selections J3 and J4 with αJ3
αJ4

< 0. The Child Selections J3 and
J4 are at minimal distance, by construction.

Proof of Theorem 4.1. The implication ⇒ is trivial. We prove the implication
⇐. We apply Lemma 5.2 to find two Child Selections J3,J4 at minimal distance
with αJ3

αJ4
< 0. We recall the set D ⊆M of species m such that J3(m) ̸= J4(m).

The cardinality of D is δ = d(J3,J4). Without loss of generalities let us consider
D = {m1, ...,mδ}.

We consider the ε-rescaling of Lemma 5.1. We define m∗ := m1, η := J3(m
∗) and

ρ := r′ηm∗ . We want to solve P (r′) = 0 with respect to the variable ρ. To this goal,
for any r′jm = r′Ji(m)m, for i = 3, 4, r′jm ̸= ρ, we fix the value

r′jm := r̄′jm,

where r̄′jm > 0 is any positive value. Now the polynomial (11.2) reads as a bivariate
polynomial in the two variables ρ and ε:

P (r′) = P (ρ, ε) = αJ3ρ r̄′[J3 \ η] + αJ4 r̄
′[J4] + q(ε),

where r̄′[J3 \ η] indicates the monomial r̄′[J3 \ η] := r̄′[J3]
ρ . The value

ρ∗ := − αJ4
r̄′[J4]

αJ3
r̄′[J3 \ η]

,

is positive by assumption, since αJ3
αJ4

< 0. Moreover,

P (ρ∗, 0) = 0.

We apply the Implicit Function Theorem to show that a positive solution ρ∗(ε) persists
also in a positive neighborhood ε > 0. We check

Pρ(ρ, ε)|(ρ∗,0) ̸= 0.
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Indeed,

Pρ(ρ, ε)|(ρ∗,0) = αJ3
r̄′[J3 \ η] + qρ(ε)|(ρ∗,0) = αJ3

r̄′[J3 \ η] ̸= 0.

Hence, there exists a positive solution ρ∗(ε) for ε > 0.

Remark 11.2. In the proof of Theorem 4.1, the choice of ρ is arbitrary. We could
argue analogously, by picking any ρ∗ := r′Ji(m)m, i = 3, 4, for any m such that

J3(m) ̸= J4(m).

Remark 11.3. Theorem 4.1 can also be proved via intermediate value theorem,
in simpler setting. However, the perturbation construction in the presented proof is
central to the development of the following results of this paper.

Proofs of Section 6

Proof of Lemma 6.3. Via condition (1) of Definition 4.2 we consider again the
ε-rescaling of Lemma 5.1 and proceed as in the proof of Theorem 4.1. Without loss of
generality, assume again that the δ species m such that J1(m) ̸= J2(m) are m1, ...,mδ,
and that m̃ = m1 in the Definition 4.2. Define again η := J1(m̃), and ρ := r′J1(m̃)m̃.

With abuse of notation, let r ′ indicate all the variables

r ′ := {r′jm such that r′Ji(m)m, i = 1, 2, r′jm ̸= ρ}.

This way the polynomial P (r′) reads as P (ρ, r ′, ε), in the variables ρ, r ′, ε. Let now
ρ∗(r ′) indicate the function of r ′

ρ∗(r ′) := − αJ2r
′[J2]

αJ1
r′[J1 \ η]

.

Condition (2) of Definition 4.2 guarantees positivity of ρ∗(r ′) > 0, and thus

P (ρ∗(r ′), r ′, 0) = 0, for any choice of r ′ > 0.

On the other hand, via (6.2),

AdjGm̃
m̃ =

∑
J∨m̃

βJ∨m̃ r′[J∨m̃],

implies that ρ does not appear in AdjGm̃
m̃. Moreover, Condition (3) of Definition 4.2

guarantees the existence of a nonzero Partial Child Selection J∨m̃, i.e. βJ∨m̃ ̸= 0.
Thus,

AdjGm̃
m̃ ̸≡ 0.

In conclusion, we have that

A(ρ∗(r ′), r ′, 0) = trAdjG(ρ∗, r ′, 0) ̸≡ 0.

Hence, there exists a choice of r̄ ′ such that{
P (ρ∗(r̄ ′), r̄ ′, 0) = 0;

A(ρ∗(r̄ ′), r̄ ′, 0) ̸= 0.
.

As in the proof of Theorem 4.1, we apply the implicit function theorem obtaining a
solution of P (ρ∗(r̄ ′, ε), r̄ ′, ε), for small ε. By continuity, A(ρ∗, r̄ ′, 0) ̸= 0 persists in a
neighborhood of ε, implying the existence of r̄′ such that:{

P (r̄′) = 0;

A(r̄′) ̸= 0.
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Proofs of Section 7

Proof of Lemma 7.1. Let us consider the ε-rescaling of Lemma 5.1 for the SN-pair
of Child Selections J1 and J2. Until the last step of this proof, we consider the limit
ε = 0. Not to overload notation, we drop the constant reference to ε. At this limit,
we recall that the only nonvanishing variables r′jm are the ones such that

r′jm = r′Ji(m)m with i = 1, 2.

Let ρ := r′ηm∗ and consider the M ×M matrix Gη, whose columns (Gη)m are

(Gη)m =

{
ρ Sη if m = m∗;

Gm otherwise.

We recall that Gm indicates the mth column of G and Sη the stoichiometric column
corresponding to reaction η. The polynomial P η(r′) := detGη is nonzero. In fact

(11.3) P η(r′) =
∑
η∈J

αJr
′[J] = αJ1

r′[J1] ̸= 0, for any choice of r′[J1] > 0.

Note that (11.3) holds only at the limit ε = 0. Let again r ′ indicate all the variables

r ′ := {r′jm such that r′Ji(m)m, i = 1, 2, r′jm ̸= ρ}.

As in the proof of Lemma 6.3, we can choose r̄ ′, ρ∗(r̄ ′) such that G[(ρ∗(r̄ ′), r̄ ′)] has
an algebraically simple eigenvalue zero. Let w be left kernel vector of G[(ρ∗(r̄ ′), r̄ ′)].
Note that the mth column of G is the mth column of Gη, except for m = m∗. From
the nonsingularity of Gη we conclude:

0 ̸= wTGη =
1 ... m∗ ... M

( )0, ... ⟨w, ρSη⟩, ... 0 ,

implying ⟨w, Sη⟩ ≠ 0, which persists for small ε > 0, by continuity.

Proof of Lemma 7.2. By linearity

wT ∂2
xg(x̄, λ

∗)[v, v] = wT
∑
h,k

∂2g

∂xh∂xk
(vhvk)

=
∑
h,k

wT ∂2g

∂xh∂xk
(vhvk).

For any m and n, a second derivative f ′′
jmn appears only in the summand

wT ∂2g

∂xm∂xn
(vmvn).

Hence,

wT ∂2
xg(x̄, λ

∗)[v, v] ≡ 0 ⇔
∑
h,k

wT ∂2g

∂xm∂xn
(vmvn) ≡ 0 for any m and n.
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We show that there exists m ∈M such that:

(11.4) wT ∂g2(x̄, λ∗)

(∂xm)2
(vm)2 ̸≡ 0.

Indeed, since r̄′ is a positive solution of P (r′) = 0, there exist m∗ and η such that

(11.5) ρ∗ := r̄′ηm∗ =
−
∑

j ̸∈J α(J) r̄′[J]∑
j∈J α(J) r̄′[J \ j]

,

with numerator and denominator of the same sign. In the proof of Theorem 4.1, we
have shown how to construct such ρ∗ from two Child Selections of opposite behavior.
Note that the mth column Gm = ∂g/∂xm of the Jacobian G has an identical symbolic
structure as the the column vector g′′mm := ∂2g/(∂xm)2. Indeed, every first derivative
r′jm in Gm is simply substituted with the second derivative r′′jmm in g′′mm. This implies

wT ∂g2(x̄, λ∗)

(∂xm)2
= 0

for anym, if r′jm = r′′jmm, for everym and j. Let us focus onm∗. For (j,m) ̸= (η,m∗),
fix r̄′′jmm = r̄′jm, and let r̄′′ηm∗ ̸= ρ∗. Clearly, from (11.5) this choice of r̄′′ implies

wT ∂g2(x̄, λ∗)

(∂xm∗)2
(r̄′′) ̸= 0.

To conclude (11.4), we show that vm∗ ̸= 0. Fix r̄′jm for (j,m) ̸= (η,m∗) as in (11.5)
and let ρ be the only variable. Then the univariate polynomial

P (r′) = P (ρ)

is evaluated zero if and only if ρ = ρ∗. But ρ appears only in the m∗ th column of G.
Via G(r′)v = 0, we have vm∗ ̸= 0.

Proofs of Section 8

Proof of Theorem 8.1. Via Lemma 6.3, if the network possesses an SN-pair of
Child Selections, then there is a choice of x̄, r̄, r̄′ such that (8.3) is satisfied, with
the Jacobian G(r̄′) possessing an algebraically simple eigenvalue zero. We can then
choose (a,b) = (a, b), with a, b defined as in (8.5), (8.4), respectively. The choice of
the bifurcation parameter

λ := bηm∗ with bifurcation value λ∗ := bηm∗

implies that

∂λg =
∂fη
∂λ

Sη,

where Sη is the stoichiometric vector of reaction η. Since
∂fη
∂λ ̸= 0, Lemma 7.1 implies

that the Michaelis-Menten system possesses a simple eigenvalue zero at x̄ for the
choice (a,b) = (a, b), which satisfies (SN1) and (SN2) of Theorem 1.1.

Proof of Theorem 8.2. Let us consider the ε-rescaling of Lemma 5.1 for the SN-
pair of Child Selections J1,J2. Until the last step of this proof, we consider the limit
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ε = 0. Not to overload notation, we drop the constant reference to ε. At this limit,
we recall that the only nonvanishing variables r′jm are the ones such that

r′jm = r′Ji(m)m with i = 1, 2.

Note that distance d(J1,J2) = 1 and injectivity of Child Selections imply

(11.6) r′jmr′jn = 0

for any reaction j and m ̸= n.

At ε = 0, we can proceed as in the proof of Lemma 6.3. For a proper choice of r̄′

we obtain an algebraically simple eigenvalue zero. Note that

(11.7) P (r′) = detG(r′) = (αJ1r
′
ηm∗ + αJ2

r′j2m∗)r′[J1 \ η] = 0,

if and only if

(11.8) αJ1r
′
ηm∗ = −αJ2r

′
j2m∗ .

Let v, w be right and left kernel vectors of G(r̄′), respectively. Let Gm indicate the
mth column of the Jacobian G. At the limit ε = 0 we have{

Gm = SJ1(m)r′J1(m)m for m ̸= m∗;

Gm∗
= Sηr′ηm∗ + Sj2r′j2m∗ .

Consequently, wTG(r′) = 0 yields{
wTGm = wTSJ1(m)r̄′J1(m)m = 0 for m ̸= m∗;

wTGm∗
= wT (Sη r̄′ηm∗ + Sj2 r̄′j2m∗) = 0.

In particular, this implies{
wTSJ1(m) = 0 for m ̸= m∗;

wT (Sηr′ηm∗ + Sj2r′j2m∗) = 0 if and only if αJ1
r′ηm∗ = αJ2

r′j2m∗ .
(11.9)

Moreover, (11.7) and G(r̄′)v = 0 imply

vm∗ ̸= 0.

Let us now fix x̄ and (a,b) = (a, b) as in (8.3), (8.4), (8.5). For this parameter
choice, a straightforward computation yields:f ′′

Ji(m)mm = − 2r′Ji(m)m

xm
+

(r′Ji(m)m)2

rJi(m)

(
1 + 1

s
Ji(m)
m

)
;

f ′′
Ji(m)mn = f ′′

Ji(m)nm =
r′Ji(m)m r′Ji(m)n

rj

For every Ji,m, n, (11.6) implies that f ′′
Ji(m)mn = 0 and hence all mixed second

derivatives g′′mn are zero, at ε = 0. This yields

wT ∂2
xg[v, v] = wT

∑
m

∑
n

g′′mnvmvn

= wT (Sηf ′′
ηm∗m∗ + Sj2f ′′

j2m∗m∗)(vm∗)2 +
∑

m ̸=m∗

wSJ1(m)f ′′
J1mm(vm)2

= wT (Sηf ′′
ηm∗m∗ + Sj2f ′′

j2m∗m∗)(vm∗)2.
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Via (11.9), thus,

wT ∂2
xg[v, v] ̸= 0 if and only if αJ1

f ′′
ηm∗m∗ ̸= −αJ2

f ′′
j2m∗m∗ .

With (11.8) in mind, we compute:

αJ1f
′′
ηm∗m∗ + αJ2

f ′′
j2m∗m∗

= αJ1

(
−

2r′ηm∗

xm∗
+

(r′ηm∗)2

rη

(
1 +

1

sηm∗

))
+ αJ2

(
−

2r′j2m∗

xm∗
+

(r′j2m∗)2

rj2

(
1 +

1

sj2m∗

))
= −2

αJ1r
′
ηm∗ + αJ2r

′
j2m∗

xm∗
+

αJ1(r
′
ηm∗)2

rη

(
1 +

1

sηm∗

)
+

αJ2(r
′
j2m∗)2

rj2

(
1 +

1

sj2m∗

)
= −

αJ2r
′
ηm∗r′j2m∗

rη

(
1 +

1

sηm∗

)
−

αJ1r
′
ηm∗r′j2m∗

rj2

(
1 +

1

sj2m∗

)
= −r′ηm∗r′j2m∗

(
αJ2

rη

(
1 +

1

sηm∗

)
+

αJ1

rj2

(
1 +

1

sj2m∗

))
,

which is nonzero if and only if

αJ2

rη

(
1 +

1

sηm∗

)
̸= −αJ1

rj2

(
1 +

1

sj2m∗

)
.

By continuity, wT ∂2
xg[v, v] ̸= 0 also for small positive ε > 0. Hence, we find Michaelis-

Menten functions f(x, λ) satisfying all conditions (SN1)–(SN3) of Theorem 1.1.

Proof of Theorem 8.3. For Hill kinetics (8.1), we can use parameters a,b, c. We
proceed analogously as in the proof of Theorem 8.2, considering the ε-rescaling of the
variables r′jm of Lemma 5.1, at the limit ε = 0. Again not to overload notation, we
omit the explicit dependency on ε. Differently from Theorem 8.2, however, we do not
have any assumption on the distance d. We again fix (a(c),b(c)) = (a(c), b(c)) as
in (8.3), (8.4), (8.5), now explicitly including the dependence on parameters c. We
compute again the second derivatives of (8.1) and obtainf ′′

jmm(c) = − 2cjmr′jm
xm

+
(r′jm)2

rj

(
1 +

cjmxc
j
m−1

sjm

)
;

f ′′
jmn(c) = f ′′

jnm =
r′jm r′jn

rj
.

At the limit ε = 0, r′jm = 0 implies f ′′
jmm = 0, f ′′

jmn = 0, for any choice c and any n.

Moreover, a parameter cjm appears only in the second derivative f ′′
jmm. In particular,

the mixed derivatives f ′′
jmn do not depend on the parameters c:

∂f ′′
jmn(c)

∂chk
≡ 0, for any h and k,

while on the contrary,

∂f ′′
jmm(c)

∂chn
̸≡ 0, if and only if h = j, n = m.
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We focus on the parameter cηm∗ . At ε = 0 we have

wT ∂2
xg(x̄, λ

∗)[v, v](cηm∗)

= wT
∑
m,n

∂2g

∂xm∂xn
(vmvn)(c

η
m∗)

=
∑
m,n

wT ∂2g

∂xm∂xn
(vmvn)(c

η
m∗)

=
∑
m

wT ∂2g

(∂xm)2
(vm)2(cηm∗) +

∑
m,n m ̸=n

wT ∂2g

∂xm∂xn
(vmvn)

= wT ∂2g

(∂xm∗)2
(vm∗)2(cηm∗)

+
∑

m̸=m∗

wT ∂2g

(∂xm)2
(vm)2 +

∑
m,n m ̸=n

wT ∂2g

∂xm∂xn
(vmvn)

= wT Sηf ′′
ηm∗m∗(c

η
m∗)

+ wT Sj2f ′′
j2m∗m∗ +

∑
m ̸=m∗

wT ∂2g

(∂xm)2
(vm)2 +

∑
m,n m ̸=n

wT ∂2g

∂xh∂xk
(vmvn)

We define

K := wT Sj2f ′′
j2m∗m∗ +

∑
m ̸=m∗

wT ∂2g

(∂xm)2
(vm)2 +

∑
m,n m ̸=n

wT ∂2g

∂xm∂xn
(vmvn).

The constant K does not depend on cηm∗ , and hence cηm∗ can be used to nudge
wT ∂2

xg[v, v] away from the degeneracy in the following way. Let us arbitrarily pick a
choice c̄. For (a(c̄), b(c̄), c̄), if the equilibrium x̄ possesses a singular Jacobian G with
left kernel vector w and right kernel vector v such that

wT ∂2
xg[v, v](c̄) ̸= 0,

we are done. Otherwise, let us assume

wT ∂2
xg[v, v](c̄) = 0.

Let us choose c̃ such that{
c̃jm = c̄jm for (j,m) ̸= (η,m∗);

c̃jm ̸= c̄jm for (j,m) = (η,m∗).

As previously noted, the parameter cηm∗ appears only in f ′′
ηm∗m∗ and hence

wT ∂2
xg(x̄, λ

∗)[v, v](c̃)− wT ∂2
xg(x̄, λ

∗)[v, v](c̄)

= wT Sηf ′′
ηm∗m∗(c̃ηm∗)− wT Sηf ′′

ηm∗m∗(c̄ηm∗) ̸= 0,

implying
wT ∂2

xg(x̄, λ
∗)[v, v](c̃) ̸= 0.

By continuity, this extends to small ε > 0.
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Proof of Theorem 4.3 and Corollary 4.4

Proof of Theorem 4.3. The Theorem is just a corollary of Theorem 8.3. Hill ki-
netics is indeed a specific example of monotone chemical functions, which proves the
theorem.

Proof of Corollary 4.4. We have only to check that the pair (J̃1, J̃2) satisfies Defi-
nition 4.2 of SN-pair of Child Selections of Γ̃. Condition (1) is satisfied by assumption.
Condition (2) is inherited from the SN-pair of Child Selections J1,J2 of Γ. In fact,
note that

SJ̃3 =

(
SJ1 B
0 D

)
and SJ̃4 =

(
SJ2 B
0 D

)
,

where (
B
D

)
indicates the stoichiometric matrix of the Child Selection SJ̃3 and SJ̃4 relative to the
reactions J̃3(m) = J̃4(m) for m ∈ M̃ \M. Hence,{

0 ̸= αJ̃1
= detSJ̃3 = αJ1 detD

0 ̸= αJ̃2
= detSJ̃4 = αJ2 detD

implying αJ̃1
αJ̃2

< 0. Condition 3 is satisfied by considering the same species m∗

and the same nonzero Partial Child Selection J∨m∗
for the SN-pair J1,J2 of Γ and

extending it to a nonzero Partial Child Selection J̃∨m∗
of Γ̃ defined as{

J̃∨m∗
(m) = J∨m∗

(m) for m ∈M \ {m∗}
J̃∨m∗

(m) = J̃1(m) = J̃2(m) for m ∈ M̃ \M
.

For J̃∨m∗
it holds:

βJ̃∨m∗ = detSJ̃∨m∗

∨m∗ = detSJ∨m∗

∨m∗ detD = βJ∨m∗ detD ̸= 0,

concluding the proof.
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